Science.gov

Sample records for induces targeted rewiring

  1. ATR inhibition rewires cellular signaling networks induced by replication stress.

    PubMed

    Wagner, Sebastian A; Oehler, Hannah; Voigt, Andrea; Dalic, Denis; Freiwald, Anja; Serve, Hubert; Beli, Petra

    2016-02-01

    The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA-DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3-related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS-based proteomics to define the cellular signaling after nucleotide depletion-induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR-dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM-driven double-strand break repair signaling.

  2. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs.

    PubMed

    André, Fanny; Trinh, Anne; Balayssac, Stéphane; Maboudou, Patrice; Dekiouk, Salim; Malet-Martino, Myriam; Quesnel, Bruno; Idziorek, Thierry; Kluza, Jérome; Marchetti, Philippe

    2017-04-01

    Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. (1)H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.

  3. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    PubMed Central

    Childers, Delma S.; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A. R.; Lenardon, Megan D.; Ballou, Elizabeth R.; MacCallum, Donna M.; Brown, Alistair J. P.

    2016-01-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is “Crabtree positive”, displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for

  4. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence.

    PubMed

    Childers, Delma S; Raziunaite, Ingrida; Mol Avelar, Gabriela; Mackie, Joanna; Budge, Susan; Stead, David; Gow, Neil A R; Lenardon, Megan D; Ballou, Elizabeth R; MacCallum, Donna M; Brown, Alistair J P

    2016-04-01

    Efficient carbon assimilation is critical for microbial growth and pathogenesis. The environmental yeast Saccharomyces cerevisiae is "Crabtree positive", displaying a rapid metabolic switch from the assimilation of alternative carbon sources to sugars. Following exposure to sugars, this switch is mediated by the transcriptional repression of genes (carbon catabolite repression) and the turnover (catabolite inactivation) of enzymes involved in the assimilation of alternative carbon sources. The pathogenic yeast Candida albicans is Crabtree negative. It has retained carbon catabolite repression mechanisms, but has undergone posttranscriptional rewiring such that gluconeogenic and glyoxylate cycle enzymes are not subject to ubiquitin-mediated catabolite inactivation. Consequently, when glucose becomes available, C. albicans can continue to assimilate alternative carbon sources alongside the glucose. We show that this metabolic flexibility promotes host colonization and virulence. The glyoxylate cycle enzyme isocitrate lyase (CaIcl1) was rendered sensitive to ubiquitin-mediated catabolite inactivation in C. albicans by addition of a ubiquitination site. This mutation, which inhibits lactate assimilation in the presence of glucose, reduces the ability of C. albicans cells to withstand macrophage killing, colonize the gastrointestinal tract and cause systemic infections in mice. Interestingly, most S. cerevisiae clinical isolates we examined (67%) have acquired the ability to assimilate lactate in the presence of glucose (i.e. they have become Crabtree negative). These S. cerevisiae strains are more resistant to macrophage killing than Crabtree positive clinical isolates. Moreover, Crabtree negative S. cerevisiae mutants that lack Gid8, a key component of the Glucose-Induced Degradation complex, are more resistant to macrophage killing and display increased virulence in immunocompromised mice. Thus, while Crabtree positivity might impart a fitness advantage for yeasts in

  5. Roles of inhibitory neurons in rewiring-induced synchronization in pulse-coupled neural networks.

    PubMed

    Kanamaru, Takashi; Aihara, Kazuyuki

    2010-05-01

    The roles of inhibitory neurons in synchronous firing are examined in a network of excitatory and inhibitory neurons with Watts and Strogatz's rewiring. By examining the persistence of the synchronous firing that exists in the random network, it was found that there is a probability of rewiring at which a transition between the synchronous state and the asynchronous state takes place, and the dynamics of the inhibitory neurons play an important role in determining this probability.

  6. Enriched and Deprived Sensory Experience Induces Structural Changes and Rewires Connectivity during the Postnatal Development of the Brain

    PubMed Central

    Bengoetxea, Harkaitz; Ortuzar, Naiara; Bulnes, Susana; Rico-Barrio, Irantzu; Lafuente, José Vicente; Argandoña, Enrike G.

    2012-01-01

    During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation. PMID:22848849

  7. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.

    PubMed

    Sandai, Doblin; Yin, Zhikang; Selway, Laura; Stead, David; Walker, Janet; Leach, Michelle D; Bohovych, Iryna; Ene, Iuliana V; Kastora, Stavroula; Budge, Susan; Munro, Carol A; Odds, Frank C; Gow, Neil A R; Brown, Alistair J P

    2012-12-11

    Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the assimilation of carboxylic and fatty acids are not degraded in response to glucose. However, when expressed in C. albicans, S. cerevisiae Icl1 (ScIcl1) is subjected to glucose-accelerated degradation, indicating that like S. cerevisiae, this pathogen has the molecular apparatus required to execute ubiquitin-dependent catabolite inactivation. C. albicans Icl1 (CaIcl1) lacks analogous ubiquitination sites and is stable under these conditions, but the addition of a ubiquitination site programs glucose-accelerated degradation of CaIcl1. Also, catabolite inactivation is slowed in C. albicans ubi4 cells. Ubiquitination sites are present in gluconeogenic and glyoxylate cycle enzymes from S. cerevisiae but absent from their C. albicans homologues. We conclude that evolutionary rewiring of ubiquitination targets has meant that following glucose exposure, C. albicans retains key metabolic functions, allowing it to continue to assimilate alternative carbon sources. This metabolic flexibility may be critical during infection, facilitating the rapid colonization of dynamic host niches containing complex arrays of nutrients. IMPORTANCE Pathogenic microbes must assimilate a range of carbon sources to grow and colonize their hosts. Current views about carbon assimilation in the

  8. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury.

    PubMed

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-04-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery of motor function following brain injury. After destruction of unilateral sensorimotor cortex, intact-side corticospinal tract formed sprouting fibres into the specific lamina of the denervated side of the cervical spinal cord, and made new contact with two types of spinal interneurons-segmental and propriospinal neurons. Anatomical and electrophysiological analyses revealed that this rewired corticospinal tract functionally linked to motor neurons and forelimb muscles. This newly formed corticospinal circuit was necessary for motor recovery, because transection of the circuit led to impairment of recovering forelimb function. Knockdown of brain-derived neurotrophic factor in the spinal neurons or its receptor in the intact corticospinal neurons diminished fibre sprouting of the corticospinal tract. Our findings establish the anatomical, functional and molecular basis for the intrinsic capacity of neurons to form compensatory neural network following injury.

  9. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-08-15

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken

  10. Metabolic rewiring in melanoma

    PubMed Central

    Ratnikov, Boris I.; Scott, David A.; Osterman, Andrei L.; Smith, Jeffrey W.; Ronai, Ze’ev A.

    2016-01-01

    Oncogene-driven metabolic rewiring is an adaptation to low nutrient and oxygen conditions in the tumor microenvironment that enables cancer cells of diverse origin to hyperproliferate. Aerobic glycolysis and enhanced reliance on glutamine utilization are prime examples of such rewiring. However, tissue of origin as well as specific genetic and epigenetic changes determines gene expression profiles underlying these metabolic alterations in specific cancers. In melanoma, activation of the MAPK pathway driven by mutant BRAF or NRAS is a primary cause of malignant transformation. Activity of the MAPK pathway, as well as other factors, such as HIF1α, Myc and MITF, are among those that control the balance between non-oxidative and oxidative branches of central carbon metabolism. Here, we discuss the nature of metabolic alterations that underlie melanoma development and affect its response to therapy. PMID:27270434

  11. Bypass rewiring and robustness of complex networks

    NASA Astrophysics Data System (ADS)

    Park, Junsang; Hahn, Sang Geun

    2016-08-01

    A concept of bypass rewiring is introduced, and random bypass rewiring is analytically and numerically investigated with simulations. Our results show that bypass rewiring makes networks robust against removal of nodes including random failures and attacks. In particular, random bypass rewiring connects all nodes except the removed nodes on an even degree infinite network and makes the percolation threshold 0 for arbitrary occupation probabilities. In our example, the even degree network is more robust than the original network with random bypass rewiring, while the original network is more robust than the even degree networks without random bypass. We propose a greedy bypass rewiring algorithm which guarantees the maximum size of the largest component at each step, assuming which node will be removed next is unknown. The simulation result shows that the greedy bypass rewiring algorithm improves the robustness of the autonomous system of the Internet under attacks more than random bypass rewiring.

  12. Robust criticality of an Ising model on rewired directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  13. Robust criticality of an Ising model on rewired directed networks.

    PubMed

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  14. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  15. Pneumaplasticity: Rewiring the Human Soul.

    PubMed

    Cherwien, Karen Martinson

    2016-06-01

    We human beings continue to wrestle with our identities as spiritual people, both individually and collectively. This article proposes a synthesized perspective on human spirituality, introducing the concept of pneumaplasticity, which allows us to move beyond the spiritual limits common to several major faith traditions to see how our spiritual selves can adapt and rewire to facilitate meaning-making and continued discernment of our ever-developing senses of identity and meaning. This concept is of particular value to professionals providing spiritual care in any setting.

  16. Can rewiring strategy control the epidemic spreading?

    NASA Astrophysics Data System (ADS)

    Dong, Chao; Yin, Qiuju; Liu, Wenyang; Yan, Zhijun; Shi, Tianyu

    2015-11-01

    Relation existed in the social contact network can affect individuals' behaviors greatly. Considering the diversity of relation intimacy among network nodes, an epidemic propagation model is proposed by incorporating the link-breaking threshold, which is normally neglected in the rewiring strategy. The impact of rewiring strategy on the epidemic spreading in the weighted adaptive network is explored. The results show that the rewiring strategy cannot always control the epidemic prevalence, especially when the link-breaking threshold is low. Meanwhile, as well as strong links, weak links also play a significant role on epidemic spreading.

  17. Engineering microbial phenotypes through rewiring of genetic networks.

    PubMed

    Windram, Oliver P F; Rodrigues, Rui T L; Lee, Sangjin; Haines, Matthew; Bayer, Travis S

    2017-03-21

    The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.

