Science.gov

Sample records for induces targeted rewiring

  1. ATR inhibition rewires cellular signaling networks induced by replication stress.

    PubMed

    Wagner, Sebastian A; Oehler, Hannah; Voigt, Andrea; Dalic, Denis; Freiwald, Anja; Serve, Hubert; Beli, Petra

    2016-02-01

    The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA-DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS-based proteomics to define the cellular signaling after nucleotide depletion-induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR-dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM-driven double-strand break repair signaling.

  2. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs.

    PubMed

    André, Fanny; Trinh, Anne; Balayssac, Stéphane; Maboudou, Patrice; Dekiouk, Salim; Malet-Martino, Myriam; Quesnel, Bruno; Idziorek, Thierry; Kluza, Jérome; Marchetti, Philippe

    2017-04-01

    Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. (1)H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.

  3. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for

  4. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.

    PubMed

    Childers, Delma S; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A R; Lenardon, Megan D; Ballou, Elizabeth R; MacCallum, Donna M; Brown, Alistair J P

    2016-04-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in

  5. Roles of inhibitory neurons in rewiring-induced synchronization in pulse-coupled neural networks.

    PubMed

    Kanamaru, Takashi; Aihara, Kazuyuki

    2010-05-01

    The roles of inhibitory neurons in synchronous firing are examined in a network of excitatory and inhibitory neurons with Watts and Strogatz's rewiring. By examining the persistence of the synchronous firing that exists in the random network, it was found that there is a probability of rewiring at which a transition between the synchronous state and the asynchronous state takes place, and the dynamics of the inhibitory neurons play an important role in determining this probability.

  6. Enriched and Deprived Sensory Experience Induces Structural Changes and Rewires Connectivity during the Postnatal Development of the Brain

    PubMed Central

    Bengoetxea, Harkaitz; Ortuzar, Naiara; Bulnes, Susana; Rico-Barrio, Irantzu; Lafuente, José Vicente; Argandoña, Enrike G.

    2012-01-01

    During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation. PMID:22848849

  7. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.

    PubMed

    Sandai, Doblin; Yin, Zhikang; Selway, Laura; Stead, David; Walker, Janet; Leach, Michelle D; Bohovych, Iryna; Ene, Iuliana V; Kastora, Stavroula; Budge, Susan; Munro, Carol A; Odds, Frank C; Gow, Neil A R; Brown, Alistair J P

    2012-12-11

    Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the assimilation of carboxylic and fatty acids are not degraded in response to glucose. However, when expressed in C. albicans, S. cerevisiae Icl1 (ScIcl1) is subjected to glucose-accelerated degradation, indicating that like S. cerevisiae, this pathogen has the molecular apparatus required to execute ubiquitin-dependent catabolite inactivation. C. albicans Icl1 (CaIcl1) lacks analogous ubiquitination sites and is stable under these conditions, but the addition of a ubiquitination site programs glucose-accelerated degradation of CaIcl1. Also, catabolite inactivation is slowed in C. albicans ubi4 cells. Ubiquitination sites are present in gluconeogenic and glyoxylate cycle enzymes from S. cerevisiae but absent from their C. albicans homologues. We conclude that evolutionary rewiring of ubiquitination targets has meant that following glucose exposure, C. albicans retains key metabolic functions, allowing it to continue to assimilate alternative carbon sources. This metabolic flexibility may be critical during infection, facilitating the rapid colonization of dynamic host niches containing complex arrays of nutrients. IMPORTANCE Pathogenic microbes must assimilate a range of carbon sources to grow and colonize their hosts. Current views about carbon assimilation in the

  8. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury.

    PubMed

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-04-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery of motor function following brain injury. After destruction of unilateral sensorimotor cortex, intact-side corticospinal tract formed sprouting fibres into the specific lamina of the denervated side of the cervical spinal cord, and made new contact with two types of spinal interneurons-segmental and propriospinal neurons. Anatomical and electrophysiological analyses revealed that this rewired corticospinal tract functionally linked to motor neurons and forelimb muscles. This newly formed corticospinal circuit was necessary for motor recovery, because transection of the circuit led to impairment of recovering forelimb function. Knockdown of brain-derived neurotrophic factor in the spinal neurons or its receptor in the intact corticospinal neurons diminished fibre sprouting of the corticospinal tract. Our findings establish the anatomical, functional and molecular basis for the intrinsic capacity of neurons to form compensatory neural network following injury.

  9. The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans

    PubMed Central

    Sandai, Doblin; Yin, Zhikang; Selway, Laura; Stead, David; Walker, Janet; Leach, Michelle D.; Bohovych, Iryna; Ene, Iuliana V.; Kastora, Stavroula; Budge, Susan; Munro, Carol A.; Odds, Frank C.; Gow, Neil A. R.; Brown, Alistair J. P.

    2012-01-01

    ABSTRACT Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the assimilation of carboxylic and fatty acids are not degraded in response to glucose. However, when expressed in C. albicans, S. cerevisiae Icl1 (ScIcl1) is subjected to glucose-accelerated degradation, indicating that like S. cerevisiae, this pathogen has the molecular apparatus required to execute ubiquitin-dependent catabolite inactivation. C. albicans Icl1 (CaIcl1) lacks analogous ubiquitination sites and is stable under these conditions, but the addition of a ubiquitination site programs glucose-accelerated degradation of CaIcl1. Also, catabolite inactivation is slowed in C. albicans ubi4 cells. Ubiquitination sites are present in gluconeogenic and glyoxylate cycle enzymes from S. cerevisiae but absent from their C. albicans homologues. We conclude that evolutionary rewiring of ubiquitination targets has meant that following glucose exposure, C. albicans retains key metabolic functions, allowing it to continue to assimilate alternative carbon sources. This metabolic flexibility may be critical during infection, facilitating the rapid colonization of dynamic host niches containing complex arrays of nutrients. PMID:23232717

  10. Light-induced rewiring and winding of Saturn ring defects in photosensitive chiral nematic colloids.

    PubMed

    Gvozdovskyy, I; Jampani, V S R; Skarabot, M; Muševič, I

    2013-09-01

    We study the winding and unwinding of Saturn ring defects around silica microspheres with homeotropic surface anchoring in a cholesteric liquid crystal with a variable pitch. We use mixtures of a nematic liquid crystal 5CB and various photoresponsive chiral dopants to vary the helical pitch and sense of the helical winding by illuminating the mixtures with UV or visible light. Upon illumination, we observe motion of the Grandjean-Cano disclination lines in wedge-like cells. When the line touches the colloidal particle, we observe topological reconstruction of the Grandjean-Cano line and the Saturn ring. The result of this topological reconstruction is either an increase or decrease of the degree of winding of the Saturn ring around the colloidal particle. This phenomenon is similar to topological rewiring of -1/2 disclination lines, observed recently in chiral nematic colloids.

  11. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-08-15

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken

  12. Metabolic rewiring in melanoma

    PubMed Central

    Ratnikov, Boris I.; Scott, David A.; Osterman, Andrei L.; Smith, Jeffrey W.; Ronai, Ze’ev A.

    2016-01-01

    Oncogene-driven metabolic rewiring is an adaptation to low nutrient and oxygen conditions in the tumor microenvironment that enables cancer cells of diverse origin to hyperproliferate. Aerobic glycolysis and enhanced reliance on glutamine utilization are prime examples of such rewiring. However, tissue of origin as well as specific genetic and epigenetic changes determines gene expression profiles underlying these metabolic alterations in specific cancers. In melanoma, activation of the MAPK pathway driven by mutant BRAF or NRAS is a primary cause of malignant transformation. Activity of the MAPK pathway, as well as other factors, such as HIF1α, Myc and MITF, are among those that control the balance between non-oxidative and oxidative branches of central carbon metabolism. Here, we discuss the nature of metabolic alterations that underlie melanoma development and affect its response to therapy. PMID:27270434

  13. Bypass rewiring and robustness of complex networks

    NASA Astrophysics Data System (ADS)

    Park, Junsang; Hahn, Sang Geun

    2016-08-01

    A concept of bypass rewiring is introduced, and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. In particular, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold 0 for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring, while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring.

  14. Robust criticality of an Ising model on rewired directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  15. Robust criticality of an Ising model on rewired directed networks.

    PubMed

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  16. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  17. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  18. Re-wired ERK-JNK signaling pathways in melanoma

    PubMed Central

    Lopez-Bergami, Pablo; Huang, Conway; Goydos, James S.; Yip, Dana; Bar-Eli, Menashe; Herlyn, Meenhard; Smalley, Keiran S. M.; Mahale, Alka; Eroshkin, Alexey; Aaronson, Stuart; Ronai, Ze’ev

    2007-01-01

    Summary Constitutive activation of MEK-ERK signaling is often found in melanomas. Here, we identify a mechanism that links ERK with JNK signaling in human melanoma. Constitutively active ERK increases c-Jun transcription and stability, which are mediated by CREB and GSK3, respectively. Subsequently, c-Jun increases transcription of target genes, including RACK1, an adaptor protein that enables PKC to phosphorylate and enhance JNK activity, enforcing a feed-forward mechanism of the JNK-Jun pathway. Activated c-Jun is also responsible for elevated cyclin D1 expression, which is frequently overexpressed in human melanoma. Our data reveal that in human melanoma the rewired ERK signaling pathway upregulates JNK and activates the c-Jun oncogene and its downstream targets including RACK1 and cyclin D1. Significance Although constitutively active ERK-MAPK signaling has been found in a large fraction of human melanoma tumors, how this pathway contributes to melanoma development remains largely elusive. Here we reveal the blueprint for rewiring of key signal transduction pathways in melanoma. In this re-wiring program, constitutively active ERK affects the c-Jun oncogene, its upstream kinase JNK, and its downstream targets RACK1 and cyclin D1. Understanding how key signaling pathways are re-wired in melanoma offers new targets for therapy of this tumor type. PMID:17482134

  19. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks.

    PubMed

    Lee, Michael J; Ye, Albert S; Gardino, Alexandra K; Heijink, Anne Margriet; Sorger, Peter K; MacBeath, Gavin; Yaffe, Michael B

    2012-05-11

    Crosstalk and complexity within signaling pathways and their perturbation by oncogenes limit component-by-component approaches to understanding human disease. Network analysis of how normal and oncogenic signaling can be rewired by drugs may provide opportunities to target tumors with high specificity and efficacy. Using targeted inhibition of oncogenic signaling pathways, combined with DNA-damaging chemotherapy, we report that time-staggered EGFR inhibition, but not simultaneous coadministration, dramatically sensitizes a subset of triple-negative breast cancer cells to genotoxic drugs. Systems-level analysis-using high-density time-dependent measurements of signaling networks, gene expression profiles, and cell phenotypic responses in combination with mathematical modeling-revealed an approach for altering the intrinsic state of the cell through dynamic rewiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death by reactivation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Pneumaplasticity: Rewiring the Human Soul.

    PubMed

    Cherwien, Karen Martinson

    2016-06-01

    We human beings continue to wrestle with our identities as spiritual people, both individually and collectively. This article proposes a synthesized perspective on human spirituality, introducing the concept of pneumaplasticity, which allows us to move beyond the spiritual limits common to several major faith traditions to see how our spiritual selves can adapt and rewire to facilitate meaning-making and continued discernment of our ever-developing senses of identity and meaning. This concept is of particular value to professionals providing spiritual care in any setting.

  1. Can rewiring strategy control the epidemic spreading?

    NASA Astrophysics Data System (ADS)

    Dong, Chao; Yin, Qiuju; Liu, Wenyang; Yan, Zhijun; Shi, Tianyu

    2015-11-01

    Relation existed in the social contact network can affect individuals' behaviors greatly. Considering the diversity of relation intimacy among network nodes, an epidemic propagation model is proposed by incorporating the link-breaking threshold, which is normally neglected in the rewiring strategy. The impact of rewiring strategy on the epidemic spreading in the weighted adaptive network is explored. The results show that the rewiring strategy cannot always control the epidemic prevalence, especially when the link-breaking threshold is low. Meanwhile, as well as strong links, weak links also play a significant role on epidemic spreading.

  2. Engineering microbial phenotypes through rewiring of genetic networks.

    PubMed

    Windram, Oliver P F; Rodrigues, Rui T L; Lee, Sangjin; Haines, Matthew; Bayer, Travis S

    2017-03-21

    The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.

  3. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  4. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  5. Measuring the Evolutionary Rewiring of Biological Networks

    PubMed Central

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y. K.; Yan, Koon-Kiu; Kim, Philip M.; Snyder, Michael; Gerstein, Mark B.

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or “rewire”, at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of “commonplace” networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  6. Efficient rewirings for enhancing synchronizability of dynamical networks.

    PubMed

    Rad, Ali Ajdari; Jalili, Mahdi; Hasler, Martin

    2008-09-01

    In this paper, we present an algorithm for optimizing synchronizability of complex dynamical networks. Starting with an undirected and unweighted network, we end up with an undirected and unweighted network with the same number of nodes and edges having enhanced synchronizability. To this end, based on some network properties, rewirings, i.e., eliminating an edge and creating a new edge elsewhere, are performed iteratively avoiding always self-loops and multiple edges between the same nodes. We show that the method is able to enhance the synchronizability of networks of any size and topological properties in a small number of steps that scales with the network size. For numerical simulations, an optimization algorithm based on simulated annealing is used. Also, the evolution of different topological properties of the network such as distribution of node degree, node and edge betweenness centrality is tracked with the iteration steps. We use networks such as scale-free, Strogatz-Watts and random to start with and we show that regardless of the initial network, the final optimized network becomes homogeneous. In other words, in the network with high synchronizability, parameters, such as, degree, shortest distance, node, and edge betweenness centralities are almost homogeneously distributed. Also, parameters, such as, maximum node and edge betweenness centralities are small for the rewired network. Although we take the eigenratio of the Laplacian as the target function for optimization, we show that it is also possible to choose other appropriate target functions exhibiting almost the same performance. Furthermore, we show that even if the network is optimized taking into account another interpretation of synchronizability, i.e., synchronization cost, the optimal network has the same synchronization properties. Indeed, in networks with optimized synchronizability, different interpretations of synchronizability coincide. The optimized networks are Ramanujan graphs

  7. Sequential Application of Anti-Cancer Drugs Enhances Cell Death by Re-wiring Apoptotic Signaling Networks

    PubMed Central

    Lee, Michael J.; Ye, Albert S.; Gardino, Alexandra K.; Heijink, Anne Margriet; Sorger, Peter K.; MacBeath, Gavin; Yaffe, Michael B.

    2012-01-01

    SUMMARY Crosstalk and complexity within signaling pathways, and their perturbation by oncogenes, limits component-by-component approaches to understanding human disease. Network analysis of how normal and oncogenic signaling can be re-wired by drugs may provide opportunities to target tumors with high specificity and efficacy. Using targeted inhibition of oncogenic signaling pathways combined with DNA damaging chemotherapy, we report that time-staggered EGFR inhibition, but not simultaneous co-administration, dramatically sensitizes a subset of triple-negative breast cancer cells to genotoxic drugs. Systems-level analysis—using high-density time-dependent measurements of signaling networks, gene expression profiles, and cell phenotypic responses in combination with mathematical modeling— revealed an approach for altering the intrinsic state of the cell through dynamic re-wiring of oncogenic signaling pathways. This process converts these cells to a less tumorigenic state that is more susceptible to DNA damage-induced cell death by re-activation of an extrinsic apoptotic pathway whose function is suppressed in the oncogene-addicted state. PMID:22579283

  8. ChiNet uncovers rewired rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion

    USDA-ARS?s Scientific Manuscript database

    Conventional differential gene expression analysis is insufficient to dissect altered gene interactions for adapted transcription regulatory networks that impact downstream molecular responses. Here we present comparative chi-square network analysis (ChiNet), a computational method, to uncover rewir...

  9. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-03

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  10. Rewired ERK-JNK signaling pathways in melanoma.

    PubMed

    Lopez-Bergami, Pablo; Huang, Conway; Goydos, James S; Yip, Dana; Bar-Eli, Menashe; Herlyn, Meenhard; Smalley, Keiran S M; Mahale, Alka; Eroshkin, Alexey; Aaronson, Stuart; Ronai, Ze'ev

    2007-05-01

    Constitutive activation of MEK-ERK signaling is often found in melanomas. Here, we identify a mechanism that links ERK with JNK signaling in human melanoma. Constitutively active ERK increases c-Jun transcription and stability, which are mediated by CREB and GSK3, respectively. Subsequently, c-Jun increases transcription of target genes, including RACK1, an adaptor protein that enables PKC to phosphorylate and enhance JNK activity, enforcing a feed-forward mechanism of the JNK-Jun pathway. Activated c-Jun is also responsible for elevated cyclin D1 expression, which is frequently overexpressed in human melanoma. Our data reveal that, in human melanoma, the rewired ERK signaling pathway upregulates JNK and activates the c-Jun oncogene and its downstream targets, including RACK1 and cyclin D1.

  11. Drought rewires the cores of food webs

    NASA Astrophysics Data System (ADS)

    Lu, Xueke; Gray, Clare; Brown, Lee E.; Ledger, Mark E.; Milner, Alexander M.; Mondragón, Raúl J.; Woodward, Guy; Ma, Athen

    2016-09-01

    Droughts are intensifying across the globe, with potentially devastating implications for freshwater ecosystems. We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species surrounded by poorly connected peripheral species. Although drought caused the partial collapse of the food webs, the loss of the most extinction-prone peripheral species triggered a substantial rewiring of interactions within the networks’ cores. These shifts in species interactions in the core conserved the underlying core/periphery substructure and stability of the drought-impacted webs. When we subsequently perturbed the webs by simulating species loss in silico, the rewired drought webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown compensatory dynamics arising from within the core that could underpin food web stability in the face of environmental perturbations.

  12. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    PubMed

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  13. Science Signaling Podcast for 16 May 2017: Vibrio rewires host cells.

    PubMed

    De Nisco, Nicole J; Orth, Kim; VanHook, Annalisa M

    2017-05-16

    This Podcast features a conversation with Kim Orth and Nicole De Nisco, authors of a Research Resource that appears in the 16 May 2017 issue of Science Signaling, about how the marine bacterium Vibrio parahaemolyticus rewires host cell signaling networks. V. parahaemolyticus thrives in warm brackish waters and infects both shellfish and finfish. This bacterium causes gastroenteritis when humans consume contaminated seafood that is raw or undercooked. V. parahaemolyticus delivers virulence factors into host cells through two different type 3 secretion systems (T3SSes). Whereas T3SS2 mediates gastroenteritis, T3SS1 is required for the bacterium to survive in its natural environment and delivers virulence factors that target conserved cellular processes. De Nisco et al examined transcriptional changes in human cells infected with a strain of V. parahaemolyticus that lacked T3SS2 but had an intact T3SS1. They found that the virulence factors delivered through T3SS1 initially induced transcriptional changes that promoted cell survival, then later repressed prosurvival signaling to induce cell death.Listen to Podcast. Copyright © 2017, American Association for the Advancement of Science.

  14. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  15. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  16. Hyperthermia-induced drug targeting.

    PubMed

    May, Jonathan P; Li, Shyh-Dar

    2013-04-01

    Specific delivery of a drug to a target site is a major goal of drug delivery research. Using temperature-sensitive liposomes (TSLs) is one way to achieve this; the liposome acts as a protective carrier, allowing increased drug to flow through the bloodstream by minimizing clearance and non-specific uptake. On reaching microvessels within a heated tumor, the drug is released and quickly penetrates. A major advance in the field is ThermoDox® (Celsion), demonstrating significant improvements to the drug release rates and drug uptake in heated tumors (∼ 41°C). Most recently, magnetic resonance-guided focused ultrasound (MRgFUS) has been combined with TSL drug delivery to provide localized chemotherapy with simultaneous quantification of drug release within the tumor. In this article the field of hyperthermia-induced drug delivery is discussed, with an emphasis on the development of TSLs and their combination with hyperthermia (both mild and ablative) in cancer therapy. State-of-the-art image-guided heating technologies used with this combination strategy will also be presented, with examples of real-time monitoring of drug delivery and prediction of efficacy. The specific delivery of drugs by combining hyperthermia with TSLs is showing great promise in the clinic and its potential will be even greater as the use of image-guided focused ultrasound becomes more widespread - a technique capable of penetrating deep within the body to heat a specific area with improved control. In conjunction with this, it is anticipated that multifunctional TSLs will be a major topic of study in this field.

  17. Rewiring of Posttranscriptional RNA Regulons: Puf4p in Fungi as an Example

    PubMed Central

    Jiang, Huifeng; Guo, Xiaoxian; Xu, Lin; Gu, Zhenglong

    2012-01-01

    It has been increasingly clear that changes in gene regulation play important roles in physiological and phenotypic evolution. Rewiring gene-regulatory networks, i.e., alteration of the gene-regulation system for different biological functions, has been demonstrated in various species. Posttranscriptional regulons have prominent roles in coordinating gene expression in a variety of eukaryotes. In this study, using Puf4p in fungi as an example, we demonstrate that posttranscriptional regulatory networks can also be rewired during evolution. Although Puf4p is highly conserved in fungi, targets of the posttranscriptional regulon are functionally diverse among known fungal species. In the Saccharomycotina subdivision, target genes of Puf4p mostly conduct function in the nucleolus; however, in the Pezizomycotina subdivision, they are enriched in the mitochondria. Furthermore, we demonstrate different regulation efficiencies of mitochondrial function by PUF proteins in different fungal clades. Our results indicate that rewiring of posttranscription regulatory networks may be an important way of generating genetic novelties in gene regulation during evolution. PMID:22438588

  18. Rewiring Mid1p-independent medial division in fission yeast.

    PubMed

    Tao, Evelyn Yaqiong; Calvert, Meredith; Balasubramanian, Mohan K

    2014-09-22

    Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes requires Mid1p, which recruits IQGAP-related Rng2p to the division site, after which other node components accumulate at the division site in a characteristic sequence [3-6]. How cytokinetic nodes assemble, whether the order of assembly of ring components is important, and whether Mid1p solely participates in ring positioning are poorly understood. Here, we show that synthetic targeting of IQGAP-related Rng2p, formin-Cdc12p, and myosin II (Myo2p) restores medial division in mid1 mutants, suggesting that ring proteins need not assemble at the division site in an invariant order. Unlike in wild-type cells, actomyosin rings in cells rewired to divide medially in the absence of Mid1p assemble late in anaphase. Furthermore, the rewiring process affects the ability of the actomyosin ring to track the nucleus upon perturbation of nuclear position. Our work reveals the power of synthetic rewiring studies in deciphering roles performed by multifunctional proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Brain 'Rewires' to Work Around Early-Life Blindness

    MedlinePlus

    ... gov/news/fullstory_164230.html Brain 'Rewires' to Work Around Early-Life Blindness These differences appear to ... areas implicated in memory, language processing and sensory motor functions," added Bauer. Learning more about these connections ...

  20. Rewired Metabolism in Drug-resistant Leukemia Cells

    PubMed Central

    Stäubert, Claudia; Bhuiyan, Hasanuzzaman; Lindahl, Anna; Broom, Oliver Jay; Zhu, Yafeng; Islam, Saiful; Linnarsson, Sten; Lehtiö, Janne; Nordström, Anders

    2015-01-01

    Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies. PMID:25697355

  1. Singularity in polarization: rewiring yeast cells to make two buds.

    PubMed

    Howell, Audrey S; Savage, Natasha S; Johnson, Sam A; Bose, Indrani; Wagner, Allison W; Zyla, Trevin R; Nijhout, H Frederik; Reed, Michael C; Goryachev, Andrew B; Lew, Daniel J

    2009-11-13

    For budding yeast to ensure formation of only one bud, cells must polarize toward one, and only one, site. Polarity establishment involves the Rho family GTPase Cdc42, which concentrates at polarization sites via a positive feedback loop. To assess whether singularity is linked to the specific Cdc42 feedback loop, we disabled the yeast cell's endogenous amplification mechanism and synthetically rewired the cells to employ a different positive feedback loop. Rewired cells violated singularity, occasionally making two buds. Even cells that made only one bud sometimes initiated two clusters of Cdc42, but then one cluster became dominant. Mathematical modeling indicated that, given sufficient time, competition between clusters would promote singularity. In rewired cells, competition occurred slowly and sometimes failed to develop a single "winning" cluster before budding. Slowing competition in normal cells also allowed occasional formation of two buds, suggesting that singularity is enforced by rapid competition between Cdc42 clusters.

  2. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury.

    PubMed

    Patel, Tapan P; Ventre, Scott C; Geddes-Klein, Donna; Singh, Pallab K; Meaney, David F

    2014-03-19

    Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca(2+)]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca(2+)]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg(2+) block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury.

  3. Bacterial evolution: rewiring modules to get in shape.

    PubMed

    Persat, Alexandre; Gitai, Zemer

    2014-06-02

    Bacterial species take on a wide variety of shapes, but the mechanisms by which specific shapes evolve have remained poorly understood. A recent study demonstrates that two Asticcacaulis species repurposed an ancestral regulatory protein to rewire the modules of stalk regulation, localization, and synthesis, thereby generating new shapes.

  4. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    SciTech Connect

    Ba, Qian; Li, Junyang; Huang, Chao; Li, Jingquan; Chu, Ruiai; Wu, Yongning; Wang, Hui

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.

  5. A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways

    PubMed Central

    Morton, Stephen W.; Lee, Michael J.; Deng, Zhou J.; Dreaden, Erik C.; Siouve, Elise; Shopsowitz, Kevin E.; Shah, Nisarg J.; Yaffe, Michael B.; Hammond, Paula T.

    2014-01-01

    Exposure to the EGFR (epidermal growth factor receptor) inhibitor erlotinib promotes the dynamic rewiring of apoptotic pathways, which sensitizes cells within a specific period to subsequent exposure to the DNA-damaging agent doxorubicin. A critical challenge for translating this therapeutic network rewiring into clinical practice is the design of optimal drug delivery systems. We report the generation of a nanoparticle delivery vehicle that contained more than one therapeutic agent and produced a controlled sequence of drug release. Liposomes, representing the first clinically approved nanomedicine systems, are well-characterized, simple, and versatile platforms for the manufacture of functional and tunable drug carriers. Using the hydrophobic and hydrophilic compartments of liposomes, we effectively incorporated both hydrophobic (erlotinib) and hydrophilic (doxorubicin) small molecules, through which we achieved the desired time sequence of drug release. We also coated the liposomes with folate to facilitate targeting to cancer cells. When compared to the time-staggered application of individual drugs, staggered release from tumor-targeted single liposomal particles enhanced dynamic rewiring of apoptotic signaling pathways, resulting in improved tumor cell killing in culture and tumor shrinkage in animal models. PMID:24825919

  6. Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[S

    PubMed Central

    Jun, Hee-jin; Lee, Ji Hae; Kim, Jiyoung; Jia, Yaoyao; Kim, Kyoung Heon; Hwang, Kwang Yeon; Yun, Eun Ju; Do, Kyoung-Rok; Lee, Sung-Joon

    2014-01-01

    We investigated the hypotriglyceridemic mechanism of action of linalool, an aromatic monoterpene present in teas and fragrant herbs. Reporter gene and time-resolved fluorescence resonance energy transfer assays demonstrated that linalool is a direct ligand of PPARα. Linalool stimulation reduced cellular lipid accumulation regulating PPARα-responsive genes and significantly induced FA oxidation, and its effects were markedly attenuated by silencing PPARα expression. In mice, the oral administration of linalool for 3 weeks reduced plasma TG concentrations in Western-diet-fed C57BL/6J mice (31%, P < 0.05) and human apo E2 mice (50%, P < 0.05) and regulated hepatic PPARα target genes. However, no such effects were seen in PPARα-deficient mice. Transcriptome profiling revealed that linalool stimulation rewired global gene expression in lipid-loaded hepatocytes and that the effects of 1 mM linalool were comparable to those of 0.1 mM fenofibrate. Metabolomic analysis of the mouse plasma revealed that the global metabolite profiles were significantly distinguishable between linalool-fed mice and controls. Notably, the concentrations of saturated FAs were significantly reduced in linalool-fed mice. These findings suggest that the appropriate intake of a natural aromatic compound could exert beneficial metabolic effects by regulating a cellular nutrient sensor. PMID:24752549

  7. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation

    PubMed Central

    Babazadeh, Roja; Furukawa, Takako; Hohmann, Stefan; Furukawa, Kentaro

    2014-01-01

    Mitogen-activated protein kinases (MAPKs) have a number of targets which they regulate at transcriptional and post-translational levels to mediate specific responses. The yeast Hog1 MAPK is essential for cell survival under hyperosmotic conditions and it plays multiple roles in gene expression, metabolic regulation, signal fidelity and cell cycle regulation. Here we describe essential and non-essential roles of Hog1 using engineered yeast cells in which osmoadaptation was reconstituted in a Hog1-independent manner. We rewired Hog1-dependent osmotic stress-induced gene expression under the control of Fus3/Kss1 MAPKs, which are activated upon osmostress via crosstalk in hog1Δ cells. This approach revealed that osmotic up-regulation of only two Hog1-dependent glycerol biosynthesis genes, GPD1 and GPP2, is sufficient for successful osmoadaptation. Moreover, some of the previously described Hog1-dependent mechanisms appeared to be dispensable for osmoadaptation in the engineered cells. These results suggest that the number of essential MAPK functions may be significantly smaller than anticipated and that knockout approaches may lead to over-interpretation of phenotypic data. PMID:24732094

  8. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  9. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  10. ChiNet uncovers rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion

    PubMed Central

    Zhang, Yang; Liu, Z. Lewis; Song, Mingzhou

    2015-01-01

    Analysis of rewired upstream subnetworks impacting downstream differential gene expression aids the delineation of evolving molecular mechanisms. Cumulative statistics based on conventional differential correlation are limited for subnetwork rewiring analysis since rewiring is not necessarily equivalent to change in correlation coefficients. Here we present a computational method ChiNet to quantify subnetwork rewiring by statistical heterogeneity that enables detection of potential genotype changes causing altered transcription regulation in evolving organisms. Given a differentially expressed downstream gene set, ChiNet backtracks a rewired upstream subnetwork from a super-network including gene interactions known to occur under various molecular contexts. We benchmarked ChiNet for its high accuracy in distinguishing rewired artificial subnetworks, in silico yeast transcription-metabolic subnetworks, and rewired transcription subnetworks for Candida albicans versus Saccharomyces cerevisiae, against two differential-correlation based subnetwork rewiring approaches. Then, using transcriptome data from tolerant S. cerevisiae strain NRRL Y-50049 and a wild-type intolerant strain, ChiNet identified 44 metabolic pathways affected by rewired transcription subnetworks anchored to major adaptively activated transcription factor genes YAP1, RPN4, SFP1 and ROX1, in response to toxic chemical challenges involved in lignocellulose-to-biofuels conversion. These findings support the use of ChiNet in rewiring analysis of subnetworks where differential interaction patterns resulting from divergent nonlinear dynamics abound. PMID:25897127

  11. Targeted Gene Silencing to Induce Permanent Sterility

    PubMed Central

    Dissen, Gregory A.; Lomniczi, Alejandro; Boudreau, Ryan L.; Chen, Yong Hong; Davidson, Beverly L.; Ojeda, Sergio R.

    2012-01-01

    Contents A nonsurgical method to induce sterility would be a useful tool to control feral populations of animals. Our laboratories have experience with approaches aimed at targeting brain cells in vivo with vehicles that deliver a payload of either inhibitory RNAs or genes intended to correct cellular dysfunction. A combination/modification of these methods may provide a useful framework for the design of approaches that can be used to sterilize cats and dogs. For this approach to succeed it has to meet several conditions: It needs to target a gene essential for fertility. It must involve a method that can selectively silence the gene of interest. It also needs to deliver the silencing agent via a minimally invasive method. Finally, the silencing effect needs to be sustained for many years, so that expansion of the targeted population can be effectively prevented. In this article we discuss this subject and provide a succinct account of our previous experience with: a) molecular reagents able to disrupt reproductive cyclicity when delivered to regions of the brain involved in the control of reproduction, and b) molecular reagents able to ameliorate neuronal disease when delivered systemically using a novel approach of gene therapy. PMID:22827375

  12. Effects of random rewiring on the degree correlation of scale-free networks

    PubMed Central

    Qu, Jing; Wang, Sheng-Jun; Jusup, Marko; Wang, Zhen

    2015-01-01

    Random rewiring is used to generate null networks for the purpose of analyzing the topological properties of scale-free networks, yet the effects of random rewiring on the degree correlation are subject to contradicting interpretations in the literature. We comprehensively analyze the degree correlation of randomly rewired scale-free networks and show that random rewiring increases disassortativity by reducing the average degree of the nearest neighbors of high-degree nodes. The effect can be captured by the measures of the degree correlation that consider all links in the network, but not by analogous measures that consider only links between degree peers, hence the potential for contradicting interpretations. We furthermore find that random and directional rewiring affect the topology of a scale-free network differently, even if the degree correlation of the rewired networks is the same. Consequently, the network dynamics is changed, which is proven here by means of the biased random walk. PMID:26482005

  13. Effects of random rewiring on the degree correlation of scale-free networks.

    PubMed

    Qu, Jing; Wang, Sheng-Jun; Jusup, Marko; Wang, Zhen

    2015-10-20

    Random rewiring is used to generate null networks for the purpose of analyzing the topological properties of scale-free networks, yet the effects of random rewiring on the degree correlation are subject to contradicting interpretations in the literature. We comprehensively analyze the degree correlation of randomly rewired scale-free networks and show that random rewiring increases disassortativity by reducing the average degree of the nearest neighbors of high-degree nodes. The effect can be captured by the measures of the degree correlation that consider all links in the network, but not by analogous measures that consider only links between degree peers, hence the potential for contradicting interpretations. We furthermore find that random and directional rewiring affect the topology of a scale-free network differently, even if the degree correlation of the rewired networks is the same. Consequently, the network dynamics is changed, which is proven here by means of the biased random walk.

  14. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    PubMed

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  15. Exact solution for the time evolution of network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.; Plato, A. D. K.

    2007-05-01

    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean-field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature, including examples of urn, backgammon, and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a minority game also show features described by our model.

  16. Recurrent rewiring and emergence of RNA regulatory networks.

    PubMed

    Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin

    2017-04-04

    Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.

  17. Rewiring and dosing of systems modules as a design approach for synthetic mammalian signaling networks.

    PubMed

    Kämpf, Michael M; Engesser, Raphael; Busacker, Moritz; Hörner, Maximilian; Karlsson, Maria; Zurbriggen, Matias D; Fussenegger, Martin; Timmer, Jens; Weber, Wilfried

    2012-06-01

    Modularly structured signaling networks coordinate the fate and function of complex biological systems. Each component in the network performs a discrete computational operation, but when connected to each other intricate functionality emerges. Here we study such an architecture by connecting auxin signaling modules and inducible protein biotinylation systems with transcriptional control systems to construct synthetic mammalian high-detect, low-detect and band-detect networks that translate overlapping gradients of inducer molecules into distinct gene expression patterns. Guided by a mathematical model we apply fundamental computational operations like conjunction or addition to rewire individual building blocks to qualitatively and quantitatively program the way the overall network interprets graded input signals. The design principles described in this study might serve as a conceptual blueprint for the development of next-generation mammalian synthetic gene networks in fundamental and translational research.

  18. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  19. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain.

    PubMed

    Tennant, Kelly A; Taylor, Stephanie L; White, Emily R; Brown, Craig E

    2017-06-23

    To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain.

  20. Re-engineering cellular physiology by rewiring high-level global regulatory genes

    PubMed Central

    Fitzgerald, Stephen; Dillon, Shane C.; Chao, Tzu-Chiao; Wiencko, Heather L.; Hokamp, Karsten; Cameron, Andrew D. S.; Dorman, Charles J.