  18. Rapid Mechanically Controlled Rewiring of Neuronal Circuits

    PubMed Central

    Magdesian, Margaret H.; Lopez-Ayon, G. Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J.; Fournier, Alyson E.; De Koninck, Yves

    2016-01-01

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. SIGNIFICANCE STATEMENT Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain–machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  19. Efficient rewirings for enhancing synchronizability of dynamical networks.

    PubMed

    Rad, Ali Ajdari; Jalili, Mahdi; Hasler, Martin

    2008-09-01

    In this paper, we present an algorithm for optimizing synchronizability of complex dynamical networks. Starting with an undirected and unweighted network, we end up with an undirected and unweighted network with the same number of nodes and edges having enhanced synchronizability. To this end, based on some network properties, rewirings, i.e., eliminating an edge and creating a new edge elsewhere, are performed iteratively avoiding always self-loops and multiple edges between the same nodes. We show that the method is able to enhance the synchronizability of networks of any size and topological properties in a small number of steps that scales with the network size. For numerical simulations, an optimization algorithm based on simulated annealing is used. Also, the evolution of different topological properties of the network such as distribution of node degree, node and edge betweenness centrality is tracked with the iteration steps. We use networks such as scale-free, Strogatz-Watts and random to start with and we show that regardless of the initial network, the final optimized network becomes homogeneous. In other words, in the network with high synchronizability, parameters, such as, degree, shortest distance, node, and edge betweenness centralities are almost homogeneously distributed. Also, parameters, such as, maximum node and edge betweenness centralities are small for the rewired network. Although we take the eigenratio of the Laplacian as the target function for optimization, we show that it is also possible to choose other appropriate target functions exhibiting almost the same performance. Furthermore, we show that even if the network is optimized taking into account another interpretation of synchronizability, i.e., synchronization cost, the optimal network has the same synchronization properties. Indeed, in networks with optimized synchronizability, different interpretations of synchronizability coincide. The optimized networks are Ramanujan graphs

  20. ChiNet uncovers rewired rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional differential gene expression analysis is insufficient to dissect altered gene interactions for adapted transcription regulatory networks that impact downstream molecular responses. Here we present comparative chi-square network analysis (ChiNet), a computational method, to uncover rewir...

  1. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans.

    PubMed

    Shaiwale, Nayana S; Basu, Bhakti; Deobagkar, Deepti D; Deobagkar, Dileep N; Apte, Shree K

    2015-08-03

    The protein encoded by DR_0643 gene from Deinococcus radiodurans was shown to be an active N-6 adenine-specific DNA methyltransferase (Dam). Deletion of corresponding protein reduced adenine methylation in the genome by 60% and resulted in slow-growth phenotype. Proteomic changes induced by DNA adenine hypomethylation were mapped by two-dimensional protein electrophoresis coupled with mass spectrometry. As compared to wild type D. radiodurans cells, at least 54 proteins were differentially expressed in Δdam mutant. Among these, 39 metabolic enzymes were differentially expressed in Δdam mutant. The most prominent change was DNA adenine hypomethylation induced de-repression of pyruvate dehydrogenase complex, E1 component (aceE) gene resulting in 10 fold increase in the abundance of corresponding protein. The observed differential expression profile of metabolic enzymes included increased abundance of enzymes involved in fatty acid and amino acid degradation to replenish acetyl Co-A and TCA cycle intermediates and diversion of phosphoenolpyruvate and pyruvate into amino acid biosynthesis, a metabolic rewiring attempt by Δdam mutant to restore energy generation via glycolysis-TCA cycle axis. This is the first report of DNA adenine hypomethylation mediated rewiring of metabolic pathways in prokaryotes.

  2. Drought rewires the cores of food webs

    NASA Astrophysics Data System (ADS)

    Lu, Xueke; Gray, Clare; Brown, Lee E.; Ledger, Mark E.; Milner, Alexander M.; Mondragón, Raúl J.; Woodward, Guy; Ma, Athen

    2016-09-01

    Droughts are intensifying across the globe, with potentially devastating implications for freshwater ecosystems. We used new network science approaches to investigate drought impacts on stream food webs and explored potential consequences for web robustness to future perturbations. The substructure of the webs was characterized by a core of richly connected species surrounded by poorly connected peripheral species. Although drought caused the partial collapse of the food webs, the loss of the most extinction-prone peripheral species triggered a substantial rewiring of interactions within the networks’ cores. These shifts in species interactions in the core conserved the underlying core/periphery substructure and stability of the drought-impacted webs. When we subsequently perturbed the webs by simulating species loss in silico, the rewired drought webs were as robust as the larger, undisturbed webs. Our research unearths previously unknown compensatory dynamics arising from within the core that could underpin food web stability in the face of environmental perturbations.

  3. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  4. Cortical rewiring and information storage

    NASA Astrophysics Data System (ADS)

    Chklovskii, D. B.; Mel, B. W.; Svoboda, K.

    2004-10-01

    Current thinking about long-term memory in the cortex is focused on changes in the strengths of connections between neurons. But ongoing structural plasticity in the adult brain, including synapse formation/elimination and remodelling of axons and dendrites, suggests that memory could also depend on learning-induced changes in the cortical `wiring diagram'. Given that the cortex is sparsely connected, wiring plasticity could provide a substantial boost in storage capacity, although at a cost of more elaborate biological machinery and slower learning.

  5. Brain 'Rewires' to Work Around Early-Life Blindness

    MedlinePlus

    ... html Brain 'Rewires' to Work Around Early-Life Blindness These differences appear to boost hearing, smell and ... 22, 2017 WEDNESDAY, March 22, 2017 (HealthDay News) -- Blindness at an early age triggers the brain to ...

  6. Singularity in polarization: rewiring yeast cells to make two buds.

    PubMed

    Howell, Audrey S; Savage, Natasha S; Johnson, Sam A; Bose, Indrani; Wagner, Allison W; Zyla, Trevin R; Nijhout, H Frederik; Reed, Michael C; Goryachev, Andrew B; Lew, Daniel J

    2009-11-13

    For budding yeast to ensure formation of only one bud, cells must polarize toward one, and only one, site. Polarity establishment involves the Rho family GTPase Cdc42, which concentrates at polarization sites via a positive feedback loop. To assess whether singularity is linked to the specific Cdc42 feedback loop, we disabled the yeast cell's endogenous amplification mechanism and synthetically rewired the cells to employ a different positive feedback loop. Rewired cells violated singularity, occasionally making two buds. Even cells that made only one bud sometimes initiated two clusters of Cdc42, but then one cluster became dominant. Mathematical modeling indicated that, given sufficient time, competition between clusters would promote singularity. In rewired cells, competition occurred slowly and sometimes failed to develop a single "winning" cluster before budding. Slowing competition in normal cells also allowed occasional formation of two buds, suggesting that singularity is enforced by rapid competition between Cdc42 clusters.

  7. Single-neuron NMDA receptor phenotype influences neuronal rewiring and reintegration following traumatic injury.

    PubMed

    Patel, Tapan P; Ventre, Scott C; Geddes-Klein, Donna; Singh, Pallab K; Meaney, David F

    2014-03-19

    Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca(2+)]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca(2+)]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg(2+) block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury.

  8. A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways

    PubMed Central

    Morton, Stephen W.; Lee, Michael J.; Deng, Zhou J.; Dreaden, Erik C.; Siouve, Elise; Shopsowitz, Kevin E.; Shah, Nisarg J.; Yaffe, Michael B.; Hammond, Paula T.

    2014-01-01

    Exposure to the EGFR (epidermal growth factor receptor) inhibitor erlotinib promotes the dynamic rewiring of apoptotic pathways, which sensitizes cells within a specific period to subsequent exposure to the DNA-damaging agent doxorubicin. A critical challenge for translating this therapeutic network rewiring into clinical practice is the design of optimal drug delivery systems. We report the generation of a nanoparticle delivery vehicle that contained more than one therapeutic agent and produced a controlled sequence of drug release. Liposomes, representing the first clinically approved nanomedicine systems, are well-characterized, simple, and versatile platforms for the manufacture of functional and tunable drug carriers. Using the hydrophobic and hydrophilic compartments of liposomes, we effectively incorporated both hydrophobic (erlotinib) and hydrophilic (doxorubicin) small molecules, through which we achieved the desired time sequence of drug release. We also coated the liposomes with folate to facilitate targeting to cancer cells. When compared to the time-staggered application of individual drugs, staggered release from tumor-targeted single liposomal particles enhanced dynamic rewiring of apoptotic signaling pathways, resulting in improved tumor cell killing in culture and tumor shrinkage in animal models. PMID:24825919

  9. Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[S

    PubMed Central

    Jun, Hee-jin; Lee, Ji Hae; Kim, Jiyoung; Jia, Yaoyao; Kim, Kyoung Heon; Hwang, Kwang Yeon; Yun, Eun Ju; Do, Kyoung-Rok; Lee, Sung-Joon

    2014-01-01

    We investigated the hypotriglyceridemic mechanism of action of linalool, an aromatic monoterpene present in teas and fragrant herbs. Reporter gene and time-resolved fluorescence resonance energy transfer assays demonstrated that linalool is a direct ligand of PPARα. Linalool stimulation reduced cellular lipid accumulation regulating PPARα-responsive genes and significantly induced FA oxidation, and its effects were markedly attenuated by silencing PPARα expression. In mice, the oral administration of linalool for 3 weeks reduced plasma TG concentrations in Western-diet-fed C57BL/6J mice (31%, P < 0.05) and human apo E2 mice (50%, P < 0.05) and regulated hepatic PPARα target genes. However, no such effects were seen in PPARα-deficient mice. Transcriptome profiling revealed that linalool stimulation rewired global gene expression in lipid-loaded hepatocytes and that the effects of 1 mM linalool were comparable to those of 0.1 mM fenofibrate. Metabolomic analysis of the mouse plasma revealed that the global metabolite profiles were significantly distinguishable between linalool-fed mice and controls. Notably, the concentrations of saturated FAs were significantly reduced in linalool-fed mice. These findings suggest that the appropriate intake of a natural aromatic compound could exert beneficial metabolic effects by regulating a cellular nutrient sensor. PMID:24752549

  10. Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation

    PubMed Central

    Babazadeh, Roja; Furukawa, Takako; Hohmann, Stefan; Furukawa, Kentaro

    2014-01-01

    Mitogen-activated protein kinases (MAPKs) have a number of targets which they regulate at transcriptional and post-translational levels to mediate specific responses. The yeast Hog1 MAPK is essential for cell survival under hyperosmotic conditions and it plays multiple roles in gene expression, metabolic regulation, signal fidelity and cell cycle regulation. Here we describe essential and non-essential roles of Hog1 using engineered yeast cells in which osmoadaptation was reconstituted in a Hog1-independent manner. We rewired Hog1-dependent osmotic stress-induced gene expression under the control of Fus3/Kss1 MAPKs, which are activated upon osmostress via crosstalk in hog1Δ cells. This approach revealed that osmotic up-regulation of only two Hog1-dependent glycerol biosynthesis genes, GPD1 and GPP2, is sufficient for successful osmoadaptation. Moreover, some of the previously described Hog1-dependent mechanisms appeared to be dispensable for osmoadaptation in the engineered cells. These results suggest that the number of essential MAPK functions may be significantly smaller than anticipated and that knockout approaches may lead to over-interpretation of phenotypic data. PMID:24732094

  11. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene

    SciTech Connect

    Ba, Qian; Li, Junyang; Huang, Chao; Li, Jingquan; Chu, Ruiai; Wu, Yongning; Wang, Hui

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.

  12. Bacterial evolution: rewiring modules to get in shape.

    PubMed

    Persat, Alexandre; Gitai, Zemer

    2014-06-02

    Bacterial species take on a wide variety of shapes, but the mechanisms by which specific shapes evolve have remained poorly understood. A recent study demonstrates that two Asticcacaulis species repurposed an ancestral regulatory protein to rewire the modules of stalk regulation, localization, and synthesis, thereby generating new shapes.

  13. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  14. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  15. Targeted Gene Silencing to Induce Permanent Sterility

    PubMed Central

    Dissen, Gregory A.; Lomniczi, Alejandro; Boudreau, Ryan L.; Chen, Yong Hong; Davidson, Beverly L.; Ojeda, Sergio R.

    2012-01-01

    Contents A nonsurgical method to induce sterility would be a useful tool to control feral populations of animals. Our laboratories have experience with approaches aimed at targeting brain cells in vivo with vehicles that deliver a payload of either inhibitory RNAs or genes intended to correct cellular dysfunction. A combination/modification of these methods may provide a useful framework for the design of approaches that can be used to sterilize cats and dogs. For this approach to succeed it has to meet several conditions: It needs to target a gene essential for fertility. It must involve a method that can selectively silence the gene of interest. It also needs to deliver the silencing agent via a minimally invasive method. Finally, the silencing effect needs to be sustained for many years, so that expansion of the targeted population can be effectively prevented. In this article we discuss this subject and provide a succinct account of our previous experience with: a) molecular reagents able to disrupt reproductive cyclicity when delivered to regions of the brain involved in the control of reproduction, and b) molecular reagents able to ameliorate neuronal disease when delivered systemically using a novel approach of gene therapy. PMID:22827375

  16. Exact solution for the time evolution of network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.; Plato, A. D. K.

    2007-05-01

    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean-field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature, including examples of urn, backgammon, and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a minority game also show features described by our model.

  17. Recurrent rewiring and emergence of RNA regulatory networks.

    PubMed

    Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin

    2017-04-04

    Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.

  18. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability

    NASA Astrophysics Data System (ADS)

    Wang, Qingyun; Duan, Zhisheng; Perc, Matjaž; Chen, Guanrong

    2008-09-01

    Synchronization transitions are investigated in small-world neuronal networks that are locally modeled by the Rulkov map with additive spatiotemporal noise. In particular, we investigate the impact of different information transmission delays and rewiring probability. We show that short delays induce zigzag fronts of excitations, whereas intermediate delays can further detriment synchrony in the network due to a dynamic clustering anti-phase synchronization transition. Detailed investigations reveal, however, that for longer delay lengths the synchrony of excitations in the network can again be enhanced due to the emergence of in-phase synchronization. In addition, we show that an appropriate small-world topology can restore synchronized behavior provided information transmission delays are either short or long. On the other hand, within the intermediate delay region, which is characterized by anti-phase synchronization and clustering, differences in the network topology do not notably affect the synchrony of neuronal activity.

  19. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID

  20. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  1. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons

    PubMed Central

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed. PMID:28129401

  2. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    PubMed

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  3. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  4. Target induced, turbulence-modulated speckle noise

    SciTech Connect

    Scharlemann, E.T.

    1994-07-01

    Many papers on DIAL for remote sensing have been devoted to the averaging properties of speckle noise from diffuse-target returns; i.e., how many (N) return pulses can be averaged before the I/N reduction in signal variance expected from uncorrelated noise fails. An apparent limit of about 100 pulses or fewer has been the most important factor in determining the accuracy of DIAL measurements using diffusely-scattering targets in the field. The relevant literature is briefly reviewed, and various explanations for the apparent limit are summarized. Recent speckle experiments at LLNL`s Site 300 may suggest that the limit of {approximately}100 pulses is not fundamental. The speckle experiments very clearly show that the limit on signal averaging in this data was the result of long-term ({approximately}1 minute) drifts in the signal returns rather than of any more subtle statistical properties. The long-term drifts are completely removed to the useful limits of the data sets by working with the log-ratio of adjacent pulses. This procedure is analogous (but not identical) to processing the log-ratios of the powers at different wavelengths in a multi-line DIAL system. We think the Site 300 data therefore suggests that as long as the laser system is constructed to ensure that any long-term drifts are identical among the transmitted wavelengths, the log-ratio of the individual returns will provide a data set that does usefully average over a large number of pulses.

  5. Drug target validation: Lethal infection blocked by inducible peptide

    NASA Astrophysics Data System (ADS)

    Tao, Jianshi; Wendler, Philip; Connelly, Gene; Lim, Audrey; Zhang, Jiansu; King, Megan; Li, Tongchuan; Silverman, Jared A.; Schimmel, Paul R.; Tally, Francis P.

    2000-01-01

    Genome projects are generating large numbers of potential new targets for drug discovery. One challenge is target validation, proving the usefulness of a specific target in an animal model. In this paper, we demonstrate a new approach to validation and assay development. We selected in vitro specific peptide binders to a potential pathogen target. By inducing the expression of a selected peptide in pathogen cells causing a lethal infection in mice, the animals were rescued. Thus, by combining in vitro selection methods for peptide binders with inducible expression in animals, the target's validity was rigorously tested and demonstrated. This approach to validation can be generalized and has the potential to become a valuable tool in the drug discovery process.

  6. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    PubMed

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  7. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  8. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    PubMed Central

    Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune

    2015-01-01

    Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441

  9. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    PubMed Central

    Pomares, Helena; Palmeri, Claudia M; Iglesias-Serret, Daniel; Moncunill-Massaguer, Cristina; Saura-Esteller, José; Núñez-Vázquez, Sonia; Gamundi, Enric; Arnan, Montserrat; Preciado, Sara; Albericio, Fernando; Lavilla, Rodolfo; Pons, Gabriel; González-Barca, Eva M

    2016-01-01

    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AML. PMID:27542247

  10. Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks

    NASA Astrophysics Data System (ADS)

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2016-11-01

    In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.

  11. Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks

    PubMed Central

    Khoo, Tommy; Fu, Feng; Pauls, Scott

    2016-01-01

    In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world. PMID:27824149

  12. Key tissue targets responsible for anthrax-toxin-induced lethality.

    PubMed

    Liu, Shihui; Zhang, Yi; Moayeri, Mahtab; Liu, Jie; Crown, Devorah; Fattah, Rasem J; Wein, Alexander N; Yu, Zu-Xi; Finkel, Toren; Leppla, Stephen H

    2013-09-05

    Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.

  13. Different evolutionary modifications as a guide to rewire two-component systems.

    PubMed

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.

  14. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  15. Inducible Mouse Models for Cancer Drug Target Validation

    PubMed Central

    Jeong, Joseph H.

    2016-01-01

    Genetically-engineered mouse (GEM) models have provided significant contributions to our understanding of cancer biology and developing anticancer therapeutic strategies. The development of GEM models that faithfully recapitulate histopathological and clinical features of human cancers is one of the most pressing needs to successfully conquer cancer. In particular, doxycycline-inducible transgenic mouse models allow us to regulate (induce or suppress) the expression of a specific gene of interest within a specific tissue in a temporal manner. Leveraging this mouse model system, we can determine whether the transgene expression is required for tumor maintenance, thereby validating the transgene product as a target for anticancer drug development (target validation study). In addition, there is always a risk of tumor recurrence with cancer therapy. By analyzing recurrent tumors derived from fully regressed tumors after turning off transgene expression in tumor-bearing mice, we can gain an insight into the molecular basis of how tumor cells escape from their dependence on the transgene (tumor recurrence study). Results from such studies will ultimately allow us to predict therapeutic responses in clinical settings and develop new therapeutic strategies against recurrent tumors. The aim of this review is to highlight the significance of doxycycline-inducible transgenic mouse models in studying target validation and tumor recurrence. PMID:28053958

  16. Tissue-specific signaling networks rewired by major somatic mutations in human cancer revealed by proteome-wide discovery.

    PubMed

    Zhao, Junfei; Cheng, Feixiong; Zhao, Zhongming

    2017-03-31

    Massive somatic mutations discovered by large cancer genome sequencing projects provide unprecedented opportunities in the development of precision oncology. However, deep understanding of functional consequences of somatic mutations and identifying actionable mutations and the related drug responses currently remain formidable challenges. Dysfunction of protein post-translational modification plays critical roles in tumorigenesis and drug responses. In this study, we proposed a novel computational oncoproteomics approach, named kinome-wide network module for cancer pharmacogenomics (KNMPx), for identifying actionable mutations that rewired signaling networks and further characterized tumorigenesis and anticancer drug responses. Specifically, we integrated 746,631 missense mutations in 4,997 tumor samples across 16 major cancer types/subtypes from The Cancer Genome Atlas into over 170,000 carefully curated non-redundant phosphorylation sites covering 18,610 proteins. We found 47 mutated proteins (e.g., ERBB2, TP53, and CTNNB1) that had enriched missense mutations at their phosphorylation sites in pan-cancer analysis. In addition, tissue-specific kinase-substrate interaction modules altered by somatic mutations identified by KNMPx were significantly associated with patient survival. We further reported a kinome-wide landscape of pharmacogenomic interactions by incorporating somatic mutation-rewired signaling networks in 1,001 cancer cell lines via KNMPx. Interestingly, we found that cell lines could highly reproduce oncogenic phosphorylation site mutations identified in primary tumors, supporting the confidence in their associations with sensitivity/resistance of inhibitors targeting EGF, MAPK, PI3K, mTOR, and Wnt signaling pathways. In summary, this systematic oncoproteomics analysis of kinome phosphorylation site mutations illustrates new capabilities to speed the development of precision oncology.