    2015-01-01

    Knowledge of global regulatory networks has been exploited to rewire the gene control programmes of the model bacterium Salmonella enterica serovar Typhimurium. The product is an organism with competitive fitness that is superior to that of the wild type but tuneable under specific growth conditions. The paralogous hns and stpA global regulatory genes are located in distinct regions of the chromosome and control hundreds of target genes, many of which contribute to stress resistance. The locations of the hns and stpA open reading frames were exchanged reciprocally, each acquiring the transcription control signals of the other. The new strain had none of the compensatory mutations normally associated with alterations to hns expression in Salmonella; instead it displayed rescheduled expression of the stress and stationary phase sigma factor RpoS and its regulon. Thus the expression patterns of global regulators can be adjusted artificially to manipulate microbial physiology, creating a new and resilient organism. PMID:26631971

  1. Endocrine targets of hypoxia-inducible factors.

    PubMed

    Lee, Hsiu-Chi; Tsai, Shaw-Jenq

    2017-07-01

    Endocrine is an important and tightly regulated system for maintaining body homeostasis. Endocrine glands produce hormones, which are released into blood stream to guide the target cells responding to all sorts of stimulations. For maintaining body homeostasis, the secretion and activity of a particular hormone needs to be adjusted in responding to environmental challenges such as changes in nutritional status or chronic stress. Hypoxia, a status caused by reduced oxygen availability or imbalance of oxygen consumption/supply in an organ or within a cell, is a stress that affects many physiological and pathological processes. Hypoxic stress in endocrine organs is especially critical because endocrine glands control body homeostasis. Local hypoxia affects not only the particular gland but also the downstream cells/organs regulated by hormones secreted from this gland. Hypoxia-inducible factors (HIFs) are transcription factors that function as master regulators of oxygen homeostasis. Recent studies report that aberrant expression of HIFs in endocrine organs may result in the development and/or progression of diseases including diabetes, endometriosis, infertility and cancers. In this article, we will review recent findings in HIF-mediated endocrine organ dysfunction and the systemic syndromes caused by these disorders. © 2017 Society for Endocrinology.

  2. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability

    NASA Astrophysics Data System (ADS)

    Wang, Qingyun; Duan, Zhisheng; Perc, Matjaž; Chen, Guanrong

    2008-09-01

    Synchronization transitions are investigated in small-world neuronal networks that are locally modeled by the Rulkov map with additive spatiotemporal noise. In particular, we investigate the impact of different information transmission delays and rewiring probability. We show that short delays induce zigzag fronts of excitations, whereas intermediate delays can further detriment synchrony in the network due to a dynamic clustering anti-phase synchronization transition. Detailed investigations reveal, however, that for longer delay lengths the synchrony of excitations in the network can again be enhanced due to the emergence of in-phase synchronization. In addition, we show that an appropriate small-world topology can restore synchronized behavior provided information transmission delays are either short or long. On the other hand, within the intermediate delay region, which is characterized by anti-phase synchronization and clustering, differences in the network topology do not notably affect the synchrony of neuronal activity.

  3. Viral rewiring of cellular lipid metabolism to create membranous replication compartments.

    PubMed

    Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-08-01

    Positive-strand RNA (+RNA) viruses (e.g. poliovirus, hepatitis C virus, dengue virus, SARS-coronavirus) remodel cellular membranes to form so-called viral replication compartments (VRCs), which are the sites where viral RNA genome replication takes place. To induce VRC formation, these viruses extensively rewire lipid metabolism. Disparate viruses have many commonalities as well as disparities in their interactions with the host lipidome and accumulate specific sets of lipids (sterols, glycerophospholipids, sphingolipids) at their VRCs. Recent years have seen an upsurge in studies investigating the role of lipids in +RNA virus replication, in particular of sterols, and uncovered that membrane contact sites and lipid transfer proteins are hijacked by viruses and play pivotal roles in VRC formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID

  5. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  6. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    PubMed

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  7. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons

    PubMed Central

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed. PMID:28129401

  8. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  9. Target induced, turbulence-modulated speckle noise

    SciTech Connect

    Scharlemann, E.T.

    1994-07-01

    Many papers on DIAL for remote sensing have been devoted to the averaging properties of speckle noise from diffuse-target returns; i.e., how many (N) return pulses can be averaged before the I/N reduction in signal variance expected from uncorrelated noise fails. An apparent limit of about 100 pulses or fewer has been the most important factor in determining the accuracy of DIAL measurements using diffusely-scattering targets in the field. The relevant literature is briefly reviewed, and various explanations for the apparent limit are summarized. Recent speckle experiments at LLNL`s Site 300 may suggest that the limit of {approximately}100 pulses is not fundamental. The speckle experiments very clearly show that the limit on signal averaging in this data was the result of long-term ({approximately}1 minute) drifts in the signal returns rather than of any more subtle statistical properties. The long-term drifts are completely removed to the useful limits of the data sets by working with the log-ratio of adjacent pulses. This procedure is analogous (but not identical) to processing the log-ratios of the powers at different wavelengths in a multi-line DIAL system. We think the Site 300 data therefore suggests that as long as the laser system is constructed to ensure that any long-term drifts are identical among the transmitted wavelengths, the log-ratio of the individual returns will provide a data set that does usefully average over a large number of pulses.

  10. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    PubMed

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  11. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  12. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  13. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    PubMed Central

    Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune

    2015-01-01

    Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441

  14. Rewiring the specificity of two-component signal transduction systems.

    PubMed

    Skerker, Jeffrey M; Perchuk, Barrett S; Siryaporn, Albert; Lubin, Emma A; Ashenberg, Orr; Goulian, Mark; Laub, Michael T

    2008-06-13

    Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.

  15. Study of target heating induced by fast electrons in mass limited targets

    SciTech Connect

    Alessio, Morace; Dimitri, Batani; Renato, Redaelli; Alexander, Magunov; Claude, Fourment; Jorge, Santos Joao; Gerard, Malka; Alain, Boscheron; Wigen, Nazarov; Tommaso, Vinci; Yasuaki, Okano; Yuichi, Inubushi; Hiroaki, Nishimura; Alessandro, Flacco; Chris, Spindloe; Martin, Tolley

    2010-02-02

    We studied the induced plasma heating in three different kind of targets: mass limited, foam targets and large mass targets. The experiment was performed at Alise laser facility of CEA/CESTA. The laser system emitted a {approx}1-ps pulse with {approx}10 J energy at a wavelength of {approx}1 {mu}m. Mass limited targets had three layers with thickness 10 {mu}m C{sub 8}H{sub 8}, 1 {mu}m C{sub 8}H{sub 7}Cl, 10 {mu}m C{sub 8}H{sub 8} with size 100 {mu}mx100 {mu}m. Detailed spectroscopic analysis of X-rays emitted from the Cl tracer showed that it was possible to heat up the plasma mass limited targets to a temperature {approx}250 eV with density {approx}10{sup 21} cm{sup -3}. The plasma heating is only produced by fast electron transport in the target, being the 10 {mu}m C{sub 8}H{sub 8} overcoating thick enough to prevent any possible direct irradiation of the tracer layer even taking into account mass-ablation due to the pre-pulse. These results demonstrate that with mass limited targets is possible to generate a plasma heated up to several hundreds eV. It is also very important for research concerning high energy density phenomena and for fast ignition (in particular for the study of fast electrons transport and induced heating).

  16. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach.

    PubMed

    Chen, Lian; Cui, Hengmin

    2015-09-22

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy.

  17. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach

    PubMed Central

    Chen, Lian; Cui, Hengmin

    2015-01-01

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672

  18. Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks

    NASA Astrophysics Data System (ADS)

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2016-11-01

    In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.

  19. Rewiring of PDZ Domain-Ligand Interaction Network Contributed to Eukaryotic Evolution

    PubMed Central

    Kim, Jinho; Kim, Inhae; Yang, Jae-Seong; Shin, Young-Eun; Hwang, Jihye; Park, Solip; Choi, Yoon Sup; Kim, Sanguk

    2012-01-01

    PDZ domain-mediated interactions have greatly expanded during metazoan evolution, becoming important for controlling signal flow via the assembly of multiple signaling components. The evolutionary history of PDZ domain-mediated interactions has never been explored at the molecular level. It is of great interest to understand how PDZ domain-ligand interactions emerged and how they become rewired during evolution. Here, we constructed the first human PDZ domain-ligand interaction network (PDZNet) together with binding motif sequences and interaction strengths of ligands. PDZNet includes 1,213 interactions between 97 human PDZ proteins and 591 ligands that connect most PDZ protein-mediated interactions (98%) in a large single network via shared ligands. We examined the rewiring of PDZ domain-ligand interactions throughout eukaryotic evolution by tracing changes in the C-terminal binding motif sequences of the PDZ ligands. We found that interaction rewiring by sequence mutation frequently occurred throughout evolution, largely contributing to the growth of PDZNet. The rewiring of PDZ domain-ligand interactions provided an effective means of functional innovations in nervous system development. Our findings provide empirical evidence for a network evolution model that highlights the rewiring of interactions as a mechanism for the development of new protein functions. PDZNet will be a valuable resource to further characterize the organization of the PDZ domain-mediated signaling proteome. PMID:22346764

  20. Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks

    PubMed Central

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2016-01-01

    In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world. PMID:27824149

  1. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  2. Key tissue targets responsible for anthrax-toxin-induced lethality.

    PubMed

    Liu, Shihui; Zhang, Yi; Moayeri, Mahtab; Liu, Jie; Crown, Devorah; Fattah, Rasem J; Wein, Alexander N; Yu, Zu-Xi; Finkel, Toren; Leppla, Stephen H

    2013-09-05

    Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.

  3. Key tissue targets responsible for anthrax toxin-induced-lethality

    PubMed Central

    Liu, Shihui; Zhang, Yi; Moayeri, Mahtab; Liu, Jie; Crown, Devorah; Fattah, Rasem; Wein, Alexander N.; Yu, Zu-Xi; Finkel, Toren; Leppla, Stephen H.

    2014-01-01

    Summary Bacillus anthracis, the causative agent of anthrax disease, is lethal due to the actions of two exotoxins, anthrax lethal toxin (LT) and edema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occur through damage to distinct cell-types; while targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Surprisingly, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not appear to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems. PMID:23995686

  4. Different evolutionary modifications as a guide to rewire two-component systems.

    PubMed

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.

  5. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

    PubMed Central

    Podgornaia, Anna I.; Casino, Patricia; Marina, Alberto; Laub, Michael T.

    2013-01-01

    Summary Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, E. coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes, along with a systematic mutagenesis study, reveals how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions, protein evolution, and the design of novel protein interfaces. PMID:23954504

  6. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  7. Tissue-specific signaling networks rewired by major somatic mutations in human cancer revealed by proteome-wide discovery.

    PubMed

    Zhao, Junfei; Cheng, Feixiong; Zhao, Zhongming

    2017-03-31

    Massive somatic mutations discovered by large cancer genome sequencing projects provide unprecedented opportunities in the development of precision oncology. However, deep understanding of functional consequences of somatic mutations and identifying actionable mutations and the related drug responses currently remain formidable challenges. Dysfunction of protein post-translational modification plays critical roles in tumorigenesis and drug responses. In this study, we proposed a novel computational oncoproteomics approach, named kinome-wide network module for cancer pharmacogenomics (KNMPx), for identifying actionable mutations that rewired signaling networks and further characterized tumorigenesis and anticancer drug responses. Specifically, we integrated 746,631 missense mutations in 4,997 tumor samples across 16 major cancer types/subtypes from The Cancer Genome Atlas into over 170,000 carefully curated non-redundant phosphorylation sites covering 18,610 proteins. We found 47 mutated proteins (e.g., ERBB2, TP53, and CTNNB1) that had enriched missense mutations at their phosphorylation sites in pan-cancer analysis. In addition, tissue-specific kinase-substrate interaction modules altered by somatic mutations identified by KNMPx were significantly associated with patient survival. We further reported a kinome-wide landscape of pharmacogenomic interactions by incorporating somatic mutation-rewired signaling networks in 1,001 cancer cell lines via KNMPx. Interestingly, we found that cell lines could highly reproduce oncogenic phosphorylation site mutations identified in primary tumors, supporting the confidence in their associations with sensitivity/resistance of inhibitors targeting EGF, MAPK, PI3K, mTOR, and Wnt signaling pathways. In summary, this systematic oncoproteomics analysis of kinome phosphorylation site mutations illustrates new capabilities to speed the development of precision oncology.

  8. Inducible Mouse Models for Cancer Drug Target Validation

    PubMed Central

    Jeong, Joseph H.

    2016-01-01

    Genetically-engineered mouse (GEM) models have provided significant contributions to our understanding of cancer biology and developing anticancer therapeutic strategies. The development of GEM models that faithfully recapitulate histopathological and clinical features of human cancers is one of the most pressing needs to successfully conquer cancer. In particular, doxycycline-inducible transgenic mouse models allow us to regulate (induce or suppress) the expression of a specific gene of interest within a specific tissue in a temporal manner. Leveraging this mouse model system, we can determine whether the transgene expression is required for tumor maintenance, thereby validating the transgene product as a target for anticancer drug development (target validation study). In addition, there is always a risk of tumor recurrence with cancer therapy. By analyzing recurrent tumors derived from fully regressed tumors after turning off transgene expression in tumor-bearing mice, we can gain an insight into the molecular basis of how tumor cells escape from their dependence on the transgene (tumor recurrence study). Results from such studies will ultimately allow us to predict therapeutic responses in clinical settings and develop new therapeutic strategies against recurrent tumors. The aim of this review is to highlight the significance of doxycycline-inducible transgenic mouse models in studying target validation and tumor recurrence. PMID:28053958

  9. Modelling microbial metabolic rewiring during growth in a complex medium.

    PubMed

    Fondi, Marco; Bosi, Emanuele; Presta, Luana; Natoli, Diletta; Fani, Renato

    2016-11-24

    choosing among alternative objective functions on the resulting predictions of fluxes distribution. Here we provide a time-resolved, systems-level scheme of PhTAC125 metabolic re-wiring as a consequence of carbon source switching in a nutritionally complex medium. Our analyses suggest the presence of a potential efficient metabolic reprogramming machinery to continuously and promptly adapt to this nutritionally changing environment, consistent with adaptation to fast growth in a fairly, but probably inconstant and highly competitive, environment. Also, we show i) how functional partnership and co-regulation features can be predicted by integrating multi-step constraint-based metabolic modelling with fed-batch growth data and ii) that performing simulations under a sub-optimal objective function may lead to different flux distributions in respect to canonical FBA.

  10. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition

    PubMed Central

    2014-01-01

    Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249

  11. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  12. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy

    PubMed Central

    Banerji, Christopher R. S.; Knopp, Paul; Moyle, Louise A.; Severini, Simone; Orrell, Richard W.; Teschendorff, Andrew E.; Zammit, Peter S.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development. PMID:25551153

  13. Explicit instructions and consolidation promote rewiring of automatic behaviors in the human mind.

    PubMed

    Szegedi-Hallgató, Emese; Janacsek, Karolina; Vékony, Teodóra; Tasi, Lia Andrea; Kerepes, Leila; Hompoth, Emőke Adrienn; Bálint, Anna; Németh, Dezső

    2017-06-29

    One major challenge in human behavior and brain sciences is to understand how we can rewire already existing perceptual, motor, cognitive, and social skills or habits. Here we aimed to characterize one aspect of rewiring, namely, how we can update our knowledge of sequential/statistical regularities when they change. The dynamics of rewiring was explored from learning to consolidation using a unique experimental design which is suitable to capture the effect of implicit and explicit processing and the proactive and retroactive interference. Our results indicate that humans can rewire their knowledge of such regularities incidentally, and consolidation has a critical role in this process. Moreover, old and new knowledge can coexist, leading to effective adaptivity of the human mind in the changing environment, although the execution of the recently acquired knowledge may be more fluent than the execution of the previously learned one. These findings can contribute to a better understanding of the cognitive processes underlying behavior change, and can provide insights into how we can boost behavior change in various contexts, such as sports, educational settings or psychotherapy.

  14. β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy.

    PubMed

    Banerji, Christopher R S; Knopp, Paul; Moyle, Louise A; Severini, Simone; Orrell, Richard W; Teschendorff, Andrew E; Zammit, Peter S

    2015-01-06

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development.

  15. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  16. Emerging targets for treating sulfur mustard-induced injuries.

    PubMed

    Ahmad, Shama; Ahmad, Aftab

    2016-06-01

    Sulfur mustard (SM; bis-(2-chlororethyl) sulfide) is a highly reactive, potent warfare agent that has recently reemerged as a major threat to military and civilians. Exposure to SM is often fatal, primarily due to pulmonary injuries and complications caused by its inhalation. Profound inflammation, hypercoagulation, and oxidative stress are the hallmarks that define SM-induced pulmonary toxicities. Despite advances, effective therapies are still limited. This current review focuses on inflammatory and coagulation pathways that influence the airway pathophysiology of SM poisoning and highlights the complexity of developing an effective therapeutic target. © 2016 New York Academy of Sciences.

  17. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response

    PubMed Central

    Lukas, Simone; Zenger, Marion; Reitberger, Tobias; Danzer, Daniela; Übner, Theresa; Munday, Diane C.; Paulus, Christina

    2016-01-01

    The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. PMID:27387064

  18. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy.

    PubMed

    Sentelle, R David; Senkal, Can E; Jiang, Wenhui; Ponnusamy, Suriyan; Gencer, Salih; Selvam, Shanmugam Panneer; Ramshesh, Venkat K; Peterson, Yuri K; Lemasters, John J; Szulc, Zdzislaw M; Bielawski, Jacek; Ogretmen, Besim

    2012-10-01

    Mechanisms by which autophagy promotes cell survival or death are unclear. We provide evidence that C(18)-pyridinium ceramide treatment or endogenous C(18)-ceramide generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, independent of apoptosis in human cancer cells. C(18)-ceramide-induced lethal autophagy was regulated via microtubule-associated protein 1 light chain 3 β-lipidation, forming LC3B-II, and selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown protected against CerS1- and C(18)-ceramide-dependent mitophagy and blocked tumor suppression in vivo. Thus, these data suggest a new receptor function of ceramide for anchoring LC3B-II autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of lethal mitophagy.

  19. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria.

    PubMed

    Han, Xiao-Jian; Hu, Yang-Yang; Yang, Zhang-Jian; Jiang, Li-Ping; Shi, Sheng-Lan; Li, Ye-Ru; Guo, Miao-Yu; Wu, Hong-Li; Wan, Yu-Ying

    2017-10-01

    Aβ‑42 induces neuronal apoptosis by targeting mitochondria, including promotion of mitochondrial fission, disruption of mitochondrial membrane potential, increasing intracellular ROS level and activation of the process of mitophagy. Therefore, mitochondria may represent a potential therapeutic target for AD in the future.

  20. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  1. Self-induced thermal distortion effects on target image quality.

    PubMed

    Gebhardt, F G

    1972-06-01

    Experimental results are reported that show the effects of the self-induced thermal lens due to a high power laser beam on imaging or tracking systems viewing along the same propagation path. The thermal distortion effects of a wind are simulated with a low power ( less, similar 3-W) CO(2) laser beam propagating through a cell of liquid CS(2) moving across the beam. The resulting image distortion includes a warping effect analogous to the deflection of the CO(2) beam, together with a pronounced demagnification of the central portion of the object. An active optical tracker is simulated with a He-Ne laser beam propagating collinearly with the CO(2) beam. The He-Ne beam pattern returned from a specular target is distorted and sharply confined to the outline of the crescent shaped CO(2) beam. Simple ray optics models are used to provide qualitative explanations for the experimental results.

  2. Potential targets for intervention in radiation-induced heart disease.

    PubMed

    Boerma, M; Hauer-Jensen, M

    2010-11-01

    Radiotherapy of thoracic and chest wall tumors, if all or part of the heart was included in the radiation field, can lead to radiation-induced heart disease (RIHD), a late and potentially severe side effect. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. The pathogenesis of RIHD is largely unknown, and a treatment is not available. Hence, ongoing pre-clinical studies aim to elucidate molecular and cellular mechanisms of RIHD. Here, an overview of recent pre-clinical studies is given, and based on the results of these studies, potential targets for intervention in RIHD are discussed.

  3. Intestinal inflammation targets cancer-inducing activity of the microbiota

    PubMed Central

    Arthur, Janelle C.; Perez-Chanona, Ernesto; Mühlbauer, Marcus; Tomkovich, Sarah; Uronis, Joshua M.; Fan, Ting-Jia; Campbell, Barry J.; Abujamel, Turki; Dogan, Belgin; Rogers, Arlin B.; Rhodes, Jonathan M.; Stintzi, Alain; Simpson, Kenneth W.; Hansen, Jonathan J.; Keku, Temitope O.; Fodor, Anthony A.; Jobin, Christian

    2013-01-01

    Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here we identify the intestinal microbiota as a target of inflammation that impacts the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10−/−) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10−/− mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10−/− mice, without altering intestinal inflammation. Mucosa-associated pks+ E. coli were found in a significantly high percentage of inflammatory bowel disease (IBD) and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities. PMID:22903521

  4. A rewired green fluorescent protein: folding and function in a nonsequential, noncircular GFP permutant.

    PubMed

    Reeder, Philippa J; Huang, Yao-Ming; Dordick, Jonathan S; Bystroff, Christopher

    2010-12-28

    The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement. While circular and noncircular permutations have been observed in protein structures that are not related by sequence homology, to date no one has attempted to rationally design and construct a protein with a sequence that is noncircularly permuted while conserving three-dimensional structure. Herein, we show that green fluorescent protein can be rewired, still functionally fold, and exhibit wild-type fluorescence excitation and emission spectra.

  5. Interaction rewiring and the rapid turnover of plant-pollinator networks.

    PubMed

    CaraDonna, Paul J; Petry, William K; Brennan, Ross M; Cunningham, James L; Bronstein, Judith L; Waser, Nickolas M; Sanders, Nathan J

    2017-03-01

    Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored.

  6. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans.

    PubMed

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha Jm

    2016-07-06

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild.

  7. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  8. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.

    PubMed

    Britton, Tom; Juher, David; Saldaña, Joan

    2016-12-01

    This paper is concerned with stochastic SIR and SEIR epidemic models on random networks in which individuals may rewire away from infected neighbors at some rate [Formula: see text] (and reconnect to non-infectious individuals with probability [Formula: see text] or else simply drop the edge if [Formula: see text]), so-called preventive rewiring. The models are denoted SIR-[Formula: see text] and SEIR-[Formula: see text], and we focus attention on the early stages of an outbreak, where we derive the expressions for the basic reproduction number [Formula: see text] and the expected degree of the infectious nodes [Formula: see text] using two different approximation approaches. The first approach approximates the early spread of an epidemic by a branching process, whereas the second one uses pair approximation. The expressions are compared with the corresponding empirical means obtained from stochastic simulations of SIR-[Formula: see text] and SEIR-[Formula: see text] epidemics on Poisson and scale-free networks. Without rewiring of exposed nodes, the two approaches predict the same epidemic threshold and the same [Formula: see text] for both types of epidemics, the latter being very close to the mean degree obtained from simulated epidemics over Poisson networks. Above the epidemic threshold, pairwise models overestimate the value of [Formula: see text] computed from simulations, which turns out to be very close to the one predicted by the branching process approximation. When exposed individuals also rewire with [Formula: see text] (perhaps unaware of being infected), the two approaches give different epidemic thresholds, with the branching process approximation being more in agreement with simulations.

  9. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    this funding period, we will prepare to extend these findings to non-human primates as we finalize a) the optimal parameters for the primate TBI...model and b) the design and construction of the primate microdevice. 15. SUBJECT TERMS Anatomical rewiring; Implantable microsystem; Neuroplasticity...progress in the design of the primate microdevice. We also initiated pilot studies in non-human primates required by our local IACUC before proceeding with

  10. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene.

    PubMed

    Ba, Qian; Li, Junyang; Huang, Chao; Li, Jingquan; Chu, Ruiai; Wu, Yongning; Wang, Hui

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (<48h), and five pathways were enriched only in the medium-term network (6h-48h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene.

  11. Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity

    PubMed Central

    2015-01-01

    The ongoing cancer research has shown that malignant tumour cells have highly disrupted signalling transduction pathways. In cancer cells, signalling pathways are altered to satisfy the demands of continuous proliferation and survival. The changes in signalling pathways supporting uncontrolled cell growth, termed as rewiring, can lead to dysregulation of cell fates e.g. apoptosis. Hence comparative analysis of normal and oncogenic signal transduction pathways may provide insights into mechanisms of cancer drug-resistance and facilitate the discovery of novel and effective anti-cancer therapies. Here we propose a hybrid modelling approach based on ordinary differential equation (ODE) and machine learning to map network rewiring in the apoptotic pathways that may be responsible for the increase of drug sensitivity of tumour cells in triple-negative breast cancer. Our method employs Genetic Algorithm to search for the most likely network topologies by iteratively generating simulated protein phosphorylation data using ODEs and the rewired network and then fitting the simulated data with real data of cancer signalling and cell fate. Most of our predictions are consistent with experimental evidence from literature. Combining the strengths of knowledge-driven and data-driven approaches, our hybrid model can help uncover molecular mechanisms of cancer cell fate at systems level. PMID:25707537

  12. Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity.

    PubMed

    Mishra, Shital K; Bhowmick, Sourav S; Chua, Huey; Zhang, Fan; Zheng, Jie

    2015-01-01

    The ongoing cancer research has shown that malignant tumour cells have highly disrupted signalling transduction pathways. In cancer cells, signalling pathways are altered to satisfy the demands of continuous proliferation and survival. The changes in signalling pathways supporting uncontrolled cell growth, termed as rewiring, can lead to dysregulation of cell fates e.g. apoptosis. Hence comparative analysis of normal and oncogenic signal transduction pathways may provide insights into mechanisms of cancer drug-resistance and facilitate the discovery of novel and effective anti-cancer therapies. Here we propose a hybrid modelling approach based on ordinary differential equation (ODE) and machine learning to map network rewiring in the apoptotic pathways that may be responsible for the increase of drug sensitivity of tumour cells in triple-negative breast cancer. Our method employs Genetic Algorithm to search for the most likely network topologies by iteratively generating simulated protein phosphorylation data using ODEs and the rewired network and then fitting the simulated data with real data of cancer signalling and cell fate. Most of our predictions are consistent with experimental evidence from literature. Combining the strengths of knowledge-driven and data-driven approaches, our hybrid model can help uncover molecular mechanisms of cancer cell fate at systems level.

  13. Targeting metabolic scavenging in pancreatic cancer.

    PubMed

    Lyssiotis, Costas A; Cantley, Lewis C

    2014-01-01

    Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth.

  14. Infrared laser induced plasma diagnostics of silver target

    SciTech Connect

    Ahmat, L. Nadeem, Ali; Ahmed, I.

    2014-09-15

    In the present work, the optical emission spectra of silver (Ag) plasma have been recorded and analyzed using the laser induced breakdown spectroscopy technique. The emission line intensities and plasma parameters were investigated as a function of lens to sample distance, laser irradiance, and distance from the target surface. The electron number density (n{sub e}) and electron temperature (T{sub e}) were determined using the Stark broadened line profile and Boltzmann plot method, respectively. A gradual increase in the spectral line intensities and the plasma parameters, n{sub e} from 2.89 × 10{sup 17} to 3.92 × 10{sup 17 }cm{sup −3} and T{sub e} from 4662 to 8967 K, was observed as the laser irradiance was increased 2.29 × 10{sup 10}–1.06 × 10{sup 11} W cm{sup −2}. The spatial variations in n{sub e} and T{sub e} were investigated from 0 to 5.25 mm from the target surface, yielding the electron number density from 4.78 × 10{sup 17} to 1.72 × 10{sup 17 }cm{sup −3} and electron temperature as 9869–3789 K. In addition, the emission intensities and the plasma parameters of silver were investigated by varying the ambient pressure from 0.36 to 1000 mbars.

  15. Hypoxia Inducible Factor-1 as a Target for Neurodegenerative Diseases

    PubMed Central

    Zhang, Ziyan; Yan, Jingqi; Chang, Yanzhong; Yan, Shirley ShiDu; Shi, Honglian

    2011-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. HIF-1, a heterodimer consisting of a constitutively expressed β subunit and an oxygen-regulated α subunit, regulates a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The activity of HIF-1 is controlled by post-translational modifications on different amino acid residues of its subunits, mainly the alpha subunit. Besides in ischemic stroke (see review [1]), emerging evidence has revealed that HIF-1 activity and expression of its down-stream genes, such as vascular endothelial growth factor and erythropoietin, are altered in a range of neurodegenerative diseases. At the same time, experimental and clinical evidence has demonstrated that regulating HIF-1 might ameliorate the cellular and tissue damage in the neurodegenerative diseases. These new findings suggest HIF-1 as a potential medicinal target for the neurodegenerative diseases. This review focuses on HIF-1α protein modifications and HIF-1’s potential neuroprotective roles in Alzheimer’s (AD), Parkinson’s (PD), Huntington’s diseases (HD), and amyotrophic lateral sclerosis (ALS). PMID:21861815

  16. Inducible nitric oxide synthase as a possible target in hypertension.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2014-02-01

    Nitric oxide (NO) is an important vasodilator produced by vascular endothelium. Its enzymatic formation is derived from three different synthases: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) synthases. While relatively small amounts of NO produced by eNOS are important to cardiovascular homeostasis, high NO levels produced associated with iNOS activity may have detrimental consequences to the cardiovascular system and contribute to hypertension. In this article, we reviewed current literature and found mounting evidence indicating that increased iNOS expression and activity contribute to the pathogenesis of hypertension and its complications. Excessive amounts of NO produced by iNOS up-regulation can react with superoxide anions forming peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. In addition, abnormal iNOS activity can up-regulate arginase activity, allowing it to compete with eNOS for L-arginine, thereby resulting in reduced NO bioavailability. This may also lead to eNOS uncoupling with enhanced production of superoxide anions instead of NO. All these alterations mediated by iNOS apparently contribute to hypertension and its complications. We also reviewed current evidence showing the effects of iNOS inhibitors on different animal models of hypertension. iNOS inhibition apparently exerts antihypertensive effects, decreases oxidative and nitrosative stress, and improves vascular function. Together, these studies highlight the possibility that iNOS is a potential pharmacological target in hypertension.

  17. Targeted approaches to induce immune tolerance for Pompe disease therapy.

    PubMed

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.

  18. Targeted approaches to induce immune tolerance for Pompe disease therapy

    PubMed Central

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  19. Targeting Opioid-Induced Hyperalgesia in Clinical Treatment: Neurobiological Considerations.

    PubMed

    Arout, Caroline A; Edens, Ellen; Petrakis, Ismene L; Sofuoglu, Mehmet

    2015-06-01

    Opioid analgesics have become a cornerstone in the treatment of moderate to severe pain, resulting in a steady rise of opioid prescriptions. Subsequently, there has been a striking increase in the number of opioid-dependent individuals, opioid-related overdoses, and fatalities. Clinical use of opioids is further complicated by an increasingly deleterious profile of side effects beyond addiction, including tolerance and opioid-induced hyperalgesia (OIH), where OIH is defined as an increased sensitivity to already painful stimuli. This paradoxical state of increased nociception results from acute and long-term exposure to opioids, and appears to develop in a substantial subset of patients using opioids. Recently, there has been considerable interest in developing an efficacious treatment regimen for acute and chronic pain. However, there are currently no well-established treatments for OIH. Several substrates have emerged as potential modulators of OIH, including the N-methyl-D-aspartate and γ-aminobutyric acid receptors, and most notably, the innate neuroimmune system. This review summarizes the neurobiology of OIH in the context of clinical treatment; specifically, we review evidence for several pathways that show promise for the treatment of pain going forward, as prospective adjuvants to opioid analgesics. Overall, we suggest that this paradoxical state be considered an additional target of clinical treatment for chronic pain.

  20. Rewiring two-component signal transduction with small RNAs.

    PubMed

    Göpel, Yvonne; Görke, Boris

    2012-04-01

    Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Regeneration and rewiring of rodent olfactory sensory neurons.

    PubMed

    Yu, C Ron; Wu, Yunming

    2017-01-01

    The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  3. Studies of wave phenomena using HF-induced scatter target

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N.; Borisova, T.; Kornienko, V.; Rietveld, M.; Frolov, V.; Uryadov, V.; Kagan, L.; Yampolski, Y.; Vertogradov, G.; Kelley, M.

    Experimental results from Tromso and Sura heating experiments at high and mid-latitudes are examined It was shown that the combination of HF-induced target and bi-static HF Doppler radio scatter observations is a profitable method for the identification and studies of wave phenomena of different origin We analysed the ULF activity in the Pc 3-4 range and the medium-scale traveling ionospheric disturbances TIDs at high and mid-latitudes Bi-static HF Doppler radio scatter observations were carried out on the London-Tromso-St Petersburg path in the course of Tromso heating experiments During Sura heating experiments multi-position bi-static HF Doppler radio scatter observations were simultaneously performed at three reception points including St Petersburg Kharkov and Rostov-on-Don Ray tracing and Doppler shift simulations were made for all experiments Parameters of ULF waves were found The interesting feature detected from Sura heating experiment was the dependence of the ULF wave parameters from the effective radiated power of the heating facility Medium-scale TIDs were observed in the evening and pre-midnight hours TIDs in the auroral E region with periods of 20-25 min were traveling southward at speeds from 190-250 m s TIDs in the mid-latitudinal F region with periods from 15 to 45 min were at speeds between 40 and 120 m s During quiet magnetic conditions the waves were traveling in the north-east direction In disturbed conditions the waves were moving in the south-west direction with higher speeds as compared with quiet conditions Possible mechanisms

  4. Temporal Rewiring of Striatal Circuits Initiated by Nicotine

    PubMed Central

    Adermark, Louise; Morud, Julia; Lotfi, Amir; Danielsson, Klara; Ulenius, Lisa; Söderpalm, Bo; Ericson, Mia

    2016-01-01

    Drug addiction has been conceptualized as maladaptive recruitment of integrative circuits coursing through the striatum, facilitating drug-seeking and drug-taking behavior. The aim of this study was to define temporal neuroadaptations in striatal subregions initiated by 3 weeks of intermittent nicotine exposure followed by protracted abstinence. Enhanced rearing activity was assessed in motor activity boxes as a measurement of behavioral change induced by nicotine (0.36 mg/kg), whereas electrophysiological field potential recordings were performed to evaluate treatment effects on neuronal activity. Dopamine receptor mRNA expression was quantified by qPCR, and nicotine-induced dopamine release was measured in striatal subregions using in vivo microdialysis. Golgi staining was performed to assess nicotine-induced changes in spine density of medium spiny neurons. The data presented here show that a brief period of nicotine exposure followed by abstinence leads to temporal changes in synaptic efficacy, dopamine receptor expression, and spine density in a subregion-specific manner. Nicotine may thus initiate a reorganization of striatal circuits that continues to develop despite protracted abstinence. We also show that the response to nicotine is modulated in previously exposed rats even after 6 months of abstinence. The data presented here suggests that, even though not self-administered, nicotine may produce progressive neuronal alterations in brain regions associated with goal-directed and habitual performance, which might contribute to the development of compulsive drug seeking and the increased vulnerability to relapse, which are hallmarks of drug addiction. PMID:27388328

  5. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition.

    PubMed

    Shirai, Nobu C; Kikuchi, Macoto

    2013-12-14

    An intrinsically disordered protein (IDP) lacks a stable three-dimensional structure, while it folds into a specific structure when it binds to a target molecule. In some IDP-target complexes, not all target binding surfaces are exposed on the outside, and intermediate states are observed in their binding processes. We consider that stepwise target recognition via intermediate states is a characteristic of IDP binding to targets with "hidden" binding sites. To investigate IDP binding to hidden target binding sites, we constructed an IDP lattice model based on the HP model. In our model, the IDP is modeled as a chain and the target is modeled as a highly coarse-grained object. We introduced motion and internal interactions to the target to hide its binding sites. In the case of unhidden binding sites, a two-state transition between the free states and a bound state is observed, and we consider that this represents coupled folding and binding. Introducing hidden binding sites, we found an intermediate bound state in which the IDP forms various structures to temporarily stabilize the complex. The intermediate state provides a scaffold for the IDP to access the hidden binding site. We call this process multiform binding. We conclude that structural flexibility of IDPs enables them to access hidden binding sites and this is a functional advantage of IDPs.