  17. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  18. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  19. β-catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy

    PubMed Central

    Banerji, Christopher R. S.; Knopp, Paul; Moyle, Louise A.; Severini, Simone; Orrell, Richard W.; Teschendorff, Andrew E.; Zammit, Peter S.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development. PMID:25551153

  20. β-Catenin is central to DUX4-driven network rewiring in facioscapulohumeral muscular dystrophy.

    PubMed

    Banerji, Christopher R S; Knopp, Paul; Moyle, Louise A; Severini, Simone; Orrell, Richard W; Teschendorff, Andrew E; Zammit, Peter S

    2015-01-06

    Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disease, characterized by skeletal muscle weakness and wasting. Genetically, FSHD is characterized by contraction or hypomethylation of repeat D4Z4 units on chromosome 4, which causes aberrant expression of the transcription factor DUX4 from the last repeat. Many genes have been implicated in FSHD pathophysiology, but an integrated molecular model is currently lacking. We developed a novel differential network methodology, Interactome Sparsification and Rewiring (InSpiRe), which detects network rewiring between phenotypes by integrating gene expression data with known protein interactions. Using InSpiRe, we performed a meta-analysis of multiple microarray datasets from FSHD muscle biopsies, then removed secondary rewiring using non-FSHD datasets, to construct a unified network of rewired interactions. Our analysis identified β-catenin as the main coordinator of FSHD-associated protein interaction signalling, with pathways including canonical Wnt, HIF1-α and TNF-α clearly perturbed. To detect transcriptional changes directly elicited by DUX4, gene expression profiling was performed using microarrays on murine myoblasts. This revealed that DUX4 significantly modified expression of the genes in our FSHD network. Furthermore, we experimentally confirmed that Wnt/β-catenin signalling is affected by DUX4 in murine myoblasts. Thus, we provide the first unified molecular map of FSHD signalling, capable of uncovering pathomechanisms and guiding therapeutic development.

  1. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response

    PubMed Central

    Lukas, Simone; Zenger, Marion; Reitberger, Tobias; Danzer, Daniela; Übner, Theresa; Munday, Diane C.; Paulus, Christina

    2016-01-01

    The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. PMID:27387064

  2. Self-induced thermal distortion effects on target image quality.

    PubMed

    Gebhardt, F G

    1972-06-01

    Experimental results are reported that show the effects of the self-induced thermal lens due to a high power laser beam on imaging or tracking systems viewing along the same propagation path. The thermal distortion effects of a wind are simulated with a low power ( less, similar 3-W) CO(2) laser beam propagating through a cell of liquid CS(2) moving across the beam. The resulting image distortion includes a warping effect analogous to the deflection of the CO(2) beam, together with a pronounced demagnification of the central portion of the object. An active optical tracker is simulated with a He-Ne laser beam propagating collinearly with the CO(2) beam. The He-Ne beam pattern returned from a specular target is distorted and sharply confined to the outline of the crescent shaped CO(2) beam. Simple ray optics models are used to provide qualitative explanations for the experimental results.

  3. Intestinal inflammation targets cancer-inducing activity of the microbiota

    PubMed Central

    Arthur, Janelle C.; Perez-Chanona, Ernesto; Mühlbauer, Marcus; Tomkovich, Sarah; Uronis, Joshua M.; Fan, Ting-Jia; Campbell, Barry J.; Abujamel, Turki; Dogan, Belgin; Rogers, Arlin B.; Rhodes, Jonathan M.; Stintzi, Alain; Simpson, Kenneth W.; Hansen, Jonathan J.; Keku, Temitope O.; Fodor, Anthony A.; Jobin, Christian

    2013-01-01

    Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here we identify the intestinal microbiota as a target of inflammation that impacts the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10−/−) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10−/− mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10−/− mice, without altering intestinal inflammation. Mucosa-associated pks+ E. coli were found in a significantly high percentage of inflammatory bowel disease (IBD) and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities. PMID:22903521

  4. TGF-β signal rewiring sustains epithelial-mesenchymal transition of circulating tumor cells in prostate cancer xenograft hosts

    PubMed Central

    Huang, Guangcun; Osmulski, Pawel A.; Bouamar, Hakim; Mahalingam, Devalingam; Lin, Chun-Lin; Liss, Michael A.; Kumar, Addanki Pratap; Chen, Chun-Liang; Thompson, Ian M.; Sun, Lu-Zhe; Gaczynska, Maria E.; Huang, Tim H.-M.

    2016-01-01

    Activation of TGF-β signaling is known to promote epithelial-mesenchymal transition (EMT) for the development of metastatic castration-resistant prostate cancer (mCRPC). To determine whether targeting TGF-β signaling alone is sufficient to mitigate mCRPC, we used the CRISPR/Cas9 genome-editing approach to generate a dominant-negative mutation of the cognate receptor TGFBRII that attenuated TGF-β signaling in mCRPC cells. As a result, the delicate balance of oncogenic homeostasis is perturbed, profoundly uncoupling proliferative and metastatic potential of TGFBRII-edited tumor xenografts. This signaling disturbance triggered feedback rewiring by enhancing ERK signaling known to promote EMT-driven metastasis. Circulating tumor cells displaying upregulated EMT genes had elevated biophysical deformity and an increase in interactions with chaperone macrophages for facilitating metastatic extravasation. Treatment with an ERK inhibitor resulted in decreased aggressive features of CRPC cells in vitro. Therefore, combined targeting of TGF-β and its backup partner ERK represents an attractive strategy for treating mCRPC patients. PMID:27780930

  5. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  6. Interaction rewiring and the rapid turnover of plant-pollinator networks.

    PubMed

    CaraDonna, Paul J; Petry, William K; Brennan, Ross M; Cunningham, James L; Bronstein, Judith L; Waser, Nickolas M; Sanders, Nathan J

    2017-03-01

    Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored.

  7. A rewired green fluorescent protein: folding and function in a nonsequential, noncircular GFP permutant.

    PubMed

    Reeder, Philippa J; Huang, Yao-Ming; Dordick, Jonathan S; Bystroff, Christopher

    2010-12-28

    The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement. While circular and noncircular permutations have been observed in protein structures that are not related by sequence homology, to date no one has attempted to rationally design and construct a protein with a sequence that is noncircularly permuted while conserving three-dimensional structure. Herein, we show that green fluorescent protein can be rewired, still functionally fold, and exhibit wild-type fluorescence excitation and emission spectra.

  8. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans.

    PubMed

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha Jm

    2016-07-06

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild.

  9. Targeting metabolic scavenging in pancreatic cancer.

    PubMed

    Lyssiotis, Costas A; Cantley, Lewis C

    2014-01-01

    Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth.

  10. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.

    PubMed

    Britton, Tom; Juher, David; Saldaña, Joan

    2016-12-01

    This paper is concerned with stochastic SIR and SEIR epidemic models on random networks in which individuals may rewire away from infected neighbors at some rate [Formula: see text] (and reconnect to non-infectious individuals with probability [Formula: see text] or else simply drop the edge if [Formula: see text]), so-called preventive rewiring. The models are denoted SIR-[Formula: see text] and SEIR-[Formula: see text], and we focus attention on the early stages of an outbreak, where we derive the expressions for the basic reproduction number [Formula: see text] and the expected degree of the infectious nodes [Formula: see text] using two different approximation approaches. The first approach approximates the early spread of an epidemic by a branching process, whereas the second one uses pair approximation. The expressions are compared with the corresponding empirical means obtained from stochastic simulations of SIR-[Formula: see text] and SEIR-[Formula: see text] epidemics on Poisson and scale-free networks. Without rewiring of exposed nodes, the two approaches predict the same epidemic threshold and the same [Formula: see text] for both types of epidemics, the latter being very close to the mean degree obtained from simulated epidemics over Poisson networks. Above the epidemic threshold, pairwise models overestimate the value of [Formula: see text] computed from simulations, which turns out to be very close to the one predicted by the branching process approximation. When exposed individuals also rewire with [Formula: see text] (perhaps unaware of being infected), the two approaches give different epidemic thresholds, with the branching process approximation being more in agreement with simulations.

  11. Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity.

    PubMed

    Mishra, Shital K; Bhowmick, Sourav S; Chua, Huey; Zhang, Fan; Zheng, Jie

    2015-01-01

    The ongoing cancer research has shown that malignant tumour cells have highly disrupted signalling transduction pathways. In cancer cells, signalling pathways are altered to satisfy the demands of continuous proliferation and survival. The changes in signalling pathways supporting uncontrolled cell growth, termed as rewiring, can lead to dysregulation of cell fates e.g. apoptosis. Hence comparative analysis of normal and oncogenic signal transduction pathways may provide insights into mechanisms of cancer drug-resistance and facilitate the discovery of novel and effective anti-cancer therapies. Here we propose a hybrid modelling approach based on ordinary differential equation (ODE) and machine learning to map network rewiring in the apoptotic pathways that may be responsible for the increase of drug sensitivity of tumour cells in triple-negative breast cancer. Our method employs Genetic Algorithm to search for the most likely network topologies by iteratively generating simulated protein phosphorylation data using ODEs and the rewired network and then fitting the simulated data with real data of cancer signalling and cell fate. Most of our predictions are consistent with experimental evidence from literature. Combining the strengths of knowledge-driven and data-driven approaches, our hybrid model can help uncover molecular mechanisms of cancer cell fate at systems level.

  12. Topological, functional, and dynamic properties of the protein interaction networks rewired by benzo(a)pyrene.

    PubMed

    Ba, Qian; Li, Junyang; Huang, Chao; Li, Jingquan; Chu, Ruiai; Wu, Yongning; Wang, Hui

    2015-03-01

    Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong to the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (<48h), and five pathways were enriched only in the medium-term network (6h-48h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene.