  6. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition

    NASA Astrophysics Data System (ADS)

    Shirai, Nobu C.; Kikuchi, Macoto

    2013-12-01

    An intrinsically disordered protein (IDP) lacks a stable three-dimensional structure, while it folds into a specific structure when it binds to a target molecule. In some IDP-target complexes, not all target binding surfaces are exposed on the outside, and intermediate states are observed in their binding processes. We consider that stepwise target recognition via intermediate states is a characteristic of IDP binding to targets with "hidden" binding sites. To investigate IDP binding to hidden target binding sites, we constructed an IDP lattice model based on the HP model. In our model, the IDP is modeled as a chain and the target is modeled as a highly coarse-grained object. We introduced motion and internal interactions to the target to hide its binding sites. In the case of unhidden binding sites, a two-state transition between the free states and a bound state is observed, and we consider that this represents coupled folding and binding. Introducing hidden binding sites, we found an intermediate bound state in which the IDP forms various structures to temporarily stabilize the complex. The intermediate state provides a scaffold for the IDP to access the hidden binding site. We call this process multiform binding. We conclude that structural flexibility of IDPs enables them to access hidden binding sites and this is a functional advantage of IDPs.

  7. Nonlinear preferential rewiring in fixed-size networks as a diffusion process.

    PubMed

    Johnson, Samuel; Torres, Joaquín J; Marro, Joaquín

    2009-05-01

    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .

  8. (+)RNA viruses rewire cellular pathways to build replication organelles.

    PubMed

    Belov, George A; van Kuppeveld, Frank J M

    2012-12-01

    Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that they target essential control mechanisms of membrane metabolism conserved among eukaryotes. Recently, significant progress has been made in understanding the role of key host factors and pathways that are hijacked for the development of replication organelles. In addition, electron tomography studies have shed new light on their ultrastructure. Collectively, these studies reveal an unexpected complexity of the spatial organization of the replication membranes and suggest that (+)RNA viruses actively change cellular membrane composition to build their replication organelles. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    PubMed Central

    Kong, E.Y.; Yeung, W.K.; Chan, T.K.Y.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  10. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination

    PubMed Central

    Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg

    2016-01-01

    Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI: http://dx.doi.org/10.7554/eLife.15200.001 PMID:27525484

  11. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching

    PubMed Central

    Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. PMID:28049690

  12. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching.

    PubMed

    Miyazawa, Hidenobu; Yamaguchi, Yoshifumi; Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Matsuda, Fumio; Yamamoto, Takehiro; Suematsu, Makoto; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. © 2017. Published by The Company of Biologists Ltd.

  13. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    PubMed Central

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  14. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

    PubMed Central

    Lupiáñez, Darío G.; Kraft, Katerina; Heinrich, Verena; Krawitz, Peter; Brancati, Francesco; Klopocki, Eva; Horn, Denise; Kayserili, Hülya; Opitz, John M.; Laxova, Renata; Santos-Simarro, Fernando; Gilbert-Dussardier, Brigitte; Wittler, Lars; Borschiwer, Marina; Haas, Stefan A.; Osterwalder, Marco; Franke, Martin; Timmermann, Bernd; Hecht, Jochen; Spielmann, Malte; Visel, Axel; Mundlos, Stefan

    2016-01-01

    SUMMARY Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. PMID:25959774

  15. An algorithm for identifying novel targets of transcription factor families: application to hypoxia-inducible factor 1 targets.

    PubMed

    Jiang, Yue; Cukic, Bojan; Adjeroh, Donald A; Skinner, Heath D; Lin, Jie; Shen, Qingxi J; Jiang, Bing-Hua

    2009-01-01

    Efficient and effective analysis of the growing genomic databases requires the development of adequate computational tools. We introduce a fast method based on the suffix tree data structure for predicting novel targets of hypoxia-inducible factor 1 (HIF-1) from huge genome databases. The suffix tree data structure has two powerful applications here: one is to extract unknown patterns from multiple strings/sequences in linear time; the other is to search multiple strings/sequences using multiple patterns in linear time. Using 15 known HIF-1 target gene sequences as a training set, we extracted 105 common patterns that all occur in the 15 training genes using suffix trees. Using these 105 common patterns along with known subsequences surrounding HIF-1 binding sites from the literature, the algorithm searches a genome database that contains 2,078,786 DNA sequences. It reported 258 potentially novel HIF-1 targets including 25 known HIF-1 targets. Based on microarray studies from the literature, 17 putative genes were confirmed to be upregulated by HIF-1 or hypoxia inside these 258 genes. We further studied one of the potential targets, COX-2, in the biological lab; and showed that it was a biologically relevant HIF-1 target. These results demonstrate that our methodology is an effective computational approach for identifying novel HIF-1 targets.

  16. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  17. The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes.

    PubMed

    Hewitt, Victoria L; Gabriel, Kipros; Traven, Ana

    2014-04-01

    Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial. © 2013.

  18. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  19. Flickering task–irrelevant distractors induce dilation of target duration depending upon cortical distance

    PubMed Central

    Okajima, Miku; Yotsumoto, Yuko

    2016-01-01

    Flickering stimuli are perceived to be longer than stable stimuli. This so-called “flicker-induced time dilation” has been investigated in a number of studies, but the factors critical for this effect remain unclear. We explored the spatial distribution of the flicker effect and examined how the flickering task-irrelevant distractors spatially distant from the target induce time dilation. In two experiments, we demonstrated that flickering distractors dilated the perceived duration of the target stimulus even though the target stimulus itself was stable. In addition, when the distractor duration was much longer than the target duration, a flickering distractor located ipsilateral to the target caused greater time dilation than did a contralateral distractor. Thus the amount of dilation depended on the distance between the cortical areas responsible for the stimulus locations. These findings are consistent with the recent study reporting that modulation of neural oscillators encoding the interval duration could explain flicker-induced time dilation. PMID:27577614

  20. Targeting of the activation-induced cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA.

    PubMed

    Shen, Hong Ming; Ratnam, Sarayu; Storb, Ursula

    2005-12-01

    Activation-induced deaminase (AID) initiates immunoglobulin somatic hypermutation (SHM). Since in vitro AID was shown to deaminate cytosines on single-stranded DNA or the nontranscribed strand, it remained a puzzle how in vivo AID targets both DNA strands equally. Here we investigate the roles of transcription and DNA sequence in cytosine deamination. Strikingly different results are found with different substrates. Depending on the target sequence, the transcribed DNA strand is targeted as well as or better than the nontranscribed strand. The preferential targeting is not related to the frequency of AID hot spots. Comparison of cytosine deamination by AID and bisulfite shows different targeting patterns suggesting that AID may locally unwind the DNA. We conclude that somatic hypermutation on both DNA strands is the natural outcome of AID action on a transcribed gene; furthermore, the DNA sequence or structure and topology play major roles in targeting AID in vitro and in vivo. On the other hand, the lack of mutations in the first approximately 100 nucleotides and beyond about 1 to 2 kb from the promoter of immunoglobulin genes during SHM must be due to special conditions of transcription and chromatin in vivo.

  1. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Castration-resistant Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK...Annual Progress Report W81XWH-13-1-0163 Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

  2. Efficient ion acceleration by relativistic self-induced transparency in subwavelength targets

    NASA Astrophysics Data System (ADS)

    Choudhary, Shivani; Holkundkar, Amol R.

    2016-10-01

    We studied the effect of target thickness on relativistic self-induced transparency (RSIT) and observed that, for subwavelength targets, the corresponding threshold target density (beyond which the target is opaque to an incident laser pulse of given intensity) increases. The accelerating longitudinal electrostatic field created by RSIT from the subwavelength target is then used to accelerate the ions from a thin, low density layer behind the main target to 100 MeV using a 6 cycle flat-top (with rise and fall of one cycle each) circularly polarized laser with peak dimensionless amplitude of 20. A suitable scaling law for optimum laser and target conditions is also deduced. We observed that, as far as energy spectrum is concerned, an extra low density layer is more advantageous than relying on target ions alone.

  3. Hypoxia-inducible factors as molecular targets for liver diseases.

    PubMed

    Ju, Cynthia; Colgan, Sean P; Eltzschig, Holger K

    2016-06-01

    Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease.

  4. Cardiac-Specific Inducible and Conditional Gene Targeting in Mice

    PubMed Central

    Doetschman, Thomas; Azhar, Mohamad

    2013-01-01

    Mouse genetic engineering has revolutionized our understanding of the molecular and genetic basis of heart development and disease. This technology involves conditional tissue-specific and temporal transgenic and gene targeting approaches, as well as introduction of polymorphisms into the mouse genome. These approaches are increasingly used to elucidate the genetic pathways underlying tissue homeostasis, physiology, and pathophysiology of adult heart. They have also led to the development of clinically relevant models of human cardiac diseases. Here, we review the technologies and their limitations in general and the cardiovascular research community in particular. PMID:22628574

  5. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer

    PubMed Central

    Azad, A. K. M.; Keith, Jonathan M.

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  6. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer.

    PubMed

    Azad, A K M; Lawen, Alfons; Keith, Jonathan M

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  7. Extensive Rewiring and Complex Evolutionary Dynamics in a C. elegans Multiparameter Transcription Factor Network

    PubMed Central

    Reece-Hoyes, John S.; Pons, Carles; Diallo, Alos; Mori, Akihiro; Shrestha, Shaleen; Kadreppa, Sreenath; Nelson, Justin; DiPrima, Stephanie; Dricot, Amelie; Lajoie, Bryan R.; Ribeiro, Philippe Souza Moraes; Weirauch, Matthew T.; Hill, David E.; Hughes, Timothy R.; Myers, Chad L.; Walhout, Albertha J.M.

    2013-01-01

    SUMMARY Gene duplication results in two identical paralogs that diverge through mutation, leading to loss or gain of interactions with other biomolecules. Here, we comprehensively characterize such network rewiring for C. elegans transcription factors (TFs) within and across four newly delineated molecular networks. Remarkably, we find that even highly similar TFs often have different interaction degree and partners. In addition, we find that most TF families have a member that is highly connected in multiple networks. Further, different TF families have opposing correlations between network connectivity and phylogenetic age, suggesting that they are subject to different evolutionary pressures. Finally, TFs that have similar partners in one network generally do not in another, indicating a lack of pressure to retain cross-network similarity. Our multiparameter analyses provide an unprecedented glimpse into the evolutionary dynamics that shaped TF networks. PMID:23791784

  8. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning.

    PubMed

    Chang, Yi-Cheng; Pai, Chih-Yu; Chen, Yi-Chih; Ting, Hsiu-Chi; Martinez, Pedro; Telford, Maximilian J; Yu, Jr-Kai; Su, Yi-Hsien

    2016-02-01

    The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second admp gene (admp2) is present in Ambulacraria (Echinodermata+Hemichordata) and two marine worms belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity. Over-expression of either Admps reinforced BMP signaling but resulted in different phenotypes in the sea urchin embryo. Our study provides an excellent example of signaling circuit rewiring and protein functional changes after gene duplications.

  9. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system.

    PubMed

    Taylor, Tiffany B; Mulley, Geraldine; Dills, Alexander H; Alsohim, Abdullah S; McGuffin, Liam J; Studholme, David J; Silby, Mark W; Brockhurst, Michael A; Johnson, Louise J; Jackson, Robert W

    2015-02-27

    A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.

  10. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    PubMed Central

    Hsu, Chieh; Scherrer, Simone; Buetti-Dinh, Antoine; Ratna, Prasuna; Pizzolato, Julia; Jaquet, Vincent; Becskei, Attila

    2012-01-01

    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit. PMID:22353713

  11. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    PubMed Central

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia; Huang, Mingtao; Liu, Lifang; Khoomrung, Sakda; Siewers, Verena; Jiang, Bo; Nielsen, Jens

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l−1 with a yield of 67 mg (g glucose)−1 in shake-flask cultures and a titre of 5.1 g l−1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals. PMID:26345617

  12. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by

  13. Targeting SLUG sensitizes leukemia cells to ADR-induced apoptosis.

    PubMed

    Wei, Chang-Rong; Liu, Jun; Yu, Xiao-Jun

    2015-01-01

    Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug's ability to silence expression suppresses the growth of leukemia HL-60 cells and/or sensitizes leukemia HL-60 cells to adriamycin (ADR) through induction of apoptosis. SLUG siRNA was transfected into the HL-60 and HL-60(ADR) cell lines (an adriamycin resistant cell line). The stably SLUG siRNA transfected HL-60 and HL-60(ADR) cells was transiently transfected with PUMA siRNA. The mRNA and protein expression of SLUG and PUMA were determined by Quantitative real-time RT-PCR and Western blot assay. The effects of SLUG siRNA alone or combined with ADR or PUMA siRNA on growth and apoptosis in HL-60 and HL-60(ADR) cells was detected by MTT, ELISA and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. The results showed that SLUG was less expressed in the HL-60 cells, and high expressed in the HL-60(ADR) cells. Obvious down-regulation of SLUG mRNA and protein levels and up-regulation of PUMA mRNA and protein levels after SLUG siRNA transfection was showed in the HL-60(ADR) cells. Treatment with ADR induced SLUG mRNA and protein in the HL-60 cells. Significant positive correlation was observed between basal SLUG mRNA and protein and ADR sensitivity. SLUG gene silencing by SLUG siRNA transfection inhibited growth and induced apoptosis, and increased ADR killing of the HL-60 and HL-60(ADR) cell lines. After the SLUG siRNA transfected HL-60 and HL-60(ADR) cells was transiently transfected with PUMA siRNA, did not increase ADR killing of the HL-60 and HL-60(ADR) cell lines. SLUG level positively correlated with sensitivity to ADR. SLUG siRNA could effectively reduce SLUG expression and induce PUMA expression and restore the drug sensitivity of resistant leukemic cells to conventional chemotherapeutic agents.

  14. Development of target protein-selective degradation inducer for protein knockdown.

    PubMed

    Itoh, Yukihiro; Ishikawa, Minoru; Kitaguchi, Risa; Sato, Shinichi; Naito, Mikihiko; Hashimoto, Yuichi

    2011-05-15

    Our previous technique for inducing selective degradation of target proteins with ester-type SNIPER (Specific and Nongenetic Inhibitor-of-apoptosis-proteins (IAPs)-dependent Protein ERaser) degrades both the target proteins and IAPs. Here, we designed a small-molecular amide-type SNIPER to overcome this issue. As proof of concept, we synthesized and biologically evaluated an amide-type SNIPER which induces selective degradation of cellular retinoic acid binding protein II (CRABP-II), but not IAPs. Such small-molecular, amide-type SNIPERs that induce target protein-selective degradation without affecting IAPs should be effective tools to study the biological roles of target proteins in living cells.

  15. Teriflunomide and monomethylfumarate target HIV-induced neuroinflammation and neurotoxicity.

    PubMed

    Ambrosius, Björn; Faissner, Simon; Guse, Kirsten; von Lehe, Marec; Grunwald, Thomas; Gold, Ralf; Grewe, Bastian; Chan, Andrew

    2017-03-11

    HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication. Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and neurotoxicity. Human monocytoid cells (U937) transduced with a minimal HIV-Vector were co-cultured with human microglial cells (HMC3). Secretion of pro-inflammatory/neurotoxic cytokines (CXCL10, CCL5, and CCL2: p < 0.001; IL-6: p < 0.01) by co-cultures was strongly increased compared to microglia in contact with HIV-particles alone. Upon treatment with teriflunomide, cytokine secretion was decreased (CXCL10, 3-fold; CCL2, 2.5-fold; IL-6, 2.2-fold; p < 0.001) and monomethylfumarate treatment led to 2.9-fold lower CXCL10 secretion (p < 0.001). Reduced toxicity of co-culture conditioned media on human fetal neurons by teriflunomide (29%, p < 0.01) and monomethylfumarate (27%, p < 0.05) indicated functional relevance. Modulation of innate immune functions by teriflunomide and monomethylfumarate may target neurotoxic inflammation in the context of HAND.

  16. Alcohol-induced hypertension: an important healthcare target in Belgium.

    PubMed

    Collart, F; de Timary, P; Dom, G; Dor, B D; Duprez, D; Lengelé, J-P; Matthys, F; Peuskens, H; Rehm, J; Stärkel, P

    2015-12-01

    Excessive alcohol intake is one of the leading causes of premature death in Europe and particularly in Belgium. Belgian people are consuming more alcohol per year than the European average. It is well established that excessive alcohol consumption is a significant predictor of the development of hypertension (HTN). Two million adults in Belgium suffer from HTN and this number will increase to three million by 2025. Less than 50% of Belgian people treated for HTN are well-controlled. Alcohol reduction in patients with HTN can significantly lower systolic and diastolic blood pressure. After reviewing the epidemiology of HTN and alcohol disorders in Belgium, this paper will focus on the rationale for alcohol screening and brief intervention in primary care. It will also describe the barriers to alcohol screening, and what could be the benefits of alcohol screening for our healthcare system. The authors believe that early identification through alcohol screening and brief intervention in general practice can help to improve the management of patients with HTN, to reach the targets of the WHO Global Action Plan, i.e., a 25% relative reduction in the risk of premature mortality from cardiovascular diseases, cancer, diabetes or chronic respiratory diseases. They are also convinced that this would allow achieving major healthcare savings.

  17. Characterization of acetaminophen-induced cytotoxicity in target tissues

    PubMed Central

    Guo, Chao; Xie, Guojie; Su, Min; Wu, Xinmou; Lu, Xiuli; Wu, Ka; Wei, Chaohe

    2016-01-01

    Acetaminophen (APAP), commonly used in clinical prescription, has time- and dose-dependent side effects. Thus, further animal study warrants to be investigated to assess possible adverse effect of APAP application. Here, we conducted pre-clinical research to elucidate the molecular mechanism regarding APAP-mediated toxicological action. Our data showed that serous/urinary and hepatic/renal APAP concentrations were significantly increased when compared with normal control, which the liver tissue showed the highest level. As an acute liver damage model induced by APAP, absolute liver weight, serum enzyme (ALT), urine protein content were notably elevated. Representatively, APAP-damaged liver resulted in increased pro-apoptotic Bax and compensatory Ki-67 positive cells, while the number of anti-apoptotic Bcl2 positive cells was reduced. In addition, the immunoactivity markers for NF-κB, TRL4, TNF-α in the kidney were increased, respectively. Furthermore, intracellular TRL4 and TNF-α mRNAs in the liver and kidney showed significant up-regulation. In summary, our current findings demonstrate that APAP-mediated the specific cytotoxicity is linked to the molecular mechanisms of facilitating apoptosis and inflammatory stress in the liver and kidney. PMID:27830028

  18. Targeting miR-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal.

    PubMed

    Liang, Hui; Dong, Ziyan; Liu, Jiang-Feng; Chuang, Wei; Gao, Li-Zhen; Ren, Yu-Guo

    2016-10-27

    Recent studies have shown that high miR-155 expression was associated with poor prognosis in patients with acute myelogeneous leukemia (AML). Furthermore, targeting miR-155 results in monocytic differentiation and apoptosis. However, the exact role and mechanisms of miR-155 in human AML remains speculative. HL-60 cells were treated with anti-miR-155 for 72 h. Cell growth and apoptosis in vitro were detected by MTT, BrdU proliferation, colony formation and flow cytometry assay. The effect of anti-miR-155 on growth of HL-60 cells was also evaluated in a leukemia mouse model. Slug cDNA and PUMA siRNA trannsfection was used to assess the signal pathway. Different protein expression was detected by western blot assay and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. The results shown that targeting miR-155 resulted in a 24-fold decrease of miR-155 expression compared to negative control in the HL-60 cells. Targeting miR-155 significantly downregulated Slug and upregulated PUMA expression, and decreased HL-60 cell growth by 70% , impaired colony formation by approximately 60%, and increased HL-60 cell apoptosis by 45%. Targeting PUMA reversed miR-155 sliencing-induced proliferation and apoptosis of HL-60 cells. Restoration of Slug decreased PUMA expression. In murine engraftment models of HL-60 cells, we showed that targeting miR-155 was able to reduce tumor growth. This was accompanied with decreased Slug expression and increased PUMA expression in these tumors. Collectively, our findings strongly suggest targeting miR-155 exhibited in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of Slug expression and increase of PUMA expression.

  19. A human serum immunoglobulin with specificity for certain homologous target cells, which induces target cell damage by normal human lymphocytes

    PubMed Central

    MacLennan, I. C. M.; Loewi, G.; Howard, A.

    1969-01-01

    A factor has been found in a number of human sera which renders a polyploid strain of human liver cells, Chang cells, susceptible to damage by non-immune human lymphocytes. Sera possessing this factor are referred to as Factor Containing Sera (FCS). Such damage is assessed quantitatively by release of radioactive chromium from target cells. This factor has the chemical properties of IgG and can be absorbed out on Chang cells. Its specificity has been shown to be for Chang cells and not for human lymphocytes. Other homologous and heterologous target cells tested were not affected by this factor. The factor has not been shown to have any effect on Chang cell viability by itself, even in the presence of complement. Factors which inhibit target cell damage are shown to coexist with the factor which induces non-immune lymphocyte damage of Chang cells. The possible origin of this factor is discussed as is the role in immune reactions of target cell specific antibody which renders such cells susceptible to damage by non-immune lymphocytes. PMID:5394186

  20. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  1. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects

    PubMed Central

    Sprung, Carl N.; Ivashkevich, Alesia; Forrester, Helen B.; Redon, Christophe E.; Georgakilas, Alexandros; Martin, Olga A.

    2013-01-01

    A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the “bystander effect”. These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors. PMID:24041866

  2. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging.

    PubMed

    Malka, G; Nicolaï, Ph; Brambrink, E; Santos, J J; Aléonard, M M; Amthor, K; Audebert, P; Breil, J; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V

    2008-02-01

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  3. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging

    SciTech Connect

    Malka, G.; Aleonard, M. M.; Claverie, G.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Scheurer, J. N.; Tarisien, M.; Brambrink, E.; Audebert, P.; Amthor, K.; Meot, V.; Morel, P.

    2008-02-15

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  4. Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer

    DTIC Science & Technology

    2015-06-01

    AWARD NUMBER: W81XWH-14-1-0082 TITLE: Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer PRINCIPAL INVESTIGATOR: Lee Zou...Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer 5b. GRANT NUMBER W81WXH-14-1-0082 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee Zou Lee...studies have shown that the genomes of breast cancer cells contained particularly high levels of clustered mutations . In addition, overexpression of the

  5. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  6. Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitochondria Oxidants

    DTIC Science & Technology

    2010-04-01

    breast cancer cells and other cell types. Low levels of ROS have been reported to induce proliferation, growth and metastasis of breast cancer cells...cells and other cell types which at a chronic sublethal levelhave been shown to induce proliferation,growth, and metastasis to cause therapeutic...cooperates with E2F targeted gene expression of human bone osteosarcoma and mammary gland adenocarcinoma to down-regulates proliferation [78;79

  7. Characterization of the effector cells in Con A-induced cytotoxicity against HEp 2 tumour targets.

    PubMed

    Pócsik, E; González-Cabello, R; Benedek, K; Perl, A; Láng, I; Gergely, P

    1983-01-01

    Con A-induced cytotoxic activity of human lymphocyte subpopulations obtained by cell fractionation procedures was studied in a test system using human epipharynx carcinoma cells (HEp 2) as targets. Only T lymphocytes were cytotoxic, non-T cells exerted no cytotoxic activity, but enhanced the adherence of the tumour cells. Tnon-G lymphocytes (Fc-receptor negative T cells) were more active than TG cells (Fc-receptor-positive T cells) in mediating the Con A-induced cytotoxic reaction.

  8. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy.

    PubMed

    Ottis, Philipp; Crews, Craig M

    2017-03-20

    Until recently, the only ways to reduce specific protein signaling were to either knock down the target by RNAi or to interfere with the signaling by inhibiting an enzyme or receptor within the signal transduction cascade. Herein, we review an emerging class of small molecule pharmacological agents, called PROTACs, that present a novel approach to specifically target proteins and their respective signaling pathways. These heterobifunctional molecules utilize endogenous cellular quality control machinery by recruiting it to target proteins in order to induce their degradation.

  9. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  10. A Mitochondrion-Targeted Antioxidant Ameliorates Isoflurane-Induced Cognitive Deficits in Aging Mice.

    PubMed

    Wu, Jing; Li, Huihui; Sun, Xiaoru; Zhang, Hui; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2015-01-01

    Isoflurane possesses neurotoxicity and can induce cognitive deficits, particularly in aging mammals. Mitochondrial reactive oxygen species (mtROS) have been linked to the early pathogenesis of this disorder. However, the role of mtROS remains to be evaluated due to a lack of targeted method to treat mtROS. Here, we determined in aging mice the effects of the mitochondrion-targeted antioxidant SS-31, on cognitive deficits induced by isoflurane, a general inhalation anesthetic. We further investigated the possible mechanisms underlying the effects of SS-31 on hippocampal neuro-inflammation and apoptosis. The results showed that isoflurane induced hippocampus-dependent memory deficit, which was associated with mitochondrial dysfunction including reduced ATP contents, increased ROS levels, and mitochondrial swelling. Treatment with SS-31 significantly ameliorated isoflurane-induced cognitive deficits through the improvement of mitochondrial integrity and function. Mechanistically, SS-31 treatment suppressed pro-inflammatory responses by decreasing the levels of NF-κB, NLRP3, caspase 1, IL-1β, and TNF-α; and inhibited the apoptotic pathway by decreasing the Bax/Bcl-2 ratio, reducing the release of cytochrome C, and blocking the cleavage of caspase 3. Our results indicate that isoflurane-induced cognitive deficits may be attenuated by mitochondrion-targeted antioxidants, such as SS-31. Therefore, SS-31 may have therapeutic potentials in preventing injuries from oxidative stresses that contribute to anesthetic-induced neurotoxicity.

  11. Can a regular context induce temporal orienting to a target sound?

    PubMed

    Lange, Kathrin

    2010-12-01

    It has been shown recently (Lange, 2009) that the N1 of the auditory event related potential (ERP) is attenuated when the eliciting stimulus predictably follows a regular vs. an irregular sequence. This may be a sign of temporal orienting induced by the regular sequence. Alternatively, the attenuated N1 may have been due to sensory predictability of target timing. The present study investigated whether presenting a regular sequence still attenuates target N1 when target timing is unpredictable. A regular (vs. irregular) tone sequence was presented prior to a target tone, which appeared unpredictably at one of three different time points after the sequence. For the regular sequence, targets either continued regularity (on-time targets) or were early or late with respect to this regular time point. ERPs to on-time targets were compared as a function of sequence regularity. Consistent with the assumption that N1 attenuation reflects sensory predictability of target timing, an attenuated N1 was not observed in the present study, where target timing was uncertain.

  12. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma

    PubMed Central

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E.; Vasudevan, Sanjeev A.; Tao, Ling; Pang, Jonathan C.; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-01

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma. PMID:27902463

  13. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  14. Magnitude, Impact, and Management of Respiration-induced Target Motion in Radiotherapy Treatment: A Comprehensive Review

    PubMed Central

    Yoganathan, S. A.; Maria Das, K. J.; Agarwal, Arpita; Kumar, Shaleen

    2017-01-01

    Tumors in thoracic and upper abdomen regions such as lungs, liver, pancreas, esophagus, and breast move due to respiration. Respiration-induced motion introduces uncertainties in radiotherapy treatments of these sites and is regarded as a significant bottleneck in achieving highly conformal dose distributions. Recent developments in radiation therapy have resulted in (i) motion-encompassing, (ii) respiratory gating, and (iii) tracking methods for adapting the radiation beam aperture to account for the respiration-induced target motion. The purpose of this review is to discuss the magnitude, impact, and management of respiration-induced tumor motion. PMID:28974854

  15. Ultrasensitive detection of potassium ions based on target induced DNA conformational switch enhanced fluorescence polarization.

    PubMed

    Hu, Kun; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Wu, Qiang; Zhang, Guohai; Jiang, Jing

    2012-06-21

    We have developed a simple, highly sensitive and selective fluorescence polarization assay for the detection of potassium ions based on target induced DNA conformational switch from hairpin to G-quadruplex enhanced fluorescence polarization. The assay was applied in the detection of low nM concentrations of potassium ions and was highly selective over other cations.

  16. Analysis of Beam-Induced Damage to the SLC Positron Production Target

    SciTech Connect

    Bharadwaj, Vinod

    2002-08-20

    The nominal Next Linear Collider (NLC) positron production design is based on extrapolation of the existing SLAC Linear Collider (SLC) positron production system. Given that the SLC positron production target failed during a run, it is necessary to analyze the beam-induced damage to the target in order to validate the extrapolations on which the NLC target is based. The failed SLC target and its associated housing were sent to existing ''hot-cell'' facilities at LANL for analysis. The target material, a tungsten-rhenium ''puck'', was removed from the housing and photographed and x-rayed. Leak-checking on the cooling system was performed. Sections were then removed from the target to determine the extent of internal damage to the material. High resolution photographs were taken and extensive hardness tests were performed on the irradiated and non-irradiated areas of the target material. The results of these analyses and conclusions applicable to the NLC target design are presented in this paper.

  17. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    PubMed

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts.

    PubMed

    Puthiyaveetil, Sujith; Ibrahim, Iskander M; Allen, John F

    2013-07-19

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.

  19. From Neurons to Neuron Neighborhoods: the Rewiring of the Cerebellar Cortex in Essential Tremor

    PubMed Central

    2014-01-01

    Remarkably little has been written on the biology of essential tremor (ET), despite its high prevalence. The olivary model, first proposed in the 1970s, is the traditional disease model for ET; however, the model is problematic for a number of reasons. Recently, intensive tissue-based studies have identified a series of structural changes in the brains of most ET cases, and nearly all of the observed changes are located in the cerebellar cortex. These studies suggest that Purkinje cells are central to the pathogenesis of ET and may thus provide a focus for the development of novel therapeutic strategies. Arising from these studies, a new model of ET proposes that the population of Purkinje cells represents the site of the initial molecular/cellular events leading to ET. Furthermore, a number of secondary changes/remodeling observed in the molecular and granular layers (i.e., in the Purkinje cell “neighborhood”) are likely to be of additional mechanistic importance. On a physiological level, the presence of remodeling indicates the likely formation of aberrant synapses and the creation of new/abnormal cortical circuits in ET. Specific efforts need to be devoted to understanding the cascade of biochemical and cellular events occurring in the Purkinje cell layer in ET and its neuron neighborhood, as well as the physiological effects of secondary remodeling/rewiring that are likely to be occurring in this brain region in ET. PMID:24435423

  20. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli.

    PubMed

    Charbon, Godefroid; Campion, Christopher; Chan, Siu Hung Joshua; Bjørn, Louise; Weimann, Allan; da Silva, Luís Cláudio Nascimento; Jensen, Peter Ruhdal; Løbner-Olesen, Anders

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.

  1. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  2. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli

    PubMed Central

    Campion, Christopher; Weimann, Allan

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. PMID:28129339

  3. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts

    PubMed Central

    Puthiyaveetil, Sujith; Ibrahim, Iskander M.; Allen, John F.

    2013-01-01

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes. PMID:23754813

  4. Dynamic rewiring of the Drosophila retinal determination network switches its function from selector to differentiation.

    PubMed

    Atkins, Mardelle; Jiang, Yuwei; Sansores-Garcia, Leticia; Jusiak, Barbara; Halder, Georg; Mardon, Graeme

    2013-08-01

    Organ development is directed by selector gene networks. Eye development in the fruit fly Drosophila melanogaster is driven by the highly conserved selector gene network referred to as the "retinal determination gene network," composed of approximately 20 factors, whose core comprises twin of eyeless (toy), eyeless (ey), sine oculis (so), dachshund (dac), and eyes absent (eya). These genes encode transcriptional regulators that are each necessary for normal eye development, and sufficient to direct ectopic eye development when misexpressed. While it is well documented that the downstream genes so, eya, and dac are necessary not only during early growth and determination stages but also during the differentiation phase of retinal development, it remains unknown how the retinal determination gene network terminates its functions in determination and begins to promote differentiation. Here, we identify a switch in the regulation of ey by the downstream retinal determination genes, which is essential for the transition from determination to differentiation. We found that central to the transition is a switch from positive regulation of ey transcription to negative regulation and that both types of regulation require so. Our results suggest a model in which the retinal determination gene network is rewired to end the growth and determination stage of eye development and trigger terminal differentiation. We conclude that changes in the regulatory relationships among members of the retinal determination gene network are a driving force for key transitions in retinal development.

  5. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang

    2016-03-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  6. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria

    DOE PAGES

    Eiler, Alexander; Mondav, Rhiannon; Sinclair, Lucas; ...

    2016-01-19

    Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner-Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from themore » freshwater genomes. Evolutionary reconstruc tions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.« less

  7. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria

    SciTech Connect

    Eiler, Alexander; Mondav, Rhiannon; Sinclair, Lucas; Fernandez-Vidal, Leyden; Scofield, Douglas G.; Schwientek, Patrick; Martinez-Garcia, Manuel; Torrents, David; McMahon, Katherine D.; Andersson, Siv G. E.; Stepanauskas, Ramunas; Woyke, Tanja; Bertilsson, Stefan

    2016-01-19

    Most free-living planktonic cells are streamlined and in spite of their limitations in functional flexibility, their vast populations have radiated into a wide range of aquatic habitats. Here we compared the metabolic potential of subgroups in the Alphaproteobacteria lineage SAR11 adapted to marine and freshwater habitats. Our results suggest that the successful leap from marine to freshwaters in SAR11 was accompanied by a loss of several carbon degradation pathways and a rewiring of the central metabolism. Examples for these are C1 and methylated compounds degradation pathways, the Entner-Doudouroff pathway, the glyoxylate shunt and anapleuretic carbon fixation being absent from the freshwater genomes. Evolutionary reconstruc tions further suggest that the metabolic modules making up these important freshwater metabolic traits were already present in the gene pool of ancestral marine SAR11 populations. The loss of the glyoxylate shunt had already occurred in the common ancestor of the freshwater subgroup and its closest marine relatives, suggesting that the adaptation to freshwater was a gradual process. Furthermore, our results indicate rapid evolution of TRAP transporters in the freshwater clade involved in the uptake of low molecular weight carboxylic acids. We propose that such gradual tuning of metabolic pathways and transporters toward locally available organic substrates is linked to the formation of subgroups within the SAR11 clade and that this process was critical for the freshwater clade to find and fix an adaptive phenotype.

  8. Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief

    2016-10-01

    Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  9. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection.

    PubMed

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-10-10

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions.

  10. How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae).

    PubMed

    Martins, Talline R; Jiang, Peng; Rausher, Mark D

    2016-09-06

    A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F2 individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character.

  11. Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network.

    PubMed

    Tekin, Ramazan; Tagluk, Mehmet Emin

    2017-03-01

    Physiological rhythms play a critical role in the functional development of living beings. Many biological functions are executed with an interaction of rhythms produced by internal characteristics of scores of cells. While synchronized oscillations may be associated with normal brain functions, anomalies in these oscillations may cause or relate the emergence of some neurological or neuropsychological pathologies. This study was designed to investigate the effects of topological structure and synaptic conductivity noise on the spatial synchronization and temporal rhythmicity of the waves generated by cells in the network. Because of holding the ability of clustering and randomizing with change of parameters, small-world (SW) network topology was chosen. The oscillatory activity of network was tried out by manipulating an insulated SW, cortical network model whose morphology is very close to real world. According to the obtained results, it was observed that at the optimal probabilistic rates of conductivity noise and rewiring of SW, powerful synchronized oscillatory small waves are generated in relation to the internal dynamics of cells, which are in line with the network's input. These two parameters were observed to be quite effective on the excitation-inhibition balance of the network. Accordingly, it may be suggested that the topological dynamics of SW and noisy synaptic conductivity may be associated with the normal and abnormal development of neurobiological structure.

  12. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  13. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  14. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease.