  13. Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity

    PubMed Central

    2015-01-01

    The ongoing cancer research has shown that malignant tumour cells have highly disrupted signalling transduction pathways. In cancer cells, signalling pathways are altered to satisfy the demands of continuous proliferation and survival. The changes in signalling pathways supporting uncontrolled cell growth, termed as rewiring, can lead to dysregulation of cell fates e.g. apoptosis. Hence comparative analysis of normal and oncogenic signal transduction pathways may provide insights into mechanisms of cancer drug-resistance and facilitate the discovery of novel and effective anti-cancer therapies. Here we propose a hybrid modelling approach based on ordinary differential equation (ODE) and machine learning to map network rewiring in the apoptotic pathways that may be responsible for the increase of drug sensitivity of tumour cells in triple-negative breast cancer. Our method employs Genetic Algorithm to search for the most likely network topologies by iteratively generating simulated protein phosphorylation data using ODEs and the rewired network and then fitting the simulated data with real data of cancer signalling and cell fate. Most of our predictions are consistent with experimental evidence from literature. Combining the strengths of knowledge-driven and data-driven approaches, our hybrid model can help uncover molecular mechanisms of cancer cell fate at systems level. PMID:25707537

  14. Targeted approaches to induce immune tolerance for Pompe disease therapy

    PubMed Central

    Doerfler, Phillip A; Nayak, Sushrusha; Corti, Manuela; Morel, Laurence; Herzog, Roland W; Byrne, Barry J

    2016-01-01

    Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease. PMID:26858964

  15. Hypoxia Inducible Factor-1 as a Target for Neurodegenerative Diseases

    PubMed Central

    Zhang, Ziyan; Yan, Jingqi; Chang, Yanzhong; Yan, Shirley ShiDu; Shi, Honglian

    2011-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. HIF-1, a heterodimer consisting of a constitutively expressed β subunit and an oxygen-regulated α subunit, regulates a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The activity of HIF-1 is controlled by post-translational modifications on different amino acid residues of its subunits, mainly the alpha subunit. Besides in ischemic stroke (see review [1]), emerging evidence has revealed that HIF-1 activity and expression of its down-stream genes, such as vascular endothelial growth factor and erythropoietin, are altered in a range of neurodegenerative diseases. At the same time, experimental and clinical evidence has demonstrated that regulating HIF-1 might ameliorate the cellular and tissue damage in the neurodegenerative diseases. These new findings suggest HIF-1 as a potential medicinal target for the neurodegenerative diseases. This review focuses on HIF-1α protein modifications and HIF-1’s potential neuroprotective roles in Alzheimer’s (AD), Parkinson’s (PD), Huntington’s diseases (HD), and amyotrophic lateral sclerosis (ALS). PMID:21861815

  16. Targeting Opioid-Induced Hyperalgesia in Clinical Treatment: Neurobiological Considerations.

    PubMed

    Arout, Caroline A; Edens, Ellen; Petrakis, Ismene L; Sofuoglu, Mehmet

    2015-06-01

    Opioid analgesics have become a cornerstone in the treatment of moderate to severe pain, resulting in a steady rise of opioid prescriptions. Subsequently, there has been a striking increase in the number of opioid-dependent individuals, opioid-related overdoses, and fatalities. Clinical use of opioids is further complicated by an increasingly deleterious profile of side effects beyond addiction, including tolerance and opioid-induced hyperalgesia (OIH), where OIH is defined as an increased sensitivity to already painful stimuli. This paradoxical state of increased nociception results from acute and long-term exposure to opioids, and appears to develop in a substantial subset of patients using opioids. Recently, there has been considerable interest in developing an efficacious treatment regimen for acute and chronic pain. However, there are currently no well-established treatments for OIH. Several substrates have emerged as potential modulators of OIH, including the N-methyl-D-aspartate and γ-aminobutyric acid receptors, and most notably, the innate neuroimmune system. This review summarizes the neurobiology of OIH in the context of clinical treatment; specifically, we review evidence for several pathways that show promise for the treatment of pain going forward, as prospective adjuvants to opioid analgesics. Overall, we suggest that this paradoxical state be considered an additional target of clinical treatment for chronic pain.

  17. Inducible nitric oxide synthase as a possible target in hypertension.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2014-02-01

    Nitric oxide (NO) is an important vasodilator produced by vascular endothelium. Its enzymatic formation is derived from three different synthases: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) synthases. While relatively small amounts of NO produced by eNOS are important to cardiovascular homeostasis, high NO levels produced associated with iNOS activity may have detrimental consequences to the cardiovascular system and contribute to hypertension. In this article, we reviewed current literature and found mounting evidence indicating that increased iNOS expression and activity contribute to the pathogenesis of hypertension and its complications. Excessive amounts of NO produced by iNOS up-regulation can react with superoxide anions forming peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. In addition, abnormal iNOS activity can up-regulate arginase activity, allowing it to compete with eNOS for L-arginine, thereby resulting in reduced NO bioavailability. This may also lead to eNOS uncoupling with enhanced production of superoxide anions instead of NO. All these alterations mediated by iNOS apparently contribute to hypertension and its complications. We also reviewed current evidence showing the effects of iNOS inhibitors on different animal models of hypertension. iNOS inhibition apparently exerts antihypertensive effects, decreases oxidative and nitrosative stress, and improves vascular function. Together, these studies highlight the possibility that iNOS is a potential pharmacological target in hypertension.

  18. Studies of wave phenomena using HF-induced scatter target

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N.; Borisova, T.; Kornienko, V.; Rietveld, M.; Frolov, V.; Uryadov, V.; Kagan, L.; Yampolski, Y.; Vertogradov, G.; Kelley, M.

    Experimental results from Tromso and Sura heating experiments at high and mid-latitudes are examined It was shown that the combination of HF-induced target and bi-static HF Doppler radio scatter observations is a profitable method for the identification and studies of wave phenomena of different origin We analysed the ULF activity in the Pc 3-4 range and the medium-scale traveling ionospheric disturbances TIDs at high and mid-latitudes Bi-static HF Doppler radio scatter observations were carried out on the London-Tromso-St Petersburg path in the course of Tromso heating experiments During Sura heating experiments multi-position bi-static HF Doppler radio scatter observations were simultaneously performed at three reception points including St Petersburg Kharkov and Rostov-on-Don Ray tracing and Doppler shift simulations were made for all experiments Parameters of ULF waves were found The interesting feature detected from Sura heating experiment was the dependence of the ULF wave parameters from the effective radiated power of the heating facility Medium-scale TIDs were observed in the evening and pre-midnight hours TIDs in the auroral E region with periods of 20-25 min were traveling southward at speeds from 190-250 m s TIDs in the mid-latitudinal F region with periods from 15 to 45 min were at speeds between 40 and 120 m s During quiet magnetic conditions the waves were traveling in the north-east direction In disturbed conditions the waves were moving in the south-west direction with higher speeds as compared with quiet conditions Possible mechanisms

  19. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  20. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition.

    PubMed

    Shirai, Nobu C; Kikuchi, Macoto

    2013-12-14

    An intrinsically disordered protein (IDP) lacks a stable three-dimensional structure, while it folds into a specific structure when it binds to a target molecule. In some IDP-target complexes, not all target binding surfaces are exposed on the outside, and intermediate states are observed in their binding processes. We consider that stepwise target recognition via intermediate states is a characteristic of IDP binding to targets with "hidden" binding sites. To investigate IDP binding to hidden target binding sites, we constructed an IDP lattice model based on the HP model. In our model, the IDP is modeled as a chain and the target is modeled as a highly coarse-grained object. We introduced motion and internal interactions to the target to hide its binding sites. In the case of unhidden binding sites, a two-state transition between the free states and a bound state is observed, and we consider that this represents coupled folding and binding. Introducing hidden binding sites, we found an intermediate bound state in which the IDP forms various structures to temporarily stabilize the complex. The intermediate state provides a scaffold for the IDP to access the hidden binding site. We call this process multiform binding. We conclude that structural flexibility of IDPs enables them to access hidden binding sites and this is a functional advantage of IDPs.

  1. Structural flexibility of intrinsically disordered proteins induces stepwise target recognition

    NASA Astrophysics Data System (ADS)

    Shirai, Nobu C.; Kikuchi, Macoto

    2013-12-01

    An intrinsically disordered protein (IDP) lacks a stable three-dimensional structure, while it folds into a specific structure when it binds to a target molecule. In some IDP-target complexes, not all target binding surfaces are exposed on the outside, and intermediate states are observed in their binding processes. We consider that stepwise target recognition via intermediate states is a characteristic of IDP binding to targets with "hidden" binding sites. To investigate IDP binding to hidden target binding sites, we constructed an IDP lattice model based on the HP model. In our model, the IDP is modeled as a chain and the target is modeled as a highly coarse-grained object. We introduced motion and internal interactions to the target to hide its binding sites. In the case of unhidden binding sites, a two-state transition between the free states and a bound state is observed, and we consider that this represents coupled folding and binding. Introducing hidden binding sites, we found an intermediate bound state in which the IDP forms various structures to temporarily stabilize the complex. The intermediate state provides a scaffold for the IDP to access the hidden binding site. We call this process multiform binding. We conclude that structural flexibility of IDPs enables them to access hidden binding sites and this is a functional advantage of IDPs.