    PubMed

    Liu, Jiexia; Tao, Yujun; Wu, Jinheng; Zhu, Yi; Gao, Baoyan; Tang, Yu; Li, Aifen; Zhang, Chengwu; Zhang, Yuanming

    2014-09-01

    A flocculation method was developed to harvest target microalgae with self-flocculating microalgae induced by decreasing pH to just below isoelectric point. The flocculation efficiencies of target microalgae were much higher than those flocculated only via pH decrease. The mechanism could be that negatively charged self-flocculating microalgal cells became positively charged during pH decrease, subsequently attracted negatively charged target microalgae cells to form flocs and settled down due to gravity. Microalgal biomass concentration and released polysaccharide (RPS) from target microalgae influenced flocculation efficiencies, while multivalent metal ions in growth medium could not. Furthermore, neutralizing pH and then supplementing nutrients allowed flocculated medium to be recycled for cultivation. Finally, Spearman's Rank Correlation Coefficients (Rs) between flocculation efficiency and key factors were also investigated. These results suggest that this method is effective, simple to operate and allows the reuse of flocculated medium, thereby contributing to the economic production from microalgae to biodiesel.

  15. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water.

  16. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  17. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  18. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel.

    PubMed

    Hakim, Md Abdul; Jiang, Wenbin; Luo, Lei; Li, Bowen; Yang, Shilong; Song, Yuzhu; Lai, Ren

    2015-09-14

    The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, OPEN ACCESS Toxins 2015, 7 3672 BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation.

  19. Mitochondrial-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness

    PubMed Central

    Powers, Scott K.; Hudson, Matthew B.; Nelson, W. Bradley; Talbert, Erin E.; Min, Kisuk; Szeto, Hazel H.; Kavazis, Andreas N.; Smuder, Ashley J.

    2015-01-01

    BACKGROUND Mechanical ventilation (MV) is a life-saving intervention used to provide adequate pulmonary ventilation in patients suffering from respiratory failure. However, prolonged MV is associated with significant diaphragmatic weakness resulting from both myofiber atrophy and contractile dysfunction. Although several signaling pathways contribute to diaphragm weakness during MV, it is established that oxidative stress is required for diaphragmatic weakness to occur. Therefore, identifying the site(s) of MV-induced reactive oxygen species (ROS) production in the diaphragm is important. OBJECTIVE These experiments tested the hypothesis that elevated mitochondrial ROS emission is required for MV-induced oxidative stress, atrophy, and contractile dysfunction in the diaphragm. DESIGN Cause and effect was determined by preventing MV-induced mitochondrial ROS emission in the diaphragm of rats using a novel mitochondrial-targeted antioxidant (SS-31). MEASUREMENTS AND MAIN RESULTS Compared to mechanically ventilated animals treated with saline, animals treated with SS-31 were protected against MV-induced mitochondrial dysfunction, oxidative stress, and protease activation in the diaphragm. Importantly, treatment of animals with the mitochondrial antioxidant also protected the diaphragm against MV-induced myofiber atrophy and contractile dysfunction. CONCLUSIONS These results reveal that prevention of MV-induced increases in diaphragmatic mitochondrial ROS emission protects the diaphragm MV-induced diaphragmatic weakness. This important new finding indicates that mitochondria are a primary source of ROS production in the diaphragm during prolonged MV. These results could lead to the development of a therapeutic intervention to impede MV-induced diaphragmatic weakness. PMID:21460706

  20. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel

    PubMed Central

    Hakim, Md Abdul; Jiang, Wenbin; Luo, Lei; Li, Bowen; Yang, Shilong; Song, Yuzhu; Lai, Ren

    2015-01-01

    The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation. PMID:26389953

  1. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo.

    PubMed

    Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li

    2016-02-01

    The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (P<0.05). The expression peaked on day 5, remained detectable on day 40 and disappeared on day 60. No EGFP expression was detected in the other tissues and organs. The UTMD

  2. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  3. Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Nandy, Maitreyee; Roy, S. N.; Sarkar, P. K.

    2004-12-01

    Simple empirical expressions for transmission of flux and dose through concrete are presented for neutrons from proton induced reactions. For this purpose the neutron emission from different targets in proton induced reactions in the energy range 25-200 MeV have been considered. The calculated effective dose outside a concrete shield shows overall good agreement with the effective dose estimated from measured neutron flux in the framework of the Moyer model. The calculated effective attenuation length shows a rising trend with incident proton energy and shield thickness.

  4. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.

    PubMed

    Reshat, Reshat; Priestley, Catherine C; Gooderham, Nigel J

    2012-11-01

    Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.

  5. Investigation of apoptotic events at molecular level induced by SERS guided targeted theranostic nanoprobe

    NASA Astrophysics Data System (ADS)

    Narayanan, Nisha; Nair, Lakshmi V.; Karunakaran, Varsha; Joseph, Manu M.; Nair, Jyothi B.; N, Ramya A.; Jayasree, Ramapurath S.; Maiti, Kaustabh Kumar

    2016-06-01

    Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA.Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03385g

  6. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress.

    PubMed

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress.

  7. Isospin effects on fragmentation in the asymmetric reactions induced by neutron-rich targets

    SciTech Connect

    Sharma, Arun

    2016-05-06

    To understand the isospin effects in terms of fragment’s yield in the asymmetric reactions induced by neutron-rich targets, we perform a theoretical study using isospin-dependent quantum molecular dynamics (IQMD) model. Simulations are carried out for reactions of {sup 16}O+Br{sup 80,84,92} and {sup 16}O+Ag{sup 108,113,122}. We envision that fragments’s yield in the asymmetric collisions induced by neutron-rich targets is better candidate to study isospin effects via symmetry energy and nucleon-nucleon (nn) cross-sections. Also, pronounced effects of symmetry energy and cross-sections can be found at lower and higher beam energies, respectively.

  8. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  9. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  10. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization

    PubMed Central

    Brock, Ethan J.; Ji, Kyungmin; Reiners, John J.; Mattingly, Raymond R.

    2016-01-01

    Oncogenic Ras proteins are a driving force in a significant set of human cancers and wild-type, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development. PMID:26423696

  11. Successful treatment of laser induced hypopigmentation with narrowband ultraviolet B targeted phototherapy.

    PubMed

    Mysore, Venkataram; Anitha, B; Hosthota, Abhineetha

    2013-04-01

    Q-switched 1064 nm neodymium-doped yttrium aluminium garnet (Qs 1064 nm Nd: YAG) laser plays an important role in the treatment of pigmentary skin disorders, including tattoos. Although it has high efficacy and safety, adverse effect like hypopigmentation may occur causing anxiety to patients. We present a case report of Qs 1064 nm Nd: YAG laser induced hypopigmentation which was successfully treated with ultraviolet B targeted phototherapy, with rapid and satisfactory re-pigmentation.

  12. Successful Treatment of Laser Induced Hypopigmentation with Narrowband Ultraviolet B Targeted Phototherapy

    PubMed Central

    Mysore, Venkataram; Anitha, B; Hosthota, Abhineetha

    2013-01-01

    Q-switched 1064 nm neodymium-doped yttrium aluminium garnet (Qs 1064 nm Nd: YAG) laser plays an important role in the treatment of pigmentary skin disorders, including tattoos. Although it has high efficacy and safety, adverse effect like hypopigmentation may occur causing anxiety to patients. We present a case report of Qs 1064 nm Nd: YAG laser induced hypopigmentation which was successfully treated with ultraviolet B targeted phototherapy, with rapid and satisfactory re-pigmentation. PMID:24023438

  13. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    PubMed Central

    Raoof, Mustafa; Curley, Steven A.

    2011-01-01

    Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed. PMID:21994866

  14. Laser induced plasma on copper target, a non-equilibrium model

    SciTech Connect

    Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis

    2014-02-15

    The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.

  15. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis.

    PubMed

    Nawroth, Isabel; Alsner, Jan; Behlke, Mark A; Besenbacher, Flemming; Overgaard, Jens; Howard, Kenneth A; Kjems, Jørgen

    2010-10-01

    One of the most common and dose-limiting long-term adverse effects of radiation therapy is radiation-induced fibrosis (RIF), which is characterized by restricted tissue flexibility, reduced compliance or strictures, pain and in severe cases, ulceration and necrosis. Several strategies have been proposed to ameliorate RIF but presently no effective one is available. Recent studies have reported that tumor necrosis factor-α (TNFα) plays a role in fibrogenesis. Male CDF1 mice were radiated with a single dose of 45 Gy. Chitosan/DsiRNA nanoparticles targeting TNFα were intraperitoneal injected and late radiation-induced fibrosis (RIF) was assessed using a modification of the leg contracture model. Additionally, the effect of these nanoparticles on tumor growth and tumor control probability in the absence of radiation was examined in a C3H mammary carcinoma model. We show in this work, that targeting TNFα in macrophages by intraperitoneal administration of chitosan/DsiRNA nanoparticles completely prevented radiation-induced fibrosis in CDF1 mice without revealing any cytotoxic side-effects after a long-term administration. Furthermore, such TNFα targeting was selective without any significant influence on tumor growth or irradiation-related tumor control probability. This nanoparticle-based RNAi approach represents a novel approach to prevent RIF with potential application to improve clinical radiation therapeutic strategies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. N-Terminal-Based Targeted, Inducible Protein Degradation in Escherichia coli

    PubMed Central

    Sekar, Karthik; Gentile, Andrew M.; Bostick, John W.; Tyo, Keith E. J.

    2016-01-01

    Dynamically altering protein concentration is a central activity in synthetic biology. While many tools are available to modulate protein concentration by altering protein synthesis rate, methods for decreasing protein concentration by inactivation or degradation rate are just being realized. Altering protein synthesis rates can quickly increase the concentration of a protein but not decrease, as residual protein will remain for a while. Inducible, targeted protein degradation is an attractive option and some tools have been introduced for higher organisms and bacteria. Current bacterial tools rely on C-terminal fusions, so we have developed an N-terminal fusion (Ntag) strategy to increase the possible proteins that can be targeted. We demonstrate Ntag dependent degradation of mCherry and beta-galactosidase and reconfigure the Ntag system to perform dynamic, exogenously inducible degradation of a targeted protein and complement protein depletion by traditional synthesis repression. Model driven analysis that focused on rates, rather than concentrations, was critical to understanding and engineering the system. We expect this tool and our model to enable inducible protein degradation use particularly in metabolic engineering, biological study of essential proteins, and protein circuits. PMID:26900850

  17. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  18. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  19. MiR-21 Protected Cardiomyocytes against Doxorubicin-Induced Apoptosis by Targeting BTG2

    PubMed Central

    Tong, Zhongyi; Jiang, Bimei; Wu, Yanyang; Liu, Yanjuan; Li, Yuanbin; Gao, Min; Jiang, Yu; Lv, Qinglan; Xiao, Xianzhong

    2015-01-01

    Doxorubicin (DOX) is an anthracycline drug with a wide spectrum of antineoplastic activities. However, it causes cardiac cytotoxicity, and this limits its clinical applications. MicroRNA-21 (miR-21) plays a vital role in regulating cell proliferation and apoptosis. While miR-21 is preferentially expressed in adult cardiomyocytes and involved in cardiac development and heart disease, little is known regarding its biological functions in responding to DOX-induced cardiac cytotoxicity. In this study, the effects of DOX on mouse cardiac function and the expression of miR-21 were examined in both mouse heart tissues and rat H9C2 cardiomyocytes. The results showed that the cardiac functions were more aggravated in chronic DOX injury mice compared with acute DOX-injury mice; DOX treatment significantly increased miR-21 expression in both mouse heart tissue and H9C2 cells. Over-expression of miR-21 attenuated DOX-induced apoptosis in cardiamyocytes whereas knocking down its expression increased DOX-induced apoptosis. These gain- and loss- of function experiments showed that B cell translocation gene 2 (BTG2) was a target of miR-21. The expression of BTG2 was significantly decreased both in myocardium and H9C2 cells treated with DOX. The present study has revealed that miR-21 protects mouse myocardium and H9C2 cells against DOX-induced cardiotoxicity probably by targeting BTG2. PMID:26132560

  20. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    PubMed

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  2. Drug-induced interstitial lung diseases associated with molecular-targeted anticancer agents.

    PubMed

    Gemma, Akihiko

    2009-02-01

    Little was known about drug-induced interstitial lung disease (ILD) when acute ILD-type events developed in several Japanese patients treated with gefitinib. A better understanding of drug-induced ILD is required, including more reliable data about the incidence of events associated with different treatments and identification of the risk factors for this type of ILD. Recent advances in imaging, molecular examination, and pathology have been used in postmarketing surveillance studies designed and conducted by an independent academic team to define the risk and to increase the amount of evidence about ILD related to various molecularly targeted anticancer agents. These studies may shed light on the underlying mechanisms of drug-induced ILD and appropriate evidence-based strategies that can be used to prevent or manage these events.

  3. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  4. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells

    PubMed Central

    Byrne, Susan M.; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M.

    2015-01-01

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. PMID:25414332

  5. Bortezomib-induced enzyme-targeted radiotherapy in herpesvirus-associated tumors

    PubMed Central

    Fu, De-Xue; Tanhehco, Yvette; Chen, Jianmeng; Foss, Catherine A.; Fox, James J.; Chong, Ja-Mun; Hobbs, Robert F.; Fukayama, Masashi; Sgouros, George; Kowalski, Jeanne; Pomper, Martin G.; Ambinder, Richard F.

    2009-01-01

    We investigated the possibility of using a pharmacologic agent to modulate viral gene expression in order to target radiotherapy to tumor tissue. In a murine xenograft model, we had previously shown targeting of [125I]2'-fluoro-2'-deoxy-beta-D-5-iodouracilarabinofuranoside ([125I]FIAU) to tumors engineered to express the Epstein-Barr virus (EBV)-thymidine kinase (TK). Here we extend those results to targeting of a therapeutic radiopharmaceutical [131I]FIAU to slow or stop tumor growth or to achieve tumor regression. These outcomes were achieved in xenografts with tumors that constitutively expressed the EBV-TK, as well as with naturally-infected EBV tumor cell lines. Burkitt's lymphoma and gastric carcinoma required activation of viral gene expression by pretreatment with bortezomib. Marked changes in tumor growth could also be achieved in naturally-infected Kaposi's sarcoma herpesvirus (KSHV) tumors following bortezomib activation. Bortezomib-induced enzyme-targeted radiation (BETR) therapy illustrates the possibility of pharmacologically modulating tumor gene expression to effect targeted radiotherapy. PMID:18776891

  6. Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors.

    PubMed

    Fu, De-Xue; Tanhehco, Yvette; Chen, Jianmeng; Foss, Catherine A; Fox, James J; Chong, Ja-Mun; Hobbs, Robert F; Fukayama, Masashi; Sgouros, George; Kowalski, Jeanne; Pomper, Martin G; Ambinder, Richard F

    2008-10-01

    We investigated the possibility of using a pharmacologic agent to modulate viral gene expression to target radiotherapy to tumor tissue. In a mouse xenograft model, we had previously shown targeting of [(125)I]2'-fluoro-2'-deoxy-beta-D-5-iodouracil-arabinofuranoside ([(125)I]FIAU) to tumors engineered to express the Epstein-Barr virus thymidine kinase (EBV-TK). Here we extend those results to targeting of a therapeutic radiopharmaceutical [(131)I]FIAU to slow or stop tumor growth or to achieve tumor regression. These outcomes were achieved in xenografts with tumors that constitutively expressed the EBV-TK. With naturally infected EBV tumor cell lines (Burkitt's lymphoma and gastric carcinoma), activation of viral gene expression by pretreatment with bortezomib was required. Marked changes in tumor growth could also be achieved in naturally infected Kaposi's sarcoma herpesvirus tumors after pretreatment with bortezomib. Bortezomib-induced enzyme-targeted radiation therapy illustrates the possibility of pharmacologically modulating tumor gene expression to result in targeted radiotherapy.

  7. Colorimetric detection of proteins based on target-induced activation of aptazyme.

    PubMed

    Wu, Dan; Gao, Tao; Lei, Lin; Yang, Dawei; Mao, Xiaoxia; Li, Genxi

    2016-10-26

    The detection of protein is vital to fundamental research as well as practical applications. However, most detection methods depend on antibody-based assays which are faced with many shortcomings. Herein, we propose a colorimetric method for protein assays based on target-triggered activation of aptazyme, which may offer simple, rapid and cost-effective detection of the target protein. In this method, the conformation change of aptazyme induced by target protein is designed to be associated with aptazyme activation. Consequently, in the presence of the target protein, the designed DNA linkers will be cleaved into two fragments that fail to cross-link gold nanoparticles (GNPs), thus the color of GNP solution remains red, while the color will be changed in the absence of the target. Because of the advantages of aptazyme such as economic synthesis, stable, easy modification and its ability to accomplish signal recognition and signal amplification simultaneously, the method is thermostable, simple and cost-efficient. In this work, we have taken the detection of vascular endothelial growth factor (VEGF) as an example, which can present an analytical performance with as low as 0.1 nM detection limit, spanning a detection range of 3 orders of magnitude. What is more, the principle of this proposed new method can be extended as a universal assay method not only for the detection of analytes which have an aptamer but also for those analytes that have ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Delineating bacteriostatic and bactericidal targets in mycobacteria using IPTG inducible antisense expression.

    PubMed

    Kaur, Parvinder; Agarwal, Saurabh; Datta, Santanu

    2009-06-15

    In order to identify novel high value antibacterial targets it is desirable to delineate whether the inactivation of the target enzyme will lead to bacterial death or stasis. This knowledge is particularly important in slow growing organisms, like mycobacteria, where most of the viable anti-tubercular agents are bactericidal. A bactericidal target can be identified through the conditional deletion or inactivation of the target gene at a relatively high cell number and subsequently following the time course of survival for the bacteria. A simple protocol to execute conditional inactivation of a gene is by antisense expression. We have developed a mycobacteria specific IPTG inducible vector system and monitored the effect of antisense inhibition of several known essential genes in mycobacteria by following their survival kinetics. By this method, we could differentiate between genes whose down regulation lead to bacteriostatic or bactericidal effect. Targets for standard anti-tubercular drugs like inhA for isoniazid, rpoB and C for rifampicin, and gyr A/B for flouroquinolones were shown to be bactericidal. In contrast targets like FtsZ behaved in a bacteriostatic manner. Induction of antisense expression in embB and ribosomal RNA genes, viz., rplJ and rpsL showed only a marginal growth inhibition. The specificity of the antisense inhibition was conclusively shown in the case of auxotrophic gene ilvB. The bactericidal activity following antisense expression of ilvB was completely reversed when the growth media was supplemented with the isoleucine, leucine, valine and pantothenate. Additionally, under these conditions the expression of several genes in branched chain amino acid pathway was severely suppressed indicating targeted gene inactivation.

  9. Delineating Bacteriostatic and Bactericidal Targets in Mycobacteria Using IPTG Inducible Antisense Expression

    PubMed Central

    Kaur, Parvinder; Agarwal, Saurabh; Datta, Santanu

    2009-01-01

    In order to identify novel high value antibacterial targets it is desirable to delineate whether the inactivation of the target enzyme will lead to bacterial death or stasis. This knowledge is particularly important in slow growing organisms, like mycobacteria, where most of the viable anti-tubercular agents are bactericidal. A bactericidal target can be identified through the conditional deletion or inactivation of the target gene at a relatively high cell number and subsequently following the time course of survival for the bacteria. A simple protocol to execute conditional inactivation of a gene is by antisense expression. We have developed a mycobacteria specific IPTG inducible vector system and monitored the effect of antisense inhibition of several known essential genes in mycobacteria by following their survival kinetics. By this method, we could differentiate between genes whose down regulation lead to bacteriostatic or bactericidal effect. Targets for standard anti-tubercular drugs like inhA for isoniazid, rpoB and C for rifampicin, and gyr A/B for flouroquinolones were shown to be bactericidal. In contrast targets like FtsZ behaved in a bacteriostatic manner. Induction of antisense expression in embB and ribosomal RNA genes, viz., rplJ and rpsL showed only a marginal growth inhibition. The specificity of the antisense inhibition was conclusively shown in the case of auxotrophic gene ilvB. The bactericidal activity following antisense expression of ilvB was completely reversed when the growth media was supplemented with the isoleucine, leucine, valine and pantothenate. Additionally, under these conditions the expression of several genes in branched chain amino acid pathway was severely suppressed indicating targeted gene inactivation. PMID:19526063

  10. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.

    PubMed

    Yao, Ke; Chen, Hanyong; Liu, Kangdong; Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2014-09-01

    Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1.

  11. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness.

    PubMed

    Powers, Scott K; Hudson, Matthew B; Nelson, W Bradley; Talbert, Erin E; Min, Kisuk; Szeto, Hazel H; Kavazis, Andreas N; Smuder, Ashley J

    2011-07-01

    Mechanical ventilation is a life-saving intervention used to provide adequate pulmonary ventilation in patients suffering from respiratory failure. However, prolonged mechanical ventilation is associated with significant diaphragmatic weakness resulting from both myofiber atrophy and contractile dysfunction. Although several signaling pathways contribute to diaphragm weakness during mechanical ventilation, it is established that oxidative stress is required for diaphragmatic weakness to occur. Therefore, identifying the site(s) of mechanical ventilation- induced reactive oxygen species production in the diaphragm is important. These experiments tested the hypothesis that elevated mitochondrial reactive oxygen species emission is required for mechanical ventilation-induced oxidative stress, atrophy, and contractile dysfunction in the diaphragm. Cause and effect was determined by preventing mechanical ventilation-induced mitochondrial reactive oxygen species emission in the diaphragm of rats using a novel mitochondria-targeted antioxidant (SS-31). None. Compared to mechanically ventilated animals treated with saline, animals treated with SS-31 were protected against mechanical ventilation-induced mitochondrial dysfunction, oxidative stress, and protease activation in the diaphragm. Importantly, treatment of animals with the mitochondrial antioxidant also protected the diaphragm against mechanical ventilation-induced myofiber atrophy and contractile dysfunction. These results reveal that prevention of mechanical ventilation-induced increases in diaphragmatic mitochondrial reactive oxygen species emission protects the diaphragm from mechanical ventilation-induced diaphragmatic weakness. This important new finding indicates that mitochondria are a primary source of reactive oxygen species production in the diaphragm during prolonged mechanical ventilation. These results could lead to the development of a therapeutic intervention to impede mechanical ventilation-induced

  12. A prediction model of radiation-induced necrosis for intracranial radiosurgery based on target volume.

    PubMed

    Zhao, Bo; Wen, Ning; Chetty, Indrin J; Huang, Yimei; Brown, Stephen L; Snyder, Karen C; Siddiqui, Farzan; Movsas, Benjamin; Siddiqui, M Salim

    2017-08-01

    This study aims to extend the observation that the 12 Gy-radiosurgical-volume (V12Gy) correlates with the incidence of radiation necrosis in patients with intracranial tumors treated with radiosurgery by using target volume to predict V12Gy. V12Gy based on the target volume was used to predict the radiation necrosis probability (P) directly. Also investigated was the reduction in radiation necrosis rates (ΔP) as a result of optimizing the prescription isodose lines for linac-based SRS. Twenty concentric spherical targets and 22 patients with brain tumors were retrospectively studied. For each case, a standard clinical plan and an optimized plan with prescription isodose lines based on gradient index were created. V12Gy were extracted from both plans to analyze the correlation between V12Gy and target volume. The necrosis probability P as a function of V12Gy was evaluated. To account for variation in prescription, the relation between V12Gy and prescription was also investigated. A prediction model for radiation-induced necrosis was presented based on the retrospective study. The model directly relates the typical prescribed dose and the target volume to the radionecrosis probability; V12Gy increased linearly with the target volume (R(2)  > 0.99). The linear correlation was then integrated into a logistic model to predict P directly from the target volume. The change in V12Gy as a function of prescription was modeled using a single parameter, s (=-1.15). Relatively large ΔP was observed for target volumes between 7 and 28 cm(3) with the maximum reduction (8-9%) occurring at approximately 18 cm(3) . Based on the model results, optimizing the prescription isodose line for target volumes between 7 and 28 cm(3) results in a significant reduction in necrosis probability. V12Gy based on the target volume could provide clinicians a predictor of radiation necrosis at the contouring stage thus facilitating treatment decisions. © 2017 American Association of

  13. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    PubMed

    Kurup, Naina; Yan, Dong; Kono, Karina; Jin, Yishi

    2017-06-01

    Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  14. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  15. Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma

    NASA Astrophysics Data System (ADS)

    Moosakhani, A.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z.

    2017-01-01

    It is shown that the propane molecules are strongly decomposed in the metal assisted laser induced plasma based on the nano-catalytic adsorption. A Q-Switched Nd:YAG laser is employed to irradiate the propane gas filled in the control chamber in the presence of the reactive metals such as Ni, Fe, Pd, and Cu in order to study the effect of catalysts during the decomposition. The catalytic targets simultaneously facilitate the plasma formation and the decomposition events leading to generate a wide distribution of the light and heavy hydrocarbon molecules, mainly due to the recombination processes. Fourier transform infrared spectroscopy and gas chromatography instruments support the findings by detecting the synthetic components. Furthermore, the optical emission spectroscopy of the laser induced plasma emissions realizes the real time monitoring of the reactions taking place during each laser shot. The subsequent recombination events give rise to the generation of a variety of the hydrocarbon molecules. The dissociation rate, conversion ratio, selectivity, and yield as well as the performance factor arise mainly from the catalytic effects of the metal species. Moreover, the ablation rate of the targets of interest is taken into account as a measure of the catalytic reactivity due to the abundance of the metal species ablated from the target. This leads to assess the better performance factor for Pd among four metal catalysts of interest during propane decomposition. Finally, the molecules such as ethane and ethylene are identified as the stable abundant species created during the successive molecular recombination processes.

  16. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    NASA Astrophysics Data System (ADS)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  17. Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies.

    PubMed

    Montaigne, David; Hurt, Christopher; Neviere, Remi

    2012-01-01

    Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target.

  18. Mitochondria Death/Survival Signaling Pathways in Cardiotoxicity Induced by Anthracyclines and Anticancer-Targeted Therapies

    PubMed Central

    Montaigne, David; Hurt, Christopher; Neviere, Remi

    2012-01-01

    Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target. PMID:22482055

  19. Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline.

    PubMed

    Peiffer, Ann M; Leyrer, C Marc; Greene-Schloesser, Dana M; Shing, Elaine; Kearns, William T; Hinson, William H; Tatter, Stephen B; Ip, Edward H; Rapp, Stephen R; Robbins, Mike E; Shaw, Edward G; Chan, Michael D

    2013-02-19

    In a retrospective review to assess neuroanatomical targets of radiation-induced cognitive decline, dose volume histogram (DVH) analyses of specific brain regions of interest (ROI) are correlated to neurocognitive performance in 57 primary brain tumor survivors. Neurocognitive assessment at baseline included Trail Making Tests A/B, a modified Rey-Osterreith Complex Figure, California or Hopkins Verbal Learning Test, Digit Span, and Controlled Oral Word Association. DVH analysis was performed for multiple neuroanatomical targets considered to be involved in cognition. The %v10 (percent of ROI receiving 10 Gy), %v40, and %v60 were calculated for each ROI. Factor analysis was used to estimate global cognition based on a summary of performance on individual cognitive tests. Stepwise regression was used to determine which dose volume predicted performance on global factors and individual neurocognitive tests for each ROI. Regions that predicted global cognitive outcomes at doses <60 Gy included the corpus callosum, left frontal white matter, right temporal lobe, bilateral hippocampi, subventricular zone, and cerebellum. Regions of adult neurogenesis primarily predicted cognition at %v40 except for the right hippocampus which predicted at %v10. Regions that did not predict global cognitive outcomes at any dose include total brain volume, frontal pole, anterior cingulate, right frontal white matter, and the right precentral gyrus. Modeling of radiation-induced cognitive decline using neuroanatomical target theory appears to be feasible. A prospective trial is necessary to validate these data.

  20. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  1. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Béla; Zsengellér, Zsuzsanna; Zielonka, Jacek; Tanchian, Galin; Holovac, Eileen; Kechrid, Malek; Patel, Vivek; Stillman, Isaac E.; Parikh, Samir M.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2011-01-01

    Cisplatin is a widely used anti-neoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show that mitochondrial dysfunction is not only a feature of cisplatin nephrotoxicity, but that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin’s anti-neoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Since similar compounds appear to be safe in humans, mitochondrially-targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity. PMID:22120494

  2. Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging.

    PubMed

    Park, Gaeun; Baek, Sohee; Kim, Jong-Eun; Lim, Tae-gyu; Lee, Charles C; Yang, Hee; Kang, Young-Gyu; Park, Jun Seong; Augustin, Martin; Mrosek, Michael; Lee, Chang Yong; Dong, Zigang; Huber, Robert; Lee, Ki Won

    2015-12-01

    While skin aging is a naturally occurring process by senescence, exposure to ultraviolet (UV) radiation accelerates wrinkle formation and sagging of skin. UV induces skin aging by degrading collagen via activating matrix metalloproteinases (MMPs). In this study, we show that coumestrol, a metabolite of the soybean isoflavone daidzein, has a preventive effect on skin photoaging in three-dimensional human skin equivalent model. Coumestrol inhibited UVB-induced MMP-1 expression and activity. Whole human kinase profiling assay identified FLT3 kinase as a novel target protein of coumestrol in UVB-induced signaling pathway in skin. Coumestrol suppresses FLT3 kinase activity, and subsequently, Ras/MEK/ERK and Akt/p70 ribosomal S6 kinase pathway. This suppresses AP-1 activity and in turn, diminishes MMP-1 gene transcription. Using X-ray crystallography, the binding of coumestrol to FLT3 was defined and implied ATP-competitive inhibition. Residues Lys644 and Phe830 showed local changes to accommodate coumestrol in the ATP-binding pocket. 4-APIA, a pharmacological inhibitor of FLT3, inhibited MMP-1 expression and induced signal transduction changes similar to coumestrol. Taken together, coumestrol inhibits UVB-induced MMP-1 expression by suppressing FLT3 kinase activity. These findings suggest that coumestrol is a novel dietary compound with potential application in preventing and improving UVB-associated skin aging.

  3. Coordinated induction of Nrf2 target genes protects against iron nitrilotriacetate (FeNTA)-induced nephrotoxicity

    SciTech Connect

    Tanaka, Yuji; Aleksunes, Lauren M. |; Goedken, Michael J.; Chen, Chuan; Reisman, Scott A.; Manautou, Jose E.; Klaassen, Curtis D.

    2008-09-15

    The iron chelate, ferric nitrilotriacetate (FeNTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage. Chronic exposure of FeNTA leads to a high incidence of renal adenocarcinomas in rodents. NF-E2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles, and regulates the basal and inducible expression of numerous detoxifying and antioxidant genes. To determine the roles of Nrf2 in regulating renal gene expression and protecting against oxidative stress-induced kidney damage, wild-type and Nrf2-null mice were administered FeNTA. Renal Nrf2 protein translocated to the nucleus at 6h after FeNTA treatment. FeNTA increased mRNA levels of Nrf2 target genes, including NQO1, GCLC, GSTpi1/2, Mrp1, 2, and 4 in kidneys from wild-type mice, but not Nrf2-null mice. Protein expression of NQO1, a prototypical Nrf2 target gene, was increased in wild-type mice, with no change in Nrf2-null mice. FeNTA produced more nephrotoxicity in Nrf2-null mice than wild-type mice as indicated by higher serum urea nitrogen and creatinine levels, as more urinary NAG, stronger 4-hydroxynonenal protein adduct staining, and more extensive proximal tubule damage. Furthermore, pretreatment with CDDO-Im, a potent small molecule Nrf2 activator, protected mice against FeNTA-induced renal toxicity. Collectively, these results suggest that activation of Nrf2 protects mouse kidneys from FeNTA-induced oxidative stress damage by coordinately up-regulating the expression of cytoprotective genes.

  4. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    SciTech Connect

    Read, David J.; Li Yong; Chao, Moses V.; Cavanagh, John B.; Glynn, Paul

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  5. Caffeic acid directly targets ERK1/2 to attenuate solar UV-induced skin carcinogenesis

    PubMed Central

    Yang, Ge; Fu, Yang; Malakhova, Margarita; Kurinov, Igor; Zhu, Feng; Yao, Ke; Li, Haitao; Chen, Hanyong; Li, Wei; Lim, Do Young; Sheng, Yuqiao; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2014-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in coffee and reportedly has anticancer activities. However, the underlying molecular mechanisms and targeted proteins involved in the suppression of carcinogenesis by caffeic acid are not fully understood. In this study, we report that caffeic acid significantly inhibits colony formation of human skin cancer cells and EGF-induced neoplastic transformation of HaCaT cells dose-dependently. Caffeic acid topically applied to dorsal mouse skin significantly suppressed tumor incidence and volume in a solar UV-induced skin carcinogenesis mouse model. A substantial reduction of phosphorylation in mitogen-activated protein kinase signaling was observed in mice treated with caffeic acid either before or after solar UV exposure. Caffeic acid directly interacted with ERK1/2 and inhibited ERK1/2 activities in vitro. Importantly, we resolved the co-crystal structure of ERK2 complexed with caffeic acid. Caffeic acid interacted directly with ERK2 at amino acid residues Q105, D106 and M108. Moreover, A431 cells expressing knockdown of ERK2 lost sensitivity to caffeic acid in a skin cancer xenograft mouse model. Taken together, our results suggest that caffeic acid exerts chemopreventive activity against solar UV-induced skin carcinogenesis by targeting ERK1 and 2. PMID:25104643

  6. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis.

    PubMed

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors.

  7. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis

    PubMed Central

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors. PMID:27648301

  8. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    PubMed Central

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  9. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis.

    PubMed

    Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P

    2017-04-15

    Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP.IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for

  10. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles

    PubMed Central

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C.; Langer, Robert

    2016-01-01

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  11. Mitochondria are targets for geranylgeranylacetone-induced cardioprotection against ischemia-reperfusion in the rat heart.

    PubMed

    Shinohara, Tetsuji; Takahashi, Naohiko; Kohno, Hiroaki; Yamanaka, Kunitoshi; Ooie, Tatsuhiko; Wakisaka, Osamu; Murozono, Yukichi; Taniguchi, Yayoi; Torigoe, Yasuko; Hara, Masahide; Shimada, Tatsuo; Saikawa, Tetsunori; Yoshimatsu, Hironobu

    2007-09-01

    It has been shown that orally administered geranylgeranylacetone (GGA), an anti-ulcer drug, induces expression of heat shock protein 72 (HSP72) and provides protection against ischemia-reperfusion in rat hearts. The underlying protective mechanisms, however, remain unknown. Mitochondria have been shown to be a selective target for heat stress-induced cardioprotection. Therefore, we hypothesized that preservation of mitochondrial function, owing to an opening of a putative channel in the inner mitochondrial membrane, the mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, could be involved in GGA- or heat stress-induced cardioprotection against ischemia-reperfusion. Rats were treated with oral GGA or vehicle. Twenty-four hours later, each heart was isolated and perfused with a Langendorff apparatus. GGA-treated hearts showed better functional recovery, and less creatine kinase was released during a 30-min reperfusion period, after 20 min of no-flow ischemia. Concomitant perfusion with 5-hydroxydecanoate (5-HD, 100 microM) or glibenclamide (10 microM) abolished the GGA-induced cardioprotective effect. GGA also showed preserved mitochondrial respiratory function, isolated at the end of the reperfusion period, which was abolished with 5-HD treatment. GGA prevented destruction of the mitochondrial structure by ischemia-reperfusion, as shown by electron microscopy. In cultured cardiomyocytes, GGA induced HSP72 expression and resulted in less damage to cells, including less apoptosis in response to hypoxia-reoxygenation. Treatment with 5-HD abolished the GGA-induced cardioprotective effects but did not affect HSP72 expression. Our results indicate that preserved mitochondrial respiratory function, owing to GGA-induced HSP72 expression, may, at least in part, have a role in cardioprotection against ischemia-reperfusion. These processes may involve opening of the mitoK(ATP) channel.

  12. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity.

    PubMed

    Kruzel, Emilia K; Giles, Steven S; Hull, Christina M

    2012-06-01

    The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.

  13. Analysis of Cryptococcus neoformans Sexual Development Reveals Rewiring of the Pheromone-Response Network by a Change in Transcription Factor Identity

    PubMed Central

    Kruzel, Emilia K.; Giles, Steven S.; Hull, Christina M.

    2012-01-01

    The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution. PMID:22466042

  14. Homology Requirements for Targeting Heterologous Sequences during P-Induced Gap Repair in Drosophila Melanogaster

    PubMed Central

    Dray, T.; Gloor, G. B.

    1997-01-01

    The effect of homology on gene targeting was studied in the context of P-element-induced double-strand breaks at the white locus of Drosophila melanogaster. Double-strand breaks were made by excision of P-w(hd), a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to the white locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing 493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reduced homology, also were examined and characterized. PMID:9335605

  15. Interactome of Radiation-Induced microRNA-Predicted Target Genes

    PubMed Central

    Lhakhang, Tenzin W.; Chaudhry, M. Ahmad

    2012-01-01

    The microRNAs (miRNAs) function as global negative regulators of gene expression and have been associated with a multitude of biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR). To further understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton, and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive modeling of the cellular stress response to IR exposure. PMID:22924026

  16. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.

    PubMed

    Mao, Yinfei; Liu, Jinquan; He, Dinggen; He, Xiaoxiao; Wang, Kemin; Shi, Hui; Wen, Li

    2015-10-01

    Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.

  17. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  18. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  19. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells

    PubMed Central

    Church, George M.

    2015-01-01

    CRISPR / Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion / replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells. PMID:26949444

  20. Isomer production in intermediate-energy deuteron-induced reactions on a gold target

    NASA Astrophysics Data System (ADS)

    Balabekyan, A. R.; Karapetyan, G. S.; Demekhina, N. A.; Drnoyan, D. R.; Zhemenik, V. I.; Adam, J.; Zavorka, L.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. M.; Guimarães, V.; Deppman, A.

    2016-05-01

    Residual nuclei formed at ground and isomeric states from the interaction of 4.4 GeV deuteron with a gold target have been measured and investigated by the induced-activity method. Eight isomeric and ground-state pairs of target residues in the mass range of 44

  1. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells

    PubMed Central

    López-Quesada, C.; Fontaine, A.-S.; Farré, A.; Joseph, M.; Selva, J.; Egea, G.; Ludevid, M. D.; Martín-Badosa, E.; Montes-Usategui, M.

    2014-01-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads. PMID:25071944

  2. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells.

    PubMed

    López-Quesada, C; Fontaine, A-S; Farré, A; Joseph, M; Selva, J; Egea, G; Ludevid, M D; Martín-Badosa, E; Montes-Usategui, M

    2014-07-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.

  3. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  4. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  5. Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum.

    PubMed

    Gajate, C; Matos-da-Silva, M; Dakir, el-H; Fonteriz, R I; Alvarez, J; Mollinedo, F

    2012-05-24

    Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase- and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH(2)-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 α-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER.

  6. Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy

    PubMed Central

    Park, Sungwoo; Choi, Jayoung; Biering, Scott B.; Dominici, Erin; Williams, Lelia E.; Hwang, Seungmin

    2016-01-01

    ABSTRACT LC3 has been used as a marker to locate autophagosomes. However, it is also well established that LC3 can localize on various membranous structures other than autophagosomes. We recently demonstrated that the LC3 conjugation system (ATG7, ATG3, and ATG12–ATG5-ATG16L1) is required to target LC3 and IFNG (interferon, gamma)-inducible GTPases to the parasitophorus vacuole membrane (PVM) of a protist parasite Toxoplasma gondii and consequently for IFNG to control T. gondii infection. Here we show that not only LC3, but also its homologs (GABARAP, GABARAPL1, and GABARAPL2) localize on the PVM of T. gondii in a conjugation-dependent manner. Knockout/knockdown of all LC3 homologs led to a significant reduction in targeting of the IFNG-inducible GTPases to the PVM of T. gondii and the IFNG-mediated control of T. gondii infection. Furthermore, when we relocated the ATG12–ATG5-ATG16L1 complex, which specifies the conjugation site of LC3 homologs, to alternative target membranes, the IFNG-inducible GTPases were targeted to the new target membranes rather than the PVM of T. gondii. These data suggest that the localization of LC3 homologs onto a membrane by the LC3 conjugation system is necessary and sufficient for targeting of the IFNG-inducible GTPases to the membrane, implying Targeting by AutophaGy proteins (TAG). Our data further suggest that the conjugation of ubiquitin-like LC3 homologs to the phospholipids of membranes may change the destiny of the membranes beyond degradation through lysosomal fusion, as the conjugation of ubiquitin to proteins changes the destiny of the proteins beyond proteasomal degradation. PMID:27172324

  7. [Effects of small RNA interference targeting mammalian target of rapamycin on paraquat-induced pulmonary fibrosis in rats].

    PubMed

    Yang, Wenbin; Zhao, Xiaoqing; Liang, Ran; Chen, Da

    2017-09-01

    To investigate the effects of small RNA interference targeting mammalian target of rapamycin (mTOR) expression on paraquat-induced pulmonary fibrosis in rats. Human embryonic kidney cells HEK-293 were cultured in vitro. The mTOR small interfering RNA (mTOR-siRNA) expression plasmid transfection lentivirus was constructed, and non-specific sequence plasmid with no homology to mTOR gene was set as the control. Seventy-two healthy male Sprague-Dawley (SD) rats were randomly divided into normal saline (NS) control group, paraquat model group, mTOR unrelated sequence group, and mTOR-siRNA group, with 18 rats in each group. Paraquat poisoning animal model was reproduced by intraperitoneally injecting 20% paraquat solution 15 mg/kg, while the NS control group was intraperitoneally injected the same volumes of NS. Rats in the mTOR unrelated sequence group and mTOR-siRNA group were injected 1×10(9) TU/mL lentivirus solution 50 μL into the airway, respectively, while in the NS control group and paraquat model group were injected the same volumes of NS. At 7, 14 and 28 days after treatment, 6 rats in each group were sacrificed respectively for lung tissue, the pathological changes and fibrosis of lung tissues were observed under light microscope. The levels of hydroxyproline (HYP) in lung tissues were determined by alkaline hydrolysis. The mRNA and protein expressions of mTOR in lung tissues were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot. Under light microscope, there was no obvious pathological changes in the lung tissues in the NS control group, while in the paraquat model group and mTOR unrelated sequence group, lung tissue in rats were damaged, there were a lot of inflammatory cell infiltration, a large number of matrix collagen and fibrous tissues hyperplasia, and gradually increased with time, and it was consistent with paraquat-induced lung tissue fibrosis process. The pathological and fibrotic changes in lung tissue of m

  8. Experimental approach to measure thick target neutron yields induced by heavy ions for shielding

    NASA Astrophysics Data System (ADS)

    Trinh, N. D.; Fadil, M.; Lewitowicz, M.; Brouillard, C.; Clerc, T.; Damoy, S.; Desmezières, V.; Dessay, E.; Dupuis, M.; Grinyer, G. F.; Grinyer, J.; Jacquot, B.; Ledoux, X.; Madeline, A.; Menard, N.; Michel, M.; Morel, V.; Porée, F.; Rannou, B.; Savalle, A.

    2017-09-01

    Double differential (angular and energy) neutron distributions were measured using an activation foil technique. Reactions were induced by impinging two low-energy heavy-ion beams accelerated with the GANIL CSS1 cyclotron: (36S (12 MeV/u) and 208Pb (6.25 MeV/u)) onto thick natCu targets. Results have been compared to Monte-Carlo calculations from two codes (PHITS and FLUKA) for the purpose of benchmarking radiation protection and shielding requirements. This comparison suggests a disagreement between calculations and experiment, particularly for high-energy neutrons.

  9. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device.

    PubMed

    Liu, Meng; Hui, Christy Y; Zhang, Qiang; Gu, Jimmy; Kannan, Balamurali; Jahanshahi-Anbuhi, Sana; Filipe, Carlos D M; Brennan, John D; Li, Yingfu

    2016-02-18

    We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device. This encapsulation not only stabilizes the entrapped reagents at room temperature but also enables colorimetric bioassays with minimal steps.

  10. Fast and sensitive detection of indels induced by precise gene targeting

    PubMed Central

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla; Hansen, Lars; Thomsen, Allan Lind; Niola, Francesco; Vester-Christensen, Malene B.; Frödin, Morten; Clausen, Henrik; Wandall, Hans H.; Bennett, Eric P.

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis. PMID:25753669

  11. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  13. M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens.

    PubMed

    Chionh, Yok-Teng; Wee, Janet L K; Every, Alison L; Ng, Garrett Z; Sutton, Philip

    2009-07-01

    As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant.

  14. Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells.

    PubMed

    Gao, Ran; Singh, Rumani; Kaul, Zeenia; Kaul, Sunil C; Wadhwa, Renu

    2015-06-01

    The heat shock 70 family protein, mortalin, has pancytoplasmic distribution pattern in normal and perinuclear in cancer human cells. Cancer cells when induced to senesce by either chemicals or stress showed shift in mortalin staining pattern from perinuclear to pancytoplasmic type. Using such shift in mortalin staining as a reporter, we screened human shRNA library and identified nine senescence-inducing siRNA candidates. An independent Comparative Genomic Hybridization analysis of 35 breast cancer cell lines revealed that five (NBS1, BRCA1, TIN2, MRE11A, and KPNA2) of the nine genes located on chromosome regions identified as the gain of locus in more than 80% cell lines. By gene-specific PCR, these five genes were found to be frequently amplified in cancer cell lines. Bioinformatics revealed that the identified targets were connected to MRN (MRE11-RAD50-NBS1) complex, the DNA damage-sensing complex. We demonstrate that the identified shRNAs triggered DNA damage response and induced the expression of tumor suppressor protein p16(INK4A) causing growth arrest of cancer cells. Furthermore, cells showed decreased migration, mediated by decrease in matrix metalloproteases. Taken together, we demonstrate that the MRN complex is a potential target of cancer cell proliferation and migration, and staining pattern of mortalin could serve as an assay to identify senescence-inducing/anticancer reagents. © The Author 2014. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2

    PubMed Central

    Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-01-01

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation. PMID:27028995

  16. M-Cell Targeting of Whole Killed Bacteria Induces Protective Immunity against Gastrointestinal Pathogens▿

    PubMed Central

    Chionh, Yok-Teng; Wee, Janet L. K.; Every, Alison L.; Ng, Garrett Z.; Sutton, Philip

    2009-01-01

    As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant. PMID:19380476

  17. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice.

    PubMed

    Badillo-Godinez, O; Gutierrez-Xicotencatl, L; Plett-Torres, T; Pedroza-Saavedra, A; Gonzalez-Jaimes, A; Chihu-Amparan, L; Maldonado-Gama, M; Espino-Solis, G; Bonifaz, L C; Esquivel-Guadarrama, F

    2015-08-20

    Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cooperative effect of roscovitine and irradiation targets angiogenesis and induces vascular destabilization in human breast carcinoma.

    PubMed

    Maggiorella, L; Aubel, C; Haton, C; Milliat, F; Connault, E; Opolon, P; Deutsch, E; Bourhis, J

    2009-02-01

    Angiogenesis is considered as an essential process for tumour development and invasion. Previously, we demonstrated that cyclin-dependent kinase inhibition by roscovitine induces a radiosensitization and a synergistic antitumoral effect in human carcinoma but its effect on the microenvironment and tumour angiogenesis remains unknown. Here, we investigated the effect of the combination roscovitine and ionizing radiation (IR) on normal cells in vitro and on tumour angiogenesis in MDA-MB 231 tumour xenografts. We observed that the combination roscovitine and IR induced a marked reduction of angiogenic hot spot and microvascular density in comparison with IR or roscovitine treatments alone. The Ang-2/Tie-2 ratio was increased in presence of reduced vascular endothelial growth factor level suggesting vessel destabilization. In vitro, no radiosensitization effect of roscovitine was found in endothelial, fibroblast, and keratinocyte cells. IR potentiated the antiproliferative effect of roscovitine without inducing apoptosis in endothelial cells. Roscovitine decreased IR-stimulated vascular endothelial growth factor secretion of MDA-MB 231 and endothelial cells. A reduction in the endothelial cells invasion and the capillary-like tube formation in Matrigel were observed following the combination roscovitine and IR. This combined treatment targets angiogenesis resulting in microvessel destabilization without inducing normal cell toxicity.

  19. miR-22 contributes to endosulfan-induced endothelial dysfunction by targeting SRF in HUVECs.

    PubMed

    Xu, Dan; Guo, Yubing; Liu, Tong; Li, Shuai; Sun, Yeqing

    2017-03-05

    microRNAs (miRNAs) function in the posttranscriptional gene regulation, providing new insights into the epigenetic mechanism of toxicity induced by environmental pollutants. miR-22 was discovered to regulate cell proliferation and apoptosis in response to environmental toxicants. We have reported that endosulfan can cause endothelial toxicity in human umbilical vein endothelial cells (HUVECs). In the present study, we investigated the involvement of miR-22 in endosulfan-induced endothelial dysfunction. The expression level of miR-22 was increased in a dose-dependent manner by endosulfan exposure. Overexpression of miR-22 induced apoptosis and inflammation in HUVECs. Anti-miR-22 transfection significantly attenuated the increase in the percentage of apoptotic cells, caspase-3 activity and Interleukin (IL)-6, 8 mRNA levels in endosulfan-exposed HUVECs. Luciferase reporter assay confirmed that SRF and STAG2 were novel direct targets of miR-22. Endosulfan decreased mRNA expression of both SRF and STAG2, but only suppressed protein expression of SRF. Knockdown of SRF via siRNAs resulted in apoptosis and inflammation whereas STAG2 siRNAs only caused abnormal mitosis in HUVECs. Taken together, these findings will shed light on the role and mechanism of miR-22 in endosulfan-induced endothelial dysfunction via SRF in HUVECs.

  20. AQP9: a novel target for bone loss induced by microgravity.

    PubMed

    Bu, Guoyun; Shuang, Feng; Wu, Ye; Ren, Dongfeng; Hou, Shuxun

    2012-03-23

    The aim of current study was to elucidate whether aquaporin-9 (AQP9) expression was involved in the progression of bone loss induced by microgravity. We used the hind-limb suspension (HLS) mice model to simulate microgravity and induce bone loss. It was found that HLS exposure decreased femur bone mineral density (BMD), and enhanced femur AQP9 mRNA and protein levels. Then, the relationship between AQP9 mRNA expression and BMD was studied and it was showed that femur AQP9 mRNA level was negatively related to femur BMD in mice exposed to HLS. We sought to exam the function of AQP9 in the femur using the AQP9-null mice. It was found that AQP9 knockout attenuated bone loss and inhibited osteoclastogenesis under the condition of HLS exposure, but had no similar effect on bone under normal physiological conditions. In addition, it was found that exposure to simulated hypergravity or exercise training, main countermeasures against microgravity, reduced AQP9 mRNA and protein levels in femur of mice. Moreover, it was found that both aging and estrogen deprivation, another two risk factors of bone loss, had no significant effect on femur AQP9 expression. In conclusion, AQP9 plays an important role in the development of microgravity-induced bone loss, and may be a potential target for the prevention or management of microgravity-induced bone loss.

  1. Identification of potential targets for differentiation in human leukemia cells induced by diallyl disulfide.

    PubMed

    Ling, Hui; He, Jie; Tan, Hui; Yi, Lan; Liu, Fang; Ji, Xiaoxia; Wu, Youhua; Hu, Haobin; Zeng, Xi; Ai, Xiaohong; Jiang, Hao; Su, Qi

    2017-02-01

    Diallyl disulfide (DADS) is a primary component of garlic, which has chemopreventive potential. We previously found that moderate doses (15-120 µM) of DADS induced apoptosis and G2/M phase cell cycle arrest. In this study, we observed the effect of low doses (8 µM) of DADS on human leukemia HL-60 cells. We found that DADS could inhibit proliferation, migration and invasion in HL-60 cells, and arrested cells at G0/G1 stage. Then, cell differentiation was displayed by morphologic observation, NBT reduction activity and CD11b evaluation of cytometric flow. It showed that DADS induced differentiation, reduced the ability of NBT and increased CD11b expression. Likewise, DADS inhibited xenograft tumor growth and induced differentiation in vivo. In order to make sure how DADS induced differentiation, we compared the protein expression profile of DADS-treated cells with that of untreated control. Using high resolution mass spectrometry, we identified 18 differentially expressed proteins after treatment with DADS, including four upregulated and 14 downregulated proteins. RT-PCR and western blot assay showed that DJ-1, cofilin 1, RhoGDP dissociation inhibitor 2 (RhoGDI2), Calreticulin (CTR) and PCNA were decreased by DADS. These data suggest that the effects of DADS on leukemia may be due to multiple targets for intervention.

  2. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth

    PubMed Central

    Lee, Kang-In; Whang, Jake; Choi, Han-Gyu; Son, Yeo-Jin; Jeon, Haet Sal; Back, Yong Woo; Park, Hye-Soo; Paik, Seungwha; Park, Jeong-Kyu; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication. PMID:27901051

  3. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The burden of traumatic brain injury (TBI) is expressed in the

  4. Target Gas Effects on Collision-Induced Dissociation of Peptides in a Tandem Four-Sector Mass Spectrometer.

    DTIC Science & Technology

    1991-05-01

    regulator to the metering valve at the collision cell was thoroughly evacuated and then purged three times before each experiment by introducing small amounts...Thesis; Aug 89 - May 91 4. TIfLE AND S.BTiTLE S. FUNDING NUMBERS Target Gas Effects on Collision-Induced Dissociation of Peptides in a Tandem Four...intensities of ihe undecapeptide physalaemin during collision-induced dissociation (CID) has been determined to be target mass dependent. The data

  5. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna.

    PubMed

    Naitou, Akiko; Kato, Yasuhiko; Nakanishi, Takashi; Matsuura, Tomoaki; Watanabe, Hajime

    2015-02-13

    Transcription activator-like effector nucleases (TALENs) are artificial nucleases harboring a customizable DNA-binding domain and a FokI nuclease domain. The high specificity of the DNA-binding domain and the ease of design have enabled researchers to use TALENs for targeted mutagenesis in various organisms. Here, we report the development of TALEN-dependent targeted gene disruption in the crustacean Daphnia magna, the emerging model for ecological and toxicological genomics. First, a reporter transgene DsRed2 (EF1α-1::DsRed2) was targeted. Using the Golden Gate method with a GoldyTALEN scaffold, we constructed homodimeric and heterodimeric TALENs containing wild-type and ELD/KKR FokI domains. mRNAs that coded for either the customized homodimeric or heterodimeric TALENs were injected into one-cell-stage embryos. The high mortality of embryos injected with homodimeric TALEN mRNAs prevented us from detecting mutations. In contrast, embryos injected with heterodimeric TALEN mRNAs survived and 78%-87% of the adults lost DsRed2 fluorescence in a large portion of cells throughout the body. In addition, these adults produced non-fluorescent progenies, all of which carried mutations at the dsRed2 locus. We also tested heterodimeric TALENs targeted for the endogenous eyeless gene and found that biallelic mutations could be transmitted through germ line cells at a rate of up to 22%. Both somatic and heritable mutagenesis efficiencies of TALENs were higher than those of the CRISPR/Cas9 system that we recently developed. These results suggest that the TALEN system may efficiently induce heritable mutations into the target genes, which will further contribute to the progress of functional genomics in D. magna.

  6. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  7. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles.

    PubMed

    Cheng, Yin-Jia; Luo, Guo-Feng; Zhu, Jing-Yi; Xu, Xiao-Ding; Zeng, Xuan; Cheng, Dong-Bing; Li, You-Mei; Wu, Yan; Zhang, Xian-Zheng; Zhuo, Ren-Xi; He, Feng

    2015-05-06

    Functional mesoporous silica particles have attracted growing research interest for controlled drug delivery in targeted cancer therapy. For the purpose of efficient targeting tumor cells and reducing the adverse effect of antitumor drug doxorubicin (DOX), biocompatible and enzyme-responsive mesoporous silica nanoparticles (MSNs) with tumor specificity were desired. To construct these functional MSNs, the classic rotaxane structure formed between alkoxysilane tether and α-cyclodextrin (α-CD) was employed to anchor onto the orifices of MSNs as gatekeeper in this work. After subsequent modification by multifunctional peptide (azido-GFLGR7RGDS with tumor-targeting, membrane-penetrating, and cathepsin B-responsive functions) to stabilize the gatekeeper, the resulting functional MSNs showed a strong ability to load and seal DOX in their nanopores. When incubating these DOX-loaded MSNs with tumor and normal cells, the nanoparticles could efficiently employ their surface-encoded RGDS and continuous seven arginine (R7) sequences to target tumor cells, penetrate the cell membrane, and enter tumor cells. Because cathepsin B overexpressed in late endosomes and lysosomes of tumor cells could specifically hydrolyze GFLG sequences of the nanovalves, the DOX-loaded MSNs showed an "off-on" drug release behavior that ∼80% loaded DOX could be released within 24 h and thus showed a high rate of apoptosis. Furthermore, in vitro cellular experiments indicated that DOX-loaded MSNs (DOX@MSN-GFLGR7RGDS/α-CD) had high growth inhibition toward αvβ3-positive HeLa cancerous cells. The research might offer a practical way for designing the tumor-targeted and enzyme-induced drug delivery system for cancer therapy.

  8. Targeting viral dsRNA for antiviral prophylaxis

    PubMed Central

    Fei, Zhou; Liu, Yang; Yan, Zhen; Fan, Daiming; Alexander, Alice; Yang, Jing-Hua

    2011-01-01

    Double-stranded (ds)RNA in the infected cells is a trait shared by most if not all viruses. While humans have developed variable immune responses, viruses have also developed countermeasures to defeat dsRNA-induced antiviral strategies. Thus, we proposed a broad antiviral strategy to antagonize the countermeasures of viruses and bypass the dsRNA-induced signals that are readily defeated by viruses. By rewiring the dsRNA-binding proteins in the dsRNA complex and reconnecting them to apoptosis signaling, we created several dsRNA-dependent caspase recruiters, termed dsCAREs, to bypass dsRNA-induced antiviral signals that would otherwise be targeted by viruses. Adenovirus and vesicular stomatitis virus, representing viruses of the dsDNA and negative-stranded RNA viral groups, were used to infect HEK293 cells. The dsCARE chimera was added in medium to evaluate its antiviral activity. The truncated dsCAREs were used as controls. We demonstrate that dsCARE suppresses viral infection starting at 0.1 μg/ml and reaches the peak at 2 μg/ml. The EC50 was ∼0.2 μg/ml. However, it had an undetectable effect on uninfected cells. Further data show that both dsRNA binding and apoptosis activation of dsCARE are essential for its antiviral activity. We conclude that dsRNA is a practical virus-associated molecular pattern that can be targeted for broad and rapid antiviral prophylaxis.—Fei, Z., Liu, Y., Yan, Z., Fan, D., Alexander, A., Yang, J.-H. Targeting viral dsRNA for antiviral prophylaxis. PMID:19880628

  9. Targeted delivery of geranylgeranylacetone to mitochondria by triphenylphosphonium modified nanoparticles: a promising strategy to prevent aminoglycoside-induced hearing loss.

    PubMed

    Wang, Zhenjie; Kuang, Xiao; Shi, Jia; Guo, Weiling; Liu, Hongzhuo

    2017-08-22

    Prevention of hair cell death is an important target for the prevention of hearing loss. Here, we report the engineering of biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) decorated with triphenylphosphonium (TPP) cations as a robust mitochondrial delivery platform, with the aim of preserving mitochondrial integrity and shutting off the initiation of cell death. Geranylgeranylacetone (GGA), a 70 kDa heat shock protein (HSP70) inducer, was used as a therapeutic molecule to attenuate gentamicin (Gen) induced hearing loss. The diameter of the mitochondria-targeting NPs is 145 nm and the encapsulation efficiency is 80.6%. Lysosomal escape and mitochondrial targeting studies indicated the promising therapeutic potential of TPP modified NPs. Finally, the zebrafish lateral line model was applied to verify the efficacy of the GGA loaded targeting NPs for preventing gentamicin-induced death hair cell. The results showed that the prepared targeted NPs provided significant protection: the survival of hair cells increased from 36% to 69% under acute exposure and from 20% to 62% under chronic exposure. In addition, targeted NPs exhibited significantly improved efficiency in alleviating gentamicin-induced hair cell damage compared with free drugs and untargeted NPs, supporting the hypothesis of mitochondrial targeting delivery in the treatment of aminoglycoside-induced hearing loss. These TPP modified NPs demonstrated promise for the treatment of mitochondrial dysfunction.

  10. Targeting peroxiredoxin I potentiates 1,25-dihydroxyvitamin D3-induced cell differentiation in leukemia cells.

    PubMed

    Wei, Wei; Liu, Chuanxu; Qin, Dongjun; Song, Lili; Xia, Li; Lei, Hu; Yu, Yun; Wang, Weiwei; Pu, Jianxin; Sun, Handong; Wu, Yingli; Xu, Hanzhang; Hao, Siguo

    2016-03-01

    Although 1,25‑dihydroxyvitamin D3 (VD3) is regarded as a promising inducing agent for leukemia cell differentiation, it is not as effective an agent as all‑trans‑retinoic acid, and its usefulness is also limited by the adverse effects of hypercalcemia. The aim of the present study was to determine whether combining VD3 with adenanthin, a peroxiresoxin I (Prx I)‑targeting natural compound, improves the efficacy of VD3. Cell viability was assessed using a trypan blue exclusion assay and flow cytometry was used to evaluate the expression of cell surface markers, CD11b/CD14, and the level of reactive oxygen species (ROS). Wright's staining was used to examine morphological changes and RNA‑interference was used to knockdown Prx I and p65 gene expression. Protein expression was determined by western blot analysis. The results demonstrated that adenanthin markedly enhanced VD3‑induced cell differentiation of leukemia NB4 cells, as evidenced by the increased percentage of CD11b‑ and CD14‑positive cells, the mature morphology of the monocytes and the increased phagocytic ability. Consistent with these results, knockdown of Prx I, but not nuclear factor‑κB (p65), enhanced VD3‑induced cell differentiation. The combinatorial effects of adenanthin and VD3 were shown to be associated with the ROS‑CCAAT‑enhancer‑binding protein (C/EBP)β axis, since N‑acetylcysteine, a ROS scavenger, was able to abrogate the differentiation‑enhancing effects of adenanthin, and the knockdown of C/EBPβ also inhibited the combinatorial effects of adenanthin and VD3. In addition, co‑treatment with adenanthin and VD3 was able to induce differentiation in other non‑acute promyelocytic leukemia cells and primary leukemia cells. In conclusion, the results of the present study revealed a novel role for Prx I in VD3‑induced cell differentiation, and suggested that targeting Prx I may represent a novel strategy to enhance VD3‑induced leukemia cell differentiation.

  11. The effect of local anatomy on the electric field induced by TMS: evaluation at 14 different target sites.

    PubMed

    Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F

    2014-10-01

    Many human cortical regions are targeted with transcranial magnetic stimulation (TMS). The stimulus intensity used for a certain region is generally based on the motor threshold stimulation intensity determined over the motor cortex (M1). However, it is well known that differences exist in coil-target distance and target site anatomy between cortical regions. These differences may well make the stimulation intensity derived from M1 sub-optimal for other regions. Our goal was to determine in what way the induced electric fields differ between cortical target regions. We used finite element method modeling to calculate the induced electric field for multiple target sites in a realistic head model. The effects on the electric field due to coil-target distance and target site anatomy have been quantified. The results show that a correction based on the distance alone does not correctly adjust the induced electric field for regions other than M1. In addition, a correction based solely on the TMS-induced electric field (primary field) does not suffice. A precise adjustment should include coil-target distance, the secondary field caused by charge accumulation at conductivity discontinuities and the direction of the field relative to the local cerebrospinal fluid-grey matter boundary.

  12. Induced Clustered Nanoconfinement of Superparamagnetic Iron Oxide in Biodegradable Nanoparticles Enhances Transverse Relaxivity for Targeted Theranostics

    PubMed Central

    Ragheb, Ragy R. T.; Kim, Dongin; Bandyopadhyay, Arunima; Chahboune, Halima; Bulutoglu, Beyza; Ezaldein, Harib; Criscione, Jason M.; Fahmy, Tarek M.

    2013-01-01

    Purpose Combined therapeutic and diagnostic agents, “theranostics” are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features. Methods Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix. Results We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2, (294 mM−1 s−1) compared with nanoparticles without fatty-acid ligands (160 mM−1 s−1) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM−1 s−1). Conclusion Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system. PMID:23401099

  13. Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor.

    PubMed

    Khamaisi, Mogher; Toukan, Hala; Axelrod, Jonathan H; Rosenberger, Christian; Skarzinski, Galia; Shina, Ahuva; Meidan, Rina; Koesters, Robert; Rosen, Seymour; Walkinshaw, Gail; Mimura, Imari; Nangaku, Masaomi; Heyman, Samuel N

    2015-04-01

    Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.

  14. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  15. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    SciTech Connect

    Heaton, R.K. |

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  16. miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb.

    PubMed

    Yang, Kun; Wu, Minhao; Li, Meiyu; Li, Dandan; Peng, Anping; Nie, Xinxin; Sun, Mingxia; Wang, Jinli; Wu, Yongjian; Deng, Qiuchan; Zhu, Min; Chen, Kang; Yuan, Jin; Huang, Xi

    2014-07-01

    miR-155 (microRNA-155) is an important noncoding RNA in regulating host inflammatory responses. However, its regulatory role in ocular infection remains unclear. Our study first explored the function of miR-155 in Pseudomonas aeruginosa-induced keratitis, one of the most common sight-threatening ocular diseases. We found that miR-155 expression was enhanced in human and mouse corneas after P. aeruginosa infection and was mainly expressed in macrophages but not neutrophils. In vivo studies demonstrated that miR-155 knockout mice displayed more resistance to P. aeruginosa keratitis, with a higher inducible nitric oxide synthase level and a lower bacterial burden. More importantly, in vitro data indicated that miR-155 suppressed the macrophage-mediated bacterial phagocytosis and intracellular killing of P. aeruginosa by targeting Rheb (Ras homolog enriched in brain). To the best of our knowledge, this is the first study to explore the role of miR-155 in bacterial keratitis, which may provide a promising target for clinical treatment of P. aeruginosa keratitis and other infectious diseases.

  17. Target-induced structure-switching DNA hairpins for sensitive electrochemical monitoring of mercury (II).

    PubMed

    Zhuang, Junyang; Fu, Libing; Tang, Dianping; Xu, Mingdi; Chen, Guonan; Yang, Huanghao

    2013-01-15

    A simple, sensitive and reusable electrochemical sensor was designed for determination of mercury (II) (Hg(2+)) by coupling target-induced conformational switch of DNA hairpins with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry. The hairpin probe consisted of a stem of 6 base pairs enclosing a 14 nucleotide (nt) loop and an additional 12 nt sticky end at the 3' end. Each hairpin was labeled with ferrocene (Fc) redox tag in the middle of the loop, which was immobilized on the electrode via self-assembly of the terminal thiol moiety at the 5' end. In the presence of target analyte, Hg(2+)-mediated base pairs induced the conformational change from the sticky end to open the hairpins, resulting in the ferrocene tags close to the electrode for the increasing redox current. The strong coordination reaction of T-Hg(2+)-T resulted in a good repeatability and intermediate precision down to 10%. The dynamic concentration range spanned from 5.0nM to 1.0μM Hg(2+) with a detection limit of 2.5nM at the 3s(blank) level. The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. Inspiringly, the developed sensor could be reused by introduction of iodide (I(-)).

  18. A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco.

    PubMed

    Dalakouras, Athanasios; Moser, Mirko; Krczal, Gabi; Wassenegger, Michael

    2010-07-01

    In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.

  19. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    PubMed Central

    Sadri, Navid; Zhang, Paul J.

    2013-01-01

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression. PMID:24216979

  20. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  1. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  2. Study of proton induced reactions on niobium targets up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Baba, M.; Corniani, E.; Shubin, Yu. N.

    2008-12-01

    Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As Niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the integral excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 86,88,89Zr, 86,87mg,88Y and 85Sr in the energy range 30-70 MeV, some measured for the first time at this energy range. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE and with the literature data. The calculations have been carried out without any parameter adjustment. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.

  3. Experimental model of transthoracic, vascular-targeted, photodynamically induced myocardial infarction

    PubMed Central

    Pokreisz, Peter; Schnitzer, Jan E.

    2013-01-01

    We describe a novel model of myocardial infarction (MI) in rats induced by percutaneous transthoracic low-energy laser-targeted photodynamic irradiation. The procedure does not require thoracotomy and represents a minimally invasive alternative to existing surgical models. Target cardiac area to be photodynamically irradiated was triangulated from the thoracic X-ray scans. The acute phase of MI was histopathologically characterized by the presence of extensive vascular occlusion, hemorrhage, loss of transversal striations, neutrophilic infiltration, and necrotic changes of cardiomyocytes. Consequently, damaged myocardium was replaced with fibrovascular and granulation tissue. The fibrotic scar in the infarcted area was detected by computer tomography imaging. Cardiac troponin I (cTnI), a specific marker of myocardial injury, was significantly elevated at 6 h (41 ± 6 ng/ml, n = 4, P < 0.05 vs. baseline) and returned to baseline after 72 h. Triphenyltetrazolium chloride staining revealed transmural anterolateral infarcts targeting 25 ± 3% of the left ventricle at day 1 with a decrease to 20 ± 3% at day 40 (n = 6 for each group, P < 0.01 vs. day 1). Electrocardiography (ECG) showed significant ST-segment elevation in the acute phase with subsequent development of a pathological Q wave and premature ventricular contractions in the chronic phase of MI. Vectorcardiogram analysis of spatiotemporal electrical signal transduction revealed changes in inscription direction, QRS loop morphology, and redistribution in quadrant areas. The photodynamically induced MI in n = 51 rats was associated with 12% total mortality. Histological findings, ECG abnormalities, and elevated cTnI levels confirmed the photosensitizer-dependent induction of MI after laser irradiation. This novel rodent model of MI might provide a platform to evaluate new diagnostic or therapeutic interventions. PMID:24213611

  4. Target Cell APOBEC3C Can Induce Limited G-to-A Mutation in HIV-1

    PubMed Central

    Bourara, Khaoula; Liegler, Teri J; Grant, Robert M

    2007-01-01

    The evolutionary success of primate lentiviruses reflects their high capacity to mutate and adapt to new host species, immune responses within individual hosts, and, in recent years, antiviral drugs. APOBEC3G (A3G) and APOBEC3F (A3F) are host cell DNA-editing enzymes that induce extensive HIV-1 mutation that severely attenuates viral replication. The HIV-1 virion infectivity factor (Vif), expressed in vivo, counteracts the antiviral activity of A3G and A3F by inducing their degradation. Other APOBECs may contribute more to viral diversity by inducing less extensive mutations allowing viral replication to persist. Here we show that in APOBEC3C (A3C)-expressing cells infected with the patient-derived HIV-1 molecular clones 210WW, 210WM, 210MW, and 210MM, and the lab-adapted molecular clone LAI, viral G-to-A mutations were detected in the presence of Vif expression. Mutations occurred primarily in the GA context and were relatively infrequent, thereby allowing for spreading infection. The mutations were absent in cells lacking A3C but were induced after transient expression of A3C in the infected target cell. Inhibiting endogenous A3C by RNA interference in Magi cells prevented the viral mutations. Thus, A3C is necessary and sufficient for G-to-A mutations in some HIV-1 strains. A3C-induced mutations occur at levels that allow replication to persist and may therefore contribute to viral diversity. Developing drugs that inhibit A3C may be a novel strategy for delaying viral escape from immune or antiretroviral inhibition. PMID:17967058

  5. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Kishore, B K; Carlson, N G; Ecelbarger, C M; Kohan, D E; Müller, C E; Nelson, R D; Peti-Peterdi, J; Zhang, Y

    2015-06-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  6. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  7. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  8. Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    PubMed Central

    Ahmad, Aftab; Hendry-Hofer, Tara B.; Loader, Joan E.; Claycomb, William C.; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L.; Chandler, Joshua D.; Day, Brian J.; Veress, Livia A.; White, Carl W.

    2015-01-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure. PMID:25188881

  9. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

    PubMed Central

    Pubill, David; Garcia-Ratés, Sara; Camarasa, Jordi; Escubedo, Elena

    2011-01-01

    Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of α7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, α7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to α7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on α7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on α7 and heteromeric nAChR populations have been found.

  10. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity.