  2. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    PubMed Central

    Kong, E.Y.; Yeung, W.K.; Chan, T.K.Y.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  3. Temporal Rewiring of Striatal Circuits Initiated by Nicotine

    PubMed Central

    Adermark, Louise; Morud, Julia; Lotfi, Amir; Danielsson, Klara; Ulenius, Lisa; Söderpalm, Bo; Ericson, Mia

    2016-01-01

    Drug addiction has been conceptualized as maladaptive recruitment of integrative circuits coursing through the striatum, facilitating drug-seeking and drug-taking behavior. The aim of this study was to define temporal neuroadaptations in striatal subregions initiated by 3 weeks of intermittent nicotine exposure followed by protracted abstinence. Enhanced rearing activity was assessed in motor activity boxes as a measurement of behavioral change induced by nicotine (0.36 mg/kg), whereas electrophysiological field potential recordings were performed to evaluate treatment effects on neuronal activity. Dopamine receptor mRNA expression was quantified by qPCR, and nicotine-induced dopamine release was measured in striatal subregions using in vivo microdialysis. Golgi staining was performed to assess nicotine-induced changes in spine density of medium spiny neurons. The data presented here show that a brief period of nicotine exposure followed by abstinence leads to temporal changes in synaptic efficacy, dopamine receptor expression, and spine density in a subregion-specific manner. Nicotine may thus initiate a reorganization of striatal circuits that continues to develop despite protracted abstinence. We also show that the response to nicotine is modulated in previously exposed rats even after 6 months of abstinence. The data presented here suggests that, even though not self-administered, nicotine may produce progressive neuronal alterations in brain regions associated with goal-directed and habitual performance, which might contribute to the development of compulsive drug seeking and the increased vulnerability to relapse, which are hallmarks of drug addiction. PMID:27388328

  4. Nonlinear preferential rewiring in fixed-size networks as a diffusion process.

    PubMed

    Johnson, Samuel; Torres, Joaquín J; Marro, Joaquín

    2009-05-01

    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .

  5. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination

    PubMed Central

    Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg

    2016-01-01

    Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI: http://dx.doi.org/10.7554/eLife.15200.001 PMID:27525484

  6. An algorithm for identifying novel targets of transcription factor families: application to hypoxia-inducible factor 1 targets.

    PubMed

    Jiang, Yue; Cukic, Bojan; Adjeroh, Donald A; Skinner, Heath D; Lin, Jie; Shen, Qingxi J; Jiang, Bing-Hua

    2009-01-01

    Efficient and effective analysis of the growing genomic databases requires the development of adequate computational tools. We introduce a fast method based on the suffix tree data structure for predicting novel targets of hypoxia-inducible factor 1 (HIF-1) from huge genome databases. The suffix tree data structure has two powerful applications here: one is to extract unknown patterns from multiple strings/sequences in linear time; the other is to search multiple strings/sequences using multiple patterns in linear time. Using 15 known HIF-1 target gene sequences as a training set, we extracted 105 common patterns that all occur in the 15 training genes using suffix trees. Using these 105 common patterns along with known subsequences surrounding HIF-1 binding sites from the literature, the algorithm searches a genome database that contains 2,078,786 DNA sequences. It reported 258 potentially novel HIF-1 targets including 25 known HIF-1 targets. Based on microarray studies from the literature, 17 putative genes were confirmed to be upregulated by HIF-1 or hypoxia inside these 258 genes. We further studied one of the potential targets, COX-2, in the biological lab; and showed that it was a biologically relevant HIF-1 target. These results demonstrate that our methodology is an effective computational approach for identifying novel HIF-1 targets.

  7. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  8. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    PubMed Central

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  9. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

    PubMed Central

    Lupiáñez, Darío G.; Kraft, Katerina; Heinrich, Verena; Krawitz, Peter; Brancati, Francesco; Klopocki, Eva; Horn, Denise; Kayserili, Hülya; Opitz, John M.; Laxova, Renata; Santos-Simarro, Fernando; Gilbert-Dussardier, Brigitte; Wittler, Lars; Borschiwer, Marina; Haas, Stefan A.; Osterwalder, Marco; Franke, Martin; Timmermann, Bernd; Hecht, Jochen; Spielmann, Malte; Visel, Axel; Mundlos, Stefan

    2016-01-01

    SUMMARY Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. PMID:25959774

  10. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching

    PubMed Central

    Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. PMID:28049690

  11. Flickering task–irrelevant distractors induce dilation of target duration depending upon cortical distance

    PubMed Central

    Okajima, Miku; Yotsumoto, Yuko

    2016-01-01

    Flickering stimuli are perceived to be longer than stable stimuli. This so-called “flicker-induced time dilation” has been investigated in a number of studies, but the factors critical for this effect remain unclear. We explored the spatial distribution of the flicker effect and examined how the flickering task-irrelevant distractors spatially distant from the target induce time dilation. In two experiments, we demonstrated that flickering distractors dilated the perceived duration of the target stimulus even though the target stimulus itself was stable. In addition, when the distractor duration was much longer than the target duration, a flickering distractor located ipsilateral to the target caused greater time dilation than did a contralateral distractor. Thus the amount of dilation depended on the distance between the cortical areas responsible for the stimulus locations. These findings are consistent with the recent study reporting that modulation of neural oscillators encoding the interval duration could explain flicker-induced time dilation. PMID:27577614

  12. Targeting of the activation-induced cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA.

    PubMed

    Shen, Hong Ming; Ratnam, Sarayu; Storb, Ursula

    2005-12-01

    Activation-induced deaminase (AID) initiates immunoglobulin somatic hypermutation (SHM). Since in vitro AID was shown to deaminate cytosines on single-stranded DNA or the nontranscribed strand, it remained a puzzle how in vivo AID targets both DNA strands equally. Here we investigate the roles of transcription and DNA sequence in cytosine deamination. Strikingly different results are found with different substrates. Depending on the target sequence, the transcribed DNA strand is targeted as well as or better than the nontranscribed strand. The preferential targeting is not related to the frequency of AID hot spots. Comparison of cytosine deamination by AID and bisulfite shows different targeting patterns suggesting that AID may locally unwind the DNA. We conclude that somatic hypermutation on both DNA strands is the natural outcome of AID action on a transcribed gene; furthermore, the DNA sequence or structure and topology play major roles in targeting AID in vitro and in vivo. On the other hand, the lack of mutations in the first approximately 100 nucleotides and beyond about 1 to 2 kb from the promoter of immunoglobulin genes during SHM must be due to special conditions of transcription and chromatin in vivo.

  13. Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes*

    PubMed Central

    Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming

    2014-01-01

    Calcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62. PMID:24619419

  14. Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0163 TITLE: Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer ...Castration-resistant Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Feng Yang, Ph.D. 5d. PROJECT NUMBER 5e. TASK...Annual Progress Report W81XWH-13-1-0163 Novel Therapeutic Targets to Inhibit Tumor Microenvironment Induced Castration-resistant Prostate Cancer

  15. Efficient ion acceleration by relativistic self-induced transparency in subwavelength targets

    NASA Astrophysics Data System (ADS)

    Choudhary, Shivani; Holkundkar, Amol R.

    2016-10-01

    We studied the effect of target thickness on relativistic self-induced transparency (RSIT) and observed that, for subwavelength targets, the corresponding threshold target density (beyond which the target is opaque to an incident laser pulse of given intensity) increases. The accelerating longitudinal electrostatic field created by RSIT from the subwavelength target is then used to accelerate the ions from a thin, low density layer behind the main target to 100 MeV using a 6 cycle flat-top (with rise and fall of one cycle each) circularly polarized laser with peak dimensionless amplitude of 20. A suitable scaling law for optimum laser and target conditions is also deduced. We observed that, as far as energy spectrum is concerned, an extra low density layer is more advantageous than relying on target ions alone.

  16. Hypoxia-inducible factors as molecular targets for liver diseases.

    PubMed

    Ju, Cynthia; Colgan, Sean P; Eltzschig, Holger K

    2016-06-01

    Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease.

  17. Cardiac-Specific Inducible and Conditional Gene Targeting in Mice

    PubMed Central

    Doetschman, Thomas; Azhar, Mohamad

    2013-01-01

    Mouse genetic engineering has revolutionized our understanding of the molecular and genetic basis of heart development and disease. This technology involves conditional tissue-specific and temporal transgenic and gene targeting approaches, as well as introduction of polymorphisms into the mouse genome. These approaches are increasingly used to elucidate the genetic pathways underlying tissue homeostasis, physiology, and pathophysiology of adult heart. They have also led to the development of clinically relevant models of human cardiac diseases. Here, we review the technologies and their limitations in general and the cardiovascular research community in particular. PMID:22628574

  18. Laser induced heating and emission of electrons from metallic targets

    NASA Astrophysics Data System (ADS)

    Bharuthram, R.; Tripathi, V. K.

    1999-08-01

    A high power laser incident on a metallic target heats the electrons in the skin layer within a few ps. For a specific dependence of electron-phonon collision frequency on electron temperature, ν∝ Te1/2, the steady state electron temperature profile turns out to be an exponential function of depth. The heated electrons raise the rate of thermionic emission. When the laser is significantly converted into a surface plasma wave the rate of heating and emission is considerably enhanced.

  19. Development of target protein-selective degradation inducer for protein knockdown.

    PubMed

    Itoh, Yukihiro; Ishikawa, Minoru; Kitaguchi, Risa; Sato, Shinichi; Naito, Mikihiko; Hashimoto, Yuichi

    2011-05-15

    Our previous technique for inducing selective degradation of target proteins with ester-type SNIPER (Specific and Nongenetic Inhibitor-of-apoptosis-proteins (IAPs)-dependent Protein ERaser) degrades both the target proteins and IAPs. Here, we designed a small-molecular amide-type SNIPER to overcome this issue. As proof of concept, we synthesized and biologically evaluated an amide-type SNIPER which induces selective degradation of cellular retinoic acid binding protein II (CRABP-II), but not IAPs. Such small-molecular, amide-type SNIPERs that induce target protein-selective degradation without affecting IAPs should be effective tools to study the biological roles of target proteins in living cells.

  20. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer

    PubMed Central

    Azad, A. K. M.; Keith, Jonathan M.

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  1. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer.

    PubMed

    Azad, A K M; Lawen, Alfons; Keith, Jonathan M

    2017-01-01

    Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links

  2. Teriflunomide and monomethylfumarate target HIV-induced neuroinflammation and neurotoxicity.

    PubMed

    Ambrosius, Björn; Faissner, Simon; Guse, Kirsten; von Lehe, Marec; Grunwald, Thomas; Gold, Ralf; Grewe, Bastian; Chan, Andrew

    2017-03-11

    HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication. Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and neurotoxicity. Human monocytoid cells (U937) transduced with a minimal HIV-Vector were co-cultured with human microglial cells (HMC3). Secretion of pro-inflammatory/neurotoxic cytokines (CXCL10, CCL5, and CCL2: p < 0.001; IL-6: p < 0.01) by co-cultures was strongly increased compared to microglia in contact with HIV-particles alone. Upon treatment with teriflunomide, cytokine secretion was decreased (CXCL10, 3-fold; CCL2, 2.5-fold; IL-6, 2.2-fold; p < 0.001) and monomethylfumarate treatment led to 2.9-fold lower CXCL10 secretion (p < 0.001). Reduced toxicity of co-culture conditioned media on human fetal neurons by teriflunomide (29%, p < 0.01) and monomethylfumarate (27%, p < 0.05) indicated functional relevance. Modulation of innate immune functions by teriflunomide and monomethylfumarate may target neurotoxic inflammation in the context of HAND.