    PubMed

    Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W

    2015-04-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.

  11. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  12. Targeting cholesterol crystal-induced inflammation for the secondary prevention of cardiovascular disease.

    PubMed

    Nidorf, Stefan M; Eikelboom, John W; Thompson, Peter L

    2014-01-01

    Cholesterol crystals are present in nascent and advanced atherosclerotic plaque. Under some conditions, they may enlarge and cause direct plaque trauma or trigger an inflammatory cascade that promotes the growth and instability of atherosclerotic plaque. Therapies that reduce the risk of cholesterol crystal formation or prevent the associated inflammatory response have the potential to improve the clinical outcome of patients with cardiovascular disease. Statins have pleiotropic effects that can reduce the size of the free cholesterol pool contained within atherosclerotic plaques and prevent the formation of cholesterol crystals. Colchicine prevents crystal-induced inflammation by virtue of its ability to inhibit macrophage and neutrophil function. Both statins and colchicine have been demonstrated to reduce the risk of cardiovascular events in patients with stable coronary disease. The efficacy of statins and colchicine for cardiovascular prevention supports the hypothesis that crystal-induced inflammation plays an integral role in the progression and instability of coronary disease. Inhibition of cholesterol crystal-induced inflammation offers a promising new target for the secondary prevention of cardiovascular disease.

  13. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  14. Characteristics of Movement-Induced Dose Reduction in Target Volume: A Comparison Between Photon and Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Shin, Dongho; Kwak, Jungwon; Park, Soah; Lim, Young Kyung; Kim, Dongwook; Park, Sung Yong Lee, Se Byeong; Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Kwan Ho

    2009-10-01

    We compared the main characteristics of movement-induced dose reduction during photon and proton beam treatment, based on an analysis of dose-volume histograms. To simulate target movement, a target contour was delineated in a scanned phantom and displaced by 3 to 20 mm. Although the dose reductions to the target in the 2 treatment systems were similar for transverse (perpendicular to beam direction) target motion, they were completely different for longitudinal (parallel to beam direction) target motion. While both modalities showed a relationship between the degree of target shift and the reduction in dose coverage, dose reduction showed a strong directional dependence in proton beam treatment. Clinical simulation of target movement for a prostate cancer patient showed that, although coverage and conformity indices for a 6-mm lateral movement of the prostate were reduced by 9% and 16%, respectively, for proton beam treatment, they were reduced by only 1% and 7%, respectively, for photon treatment. This difference was greater for a 15-mm target movement in the lateral direction, which lowered the coverage and conformity indices by 34% and 54%, respectively, for proton beam treatment, but changed little during photon treatment. In addition, we found that the equivalent uniform dose (EUD) and homogeneity index show similar characteristics during target movement. These results suggest that movement-induced dose reduction differs significantly between photon and proton beam treatment. Attention should be paid to the target margin in proton beam treatment due to the distinct characteristics of heavy ion beams.

  15. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans.

    PubMed

    Yang, Dong-Hoon; Jung, Kwang-Woo; Bang, Soohyun; Lee, Jang-Won; Song, Min-Hee; Floyd-Averette, Anna; Festa, Richard A; Ianiri, Giuseppe; Idnurm, Alexander; Thiele, Dennis J; Heitman, Joseph; Bahn, Yong-Sun

    2017-01-01

    Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.

  16. Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex

    PubMed Central

    Kätzel, Dennis; Miesenböck, Gero

    2014-01-01

    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%–45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits. PMID:24586113

  17. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress.

    PubMed

    Wei, Pei-Chi; Lo, Wen-Ting; Su, Mei-I; Shew, Jin-Yuh; Lee, Wen-Hwa

    2012-01-01

    Short interfering RNAs (siRNAs) target specific mRNAs for their degradation mediated by RNA-induced silencing complex (RISC). Persistent activation of siRNA-RISC frequently leads to non-targeting toxicity. However, how cells mediate this stress remains elusive. In this communication, we found that the presence of non-targeting siRNA selectively induced the expression of an endoplasmic reticulum (ER)-resident protein, non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), but not other ER-stress proteins including GRP78, Calnexin and XBP1. Cells suffering from constant non-targeting siRNA stress grew slower and prolonged G1 phase, while NPGPx-depleted cells accumulated mature non-targeting siRNA and underwent apoptosis. Upon the stress, NPGPx covalently bound to exoribonuclease XRN2, facilitating XRN2 to remove accumulated non-targeting siRNA. These results suggest that NPGPx serves as a novel responder to non-targeting siRNA-induced stress in facilitating XRN2 to release the non-targeting siRNA accumulation.

  18. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Charngkaew, Komgrid; Boonkrai, Chatikorn; Somparn, Poorichaya; Uawithya, Panapat; Chomanee, Nusara; Payne, D Michael; Fenton, Robert A; Pisitkun, Trairak

    2017-05-01

    Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.

  19. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells

    PubMed Central

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer. PMID:26473737

  20. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells.

    PubMed

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer.

  1. Ets-1 targeted by microrna-221 regulates angiotensin II-induced renal fibroblast activation and fibrosis.

    PubMed

    Di, Jia; Jiang, Lei; Zhou, Yang; Cao, Hongdi; Fang, Li; Wen, Ping; Li, Xiurong; Dai, Chunsun; Yang, Junwei

    2014-01-01

    Fibroblast activation is one of the most important mechanisms for Angiotensin II (Ang II) in promoting renal fibrosis. Transcription factor Ets-1 is recognized to play a key role in kidney diseases. However, the role and mechanisms of Ets-1 in Ang-II induced fibroblast activation and kidney fibrosis are not fully understood. Mice were treated with Ang II via osmotic mini-pumps or Ang II expression plasmid (pAng II). Cultured normal rat kidney interstitial fibroblast (NRK-49F) cells were incubated with Ang II. Role of Ets-1 in renal fibrosis and fibroblast activation were assessed by Western blot, Immunohistochemical staining'MTT, Boyden chamber and Immunofluorescence staining. Effects of miR-221 on Ets-1 and fibroblast activation were investigated by MTT, Boyden chamber, Western blot and Q-PCR. We found that Ets-1 was up-regulated in fibrotic kidneys. Similarly, Ang II could activate NRK-49F cells as demonstrated by up-regulated α-SMA and fibronectin(FN) expression and enhanced cell proliferation and migration. Ang II also induced Ets-1 expression in NRK-49F cells in a dose and time dependent manner. Knock-down of Ets-1 by RNA interference attenuated Ang II-induced activation of NRK-49F cells. Ets-1 was previously reported as a target of microRNA-221 (miR-221). In Ang II-induced fibrotic kidney, miR-221 was down-regulated. Similar results were observed in Ang II treated NRK-49F cells. Ectopic expression of miR-221 mimic attenuated the up-regulation of Ets-1 by Ang II in NRK-49F cells, which further prevented the activation of NRK-49F cells. However, the inhibitor of miR-221 aggravated Ang II induced Ets-1 expression and NRK-49F cells activation. Our study suggests that miR-221/Ets-1 axis takes an important role in mediating AngII induced interstitial fibroblast activation and renal fibrosis. © 2014 S. Karger AG, Basel.

  2. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To

  3. Stress-induced cellular adaptive strategies: ancient evolutionarily conserved programs as new anticancer therapeutic targets.

    PubMed

    Cipponi, Arcadi; Thomas, David M

    2014-06-01

    Despite the remarkable achievements of novel targeted anti-cancer drugs, most therapies only produce remission for a limited time, resistance to treatment, and relapse, often being the ultimate outcome. Drug resistance is due to highly efficient adaptive strategies utilized by cancer cells. Exogenous and endogenous stress stimuli are known to induce first-line responses, capable of re-establishing cellular homeostasis and determining cell fate decisions. Cancer cells may also mount second-line adaptive strategies, such as the mutator response. Hypermutable subpopulations of cells may expand under severe selective stress, thereby accelerating the emergence of adapted clones. As with first-line protective responses, these strategies appear highly conserved, and are found in yeasts and bacteria. We hypothesize that evolutionarily conserved programs rheostatically regulate mutability in fluctuating environments, and contribute to drug resistance in cancer cells. Elucidating the conserved genetic and molecular mechanisms may present novel opportunities to increase the effectiveness of cancer therapies. © 2014 WILEY Periodicals, Inc.

  4. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy.

    PubMed

    Themeli, Maria; Kloss, Christopher C; Ciriello, Giovanni; Fedorov, Victor D; Perna, Fabiana; Gonen, Mithat; Sadelain, Michel

    2013-10-01

    Progress in adoptive T-cell therapy for cancer and infectious diseases is hampered by the lack of readily available, antigen-specific, human T lymphocytes. Pluripotent stem cells could provide an unlimited source of T lymphocytes, but the therapeutic potential of human pluripotent stem cell-derived lymphoid cells generated to date remains uncertain. Here we combine induced pluripotent stem cell (iPSC) and chimeric antigen receptor (CAR) technologies to generate human T cells targeted to CD19, an antigen expressed by malignant B cells, in tissue culture. These iPSC-derived, CAR-expressing T cells display a phenotype resembling that of innate γδ T cells. Similar to CAR-transduced, peripheral blood γδ T cells, the iPSC-derived T cells potently inhibit tumor growth in a xenograft model. This approach of generating therapeutic human T cells 'in the dish' may be useful for cancer immunotherapy and other medical applications.

  5. Application of inducible and targeted gene strategies to produce transgenic fish: a review.

    PubMed

    Rocha, A; Ruiz, S; Estepa, A; Coll, J M

    2004-01-01

    Compared to mammals, fishes offer easier transgenic technology because each female produces hundreds of eggs, the manipulated embryos do not need to be incubated inside the mother, and the probability of their harboring human-related pathogens is lower. In the last 15 years, traditional methods using injections of fertilized fish eggs and strong viral promoters have resulted in the generation of many transgenic fish species; however, they showed random genome integration with some mosaicism and episomic expression. The use of inducible gene systems that control temporal and tissue expression and of gene-targeting methodologies based on homologous recombination is desirable to control the expression, efficiency of insertion, and locus of incorporation of transgenes into fish genomes. A variety of systems developed for mammals are now available to be tested in fishes. The use of such systems would require further development of stem cell or nuclear transplant technologies in fish. Most of that work remains to be explored.

  6. Hypoxia-inducible factor-1α: a promising therapeutic target for autoimmune diseases.

    PubMed

    Guan, Shi-Yang; Leng, Rui-Xue; Tao, Jin-Hui; Li, Xiang-Pei; Ye, Dong-Qing; Olsen, Nancy; Zheng, Song Guo; Pan, Hai-Feng

    2017-07-01

    Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases. Areas covered: Considering that the types of autoimmune diseases are complicated and various, this review aims to cover the typical kinds of autoimmune diseases, discuss the molecular mechanisms, biological functions and expression of HIF-1α in these diseases, and further explore its therapeutic potential. Expert opinion: Inflammation and hypoxia are interdependent. HIF-1α as a key regulator of hypoxia, exerts a crucial role in the balance between Th17 and Treg, and involves in the inflammation and pathologic activities of autoimmune diseases. Although there are many challenges remaining to be overcome, targeting HIF-1α could be a promising strategy for autoimmune diseases therapies.

  7. Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis

    PubMed Central

    Hua, Susan; Dias, Thilani H.

    2016-01-01

    Hypoxia is an important micro-environmental characteristic of rheumatoid arthritis (RA). Hypoxia-inducible factors (HIF) are key transcriptional factors that are highly expressed in RA synovium to regulate the adaptive responses to this hypoxic milieu. Accumulating evidence supports hypoxia and HIFs in regulating a number of important pathophysiological characteristics of RA, including synovial inflammation, angiogenesis, and cartilage destruction. Experimental and clinical data have confirmed the upregulation of both HIF-1α and HIF-2α in RA. This review will focus on the differential expression of HIFs within the synovial joint and its functional behavior in different cell types to regulate RA progression. Potential development of new therapeutic strategies targeting HIF-regulated pathways at sites of disease in RA will also be addressed. PMID:27445820

  8. Targeting thioredoxin reductase by plumbagin contributes to inducing apoptosis of HL-60 cells.

    PubMed

    Zhang, Junmin; Peng, Shoujiao; Li, Xinming; Liu, Ruijuan; Han, Xiao; Fang, Jianguo

    2017-04-01

    Plumbagin (PLB), a natural naphthoquinone from the traditional folk medicines Plumbago zeylanica, Dionaea muscipula, or Nepenthes gracilis, has been documented possessing a wide variety of pharmacological activities. Although PLB demonstrates anticancer activity in multiple types of malignant cells, the cellular targets of PLB have not been well defined and remained only partially understood. We reported here that PLB selectively inhibits TrxR and elicits reactive oxygen species in human promyelocytic leukemia HL-60 cells, which leads to elevation of GSSG/GSH ratio and decrease of cellular thiol pool. As a consequence, PLB disturbs the cellular redox homeostasis, induces oxidative stress-mediated apoptosis and eventually selectively kills HL-60 cells. Inhibition of TrxR by PLB thus discloses an unprecedented mechanism underlying the anticancer efficacy of PLB, and sheds light in considering the usage of PLB as a promising cancer therapeutic agent.

  9. Tafenoquine, an antiplasmodial 8-aminoquinoline, targets leishmania respiratory complex III and induces apoptosis.

    PubMed

    Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco

    2010-12-01

    Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca(2+) levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process.

  10. Tafenoquine, an Antiplasmodial 8-Aminoquinoline, Targets Leishmania Respiratory Complex III and Induces Apoptosis ▿

    PubMed Central

    Carvalho, Luis; Luque-Ortega, Juan Román; Manzano, José Ignacio; Castanys, Santiago; Rivas, Luis; Gamarro, Francisco

    2010-01-01

    Tafenoquine (TFQ), an 8-aminoquinoline analogue of primaquine, which is currently under clinical trial (phase IIb/III) for the treatment and prevention of malaria, may represent an alternative treatment for leishmaniasis. In this work, we have studied the mechanism of action of TFQ against Leishmania parasites. TFQ impaired the overall bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels without affecting plasma membrane permeability. TFQ induced mitochondrial dysfunction through the inhibition of cytochrome c reductase (respiratory complex III) with a decrease in the oxygen consumption rate and depolarization of mitochondrial membrane potential. This was accompanied by ROS production, elevation of intracellular Ca2+ levels and concomitant nuclear DNA fragmentation. We conclude that TFQ targets Leishmania mitochondria, leading to an apoptosis-like death process. PMID:20837758

  11. Smart bombing a single targeted cell with femtogram order reagents using laser-induced shockwave technique

    NASA Astrophysics Data System (ADS)

    Okano, Kazunori; Takizawa, Noriko; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    Injection and delivery of small amount reagent in aqueous solution for cell chip was performed utilizing regeneratively amplified femtosecond laser system. In our new trial, the reagent integrated on a solid strip are released and delivered to targeted cells with the femutosecond laser-induced impulsive-force. The reagent was fixed in poly(vinyl alcohol) or polystyrene film on a glass-substrate strip. When a single pulsed femtosecond laser was focused in the solution, the film near the focal point was fragmented and the reagent was dispersed in 45-μm φ area at 50 μm from the surface of the reagent strip. As examples cardiomyocyte beating cells of P19CL6 were bombed with epinephrine and acetylcholine, and as a result the beating ratio of the cells were quickly stimulated and suppressed, respectively. The results demonstrate that the present method is a promising key nano/micro technology for diagnosis and drug discovery.

  12. Periodontitis in rats induces systemic oxidative stress that is controlled by bone-targeted antiresorptives.

    PubMed

    Oktay, Sehkar; Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Velsko, Irina M; Holliday, L Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease-induced oxidative stress during oral infection. Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bis-enoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. To the best of the authors' knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives.

  13. Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity.

    PubMed

    Xi, Lei; Zhu, Shu-Guang; Hobbs, Daniel C; Kukreja, Rakesh C

    2011-11-01

    We recently demonstrated protective effect of chronic oral nitrate supplementation against cardiomyopathy caused by doxorubicin (DOX), a highly effective anticancer drug. The present study was designed to identify novel protein targets related to nitrate-induced cardioprotection. Adult male CF-1 mice received cardioprotective regimen of nitrate (1 g NaNO(3) per litre of drinking water) for 7 days before DOX injection (15 mg/kg, i.p.) and continued for 5 days after DOX treatment. Subsequently the heart samples were collected for proteomic analysis with two-dimensional differential in-gel electrophoresis with 3 CyDye labelling. Using 1.5 cut-off ratio, we identified 36 proteins that were up-regulated by DOX in which 32 were completely reversed by nitrate supplementation (89%). Among 19 proteins down-regulated by DOX, 9 were fully normalized by nitrate (47%). The protein spots were further identified with Matrix Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF)/TOF tandem mass spectrometry. Three mitochondrial antioxidant enzymes were altered by DOX, i.e. up-regulation of manganese superoxide dismutase and peroxiredoxin 3 (Prx3), and down-regulation of Prx5, which were reversed by nitrate. These results were further confirmed by Western blots. Nitrate supplementation also significantly improved animal survival rate from 80% in DOX alone group to 93% in Nitrate + DOX group 5 days after the DOX treatment. In conclusion, the proteomic analysis has identified novel protein targets underlying nitrate-induced cardioprotection. Up-regulation of Prx5 by nitrate may explain the observed enhancement of cardiac antioxidant defence by nitrate supplementation.

  14. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy.

    PubMed

    Benítez-Temiño, B; de la Cruz, R R; Pastor, A M

    2003-01-01

    The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.

  15. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489

  16. A target-controlled infusion regimen for reducing remifentanil-induced coughs

    PubMed Central

    Kim, Jong-Yeop; Chae, Yun Jeong; Kim, Jin-Soo; Park, Yoon-Jeong

    2012-01-01

    Background This study evaluates the effectiveness of the target-controlled infusion (TCI) of remifentanil through stepwise increases in the effect-site concentration (Ceff) in preventing coughs. Methods In a preliminary study, we randomly selected 140 patients to receive remifentanil through two-step increases in Ceff (1.0 ng/ml to 4.0 ng/ml: Group R1-4; 2.0 ng/ml to 4.0 ng/ml: Group R2-4). Based on the results of the preliminary study, we employed another sample of 140 patients and implemented a three-step increase in TCI (1.0 ng/ml to 2.0 ng/ml to 4.0 ng/ml: Group R1-2-4). We then compared this treatment with direct targeting based on 4.0 ng/ml TCI (Group R4). We recorded the episodes of coughs, rating them as mild (1-2), moderate (3-4), or severe (5 or more). Results In Group R1-4, one patient (1.5%) coughed during the first step, and five (7.3%) coughed during the second step. In Group R2-4, nine (13.2%) coughed during the first step, but none coughed during the next step. Only one patient had a mild cough during the three-step increase in TCI, that is, patients in Group R1-2-4 were significantly less likely to cough than those in Group R4 (P < 0.001). Conclusions Stepwise increases in the TCI of remifentanil reduced the incidence of remifentanil-induced coughing, and the three-step increase in TCI nearly eliminated remifentanil-induced coughing. PMID:22870362

  17. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-01-01

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4

  18. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses.

    PubMed

    Hildebrand, Laura; Seemann, Petra; Kurtz, Andreas; Hecht, Jochen; Contzen, Jörg; Gossen, Manfred; Stachelscheid, Harald

    2015-12-01

    Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.

  19. Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy.

    PubMed

    Liu, Yanlei; Yang, Meng; Zhang, Jingpu; Zhi, Xiao; Li, Chao; Zhang, Chunlei; Pan, Fei; Wang, Kan; Yang, Yuming; Martinez de la Fuentea, Jesus; Cui, Daxiang

    2016-02-23

    How to improve effective accumulation and intratumoral distribution of plasmonic gold nanoparticles has become a great challenge for photothermal therapy of tumors. Herein, we reported a nanoplatform with photothermal therapeutic effects by fabricating Au nanorods@SiO2@CXCR4 nanoparticles and loading the prepared nanoparticles into the human induced pluripotent stem cells(AuNRs-iPS). In virtue of the prominent optical properties of Au nanorods@SiO2@CXCR4 and remarkable tumor target migration ability of iPS cells, the Au nanorods delivery mediated by iPS cells via the nanoplatform AuNRs-iPS was found to have a prolonged retention time and spatially even distribution in MGC803 tumor-bearing nude mice observed by photoacoustic tomography and two-photon luminescence. On the basis of these improvements, the nanoplatform displayed a robust migration capacity to target the tumor site and to improve photothermal therapeutic efficacy on inhibiting the growth of tumors in xenograft mice under a low laser power density. The combination of gold nanorods with human iPS cells as a theranostic platform paves an alternative road for cancer theranostics and holds great promise for clinical translation in the near future.

  20. Profiling of antioxidative enzyme expression induced by various food components using targeted proteome analysis.

    PubMed

    Bartenbacher, Sven; Östreicher, Christiane; Pischetsrieder, Monika

    2017-09-01

    A method was developed for targeted proteome analysis of the expression profile of a set of antioxidative enzymes in rat macrophages and applied to screen the antioxidative potential of several food components/foods. Expression profiles of heme oxygenase 1, peroxiredoxin 1, thioredoxin reductase 1, glutathione reductase, glutathione-S transferase P1, and superoxide dismutase 1 were analyzed by nanoLC-MS/MS in selected scheduled reaction monitoring (sSRM) mode monitoring two to three peptides per protein and three transitions per peptide. Relative quantification was performed by metabolic labeling. The validated method was used to profile the activity of capsaicin, carnosol, diallyl trisulfide, maslinic acid, quercetin, sulforaphane, cinnamaldehyde and coffee extract to modulate the expression levels of antioxidative enzymes. Carnosol and sulforaphane most effectively induced protein expression, leading to upregulation of at least five out of the six antioxidative enzymes by a maximum factor of 22.80 ± 6.71 (heme oxygenase 1 by carnosol). Heme oxygenase 1 was most susceptible to nutritive modulation, whereas glutathione reductase expression rates were hardly affected. Targeted mass proteome analysis allows comprehensive evaluation of antioxidative effects by food ingredients. Simultaneous expression analysis of a set of proteins provided valuable insights how various enzymes were differently affected by food components. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  2. In situ measurements of impact-induced pressure waves in sandstone targets

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Schäfer, Frank; Nau, Siegfried; Kuder, Jürgen; Poelchau, Michael H.; Thoma, Klaus; Kenkmann, Thomas

    2014-10-01

    In the present study we introduce an innovative method for the measurement of impact-induced pressure waves within geological materials. Impact experiments on dry and water-saturated sandstone targets were conducted at a velocity of 4600 m/s using 12 mm steel projectiles to investigate amplitudes, decay behavior, and speed of the waves propagating through the target material. For this purpose a special kind of piezoresistive sensor capable of recording transient stress pulses within solid brittle materials was developed and calibrated using a Split-Hopkinson pressure bar. Experimental impact parameters (projectile size and speed) were kept constant and yielded reproducible signal curves in terms of rise time and peak amplitudes. Pressure amplitudes decreased by 3 orders of magnitude within the first 250 mm (i.e., 42 projectile radii). The attenuation for water-saturated sandstone is higher compared to dry sandstone which is attributed to dissipation effects caused by relative motion between bulk material and interstitial water. The proportion of the impact energy radiated as seismic energy (seismic efficiency) is in the order of 10-3. The present study shows the feasibility of real-time measurements of waves caused by hypervelocity impacts on geological materials. Experiments of this kind lead to a better understanding of the processes in the crater subsurface during a hypervelocity impact.

  3. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    PubMed

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  4. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A.

    PubMed

    Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-Yu; Jiang, Xiaohong; Hou, Dongxia

    2014-11-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

  5. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  6. Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.

    PubMed

    Sajesh, Babu V; McManus, Kirk J

    2015-09-29

    Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.

  7. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  8. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle.

    PubMed Central

    Kolattukudy, P. E.; Quach, T.; Bergese, S.; Breckenridge, S.; Hensley, J.; Altschuld, R.; Gordillo, G.; Klenotic, S.; Orosz, C.; Parker-Thornburg, J.

    1998-01-01

    To explore the possible role of monocyte chemotactic protein (MCP-1) in inflammatory diseases of the heart, we expressed the murine MCP-1(JE) gene under the control of the alpha-cardiac myosin heavy chain promoter to attempt to target MCP-1 expression to the adult heart muscle. The five lines of transgenic mice thus produced showed targeted expression of MCP-1 transcripts and protein in the adult heart muscle and pulmonary vein but not in skeletal muscle. MCP-1 level in the transgenic hearts increased up to 30 to 45 days of age, and leukocyte infiltration into interstitium between cardiomyocytes increased up to 60 to 75 days. The infiltrate was mainly macrophages but not T cells. The presence of MCP-1 in the transgenic hearts did not induce cytokine production indicative of leukocyte activation. Echocardiographic analysis of 1-year-old mice that express MCP-1 in the myocardium and of age-matched controls revealed cardiac hypertrophy and dilation, increases in left ventricular (LV) mass, and systolic and diastolic left ventricular internal diameters. A significant decline in M-mode shortening fraction showed depressed contractile function. Transgenic hearts were 65% heavier, and histological analysis showed moderate myocarditis, edema, and some fibrosis. Thus, MCP-1 expression in the heart muscle may provide a model to investigate myocarditis and cardiomyopathy. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9422528

  9. Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves.

    PubMed

    Narváez-Vásquez, Javier; Tu, Chao-Jung; Park, Sang-Youl; Walling, Linda L

    2008-01-01

    The constitutive and wound-inducible leucine aminopeptidases (LAP-N and LAP-A, respectively) of tomato encode 60-kDa proteins with 5-kDa presequences that resemble chloroplast-targeting peptides. Cell fractionation studies and immunoblot analyses of chloroplast and total proteins have suggested a dual location of the mature LAP-A proteins in the cytosol and the plastids. In this study, the subcellular localization of tomato LAPs was further investigated using in vitro chloroplast-targeting assays and immunocytochemical techniques at the light and TEM levels. In vitro-translated LAP-A1 and LAP-N preproteins were readily transported into pea chloroplasts and processed into mature proteins of 55 kDa indicating the presence of a functional chloroplast-targeting signal in the LAP-A1 and LAP-N protein precursors. In addition, a LAP polyclonal and a LAP-A-specific antisera were used to immunolocalize LAP proteins in leaves from healthy, wounded and methyl jasmonate (MeJA)-treated plants. Low levels of LAPs and/or LAP-like proteins were detected in leaves from unwounded plants. The LAP polyclonal antiserum, which detected LAP-A, LAP-N and LAP-like proteins, and the LAP-A specific antibodies, which detected only LAP-A, showed that LAP levels increased in leaf sections after wounding and MeJA treatments. LAP-A proteins were primarily detected within the chloroplasts of spongy and palisade mesophyll cells. The localization of LAP-A was distinct from the location of early wound-response proteins that are important in the biosynthesis of jasmonic acid or systemin and more similar to the late wound-response proteins with primary roles in defense. The importance of these findings relative to the potential roles of LAP-A in defense is discussed.

  10. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin.

    PubMed

    Kegelman, Timothy P; Wu, Bainan; Das, Swadesh K; Talukdar, Sarmistha; Beckta, Jason M; Hu, Bin; Emdad, Luni; Valerie, Kristoffer; Sarkar, Devanand; Furnari, Frank B; Cavenee, Webster K; Wei, Jun; Purves, Angela; De, Surya K; Pellecchia, Maurizio; Fisher, Paul B

    2017-01-10

    Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.

  11. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release

    PubMed Central

    Neasta, Jérémie; Valmalle, Charlène; Coyne, Anne‐Claire; Carnazzi, Eric; Subra, Gilles; Galleyrand, Jean‐Claude; Gagne, Didier; M'Kadmi, Céline; Bernad, Nicole; Bergé, Gilbert; Cantel, Sonia; Marin, Philippe; Marie, Jacky; Banères, Jean‐Louis; Kemel, Marie‐Lou; Daugé, Valérie; Puget, Karine

    2016-01-01

    Background and Purpose Using an in‐house bioinformatics programme, we identified and synthesized a novel nonapeptide, H‐Pro‐Pro‐Thr‐Thr‐Thr‐Lys‐Phe‐Ala‐Ala‐OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. Experimental Approach The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra‐striatal injection of the peptide was investigated. A photoaffinity UV cross‐linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. Key Results The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine‐like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. Conclusion and Implications The synthetic nonapeptide acein interacted with high affinity with brain membrane‐bound ACE. This interaction occurs at a different site from the active site involved in the well‐known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected. PMID:27027724

  12. Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis.

    PubMed

    Wang, Hanghui; Song, Yixin; Hao, Dingjun; Bai, Min; Jin, Lifang; Gu, Jiying; Su, Yijin; Liu, Long; Jia, Chao; Du, Lianfang

    2014-07-01

    The specific and efficient delivery of small interfering RNA (siRNA) into cancer cells in vivo remains a major obstacle. In this study, we investigated whether ultrasound-targeted microbubble destruction (UTMD) combined with dual targeting of HSP72 and HSC70 in prostate cancer cell lines improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis. VCaP cells were transfected with siRNA oligonucleotides. Cell viability assays were used to evaluate the safety of UTMD. The expression of HSP70, HSP90, caspase-8, caspase-3, PARP-1 and cleaved caspase-3 were determined by quantitative PCR and western blotting. Apoptosis and transfection efficiency were detected by flow cytometry. We found that HSP72, HSC70 and HSP90 expression was absent or weak in normal prostate epithelial cells (RWPE-1), and became uniformly and strongly expressed in prostate cancer cells (VCaP). VCaP and RWPE-1 cells expressed very low levels of caspase-8, caspase-3, PARP-1 and cleaved caspase-3. UTMD combined with dual targeting of HSP72 and HSC70 siRNA impoved the efficiency of transfection, cell uptake of siRNA, downregulated HSP70 and HSP90 expression in VCaP cells on the mRNA and protein levels, and upregulated major apoptotic markers (PARP-1, caspase-8, caspase-3 and cleaved caspase-3), thus, inducing extensive tumor-specific apoptosis. The Cell Counting Kit-8 assay showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting of HSP72 and HSC70 may improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis, indicating a novel, potential means for targeting therapeutic strategy to prostate cancer cells.

  13. Comparative Analysis of Induced vs. Spontaneous Models of Autoimmune Uveitis Targeting the Interphotoreceptor Retinoid Binding Protein

    PubMed Central

    Chen, Jun; Qian, Haohua; Horai, Reiko; Chan, Chi-Chao; Falick, Yishay; Caspi, Rachel R.

    2013-01-01

    Animal models of autoimmunity to the retina mimic specific features of human uveitis, but no model by itself reproduces the full spectrum of human disease. We compared three mouse models of uveitis that target the interphotoreceptor retinoid binding protein (IRBP): (i) the “classical” model of experimental autoimmune uveitis (EAU) induced by immunization with IRBP; (ii) spontaneous uveitis in IRBP T cell receptor transgenic mice (R161H) and (iii) spontaneous uveitis in Autoimmune Regulator (AIRE)−/− mice. Disease course and severity, pathology and changes in visual function were studied using fundus imaging and histological examinations, optical coherence tomography and electroretinography. All models were on the B10.RIII background. Unlike previously reported, IRBP-induced EAU in B10.RIII mice exhibited two distinct patterns of disease depending on clinical scores developed after onset: severe monophasic with extensive destruction of the retina and rapid loss of visual signal, or lower grade with a prolonged chronic phase culminating after several months in retinal degeneration and loss of vision. R161H and AIRE−/− mice spontaneously developed chronic progressive inflammation; visual function declined gradually as retinal degeneration developed. Spontaneous uveitis in R161H mice was characterized by persistent cellular infiltrates and lymphoid aggregation, whereas AIRE−/− mice characteristically developed multi-focal infiltrates and severe choroidal inflammation. These data demonstrate variability and unique distinguishing features in the different models of uveitis, suggesting that each one can represent distinct aspects of uveitis in humans. PMID:24015215

  14. Confinement effects of shock waves on laser-induced plasma from a graphite target

    SciTech Connect

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  15. Iron overload as a major targetable pathogenesis of asbestos-induced mesothelial carcinogenesis.

    PubMed

    Toyokuni, Shinya

    2014-01-01

    Few people expected that asbestos, a fibrous mineral, would be carcinogenic to humans. In fact, asbestos is a definite carcinogen in humans, causing a rare but aggressive cancer called malignant mesothelioma (MM). Mesothelial cells line the three somatic cavities and thus do not face the outer surface, but reduce the friction among numerous moving organs. MM has several characteristics: extremely long incubation period of 30-40 years after asbestos exposure, difficulty in clinical diagnosis at an early stage, and poor prognosis even under the current multimodal therapies. In Japan, 'Kubota shock' attracted considerable social attention in 2005 for asbestos-induced mesothelioma and, thereafter, the government enacted a law to provide the people suffering from MM a financial allowance. Several lines of recent evidence suggest that the major pathology associated with asbestos-induced MM is local iron overload, associated with asbestos exposure. Preclinical studies to prevent MM after asbestos exposure with iron reduction are in progress. In addition, novel target genes in mesothelial carcinogenesis have been discovered with recently recognized mesothelioma-prone families. Development of an effective preventive strategy is eagerly anticipated because of the long incubation period for MM.

  16. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  17. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  18. Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress.

    PubMed

    Li, Qin; Ni, Wei; Deng, Zhifeng; Liu, Minghe; She, Lazhi; Xie, Qiong

    2017-01-11

    Drug repurposing has become an alternative therapeutic strategy for cancer treatment given the known pharmacokinetics and toxicity. The inhibitory effects of artesunate have been reported in various cancers. In this work, we investigated the effects of artesunate in nasopharyngeal carcinoma (NPC). We demonstrate that artesunate significantly inhibits proliferation via arresting NPC cells at G2/M phase. It also induces apoptosis through caspase-dependent and mitochondria-independent pathways in multiple NPC cell lines. The combination of artesunate and cisplatin is synergistic in targeting NPC cells in in vitro cellular culture system and in vivo xenograft tumor models. Artesunate inhibits phosphorylation of essential molecules involved in Akt/mTOR pathway in NPC cells, such as Akt, mTOR, and 4EBP1, and its inhibitory effects are partially abolished by overexpression of constitutively active Akt. In addition, artesunate also induces mitochondrial dysfunction and oxidative stress via inhibiting mitochondrial respiration, increasing levels of mitochondrial superoxide and cellular reactive oxygen species (ROS), leading to decreased ATP levels. Two ROS scavengers partially abolish the inhibitory effects of artesunate in NPC cells. These data suggest that both inhibition of Akt/mTOR pathway and induction of ROS are required for the action of artesunate in NPC cells. Our work demonstrates that artesunate is a potential candidate for NPC treatment. Our work also highlights the critical roles of Akt/mTOR pathway and mitochondrial function in NPC cells.

  19. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain

    PubMed Central

    Angioni, Carlo; Park, Chul-Kyu; Meyer Dos Santos, Sascha; Jordan, Holger; Kuzikov, Maria; Liu, Di; Zinn, Sebastian; Hohman, Stephan W.; Schreiber, Yannick; Zimmer, Béla; Schmidt, Mike; Lu, Ruirui; Suo, Jing; Zhang, Dong-Dong; Schäfer, Stephan M. G.; Hofmann, Martine; Yekkirala, Ajay S.; de Bruin, Natasja; Parnham, Michael J.; Woolf, Clifford J.; Ji, Ru-Rong; Scholich, Klaus; Geisslinger, Gerd

    2016-01-01

    Chemotherapy-induced peripheral neuropathic pain (CIPNP) is a severe dose- and therapy-limiting side effect of widely used cytostatics that is particularly difficult to treat. Here, we report increased expression of the cytochrome-P450-epoxygenase CYP2J6 and increased concentrations of its linoleic acid metabolite 9,10-EpOME (9,10-epoxy-12Z-octadecenoic acid) in dorsal root ganglia (DRGs) of paclitaxel-treated mice as a model of CIPNP. The lipid sensitizes TRPV1 ion channels in primary sensory neurons and causes increased frequency of spontaneous excitatory postsynaptic currents in spinal cord nociceptive neurons, increased CGRP release from sciatic nerves and DRGs, and a reduction in mechanical and thermal pain hypersensitivity. In a drug repurposing screen targeting CYP2J2, the human ortholog of murine CYP2J6, we identified telmisartan, a widely used angiotensin II receptor antagonist, as a potent inhibitor. In a translational approach, administration of telmisartan reduces EpOME concentrations in DRGs and in plasma and reverses mechanical hypersensitivity in paclitaxel-treated mice. We therefore suggest inhibition of CYP2J isoforms with telmisartan as a treatment option for paclitaxel-induced neuropathic pain. PMID:27791151

  20. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA.

    PubMed

    Wu, Danhong; Zhang, Qing; Chu, Xia; Wang, Haibo; Shen, Guoli; Yu, Ruqin

    2010-01-15

    A novel electrochemical sensor has been developed for sensitive and selective detection of mercury (II) based on target-induced structure-switching DNA. A 33-mer oligonucleotide 1 with five self-complementary base pairs separated by seven thymine-thymine mismatches was first immobilized on the electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged oligonucleotide 2, leading to a high redox current. In the presence of Hg(2+), mercury-mediated base pairs (T-Hg(2+)-T) induced the folding of the oligonucleotide 1 into a hairpin structure, resulting in the release of the ferrocene-tagged oligonucleotide 2 from the electrode surface with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effect of the reaction temperature on the response of the sensor was also studied in detail. The results revealed that the sensor showed sensitive response to Hg(2+) in a concentration range from 0.1 nM to 5 microM with a detection limit of 0.06 nM. In addition, this strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions, which was superior to that of previous anodic stripping voltammetry (ASV)-based techniques. The excellent sensitivity and selectivity signified the potential of the sensor for Hg(2+) detection in real environmental samples.

  1. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  2. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  3. Tyrosine Kinase Inhibitors Induce Down-Regulation of c-Kit by Targeting the ATP Pocket

    PubMed Central

    Descarpentries, Clotilde; Frisan, Emilie; Adam, Kevin; Verdier, Frederique; Floquet, Célia; Dubreuil, Patrice; Lacombe, Catherine; Fontenay, Michaela; Mayeux, Patrick; Kosmider, Olivier

    2013-01-01

    The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket. PMID:23637779

  4. REDD1 Is a Major Target of Testosterone Action in Preventing Dexamethasone-Induced Muscle Loss

    PubMed Central

    Wu, Yong; Zhao, Weidong; Zhao, Jingbo; Zhang, Yuanfei; Qin, Weiping; Pan, Jiangping; Bauman, William A.; Blitzer, Robert D.; Cardozo, Christopher

    2010-01-01

    Glucocorticoids are a well-recognized and common cause of muscle atrophy that can be prevented by testosterone. However, the molecular mechanisms underlying such protection have not been described. Thus, the global effects of testosterone on dexamethasone-induced changes in gene expression were evaluated in rat gastrocnemius muscle using DNA microarrays. Gene expression was analyzed after 7-d administration of dexamethasone, dexamethasone plus testosterone, or vehicle. Dexamethasone changed expression of 876 probe sets by at least 2-fold. Among these, 474 probe sets were changed by at least 2-fold in the opposite direction in the dexamethasone plus testosterone group (genes in opposition). Major biological themes represented by genes in opposition included IGF-I signaling, myogenesis and muscle development, and cell cycle progression. Testosterone completely prevented the 22-fold increase in expression of the mammalian target of rapamycin (mTOR) inhibitor regulated in development and DNA damage responses 1 (REDD1), and attenuated dexamethasone induced increased expression of eIF4E binding protein 1, Forkhead box O1, and the p85 regulatory subunit of the IGF-I receptor but prevented decreased expression of IRS-1. Testosterone attenuated increases in REDD1 protein in skeletal muscle and L6 myoblasts and prevented dephosphorylation of p70S6 kinase at the mTOR-dependent site Thr389 in L6 myoblast cells. Effects of testosterone on REDD1 mRNA levels occurred within 1 h, required the androgen receptor, were blocked by bicalutamide, and were due to inhibition of transcriptional activation of REDD1 by dexamethasone. These data suggest that testosterone blocks dexamethasone-induced changes in expression of REDD1 and other genes that collectively would otherwise down-regulate mTOR activity and hence also down-regulate protein synthesis. PMID:20032058

  5. Control and target gene selection for studies on UV-induced genotoxicity in whales

    PubMed Central

    2013-01-01

    on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18. PMID:23837727

  6. Control and target gene selection for studies on UV-induced genotoxicity in whales.

    PubMed

    Martinez-Levasseur, Laura M; Gendron, Diane; Knell, Robert J; Acevedo-Whitehouse, Karina

    2013-07-09

    resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18.

  7. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro.

    PubMed

    Robinson, M K; Hodge, K M; Horak, E; Sundberg, A L; Russeva, M; Shaller, C C; von Mehren, M; Shchaveleva, I; Simmons, H H; Marks, J D; Adams, G P

    2008-11-04

    Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.

  8. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting

    PubMed Central

    Cao, Jian; Wu, Lizhen; Zhang, Shang-Min; Lu, Min; Cheung, William K.C.; Cai, Wesley; Gale, Molly; Xu, Qi; Yan, Qin

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing tool and has been widely used for biomedical research. However, many challenges, such as off-target effects and lack of easy solutions for multiplex targeting, are still limiting its applications. To overcome these challenges, we first developed a highly efficient doxycycline-inducible Cas9-EGFP vector. This vector allowed us to track the cells for uniform temporal control and efficient gene disruption, even in a polyclonal setting. Furthermore, the inducible CRISPR/Cas9 system dramatically decreased off-target effects with a pulse exposure of the genome to the Cas9/sgRNA complex. To target multiple genes simultaneously, we established simple one-step cloning approaches for expression of multiple sgRNAs with improved vectors. By combining our inducible and multiplex genome editing approaches, we were able to simultaneously delete Lysine Demethylase (KDM) 5A, 5B and 5C efficiently in vitro and in vivo. This user friendly and highly efficient toolbox provides a solution for easy genome editing with tight temporal control, minimal off-target effects and multiplex targeting. PMID:27458201

  9. RNAi Screen for NRF2 Inducers Identifies Targets That Rescue Primary Lung Epithelial Cells from Cigarette Smoke Induced Radical Stress

    PubMed Central

    Schumacher, Frances-Rose; Schubert, Steffen; Hannus, Michael; Sönnichsen, Birte; Ittrich, Carina; Kreideweiss, Stefan; Rippmann, Jörg F.

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the ‘druggable’ genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism. PMID:27832175

  10. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    SciTech Connect

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  11. Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats.

    PubMed

    Fu, Jin; Kim, Janet; Oveisi, Fariba; Astarita, Giuseppe; Piomelli, Daniele

    2008-07-01

    Pharmacological administration of the natural lipid amide, oleoylethanolamide (OEA), inhibits food intake in free-feeding rodents by prolonging latency to feed and postmeal interval. This anorexic effect is mediated by activation of type-alpha peroxisome proliferator-activated receptors (PPAR-alpha). Food intake stimulates mucosal cells in duodenum and jejunum to generate OEA, suggesting that this lipid-derived messenger may act as a local satiety hormone. As a test of this hypothesis, here, we examined whether targeted enhancement of OEA production in the small intestine affects feeding behavior in rats. We constructed an adenoviral vector (Ad-NPLD) that directs overexpression of the enzyme N-acylphosphatidylethanolamine (NAPE)-phospholipase D (PLD), which catalyzes the hydrolysis of NAPE to generate OEA. Intraduodenal injection of the Ad-NPLD vector resulted in a time-dependent increase in NAPE-PLD expression and OEA production, which was restricted to the proximal small intestine. No such effect was observed after administration of a control adenoviral vector. Enhanced OEA production in Ad-NPLD-injected animals was temporally associated with increased expression of two PPAR-alpha target genes (PPAR-alpha and CD36) and with decreased food intake. The hypophagic phenotype of Ad-NPLD-injected rats was attributable to increase feeding latency and postmeal interval, rather than decreased meal size. The results suggest that localized changes in OEA production in the small intestine, such as those produced by food intake, are sufficient to induce in rats a state of across-meal satiety similar to that elicited by systemic administration of exogenous OEA.

  12. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration.

    PubMed

    Akkhawattanangkul, Y; Maiti, P; Xue, Y; Aryal, D; Wetsel, W C; Hamilton, D; Fowler, S C; McDonald, M P

    2017-06-01

    Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

    PubMed Central

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  14. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).

    PubMed

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-05-07

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.

  15. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells

    PubMed Central

    Yusa, Kosuke; Rashid, S. Tamir; Strick-Marchand, Helene; Varela, Ignacio; Liu, Pei-Qi; Paschon, David E.; Miranda, Elena; Ordóñez, Adriana; Hannan, Nick; Rouhani, Foad Jafari; Darche, Sylvie; Alexander, Graeme; Marciniak, Stefan J.; Fusaki, Noemi; Hasegawa, Mamoru; Holmes, Michael C.; Di Santo, James P.; Lomas, David A.; Bradley, Allan; Vallier, Ludovic

    2011-01-01

    Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders1,2,3,4. However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications3,5. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome6. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)7 and piggyBac8,9 technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α1-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies. PMID:21993621

  16. Hypoxia-inducible microRNA-488 regulates apoptosis by targeting Bim in osteosarcoma.

    PubMed

    Zhou, Chusong; Tan, Wei; Lv, Hai; Gao, Fei; Sun, Jin

    2016-10-01

    Osteosarcoma is a malignant bone cancer of which the survival rate is still low. One reason for this low survival rate is drug resistance. In the past, it has been shown that microRNAs may play critical roles in osteosarcoma development and drug resistance. The mechanisms by which osteosarcoma cells acquire this resistance have, however, remained largely unknown. Here, we aimed at assessing the role of microRNA-488 in the acquisition of drug resistance by osteosarcoma cells. Quantitative RT-PCR was used to measure the expression of microRNA-488 in primary osteosarcoma samples and in osteosarcoma-derived cells, whereas microRNA-488 mimics and inhibitors were used to modify its expression in these cells. Luciferase reporter, Western blotting, cell viability, apoptosis and ChIP assays were used to assess the various effects of modified microRNA-488 expression in osteosarcoma-derived cells. We found that microRNA-488 is over-expressed in primary osteosarcoma tissues and osteosarcoma-derived cells and that hypoxia can induce microRNA-488 expression via binding to the hypoxia response element (HRE) in its promoter. We also found that exogenous over-expression of microRNA-488 promotes the proliferation, reduces the apoptosis and decreases the sensitivity to chemotherapy (doxorubicin) of osteosarcoma cells via direct targeting of the tumor suppressor Bim, which is a mediator of apoptosis. In contrast, we found that transfection of a microRNA-488 inhibitor resulted in an increase in both apoptosis and drug sensitivity, and a decrease in proliferation. Our data suggest that miRNA-488 may serve as a predictor of response to chemotherapy and as a therapeutic target in human osteosarcomas.

  17. Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancer metastases.

    PubMed

    Ross, Michael H; Esser, Alison K; Fox, Gregory C; Schmieder, Anne H; Yang, Xiaoxia; Hu, Grace; Pan, Dipanjan; Su, Xinming; Xu, Yalin; Novack, Deborah V; Walsh, Thomas; Colditz, Graham A; Lukaszewicz, Gabriel H; Cordell, Elizabeth; Novack, Joshua S; Fitzpatrick, James A J; Waning, David L; Mohammad, Khalid S; Guise, Theresa A; Lanza, Gregory M; Weilbaecher, Katherine N

    2017-08-30

    Bone metastases occur in ~70% of metastatic breast cancer patients often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin β3 (β3) which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, β3 was strongly expressed on bone metastatic cancer cells but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, β3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n=42). Mechanistic investigations revealed that TGF--β signaling through SMAD2/SMAD3 was necessary for breast cancer induction of β3 within the bone. Using a micelle--based nanoparticle therapy that recognizes integrin αvβ3 (αvβ3--MPs of ~12.5nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared to equimolar doses of free docetaxel. Furthermore, mice treated with αvβ3--MP--docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared to free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvβ3 at that metastatic site. Copyright ©2017, American Association for Cancer Research.

  18. Update of Targeted Therapy-Induced Hypertension: Basics for Non-Oncology Providers.

    PubMed

    Escalante, Carmen P; Lu, Maggie; Marten, Claire A

    2016-01-01

    Over the past several years, cancer treatments have expanded from usual chemotherapy standards with introduction of newer targeted therapies. As with chemotherapy, the targeted therapies also have unique side effects affecting various organ systems producing toxicities, such as cardiac and renal. This manuscript focuses on hypertension induced by vascular endothelial growth factor (VEGF) inhibitors and tyrosine kinase inhibitors (TKI). Hypertension due to these cancer therapies is important because these agents are now frequently used in common cancers. In addition, patients with cancer may not be treated in a comprehensive cancer center with experts available to manage the cancer and other side effects either from the malignancy or treatment of the malignancy. Especially in rural areas, patients are often managed or co-managed by a primary care provider with input from an oncologist that may not be nearby. Our aim is to provide an overview of the latest Federal Drug Administration (FDA) approved VEGF inhibitors and TKI's causing hypertension so that others managing patients on these treatments may easily recognize hypertension attributable to these agents and feel comfortable and confident in providing appropriate management and treatment of this side effect. This update includes characteristics, such as mechanism of action, metabolism and route of administration, and management and treatment of hypertension with aspects such as the timing, duration and monitoring of these agents. In addition, an algorithm for monitoring and treating hypertension before, during and after treatment with these therapies is included. It is imperative for patients to have hypertension promptly treated to prevent complications so they may continue with these agents with the least interruption or discontinuation of treatment, ensuring the best benefit available in their cancer trajectory.

  19. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects.

    PubMed

    Xie, Jun; Yan, Caiyun; Yan, Yu; Chen, Ling; Song, Lina; Zang, Fengchao; An, Yanli; Teng, Gaojun; Gu, Ning; Zhang, Yu

    2016-10-14

    The high performance and increased tumor-targeting accumulation of magnetic nanocrystals (MNCs) are the most important considerations in cancer targeted magnetic hyperthermia (TMH). To achieve these goals, our study was firstly done using well-established fluorescence/magnetic Mn-Zn ferrite MNCs (core size: 14 nm) as multi-modal imaging contrast agents and highly-efficient "heat generators", which were coated with a biocompatible PEG-phospholipid (DSPE-PEG2000) and further modified by a cyclic tripeptide of arginine-glycine-aspartic acid (RGD). By using a mouse model bearing breast carcinoma (4T1), we then systematically compared PEGylated MNCs (MNCs@PEG)- and RGD-PEGylated MNCs (MNCs@RGD)-mediated tumor targeting abilities by intravenous administration. The MNCs@PEG-based passive targeting could successfully accumulate at the tumor due to the enhanced permeability and retention (EPR) effects, but the non-targeted localization might make the MNCs@PEG "leaking" from larger pores of tumor fenestrated vascular networks. Our designed MNCs@RGD, simultaneously functionalized with PEG and RGD ligands, might promote a synergistic effect including efficient tumor vasculature active targeting and EPR-mediated passive targeting, improving total MNC concentration and retention time in tumor tissues. By combining fluorescence/magnetic resonance (MR)/thermal multi-modal imaging-guided diagnostics and continuous TMH treatment under an alternating current magnetic field (ACMF, 2.58 kA m(-1), 390 kHz), the tumor surface could be heated to approximately 43-44 °C based on the MNC-mediated repeated injections. Sufficient temperature elevation induced the apoptosis of tumor cells, and inhibited the tumor angiogenesis. Compared with MNCs@PEG, the active MNCs@RGD-based tumor targeting MR image was significantly more efficient due to both the higher and long-lasting tumor accumulation, but its antitumor efficacy was not obviously improved in the TMH treatments. To achieve a singularly

  20. Proton-induced polonium production in massive lead bismuth target irradiated by 660 MeV protons

    NASA Astrophysics Data System (ADS)

    Polanski, Aleksander; Petrochenkov, Sergey; Pohorecki, Wladyslaw

    2006-06-01

    The paper presents study of polonium production in bismuth foils placed in lead target. Proton-induced production of residual nuclei 206Po, 207Po, 208Po, 209Po, 210Po in 209Bi foils placed in lead target irradiated by 660 MeV protons was calculated. A comparison with calculated spatial distribution of polonium production using an MCNPX code and experimental results has been performed. The results of calculation will be useful for design of target of Subcritical Assembly in Dubna (SAD).

  1. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network.

    PubMed

    Xu, Xiaohua; Warrington, Arthur E; Bieber, Allan J; Rodriguez, Moses

    2011-07-01

    Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes

  2. The Nitroreductase System of Inducible Targeted Ablation Facilitates Cell-specific Regenerative Studies in Zebrafish

    PubMed Central

    White, David T.; Mumm, Jeff S.

    2013-01-01

    At the turn of the 20th century, classical regenerative biology – the study of organismal/tissue/limb regeneration in animals such as crayfish, snails, and planaria – garnered much attention. However, scientific luminaries such as Thomas Hunt Morgan eventually turned to other fields after concluding that inquiries into regenerative mechanisms were largely intractable beyond observational intrigues. The field of regeneration has enjoyed a resurgence in research activity at the turn of the 21st century, in large part due to “the promise” of cultured stem cells regarding reparative therapeutic approaches. Additionally, genomics-based methods that allow sophisticated genetic/molecular manipulations to be carried out in nearly any species have extended organismal regenerative biology well beyond observational limits. Throughout its history, complex paradigms such as limb regeneration – involving multiple tissue/cell types, thus, potentially multiple stem cell subtypes – have predominated the regenerative biology field. Conversely, cellular regeneration – the replacement of specific cell types – has been studied from only a few perspectives (predominantly muscle and mechanosensory hair cells). Yet, many of the degenerative diseases that regenerative biology hopes to address involve the loss of individual cell types; thus, a primary emphasis of the embryonic/induced stem cell field is defining culture conditions which promote cell-specific differentiation. Here we will discuss recent methodological approaches that promote the study of cell-specific regeneration. Such paradigms can reveal how the differentiation of specific cell types and regenerative potential of discrete stem cell niches are regulated. In particular, we will focus on how the nitroreductase (NTR) system of inducible targeted cell ablation facilitates: 1) large-scale genetic and chemical screens for identifying factors that regulate regeneration and, 2) in vivo time-lapse imaging

  3. The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish.

    PubMed

    White, David T; Mumm, Jeff S

    2013-08-15

    At the turn of the 20th century, classical regenerative biology--the study of organismal/tissue/limb regeneration in animals such as crayfish, snails, and planaria--garnered much attention. However, scientific luminaries such as Thomas Hunt Morgan eventually turned to other fields after concluding that inquiries into regenerative mechanisms were largely intractable beyond observational intrigues. The field of regeneration has enjoyed a resurgence in research activity at the turn of the 21st century, in large part due to "the promise" of cultured stem cells regarding reparative therapeutic approaches. Additionally, genomics-based methods that allow sophisticated genetic/molecular manipulations to be carried out in nearly any species have extended organismal regenerative biology well beyond observational limits. Throughout its history, complex paradigms such as limb regeneration--involving multiple tissue/cell types, thus, potentially multiple stem cell subtypes--have predominated the regenerative biology field. Conversely, cellular regeneration--the replacement of specific cell types--has been studied from only a few perspectives (predominantly muscle and mechanosensory hair cells). Yet, many of the degenerative diseases that regenerative biology hopes to address involve the loss of individual cell types; thus, a primary emphasis of the embryonic/induced stem cell field is defining culture conditions which promote cell-specific differentiation. Here we will discuss recent methodological approaches that promote the study of cell-specific regeneration. Such paradigms can reveal how the differentiation of specific cell types and regenerative potential of discrete stem cell niches are regulated. In particular, we will focus on how the nitroreductase (NTR) system of inducible targeted cell ablation facilitates: (1) large-scale genetic and chemical screens for identifying factors that regulate regeneration and (2) in vivo time-lapse imaging experiments aimed at

  4. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells.

    PubMed

    Wang, Jiayi; Ma, Lifang; Tang, Xun; Zhang, Xiao; Qiao, Yongxia; Shi, Yuling; Xu, Yanfeng; Wang, Zhongyong; Yu, Yongchun; Sun, Fenyong

    2015-09-15

    Doxorubicin (Doxo) is one of the most widely used chemotherapeutic drugs for patients with hepatocellular carcinoma (HCC). Doxo is a DNA intercalating drug that inhibits topoisomerase II. Thereby Doxo has the ability to block DNA replication and induce apoptosis. However, the other targets and mechanisms through which Doxo induces apoptosis to treat HCC still remain unknown. Here, we identified Mucosal vascular addressin cell adhesion molecule 1 (Madcam1) as a potential Doxo target because Madcam1 overexpression suppressed, while Madcam1 depletion stimulated Doxo-induced apoptosis. Furthermore, we first revealed that Doxo can induce apoptosis by blocking protein translation initiation. In contrast, Madcam1 activated protein translation through an opposite mechanism. We also found de-phosphorylation of AKT may be an important pro-apoptotic event that is triggered by Doxo-induced Madcam1 down-regulation. Finally, we revealed that Madcam1 promoted increased AKT phosphorylation, which is essential for maintaining the sensitivity of HCC cells to Doxo treatment. Taken together, we uncovered a potential mechanism for Doxo-induced apoptosis in HCC treatment through targeting Madcam1 and AKT and blocking protein translation initiation.

  5. Gold nanoparticle plasmonics enhanced ultrafast laser-induced optoporation and stimulation of targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Bergeron, Éric; Lavoie-Cardinal, Flavie; Boutopoulos, Christos; Salesse, Charleen; Winnik, Françoise M.; De Koninck, Paul

    2016-03-01

    Gold nanoparticles (AuNPs) have found numerous applications in nanomedicine in view of their robustness, ease of functionalization and low toxicity. Upon irradiation of AuNPs by a pulsed ultrafast laser, various highly localized phenomena can be obtained including a temperature rise, pressure wave, charge injection and production of nanobubbles close to the cellular membrane [1]. These phenomena can be used to manipulate, optoperforate, transfect and stimulate targeted cells [2-5]. Irradiating at 800 nm in the optically biological transparent window, we demonstrated local optoporation and transfection of cells as well as local stimulation of neurons. Two recent examples will be given: (i) Laser-induced selective optoporation of cells: The technique can be used on various types of cells and a proof of principle will be given on human cancer cells in a co-culture using functionalized AuNPs [6]. (ii) Laser-induced stimulation of neurons and monitoring of the localized Ca2+ signaling: This all optical method uses a standard confocal microscope to trigger a transient increase in free Ca2+ in neurons covered by functionalized AuNPs as well as to measure these local variations optically with the Ca2+ sensor GCaMP6s [7]. The proposed techniques provide a new complement to light-dependent methods in neuroscience. REFERENCES (by our group): (1) Boulais, J. Photochem. Photobiol. C Photochem. Rev. 17, 26 (2013); (2) Baumgart, Biomaterials 33, 2345 (2012); (3) Boulais, NanoLett. 12, 4763 (2012); (4) Boutopoulos, J. Biophotonics (2015); (5) Boutopoulos, Nanoscale 7, 11758 (2015); (6) Bergeron, Biomaterials, submitted (2015); (7) Lavoie-Cardinal, Nature Commun. submitted (2015).

  6. Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

    PubMed Central

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E.

    2012-01-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy. PMID:24009822

  7. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  8. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.

    PubMed

    Hisatomi, Osamu; Nakatani, Yoichi; Takeuchi, Ken; Takahashi, Fumio; Kataoka, Hironao

    2014-06-20

    Aureochrome-1 (AUREO1) is a blue light (BL) receptor that mediates the branching response in stramenopile alga, Vaucheria frigida. AUREO1 contains a basic leucine zipper (bZIP) domain in the central region and a light-oxygen-voltage sensing (LOV) domain at the C terminus, and has been suggested to function as a light-regulated transcription factor. We have previously reported that preparations of recombinant AUREO1 contained the complete coding sequence (full-length, FL) and N-terminal truncated protein (ZL) containing bZIP and LOV domains, and suggested that wild-type ZL (ZLwt2) was in a dimer form with intermolecular disulfide linkages at Cys(162) and Cys(182) (Hisatomi, O., Takeuchi, K., Zikihara, K., Ookubo, Y., Nakatani, Y., Takahashi, F., Tokutomi, S., and Kataoka, H. (2013) Plant Cell Physiol. 54, 93-106). In the present study, we report the photoreactions, oligomeric structures, and DNA binding of monomeric cysteine to serine-mutated ZL (ZLC2S), DTT-treated ZL (DTT-ZL), and FL (DTT-FL). Recombinant AUREO1 showed similar spectral properties and dark regeneration kinetics to those of dimeric ZLwt2. Dynamic light scattering and size exclusion chromatography revealed that ZLC2S and DTT-ZL were monomeric in the dark state. Dissociation of intermolecular disulfide bonds of ZLwt2 was in equilibrium with a midpoint oxidation-redox potential of approximately -245 ± 15 mV. BL induced the dimerization of monomeric ZL, which subsequently increased its affinity for the target sequence. Also, DTT-FL was monomeric in the dark state and underwent BL-induced dimerization, which led to formation of the FL2·DNA complex. Taken together, our results suggest that monomeric AUREO1 is present in vivo, with dimerization playing a key role in its role as a BL-regulated transcription factor. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis.

    PubMed

    Wang, Li-Jing; Zhao, Yuan; Han, Bing; Ma, Yu-Guang; Zhang, Jie; Yang, Ding-Ming; Mao, Jian-Wen; Tang, Fu-Tian; Li, Wei-Dong; Yang, Yang; Wang, Rui; Geng, Jian-Guo

    2008-03-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a repellent for axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. We have previously shown that Slit2 is also secreted by a variety of human cancer cells whereby it acts as a chemoattractant to vascular endothelial cells for tumor angiogenesis. We used a blocking antibody to investigate the role of Slit-Robo signaling in tumor angiogenesis during oral carcinogenesis. In this report we undertook a multistage model of 7,12-dimethyl-1,2-benzanthracene-induced squamous cell carcinoma in the hamster buccal pouch. R5, a monoclonal antibody against the first immunoglobulin domain of Robo1, was used to study whether R5 blocks the Slit-Robo interaction and furthermore inhibits tumor angiogenesis and growth in our model. In addition, the expression of Slit2, von Willebrand factor, and vascular endothelial growth factor were examined using human tissue of oral cheek mucosa with oral squamous cell carcinoma. Our data showed that Slit2 was expressed minimally in normal and hyperplastic mucosa, moderately in dysplastic mucosa, and highly in neoplastic mucosa obtained from hamster buccal pouch. We also found that increased Slit2 expression was associated with higher tumor angiogenesis, as reflected by increased vascular endothelial growth factor expression and microvessel density. A similar Slit2 expression profile was found in human tissue. Importantly, interruption of the Slit2-Robo interaction using R5 inhibited tumor angiogenesis and growth in our in vivo model, which indicates that Slit2-mediated tumor angiogenesis is a critical process underlying the carcinogenesis of chemical-induced squamous cell carcinoma. Therefore, targeting Slit-Robo signaling may offer a novel antiangiogenesis approach for oral cancer therapy.

  10. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1

    PubMed Central

    Tu, Huahua; Wei, Gang; Cai, Qinghe; Chen, Xianxiang; Sun, Zequn; Cheng, Caitao; Zhang, Linfei; Feng, Yong; Zhou, Huadong; Zhou, Bo; Zeng, Tiancai

    2015-01-01

    MircroRNA-212 (miR-212) is proposed as a novel tumor-related miRNA and has been found to be significantly deregulated in human cancers. In this study, the miR-212 expression was found to be obviously downregulated in hepatocellular carcinoma (HCC) tissues as compared with adjacent nontumor tissues. Clinical association analysis indicated that low expression of miR-212 was prominently correlated with poor prognostic features of HCC, including high AFP level, large tumor size, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the miR-212 expression was an independent prognostic marker for predicting both 5-year overall survival and disease-free survival of HCC patients. Our in vitro studies showed that upregulation of miR-212 inhibited cell proliferation and induced apoptosis in HepG2 cells. On the contrary, downregulation of miR-212 promoted cell proliferation and suppressed apoptosis in Huh7 cells. Interestingly, we found that upregulation of miR-212 decreased FOXA1 expression in HepG2 cells. Significantly, FOXA1 was identified as a direct target of miR-212 in HCC. FOXA1 was downregulated in HCC tissues as compared with noncancerous tissues. An inverse correlation between FOXA1 and miR-212 expression was observed in HCC tissues. Notably, FOXA1 knockdown inhibited cell proliferation and induced apoptosis in HepG2 cells. In conclusion, miR-212 is a potent prognostic marker and may suppress HCC tumor growth by inhibiting FOXA1 expression. PMID:26347321

  11. Identification of novel therapeutic targets in the secretome of ionizing radiation‑induced senescent tumor cells.

    PubMed

    Hwang, Hyun Jung; Jung, Seung Hee; Lee, Hyung Chul; Han, Na Kyung; Bae, In Hwa; Lee, Minyoung; Han, Young-Hoon; Kang, Young-Sun; Lee, Su-Jae; Park, Heon Joo; Ko, Young-Gyu; Lee, Jae-Seon

    2016-02-01

    Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment. Some of these effects could be attributed to the senescence‑associated secretory phenotype that has the ability to promote tumor progression. However, secreted proteins from senescent tumor cells and their effects on the tumor microenvironment due to ionizing radiation (IR) exposure have not yet been fully elucidated. In the present study, we analyzed cytokines secreted from IR‑induced senescent MCF7 cells by using cytokine microarrays and confirmed by western blot analysis that increased secretion of osteoprotegerin (OPG), midkine (MDK) and apolipoprotein E3 (ApoE3) occurs in these cells. Invasive, migratory and wound‑healing activities were observed in MDA‑MB‑231 and MCF‑10A cells following treatment with recombinant human OPG, MDK and ApoE3 proteins. Additionally, tube‑formation activity was assessed in OPG‑, MDK‑ and ApoE3‑treated human umbilical vein endothelial cells (HUVECs). We found that OPG, MDK and ApoE3 affected cell motility and tube‑formation activity. Since OPG markedly affected cell motility, we examined the effect of senescent conditioned media containing neutralizing OPG antibodies on migration and wound‑healing activity. Our results demonstrated that IR‑induced senescent tumor cells influence the tumor microenvironment by increasing the production of cytokines, such as OPG, MDK and ApoE3. Furthermore, these data suggest that OPG is likely a promising target capable of reducing the deleterious effects on the tumor microenvironment during radiation therapy.

  12. Targeting Palmitoyl acyltransferase ZDHHC21 Improves Gut Epithelial Barrier Dysfunction Resulting from Burn Induced Systemic Inflammation.

    PubMed

    Haines, Ricci J; Wang, Chunyan; Yang, Clement Gy; Eitnier, Rebecca A; Wang, Fang; Wu, Mack H

    2017-08-24

    Clinical studies in burn patients demonstrate a close association between leaky guts and increased incidence or severity of sepsis and other complications. Severe thermal injury triggers intestinal inflammation that contributes to intestinal epithelial hyperpermeability, which exacerbates systemic response leading to multiple organ failure and sepsis. In this study, we identified a significant function of a particular palmitoyl acyltransferase (PAT), ZDHHC21, in mediating signaling events required for gut hyperpermeability induced by inflammation. Using qPCR, we show that ZDHHC21 mRNA, production was enhanced by two-fold when intestinal epithelial cells were treated with TNFα/IFNγ in vitro. In addition, pharmacological targeting of PATs with 2-bromopalmitate (2-BP) showed significant improvement in TNFα/IFNγ mediated epithelial barrier dysfunction by using electric cell-substrate impedance sensing (ECIS) assays, as well as FITC-dextran permeability assays. Using the ABE assay and click chemistry, we show that TNFα/IFNγ treatment of intestinal epithelial cells results in enhanced detection of total palmitoylated proteins, and this response is inhibited by 2-BP. Using ZDHHC21 deficient mice or wild-type mice treated with 2-BP, we showed that mice with impaired ZDHHC21 expression or pharmacological inhibition resulted in attenuated intestinal barrier dysfunction caused by thermal injury. Moreover, H&E staining of small intestine, as well as transmission electron microscopy (TEM), showed mice with genetic interruption of ZDHHC21 had attenuated villus structure disorganization associated with thermal injury induced intestinal barrier damage. Taken together, these results suggest an important role of ZDHHC21 in mediating gut hyperpermeability resulting from thermal injury. Copyright © 2017, American Journal of Physiology-Gastrointestinal and Liver Physiology.

  13. Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus.

    PubMed

    Mihaylova, Nikolina; Bradyanova, Silviya; Chipinski, Petroslav; Herbáth, Melinda; Chausheva, Stela; Kyurkchiev, Dobroslav; Prechl, József; Tchorbanov, Andrey I

    2017-03-16

    Systemic lupus erythematosus (SLE) is a polygenic pathological disorder which involves multiple organs. Self-specific B cells play a main role in the lupus pathogenesis by generating autoantibodies as well as by serving as important autoantigen-presenting cells. Autoreactive T lymphocytes, on the other hand, are responsible for B cell activation and proliferation, and cytokine production. Therefore, both factors promote the idea that a down-modulation of activated self-reactive T and B cells involved in the pathogenic immune response is a reasonable approach for SLE therapy. Annexin A1 (ANX A1) is expressed by many cell types and binds to phospholipids in a Ca(2+) dependent manner. Abnormal expression of ANX A1 was found on activated B and T cells in both murine and human autoimmunity, suggesting its potential role as a therapeutic target. While its role on T lymphocytes is through formyl peptide receptor-like molecules (FPRL), and the formed ANX A1/FPRL pathway modulates T cell receptor signalling, there is still no fool-proof data available for the role of ANX A1 in B cells. We employed a lupus model of Balb/c mice with pristane-induced SLE which very closely resembles human lupus. In the present study, we investigated the possibility to modulate the autoimmune response in a pristane-induced mouse model of SLE using an anti- ANX A1 antibody. Administration of this monoclonal antibody resulted in the inhibition of T-cell activation and proliferation, suppression of IgG anti-dsDNA antibody-secreting plasma cells and of proteinuria, decreased disease activity and prolonged survival compared to control group.

  14. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets.

    PubMed

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E

    2012-07-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

  15. Targeting the Overproduction of Peroxynitrite for the Prevention and Reversal of Paclitaxel-Induced Neuropathic Pain

    PubMed Central

    Doyle, Timothy; Chen, Zhoumou; Muscoli, Carolina; Bryant, Leesa; Esposito, Emanuela; Cuzzocrea, Salvatore; Dagostino, Concetta; Ryerse, Jan; Rausaria, Smita; Kamadulski, Andrew; Neumann, William L.

    2012-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) accompanied by chronic neuropathic pain is a major dose-limiting side effect of a large number of antitumoral agents including paclitaxel (Taxol). Thus, CIPN is one of most common causes of dose reduction and discontinuation of what is otherwise a life-saving therapy. Neuropathological changes in spinal cord are linked to CIPN, but the causative mediators and mechanisms remain poorly understood. We report that formation of peroxynitrite (PN) in response to activation of nitric oxide synthases and NADPH oxidase in spinal cord contributes to neuropathological changes through two mechanisms. The first involves modulation of neuroexcitatory and proinflammatory (TNF-α and IL-1β) and anti-inflammatory (IL-10 and IL-4) cytokines in favor of the former. The second involves post-translational nitration and modification of glia-derived proteins known to be involved in glutamatergic neurotransmission (astrocyte-restricted glutamate transporters and glutamine synthetase). Targeting PN with PN decomposition catalysts (PNDCs) not only blocked the development of paclitaxel-induced neuropathic pain without interfering with antitumor effects, but also reversed it once established. Herein, we describe our mechanistic study on the role(s) of PN and the prevention of neuropathic pain in rats using known PNDCs (FeTMPyP5+ and MnTE-2-PyP5+). We also demonstrate the prevention of CIPN with our two new orally active PNDCs, SRI6 and SRI110. The improved chemical design of SRI6 and SRI110 also affords selectivity for PN over other reactive oxygen species (such as superoxide). Our findings identify PN as a critical determinant of CIPN, while providing the rationale toward development of superoxide-sparing and “PN-targeted” therapeutics. PMID:22553021

  16. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria.