  3. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning.

    PubMed

    Chang, Yi-Cheng; Pai, Chih-Yu; Chen, Yi-Chih; Ting, Hsiu-Chi; Martinez, Pedro; Telford, Maximilian J; Yu, Jr-Kai; Su, Yi-Hsien

    2016-02-01

    The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second admp gene (admp2) is present in Ambulacraria (Echinodermata+Hemichordata) and two marine worms belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity. Over-expression of either Admps reinforced BMP signaling but resulted in different phenotypes in the sea urchin embryo. Our study provides an excellent example of signaling circuit rewiring and protein functional changes after gene duplications.

  4. Evolution. Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system.

    PubMed

    Taylor, Tiffany B; Mulley, Geraldine; Dills, Alexander H; Alsohim, Abdullah S; McGuffin, Liam J; Studholme, David J; Silby, Mark W; Brockhurst, Michael A; Johnson, Louise J; Jackson, Robert W

    2015-02-27

    A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.

  5. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution

    PubMed Central

    Hsu, Chieh; Scherrer, Simone; Buetti-Dinh, Antoine; Ratna, Prasuna; Pizzolato, Julia; Jaquet, Vincent; Becskei, Attila

    2012-01-01

    During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit. PMID:22353713

  6. Targeting miR-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal.

    PubMed

    Liang, Hui; Dong, Ziyan; Liu, Jiang-Feng; Chuang, Wei; Gao, Li-Zhen; Ren, Yu-Guo

    2016-10-27

    Recent studies have shown that high miR-155 expression was associated with poor prognosis in patients with acute myelogeneous leukemia (AML). Furthermore, targeting miR-155 results in monocytic differentiation and apoptosis. However, the exact role and mechanisms of miR-155 in human AML remains speculative. HL-60 cells were treated with anti-miR-155 for 72 h. Cell growth and apoptosis in vitro were detected by MTT, BrdU proliferation, colony formation and flow cytometry assay. The effect of anti-miR-155 on growth of HL-60 cells was also evaluated in a leukemia mouse model. Slug cDNA and PUMA siRNA trannsfection was used to assess the signal pathway. Different protein expression was detected by western blot assay and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. The results shown that targeting miR-155 resulted in a 24-fold decrease of miR-155 expression compared to negative control in the HL-60 cells. Targeting miR-155 significantly downregulated Slug and upregulated PUMA expression, and decreased HL-60 cell growth by 70% , impaired colony formation by approximately 60%, and increased HL-60 cell apoptosis by 45%. Targeting PUMA reversed miR-155 sliencing-induced proliferation and apoptosis of HL-60 cells. Restoration of Slug decreased PUMA expression. In murine engraftment models of HL-60 cells, we showed that targeting miR-155 was able to reduce tumor growth. This was accompanied with decreased Slug expression and increased PUMA expression in these tumors. Collectively, our findings strongly suggest targeting miR-155 exhibited in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of Slug expression and increase of PUMA expression.

  7. Characterization of acetaminophen-induced cytotoxicity in target tissues

    PubMed Central

    Guo, Chao; Xie, Guojie; Su, Min; Wu, Xinmou; Lu, Xiuli; Wu, Ka; Wei, Chaohe

    2016-01-01

    Acetaminophen (APAP), commonly used in clinical prescription, has time- and dose-dependent side effects. Thus, further animal study warrants to be investigated to assess possible adverse effect of APAP application. Here, we conducted pre-clinical research to elucidate the molecular mechanism regarding APAP-mediated toxicological action. Our data showed that serous/urinary and hepatic/renal APAP concentrations were significantly increased when compared with normal control, which the liver tissue showed the highest level. As an acute liver damage model induced by APAP, absolute liver weight, serum enzyme (ALT), urine protein content were notably elevated. Representatively, APAP-damaged liver resulted in increased pro-apoptotic Bax and compensatory Ki-67 positive cells, while the number of anti-apoptotic Bcl2 positive cells was reduced. In addition, the immunoactivity markers for NF-κB, TRL4, TNF-α in the kidney were increased, respectively. Furthermore, intracellular TRL4 and TNF-α mRNAs in the liver and kidney showed significant up-regulation. In summary, our current findings demonstrate that APAP-mediated the specific cytotoxicity is linked to the molecular mechanisms of facilitating apoptosis and inflammatory stress in the liver and kidney. PMID:27830028

  8. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    PubMed Central

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia; Huang, Mingtao; Liu, Lifang; Khoomrung, Sakda; Siewers, Verena; Jiang, Bo; Nielsen, Jens

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l−1 with a yield of 67 mg (g glucose)−1 in shake-flask cultures and a titre of 5.1 g l−1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals. PMID:26345617

  9. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  10. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging.

    PubMed

    Malka, G; Nicolaï, Ph; Brambrink, E; Santos, J J; Aléonard, M M; Amthor, K; Audebert, P; Breil, J; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V

    2008-02-01

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  11. Fast electron transport and induced heating in solid targets from rear-side interferometry imaging

    SciTech Connect

    Malka, G.; Aleonard, M. M.; Claverie, G.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Scheurer, J. N.; Tarisien, M.; Brambrink, E.; Audebert, P.; Amthor, K.; Meot, V.; Morel, P.

    2008-02-15

    Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion. The main parameters of the suprathermal electrons (number, temperature, and divergence) have been deduced from these observations.

  12. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy.

    PubMed

    Ottis, Philipp; Crews, Craig M

    2017-03-20

    Until recently, the only ways to reduce specific protein signaling were to either knock down the target by RNAi or to interfere with the signaling by inhibiting an enzyme or receptor within the signal transduction cascade. Herein, we review an emerging class of small molecule pharmacological agents, called PROTACs, that present a novel approach to specifically target proteins and their respective signaling pathways. These heterobifunctional molecules utilize endogenous cellular quality control machinery by recruiting it to target proteins in order to induce their degradation.

  13. Characterization of the effector cells in Con A-induced cytotoxicity against HEp 2 tumour targets.

    PubMed

    Pócsik, E; González-Cabello, R; Benedek, K; Perl, A; Láng, I; Gergely, P

    1983-01-01

    Con A-induced cytotoxic activity of human lymphocyte subpopulations obtained by cell fractionation procedures was studied in a test system using human epipharynx carcinoma cells (HEp 2) as targets. Only T lymphocytes were cytotoxic, non-T cells exerted no cytotoxic activity, but enhanced the adherence of the tumour cells. Tnon-G lymphocytes (Fc-receptor negative T cells) were more active than TG cells (Fc-receptor-positive T cells) in mediating the Con A-induced cytotoxic reaction.

  14. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  15. Can a regular context induce temporal orienting to a target sound?

    PubMed

    Lange, Kathrin

    2010-12-01

    It has been shown recently (Lange, 2009) that the N1 of the auditory event related potential (ERP) is attenuated when the eliciting stimulus predictably follows a regular vs. an irregular sequence. This may be a sign of temporal orienting induced by the regular sequence. Alternatively, the attenuated N1 may have been due to sensory predictability of target timing. The present study investigated whether presenting a regular sequence still attenuates target N1 when target timing is unpredictable. A regular (vs. irregular) tone sequence was presented prior to a target tone, which appeared unpredictably at one of three different time points after the sequence. For the regular sequence, targets either continued regularity (on-time targets) or were early or late with respect to this regular time point. ERPs to on-time targets were compared as a function of sequence regularity. Consistent with the assumption that N1 attenuation reflects sensory predictability of target timing, an attenuated N1 was not observed in the present study, where target timing was uncertain.

  16. A Mitochondrion-Targeted Antioxidant Ameliorates Isoflurane-Induced Cognitive Deficits in Aging Mice.

    PubMed

    Wu, Jing; Li, Huihui; Sun, Xiaoru; Zhang, Hui; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2015-01-01

    Isoflurane possesses neurotoxicity and can induce cognitive deficits, particularly in aging mammals. Mitochondrial reactive oxygen species (mtROS) have been linked to the early pathogenesis of this disorder. However, the role of mtROS remains to be evaluated due to a lack of targeted method to treat mtROS. Here, we determined in aging mice the effects of the mitochondrion-targeted antioxidant SS-31, on cognitive deficits induced by isoflurane, a general inhalation anesthetic. We further investigated the possible mechanisms underlying the effects of SS-31 on hippocampal neuro-inflammation and apoptosis. The results showed that isoflurane induced hippocampus-dependent memory deficit, which was associated with mitochondrial dysfunction including reduced ATP contents, increased ROS levels, and mitochondrial swelling. Treatment with SS-31 significantly ameliorated isoflurane-induced cognitive deficits through the improvement of mitochondrial integrity and function. Mechanistically, SS-31 treatment suppressed pro-inflammatory responses by decreasing the levels of NF-κB, NLRP3, caspase 1, IL-1β, and TNF-α; and inhibited the apoptotic pathway by decreasing the Bax/Bcl-2 ratio, reducing the release of cytochrome C, and blocking the cleavage of caspase 3. Our results indicate that isoflurane-induced cognitive deficits may be attenuated by mitochondrion-targeted antioxidants, such as SS-31. Therefore, SS-31 may have therapeutic potentials in preventing injuries from oxidative stresses that contribute to anesthetic-induced neurotoxicity.

  17. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma

    PubMed Central

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E.; Vasudevan, Sanjeev A.; Tao, Ling; Pang, Jonathan C.; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-01

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma. PMID:27902463

  18. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  19. Ultrasensitive detection of potassium ions based on target induced DNA conformational switch enhanced fluorescence polarization.

    PubMed

    Hu, Kun; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Wu, Qiang; Zhang, Guohai; Jiang, Jing

    2012-06-21

    We have developed a simple, highly sensitive and selective fluorescence polarization assay for the detection of potassium ions based on target induced DNA conformational switch from hairpin to G-quadruplex enhanced fluorescence polarization. The assay was applied in the detection of low nM concentrations of potassium ions and was highly selective over other cations.

  20. Analysis of Beam-Induced Damage to the SLC Positron Production Target

    SciTech Connect

    Bharadwaj, Vinod

    2002-08-20

    The nominal Next Linear Collider (NLC) positron production design is based on extrapolation of the existing SLAC Linear Collider (SLC) positron production system. Given that the SLC positron production target failed during a run, it is necessary to analyze the beam-induced damage to the target in order to validate the extrapolations on which the NLC target is based. The failed SLC target and its associated housing were sent to existing ''hot-cell'' facilities at LANL for analysis. The target material, a tungsten-rhenium ''puck'', was removed from the housing and photographed and x-rayed. Leak-checking on the cooling system was performed. Sections were then removed from the target to determine the extent of internal damage to the material. High resolution photographs were taken and extensive hardness tests were performed on the irradiated and non-irradiated areas of the target material. The results of these analyses and conclusions applicable to the NLC target design are presented in this paper.

  1. Induction of Macrophage Function in Human THP-1 Cells Is Associated with Rewiring of MAPK Signaling and Activation of MAP3K7 (TAK1) Protein Kinase

    PubMed Central

    Richter, Erik; Ventz, Katharina; Harms, Manuela; Mostertz, Jörg; Hochgräfe, Falko

    2016-01-01

    Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cyclin-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1) acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease. PMID:27066479

  2. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem.

    PubMed

    Hao, Ge-Fei; Yang, Guang-Fu; Zhan, Chang-Guo

    2012-10-01

    Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.

  3. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection

    PubMed Central

    Cheng, Lin; Yu, Honghua; Yan, Naihong; Lai, Kunbei; Xiang, Mengqing

    2017-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions. PMID:28289375

  4. Effective flocculation of target microalgae with self-flocculating microalgae induced by pH decrease.

    PubMed

    Liu, Jiexia; Tao, Yujun; Wu, Jinheng; Zhu, Yi; Gao, Baoyan; Tang, Yu; Li, Aifen; Zhang, Chengwu; Zhang, Yuanming

    2014-09-01

    A flocculation method was developed to harvest target microalgae with self-flocculating microalgae induced by decreasing pH to just below isoelectric point. The flocculation efficiencies of target microalgae were much higher than those flocculated only via pH decrease. The mechanism could be that negatively charged self-flocculating microalgal cells became positively charged during pH decrease, subsequently attracted negatively charged target microalgae cells to form flocs and settled down due to gravity. Microalgal biomass concentration and released polysaccharide (RPS) from target microalgae influenced flocculation efficiencies, while multivalent metal ions in growth medium could not. Furthermore, neutralizing pH and then supplementing nutrients allowed flocculated medium to be recycled for cultivation. Finally, Spearman's Rank Correlation Coefficients (Rs) between flocculation efficiency and key factors were also investigated. These results suggest that this method is effective, simple to operate and allows the reuse of flocculated medium, thereby contributing to the economic production from microalgae to biodiesel.

  5. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water.

  6. Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection

    PubMed Central

    Jiang, Zhenhong; Dong, Xiaobao; Li, Zhi-Gang; He, Fei; Zhang, Ziding

    2016-01-01

    Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions. PMID:27721457

  7. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli.

    PubMed

    Charbon, Godefroid; Campion, Christopher; Chan, Siu Hung Joshua; Bjørn, Louise; Weimann, Allan; da Silva, Luís Cláudio Nascimento; Jensen, Peter Ruhdal; Løbner-Olesen, Anders

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability.

  8. Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief; Bansawang B., J.; Tahir, Dahlang

    2016-03-01

    Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  9. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts

    PubMed Central

    Puthiyaveetil, Sujith; Ibrahim, Iskander M.; Allen, John F.

    2013-01-01

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes. PMID:23754813

  10. Effects of Small-World Rewiring Probability and Noisy Synaptic Conductivity on Slow Waves: Cortical Network.

    PubMed

    Tekin, Ramazan; Tagluk, Mehmet Emin

    2017-03-01

    Physiological rhythms play a critical role in the functional development of living beings. Many biological functions are executed with an interaction of rhythms produced by internal characteristics of scores of cells. While synchronized oscillations may be associated with normal brain functions, anomalies in these oscillations may cause or relate the emergence of some neurological or neuropsychological pathologies. This study was designed to investigate the effects of topological structure and synaptic conductivity noise on the spatial synchronization and temporal rhythmicity of the waves generated by cells in the network. Because of holding the ability of clustering and randomizing with change of parameters, small-world (SW) network topology was chosen. The oscillatory activity of network was tried out by manipulating an insulated SW, cortical network model whose morphology is very close to real world. According to the obtained results, it was observed that at the optimal probabilistic rates of conductivity noise and rewiring of SW, powerful synchronized oscillatory small waves are generated in relation to the internal dynamics of cells, which are in line with the network's input. These two parameters were observed to be quite effective on the excitation-inhibition balance of the network. Accordingly, it may be suggested that the topological dynamics of SW and noisy synaptic conductivity may be associated with the normal and abnormal development of neurobiological structure.

  11. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts.

    PubMed

    Puthiyaveetil, Sujith; Ibrahim, Iskander M; Allen, John F

    2013-07-19

    Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.

  12. How petals change their spots: cis-regulatory re-wiring in Clarkia (Onagraceae).

    PubMed

    Martins, Talline R; Jiang, Peng; Rausher, Mark D

    2016-09-06

    A long-standing question in evolutionary developmental biology is how new traits evolve. Although most floral pigmentation studies have focused on how pigment intensity and composition diversify, few, if any, have explored how a pattern element can shift position. In the present study, we examine the genetic changes underlying shifts in the position of petal spots in Clarkia. Comparative transcriptome analyses were used to identify potential candidate genes responsible for spot formation. Co-segregation analyses in F2 individuals segregating for different spot positions, quantitative PCR, and pyrosequencing, were used to confirm the role of the candidate gene in determining spot position. Transient expression assays were used to identify the expression domain of different alleles. An R2R3Myb transcription factor (CgMyb1) activated spot formation, and different alleles of CgMyb1 were expressed in different domains, leading to spot formation in different petal locations. Reporter assays revealed that promoters from different alleles determine different locations of expression. The evolutionary shift in spot position is due to one or more cis-regulatory changes in the promoter of CgMyb1, indicating that shifts in pattern element position can be caused by changes in a single gene, and that cis-regulatory rewiring can be used to alter the relative position of an existing character.

  13. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli

    PubMed Central

    Campion, Christopher; Weimann, Allan

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. PMID:28129339

  14. Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Surungan, Tasrief

    2016-10-01

    Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.

  15. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  16. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel.

    PubMed

    Hakim, Md Abdul; Jiang, Wenbin; Luo, Lei; Li, Bowen; Yang, Shilong; Song, Yuzhu; Lai, Ren

    2015-09-14

    The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, OPEN ACCESS Toxins 2015, 7 3672 BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation.

  17. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel

    PubMed Central

    Hakim, Md Abdul; Jiang, Wenbin; Luo, Lei; Li, Bowen; Yang, Shilong; Song, Yuzhu; Lai, Ren

    2015-01-01

    The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation. PMID:26389953

  18. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo.

    PubMed

    Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li

    2016-02-01

    The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (P<0.05). The expression peaked on day 5, remained detectable on day 40 and disappeared on day 60. No EGFP expression was detected in the other tissues and organs. The UTMD

  19. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer

    PubMed Central

    Gao, Hui; Liu, Yongji; Li, Kan; Wu, Tianhui; Peng, Jianjun; Jing, Fanbo

    2016-01-01

    Acute myeloid leukemia (AML) represents a heterogeneous group of hematological neoplasms with marked heterogeneity in response to both standard therapy and survival. Hispidulin, a flavonoid compound that is anactive ingredient in the traditional Chinese medicinal herb Salvia plebeia R. Br, has recently been reported to have anantitumor effect against solid tumors in vitro and in vivo. The aim of the present study was to investigate the effects of hispidulin on the human leukemia cell line in vitro and the underlying mechanisms of its actions on these cells. Our results showed that hispidulin inhibits AML cell proliferation in a dose- and time-dependent manner, and induces cell apoptosis throughan intrinsic mitochondrial pathway. Our results also revealed that hispidulin treatment significantly inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) expression in both tested AML cell lines in a dose-dependent manner, and that the overexpression of EMMPRIN protein markedly attenuates hispidulin-induced cell apoptosis. Furthermore, our results strongly indicated that the modulating effect of hispidulin on EMMPRIN is correlated with its inhibitory effect on both the Akt and STAT3 signaling pathways. PMID:27158398

  20. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.

    PubMed

    Reshat, Reshat; Priestley, Catherine C; Gooderham, Nigel J

    2012-11-01

    Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.

  1. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  2. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress.

    PubMed

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress.

  3. Investigation of apoptotic events at molecular level induced by SERS guided targeted theranostic nanoprobe

    NASA Astrophysics Data System (ADS)

    Narayanan, Nisha; Nair, Lakshmi V.; Karunakaran, Varsha; Joseph, Manu M.; Nair, Jyothi B.; N, Ramya A.; Jayasree, Ramapurath S.; Maiti, Kaustabh Kumar

    2016-06-01

    Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA.Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03385g

  4. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human α-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and β-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  5. How to Target Activated Ras Proteins: Direct Inhibition vs. Induced Mislocalization

    PubMed Central

    Brock, Ethan J.; Ji, Kyungmin; Reiners, John J.; Mattingly, Raymond R.

    2016-01-01

    Oncogenic Ras proteins are a driving force in a significant set of human cancers and wild-type, unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been very promising recent pre-clinical progress. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in combination with statins or other agents. Alternative approaches for inducing mislocalization of Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in early stages of development. PMID:26423696

  6. Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer

    DTIC Science & Technology

    2015-06-01

    instability is one of the hallmarks of breast cancer and fuels tumor development as well as metastasis. Recent cancer genomics studies have revealed...8 4 1. Introduction Genomic instability is a hallmark of cancer , and it provides an opportunity for cancer therapy. Recent...AWARD NUMBER: W81XWH-14-1-0082 TITLE: Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer PRINCIPAL INVESTIGATOR: Lee Zou

  7. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    PubMed Central

    Raoof, Mustafa; Curley, Steven A.

    2011-01