    PubMed

    Geng, Ji; Li, Jing; Huang, Tao; Zhao, Kaidi; Chen, Qiuyun; Guo, Wenjie; Gao, Jing

    2016-09-01

    Despite advances in treatment, malignant glioma commonly exhibits recurrence, subsequently leading to a poor prognosis. As manganese (Mn) compounds can be transported by the transferrin‑transferrin receptor system, the present study synthesized and examined the potential use of Adpa‑Mn as a novel antitumor agent. Adpa‑Mn time and dose‑dependently inhibited U251 and C6 cell proliferation; however, it had little effect on normal astrocytes. Apoptosis was significantly elevated following treatment with Adpa‑Mn, as detected by chromatin condensation, Annexin V/propidium iodide staining, cytochrome c release from mitochondria to the cytoplasm, and the activation of caspases‑9, ‑7 and ‑3 and poly (ADP‑ribose) polymerase. In addition, Adpa‑Mn enhanced fluorescence intensity of monodansylcadaverine and elevated the expression levels of the autophagy‑related protein microtubule‑associated protein 1 light chain 3. Pretreatment with the autophagy inhibitors 3‑methyladenine and chloroquine enhanced Adpa‑Mn‑induced cell inhibition, thus indicating that autophagy has an essential role in this process. Furthermore, evidence of mitochondrial dysfunction was detected in the Adpa‑Mn‑treated group, including disrupted membrane potential, elevated levels of reactive oxygen species (ROS) and depleted adenosine triphosphate. Conversely, treatment with the mitochondrial permeability transition inhibitor cyclosporin A reversed Adpa‑Mn‑induced ROS production, mitochondrial damage and cell apoptosis, thus suggesting that Adpa‑Mn may target the mitochondria. Taken together, these data suggested that Adpa‑Mn may be considered for use as a novel anti‑glioma therapeutic option.

  17. Blue Light-induced Dimerization of Monomeric Aureochrome-1 Enhances Its Affinity for the Target Sequence*

    PubMed Central

    Hisatomi, Osamu; Nakatani, Yoichi; Takeuchi, Ken; Takahashi, Fumio; Kataoka, Hironao

    2014-01-01

    Aureochrome-1 (AUREO1) is a blue light (BL) receptor that mediates the branching response in stramenopile alga, Vaucheria frigida. AUREO1 contains a basic leucine zipper (bZIP) domain in the central region and a light-oxygen-voltage sensing (LOV) domain at the C terminus, and has been suggested to function as a light-regulated transcription factor. We have previously reported that preparations of recombinant AUREO1 contained the complete coding sequence (full-length, FL) and N-terminal truncated protein (ZL) containing bZIP and LOV domains, and suggested that wild-type ZL (ZLwt2) was in a dimer form with intermolecular disulfide linkages at Cys162 and Cys182 (Hisatomi, O., Takeuchi, K., Zikihara, K., Ookubo, Y., Nakatani, Y., Takahashi, F., Tokutomi, S., and Kataoka, H. (2013) Plant Cell Physiol. 54, 93–106). In the present study, we report the photoreactions, oligomeric structures, and DNA binding of monomeric cysteine to serine-mutated ZL (ZLC2S), DTT-treated ZL (DTT-ZL), and FL (DTT-FL). Recombinant AUREO1 showed similar spectral properties and dark regeneration kinetics to those of dimeric ZLwt2. Dynamic light scattering and size exclusion chromatography revealed that ZLC2S and DTT-ZL were monomeric in the dark state. Dissociation of intermolecular disulfide bonds of ZLwt2 was in equilibrium with a midpoint oxidation-redox potential of approximately −245 ± 15 mV. BL induced the dimerization of monomeric ZL, which subsequently increased its affinity for the target sequence. Also, DTT-FL was monomeric in the dark state and underwent BL-induced dimerization, which led to formation of the FL2·DNA complex. Taken together, our results suggest that monomeric AUREO1 is present in vivo, with dimerization playing a key role in its role as a BL-regulated transcription factor. PMID:24790107

  18. Intravesical Liposomal Tacrolimus Protects Against Radiation Cystitis Induced by 3-Beam Targeted Bladder Radiation

    PubMed Central

    Raja, Rajaganapathy Bharathi; Janicki, Joseph J.; Levanovich, Peter; Tyagi, Pradeep; Hafron, Jason; Chancellor, Michael B.; Krueger, Sarah; Marples, Brian

    2015-01-01

    Purpose This study primarily sought to determine if the Small Animal Radiation Research Platform (SARRP) can create a rat radiation cystitis (RC) model via targeted bladder irradiation (phase I). The response to treatment of early phase RC in rats via transurethral catheter instillation of liposomal tacrolimus (lipo-tacrolimus) was examined in phase II. Materials and Methods In phase I, 16 adult female Sprague-Dawley rats were used and their metabolic urination patterns were analyzed before and after exposure to 20, 30, or 40 Gy radiation. In phase II, irradiated rats were randomly assigned to receive a single instillation of either saline or lipo-tacrolimus. Results The 40 Gy radiation dose induced statistically significant reductions in inter-micturition intervals (IMI) compared to the lower doses of radiation. 40 Gy radiation caused a significant reduction in mean IMI by approximately 20 minutes (p < 0.0001). Histological analysis indicated degenerative type epithelial changes and urothelial swelling, with evidence of pseudocarcinomatous epithelial hyperplasia. Therefore, 40 Gy was chosen for the phase II efficacy study. There was no measurable change in total voided urine volume after irradiation or after instillation of lipo-tacrolimus or saline. Lipo-tacrolimus treatment significantly increased post-irradiation IMI values by approximately 30 minutes (p < 0.001) back to baseline levels. Conclusions The RC rat model demonstrated a dose-dependent decrease in IMI without inducing short-term skin or gastrointestinal damage. This study demonstrated that lipo-tacrolimus may be a promising new intravesical therapy for the rare and serious condition of RC. PMID:25839382

  19. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    PubMed Central

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  20. Oleanolic acid inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα

    PubMed

    Li, Hongmei; He, Ning; Li, Xueyan; Zhou, Li; Zhao, Mingyu; Jiang, Hairui; Zhang, Xiaojie

    2013-10-01

    Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid contained in a variety of plant species, exhibits broad biological properties, including anticancer effects. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. APL has a unique and specific chromosomal aberration, t(15;17), which results in the formation of a fusion gene and protein PML/RARα, which is not only necessary for the diagnosis of APL, but is also critical for APL pathogenesis. In the present study, the cytotoxic effect of OA on NB4 cells was investigated. Cell viability was assessed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of bax and bcl-2 mRNA were determined by quantitative PCR. Apoptosis was analyzed using DNA fragment analysis and cell cycle distributions were analyzed by flow cytometry. The activity of caspase-3 and caspase-9 was determined by colorimetric assays. The expression of the PML/RARα fusion protein was analyzed by western blotting. The MTT assay showed that OA inhibited the proliferation of the NB4 cells. The expression levels of pro-apoptotic bax mRNA were increased and the levels of anti-apoptotic bcl-2 mRNA were decreased following the treatment of the NB4 cells with OA at 80 μmol/l. Treatment of the NB4 cells with OA at 80 μmol/l induced apoptosis and G1 phase arrest, while caspase-9 and caspase-3 activity was significantly increased. Furthermore, the expression of the PML/RARα fusion protein was decreased. Together, these data suggest that OA exerts a cytotoxic effect that inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα, making it a potent therapeutic agent against leukemia.

  1. Amelioration of Cisplatin-Induced Experimental Peripheral Neuropathy by a Small Molecule Targeting p75NTR

    PubMed Central

    Friesland, Amy; Weng, Zhiying; Duenas, Maria; Massa, Stephen M.; Longo, Frank M.; Lu, Qun

    2014-01-01

    Cisplatin is an effective and widely used first-line chemotherapeutic drug for treating cancers. However, many patients sustain cisplatin-induced peripheral neuropathy (CIPN), often leading to a reduction in drug dosages or complete cessation of treatment altogether. Therefore, it is important to understand cisplatin mechanisms in peripheral nerve tissue mediating its toxicity and identify signaling pathways for potential intervention. Rho GTPase activation is increased following trauma in several models of neuronal injury. Thus, we investigated whether components of the Rho signaling pathway represent important neuroprotective targets with the potential to ameliorate CIPN and thereby optimize current chemotherapy treatment regimens. We have developed a novel CIPN model in the mouse. Using this model and primary neuronal culture, we determined whether LM11A-31, a small-molecule, orally bioavailable ligand of the p75 neurotrophin receptor (p75NTR), can modulate Rho GTPase signaling and reduce CIPN. Von Frey filament analysis of sural nerve function showed that LM11A-31 treatment prevented decreases in peripheral nerve sensation seen with cisplatin treatment. Morphometric analysis of harvested sural nerves revealed that cisplatin-induced abnormal nerve fiber morphology and the decreases in fiber area were alleviated with concurrent LM11A-31 treatment. Cisplatin treatment increased RhoA activity accompanied by the reduced tyrosine phosphorylation of SHP-2, which was reversed by LM11A-31. LM11A-31 also countered the effects of calpeptin, which activated RhoA by inhibiting SHP-2 tyrosine phosphatase. Therefore, suppression of RhoA signaling by LM11A-31 that blocks proNGF binding to p75NTR or activates SHP-2 tyrosine phosphatase downstream of NGF receptor enhances neuroprotection in experimental CIPN in mouse model. PMID:25277379

  2. Drug-induced sleep endoscopy: conventional versus target controlled infusion techniques--a randomized controlled study.

    PubMed

    De Vito, Andrea; Agnoletti, Vanni; Berrettini, Stefano; Piraccini, Emanuele; Criscuolo, Armando; Corso, Ruggero; Campanini, Aldo; Gambale, Giorgio; Vicini, Claudio

    2011-03-01

    Understanding the sites of pharyngeal collapse is mandatory for surgical treatment decision-making in obstructive sleep-apnea-hypopnea syndrome patients. Drug-induced sleep endoscopy (DISE) allows for the direct observation of the upper airway during sedative-induced sleep. In order to re-create snoring and apnea patterns related to a spontaneous sleep situation, the authors used a target-controlled infusion (TCI) sleep endoscopy (DISE-TCI), comparing this technique to conventional DISE, in which sedation was reached by a manual bolus injection. The authors conducted a prospective, randomized, unicenter study. The apneic event observation and its correlation with pharyngeal collapse patterns is the primary endpoint; secondary endpoints are defined as stability and safety of sedation plans of DISE-TCI technique. From January 2009 to June 2009, 40 OSAHS patients were included in the study and randomized allocated in two groups: the bolus injection conventional DISE group and the DISE-TCI group. We recorded the complete apnea event at the oropharynx and hypopharynx levels in 4 patients of the conventional DISE group (20%) and in 17 patients of the DISE-TCI group (85%) (P < 0.0001). Two patients needed oxygen in the conventional DISE group because of severe desaturation that resulted from the first bolus of propofol (1 mg/kg) (P = 0.4872 ns). We recorded the instability of the sedation plan in 13 patients from the conventional DISE group (65%) and 1 patient from the DISE-TCI group (5%) (P = 0.0001). Our results suggest that the DISE-TCI technique should be the first choice in performing sleep endoscopy because of its increased accuracy, stability and safety.

  3. BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial

    PubMed Central

    Gasper, Melanie A.; Hesseling, Anneke C.; Mohar, Isaac; Myer, Landon; Azenkot, Tali; Passmore, Jo-Ann S.; Hanekom, Willem; Cotton, Mark F.; Crispe, I. Nicholas; Sodora, Donald L.; Jaspan, Heather B.

    2017-01-01

    BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants. METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm). RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells. CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination. TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580. FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments. PMID:28405623

  4. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  5. Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: a new therapeutic target?

    PubMed

    Jimenez, V; Kemmerling, U; Paredes, R; Maya, J D; Sosa, M A; Galanti, N

    2014-09-25

    Chagas disease or American Trypanosomiasis is caused by the flagellated protozoan parasite Trypanosoma cruzi (T. cruzi) and is recognized by the WHO as one of the world's 17 neglected tropical diseases. Only two drugs (Benznidazol, Bz and Nifurtimox, Nx) are currently accepted for treatment, however they cause severe adverse effects and their efficacy is still controversial. It is then important to explore for new drugs. Programmed cell death (PCD) in parasites offers interesting new therapeutic targets. The aim of this work was to evaluate the induction of PCD in T. cruzi by two natural sesquiterpene lactones (STLs), dehydroleucodine (DhL) and helenalin (Hln) as compared with the two conventional drugs, Bz and Nx. Hln and DhL were isolated from aerial parts of Gaillardia megapotamica and Artemisia douglassiana Besser, respectively. Purity of compounds (greater than 95%) was confirmed by (13)C-nuclear magnetic resonance, melting point analysis, and optical rotation. Induction of PCD in T. cruzi epimastigotes and trypomastigotes by DhL, Hln, Bz and Nx was assayed by phosphatidylserine exposure at the parasite surface and by detection of DNA fragmentation using the TUNEL assay. Trypanocidal activity of natural and synthetic compounds was assayed by measuring parasite viability using the MTT method. The two natural STLs, DhL and Hln, induce programmed cell death in both, the replicative epimastigote form and the infective trypomastigote form of T. cruzi. Interestingly, the two conventional antichagasic drugs (Bz and Nx) do not induce programmed cell death. A combination of DhL and either Bz or Nx showed an increased effect of natural compounds and synthetic drugs on the decrease of parasite viability. DhL and Hln induce programmed cell death in T. cruzi replicative epimastigote and infective trypomastigote forms, which is a different mechanism of action than the conventional drugs to kill the parasite. Therefore DhL and Hln may offer an interesting option for the

  6. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.

    PubMed

    Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki

    2011-07-18

    Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity.

  7. Sensory Rewiring in an Echolocator: Genome-Wide Modification of Retinogenic and Auditory Genes in the Bat Myotis davidii

    PubMed Central

    Hudson, Nicholas J.; Baker, Michelle L.; Hart, Nathan S.; Wynne, James W.; Gu, Quan; Huang, Zhiyong; Zhang, Guojie; Ingham, Aaron B.; Wang, Linfa; Reverter, Antonio

    2014-01-01

    Bats comprise 20% of all mammalian species and display a number of characteristics, including true flight, echolocation, and a heightened ability to resist viral load that uniquely position this group for comparative genomic studies. Here we searched for evidence of genomic variation consistent with sensory rewiring through bat evolution. We focused on two species with divergent sensory preferences. Myotis davidii is a bat species that echolocates and possesses dim- but not daylight-adapted vision whereas the black flying fox (Pteropus alecto) has highly developed day vision but does not echolocate. Using the naked mole rat as a reference, we found five functional genes (CYP1A2, RBP3, GUCY2F, CRYBB1, and GRK7) encoding visual proteins that have degenerated into pseudogenes in M. davidii but not P. alecto. In a second approach genome-wide codon usage bias (CUB) was compared between the two bat species. This CUB ranking systematically enriched for vision-related (CLN8, RD3, IKZF1, LAMC3, CRX, SOX8, VAX2, HPS1, RHO, PRPH2, and SOX9) and hearing-related (TPRN, TMIE, SLC52A3, OTOF, WFS1, SOD1, TBX18, MAP1A, OTOS, GPX1, and USH1G) machinery in M. davidii but not P. alecto. All vision and hearing genes selectively enriched in M. davidii for which orthologs could be identified also were more biased in the echolocating M. lucifugus than the nonecholocating P. vampyrus. We suggest that the existence of codon bias in vision- and hearing-related genes in a species that has evolved echolocation implies CUB is part of evolution’s toolkit to rewire sensory systems. We propose that the two genetic changes (pseudogene formation and CUB) collectively paint a picture of that incorporates a combination of destruction and gain-of-function. Together, they help explain how natural selection has reduced physiological costs associated with the development of a smaller eye poorly adapted to day vision but that also contribute to enhanced dim light vision and the hearing adaptations

  8. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    PubMed Central

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  9. Targeting Thioredoxin-1 by dimethyl fumarate induces ripoptosome-mediated cell death

    PubMed Central

    Schroeder, Anne; Warnken, Uwe; Röth, Daniel; Klika, Karel D.; Vobis, Diana; Barnert, Andrea; Bujupi, Fatmire; Oberacker, Tina; Schnölzer, Martina; Nicolay, Jan P.; Krammer, Peter H.; Gülow, Karsten

    2017-01-01

    Constitutively active NFκB promotes survival of many cancers, especially T-cell lymphomas and leukemias by upregulating antiapoptotic proteins such as inhibitors of apoptosis (IAPs) and FLICE-like inhibitory proteins (cFLIPs). IAPs and cFLIPs negatively regulate the ripoptosome, which mediates cell death in an apoptotic or necroptotic manner. Here, we demonstrate for the first time, that DMF antagonizes NFκB by suppressing Thioredoxin-1 (Trx1), a major regulator of NFκB transcriptional activity. DMF-mediated inhibition of NFκB causes ripoptosome formation via downregulation of IAPs and cFLIPs. In addition, DMF promotes mitochondrial Smac release and subsequent degradation of IAPs, further enhancing cell death in tumor cells displaying constitutive NFκB activity. Significantly, CTCL patients treated with DMF display substantial ripoptosome formation and caspase-3 cleavage in T-cells. DMF induces cell death predominantly in malignant or activated T-cells. Further, we show that malignant T-cells can die by both apoptosis and necroptosis, in contrast to resting T-cells, which are restricted to apoptosis upon DMF administration. In summary, our data provide new mechanistic insight in the regulation of cell death by targeting NFκB via Trx1 in cancer. Thus, interference with Trx1 activity is a novel approach for treatment of NFκB-dependent tumors. PMID:28233787

  10. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  11. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-09-30

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  12. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  13. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  14. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells.

    PubMed

    Song, Li-Li; Tu, Yao-Yao; Xia, Li; Wang, Wei-Wei; Wei, Wei; Ma, Chun-Min; Wen, Dong-Hua; Lei, Hu; Xu, Han-Zhang; Wu, Ying-Li

    2014-01-01

    Despite considerable efficacy of arsenic trioxide (As2O3) in acute promyelocytic leukemia (APL) treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML), are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.

  15. Influence of electronic stopping on sputtering induced by cluster impact on metallic targets

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2009-04-01

    Using molecular-dynamics simulation, we model the sputtering of a Au (111) crystallite induced by the impact of Au{sub 13} projectiles with total energies up to 500 keV. Due to the uncertainty of the electronic stopping of Au moving in particular at small velocities, we performed several simulations, in which the electronic stopping parameters are systematically changed. Our results demonstrate the dominating influence of the cut-off energy E{sub c}, below which the high-velocity electronic stopping of atoms is switched off in the simulation. If E{sub c} is smaller than roughly one half the cohesive energy of the target, sputtering ceases after a few ps; the spike contribution to sputtering (also called phase explosion or gas-flow contribution) is entirely quenched and the sputtering yield is up to an order of magnitude smaller than when electronic stopping is taken into account only at higher atom energies. Our results demonstrate the importance of a careful modeling of electronic stopping in simulations of spike sputtering from metals.

  16. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction

    PubMed Central

    Watanabe, Ryo; Suzuki, Jun-ichi; Wakayama, Kouji; Maejima, Yasuhiro; Shimamura, Munehisa; Koriyama, Hiroshi; Nakagami, Hironori; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Morishita, Ryuichi; Komuro, Issei; Isobe, Mitsuaki

    2017-01-01

    A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure. PMID:28266578

  17. Hypoxia-Inducible Factor-1 (HIF-1): A Potential Target for Intervention in Ocular Neovascular Diseases

    PubMed Central

    Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Mitra, Ashim K.

    2015-01-01

    Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed. PMID:23701276

  18. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells.

    PubMed

    Eskandani, Morteza; Vandghanooni, Somayeh; Barar, Jaleh; Nazemiyeh, Hossein; Omidi, Yadollah

    2017-06-01

    Any dysfunctionality in maintaining the oxygen homeostasis by mammalian cells may elicit hypoxia/anoxia, which results in inescapable oxidative stress and possible subsequent detrimental impacts on certain cells/tissues with high demands to oxygen molecules. The ischemic damage in turn can trigger initiation of a number of diseases including organs ischemia, metabolic disorders, inflammatory diseases, different types of malignancies, and alteration in wound healing process. Thus, full comprehension of molecular mechanism(s) and cellular physiology of the oxygen homeostasis is the cornerstone of the mammalian cells metabolism, energetic pathways and health and disease conditions. An imbalance in oxygen content within the cellular microenvironment activates a cascade of molecular events that are often compensated, otherwise pathologic condition occurs through a complexed network of biomolecules. Hypoxia inducible factor-1 (HIF-1) plays a key transcriptional role in the adaptation of cell physiology in relation with the oxygen content within a cell. In this current study, we provide a comprehensive review on the molecular mechanisms of oxygen sensing and homeostasis and the impacts of HIF-1 in hypoxic/anoxic conditions. Moreover, different molecular and biochemical responses of the cells to the surrounding environment are discussed in details. Finally, modern technological approaches for targeting the hypoxia related proteins are articulated. Copyright © 2017. Published by Elsevier B.V.

  19. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  20. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  1. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  2. Targeting the gut vascular endothelium induces gut effector CD8 T cell responses via cross-presentation by dendritic cells.

    PubMed

    Bourges, Dorothee; Zhan, Yifan; Brady, Jamie L; Braley, Hal; Caminschi, Irina; Prato, Sandro; Villadangos, José A; Lew, Andrew M

    2007-11-01

    Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.

  3. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive.

  4. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  5. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets.

    PubMed

    Cass, Ashley A; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-04-20

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  7. Epidermal growth factor receptor is a preferred target for treating Amyloid-β–induced memory loss

    PubMed Central

    Wang, Lei; Chiang, Hsueh-Cheng; Wu, Wenjuan; Liang, Bin; Xie, Zuolei; Yao, Xinsheng; Ma, Weiwei; Du, Shuwen; Zhong, Yi

    2012-01-01

    Current understanding of amyloid-β (Aβ) metabolism and toxicity provides an extensive list of potential targets for developing drugs for treating Alzheimer’s disease. We took two independent approaches, including synaptic-plasticity–based analysis and behavioral screening of synthetic compounds, for identifying single compounds that are capable of rescuing the Aβ-induced memory loss in both transgenic fruit fly and transgenic mouse models. Two clinically available drugs and three synthetic compounds not only showed positive effects in behavioral tests but also antagonized the Aβ oligomers-induced activation of the epidermal growth factor receptor (EGFR). Such surprising converging outcomes from two parallel approaches lead us to conclude that EGFR is a preferred target for treating Aβ-induced memory loss. PMID:23019586

  8. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  9. Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles.

    PubMed

    Terni, Beatrice; Pacciolla, Paolo; Masanas, Helena; Gorostiza, Pau; Llobet, Artur

    2017-12-01

    Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps. © 2017 Wiley Periodicals, Inc.

  10. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  11. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    PubMed

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  12. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    SciTech Connect

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  13. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis

    PubMed Central

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C.; El-Cheikh, Marcia Cury

    2017-01-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte–macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  14. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis.

    PubMed

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C; El-Cheikh, Marcia Cury

    2017-02-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  15. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.

  16. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

    PubMed

    Rodríguez, José A; Luria-Pérez, Rosendo; López-Valdés, Héctor E; Casero, David; Daniels, Tracy R; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; Ortiz-Sánchez, Elizabeth; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L

    2011-11-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

  17. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells

    PubMed Central

    Rodríguez, JoséA.; Luria-Pérez, Rosendo; López-Valdés, Héctor E.; Casero, David; Daniels, Tracy R.; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; ánchez, Elizabeth Ortiz-S; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew .C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L.

    2013-01-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies. PMID:21870996

  18. Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs)*

    PubMed Central

    Ma, Ning; Shan, Yongli; Liao, Baojian; Kong, Guanyi; Wang, Cheng; Huang, Ke; Zhang, Hui; Cai, Xiujuan; Chen, Shubin; Pei, Duanqing; Chen, Nansheng; Pan, Guangjin

    2015-01-01

    The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However, it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps, we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in β-hemoglobin gene (HBB) that cause severe β-thalassemia (β-Thal), corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting, and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing, we uncovered seven copy number variations, five small insertions/deletions, and 64 single nucleotide variations (SNVs) in β-Thal iPSCs before the gene targeting step and found a single small copy number variation, 19 insertions/deletions, and 340 single nucleotide variations in the final gene-corrected β-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps, suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting. PMID:25795783

  19. Inter- and Intrafractional Movement-Induced Dose Reduction of Prostate Target Volume in Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Kim, Dongwook; Shin, Dong Ho; Park, Sung Yong Lee, Se Byeong; Kim, Dae Yong; Kim, Joo Young; Pyo, Hong Ryull; Cho, Kwan Ho

    2008-07-15

    Purpose: To quantify proton radiotherapy dose reduction in the prostate target volume because of the three-dimensional movement of the prostate based on an analysis of dose-volume histograms (DVHs). Methods and Materials: Twelve prostate cancer patients underwent scanning in supine position, and a target contour was delineated for each using a proton treatment planning system. To simulate target movement, the contour was displaced from 3 to 15 mm in 3-mm intervals in the superior-to-inferior (SI), inferior-to-superior (IS), anterior-to-posterior (AP), posterior-to-anterior (PA), and left-to-right (LR) directions. Results: For both intra- and interfractional movements, the average coverage index and conformity index of the target were reduced in all directions. For interfractional movements, the magnitude of dose reduction was greater in the LR direction than in the AP, PA, SI. and IS directions. Although the reduction of target dose was proportional to the magnitude of intrafractional movement in all directions, a proportionality between dose reduction and the magnitude of interfractional target movement was clear only in the LR direction. Like the coverage index and conformity index, the equivalent uniform dose and homogeneity index showed similar reductions for both types of target movements. Conclusions: Small target movements can significantly reduce target proton radiotherapy dose during treatment of prostate cancer patients. Attention should be given to interfractional target movement along the longitudinal direction, as image-guided radiotherapy may be ineffective if margins are not sufficient.

  20. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2.

    PubMed

    Peck, Barrie; Chen, Chun-Yuan; Ho, Ka-Kei; Di Fruscia, Paolo; Myatt, Stephen S; Coombes, R Charles; Fuchter, Matthew J; Hsiao, Chwan-Deng; Lam, Eric W-F

    2010-04-01

    SIRT proteins play an important role in the survival and drug resistance of tumor cells, especially during chemotherapy. In this study, we investigated the potency, specificity, and cellular targets of three SIRT inhibitors, Sirtinol, Salermide, and EX527. Cell proliferative and cell cycle analyses showed that Sirtinol and Salermide, but not EX527, were effective in inducing cell death at concentrations of 50 micromol/L or over in MCF-7 cells. Instead, EX527 caused cell cycle arrest at G(1) at comparable concentrations. In vitro SIRT assays using a p53 peptide substrate showed that all three compounds are potent SIRT1/2 inhibitors, with EX527 having the highest inhibitory activity for SIRT1. Computational docking analysis showed that Sirtinol and Salermide have high degrees of selectivity for SIRT1/2, whereas EX527 has high specificity for SIRT1 but not SIRT2. Consistently, Sirtinol and Salermide, but not EX527, treatment resulted in the in vivo acetylation of the SIRT1/2 target p53 and SIRT2 target tubulin in MCF-7 cells, suggesting that EX527 is ineffective in inhibiting SIRT2 and that p53 mediates the cytotoxic function of Sirtinol and Salermide. Studies using breast carcinoma cell lines and p53-deficient mouse fibroblasts confirmed that p53 is essential for the Sirtinol and Salermide-induced apoptosis. Further, we showed using small interfering RNA that silencing both SIRTs, but not SIRT1 and SIRT2 individually, can induce cell death in MCF-7 cells. Together, our results identify the specificity and cellular targets of these novel inhibitors and suggest that SIRT inhibitors require combined targeting of both SIRT1 and SIRT2 to induce p53 acetylation and cell death. Mol Cancer Ther; 9(4); 844-55. (c)2010 AACR.

  1. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    PubMed

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.

  2. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  3. Radiation-induced non-targeted response in vivo: role of the TGFβ-TGFBR1-COX-2 signalling pathway

    PubMed Central

    Chai, Y; Lam, R K K; Calaf, G M; Zhou, H; Amundson, S; Hei, T K

    2013-01-01

    Background: Previous studies from our group and others have shown that cyclooxygenase-2 (COX-2) has an essential role in radiation-induced non-targeted responses and genomic instability in vivo. However, the signalling pathways involved in such effects remain unclear. Methods: A 1 cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays. Nimesulide, a selective COX-2 inhibitor, was given to mice for five consecutive days before irradiation. Changes in transforming growth factor-beta (TGF-β) and TGF-β receptor type-1 (TGFBR1) mediated signalling pathways, in the out of radiation field lung and liver tissues were examined. Results: While the plasma level of cytokines remained unchanged, the expression of TGF-β and its receptors was elevated in non-targeted lung tissues after partial body irradiation. In contrast to the predominant expression of TGF-β in stromal and alveolar cells, but not in bronchial epithelial cells, TGF-β receptors, especially TGFBR1 were significantly elevated in non-targeted bronchial epithelial cells, which is consistent with the induction of COX-2. The different expression levels of TGFBR1 between liver and lung resulted in a tissue specific induction of COX-2 in these two non-targeted tissues. Multiple TGF-β induced signalling pathways were activated in the non-targeted lung tissues. Conclusion: The TGFβ-TGFBR1-COX-2 Signalling Pathway has a critical role in radiation-induced non-targeted response in vivo. PMID:23412109

  4. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  5. In Vivo Space Radiation-Induced Non-Targeted Responses: Late Effects On Molecular Signaling In Mitochondria

    PubMed Central

    Jain, Mohit R.; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M.; Pandey, Badri N.; Li, Hong; Rabin, Bernard M.; Azzam, Edouard I.

    2012-01-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that ‘network analyses’ is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation. PMID:21166651

  6. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  7. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    NASA Astrophysics Data System (ADS)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Chen, L. M.; Li, Y. T.; Fu, C. B.; Rhee, Y. J.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Zhang, K.; Han, B.; Liu, C.; Huang, K.; Ma, Y.; Li, Yi. F.; Xiong, J.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Zhang, J.

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 106) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  8. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity.

    PubMed

    Jamesdaniel, Samson; Rathinam, Rajamani; Neumann, William L

    2016-12-01

    Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4) in cisplatin ototoxicity. Here, we extend these findings to define the critical role of nitrative stress in cisplatin-induced downregulation of LMO4 and its consequent ototoxic effects in UBOC1 cell cultures derived from sensory epithelial cells of the inner ear and in CBA/J mice. Cisplatin treatment increased the levels of nitrotyrosine and active caspase 3 in UBOC1 cells, which was detected by immunocytochemical and flow cytometry analysis, respectively. The cisplatin-induced nitrative stress and apoptosis were attenuated by co-treatment with SRI110, a peroxynitrite decomposition catalyst (PNDC), which also attenuated the cisplatin-induced downregulation of LMO4 in a dose-dependent manner. Furthermore, transient overexpression of LMO4 in UBOC1 cells prevented cisplatin-induced cytotoxicity while repression of LMO4 exacerbated cisplatin-induced cell death, indicating a direct link between LMO4 protein levels and cisplatin ototoxicity. Finally, auditory brainstem responses (ABR) recorded from CBA/J mice indicated that co-treatment with SRI110 mitigated cisplatin-induced hearing loss. Together, these results suggest that cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4, downregulation of LMO4 is a critical determinant in cisplatin-induced ototoxicity, and targeting peroxynitrite could be a promising strategy for mitigating cisplatin-induced hearing loss. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4.

    PubMed

    Chen, Zhigang; Zhang, Shaoli; Guo, Changlei; Li, Jianhua; Sang, Wenfeng

    2017-06-01

    Hypoxia-induced cardiomyocyte apoptosis plays an important role in the development of ischemic heart disease. MicroRNAs (miRNAs or miRs) are emerging as critical regulators of hypoxia-induced cardiomyocyte apoptosis. miR-200c is an miRNA that has been reported to be related to apoptosis in various pathological processes; however, its role in hypoxia‑induced cardiomyocyte apoptosis remains unclear. In the present study, we aimed to investigate the potential role and underlying mechanism of miR-200c in regulating hypoxia‑induced cardiomyocyte apoptosis. We found that miR-200c was significantly upregulated by hypoxia in cardiomyocytes, as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The lactate dehydrogenase, MTT, Annexin V/propidium iodide apoptosis and caspase-3 activity assays showed that downregulation of miR-200c markedly improved cell survival and suppressed the apoptosis of cardiomyocytes in response to hypoxia. Bioinformatics analysis and the dual-luciferase reporter assay demonstrated that miR-200c directly targeted the 3'-untranslated region of GATA-4, an important transcription factor for cardiomyocyte survival. RT-qPCR and western blot analysis showed that suppression of miR-200c significantly increased GATA-4 expression. Furthermore, downregulation of miR-200c upregulated the expression of the anti-apoptotic gene Bcl-2. However, the protective effects against hypoxia induced by the downregulation of miR‑200c were significantly abolished by GATA-4 knockdown. Taken together, our results suggest that downregulation of miR-200c protects cardiomyocytes from hypoxia-induced apoptosis by targeting GATA-4, providing a potential therapeutic molecular target for the treatment of ischemic heart disease.

  10. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy.

    PubMed

    Benbow, Sarah J; Wozniak, Krystyna M; Kulesh, Bridget; Savage, April; Slusher, Barbara S; Littlefield, Bruce A; Jordan, Mary Ann; Wilson, Leslie; Feinstein, Stuart C

    2017-04-08

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.

  11. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  12. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  13. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects.

    PubMed

    Morgan, William F; Sowa, Marianne B

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (>1 Gy), at low doses (<100 mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  14. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy-lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a "double-edged sword" for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that "conventional" agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing

  15. Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias.

    PubMed

    Stanic, Jennifer; Mellone, Manuela; Napolitano, Francesco; Racca, Claudia; Zianni, Elisa; Minocci, Daiana; Ghiglieri, Veronica; Thiolat, Marie-Laure; Li, Qin; Longhi, Annalisa; De Rosa, Arianna; Picconi, Barbara; Bezard, Erwan; Calabresi, Paolo; Di Luca, Monica; Usiello, Alessandro; Gardoni, Fabrizio

    2017-08-18

    N-methyl-d-aspartate receptor (NMDAR) subunit composition strictly commands receptor function and pharmacological responses. Changes in NMDAR subunit composition have been documented in brain disorders such as Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesias (LIDs), where an increase of NMDAR GluN2A/GluN2B subunit ratio at striatal synapses has been observed. A therapeutic approach aimed at rebalancing NMDAR synaptic composition represents a valuable strategy for PD and LIDs. To this, the comprehension of the molecular mechanisms regulating the synaptic localization of different NMDAR subtypes is required. We have recently demonstrated that Rabphilin 3A (Rph3A) is a new binding partner of NMDARs containing the GluN2A subunit and that it plays a crucial function in the synaptic stabilization of these receptors. Considering that protein-protein interactions govern the synaptic retention of NMDARs, the purpose of this work was to analyse the role of Rph3A and Rph3A/NMDAR complex in PD and LIDs, and to modulate Rph3A/GluN2A interaction to counteract the aberrant motor behaviour associated to chronic L-DOPA administration. Thus, an array of biochemical, immunohistochemical and pharmacological tools together with electron microscopy were applied in this study. Here we found that Rph3A is localized at the striatal postsynaptic density where it interacts with GluN2A. Notably, Rph3A expression at the synapse and its interaction with GluN2A-containing NMDARs were increased in parkinsonian rats displaying a dyskinetic profile. Acute treatment of dyskinetic animals with a cell-permeable peptide able to interfere with Rph3A/GluN2A binding significantly reduced their abnormal motor behaviour. Altogether, our findings indicate that Rph3A activity is linked to the aberrant synaptic localization of GluN2A-expressing NMDARs characterizing LIDs. Thus, we suggest that Rph3A/GluN2A complex could represent an innovative therapeutic target for those pathological

  16. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    PubMed Central

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  17. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis

    PubMed Central

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-01-01

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell–cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis. PMID:28209985

  18. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis.

    PubMed

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook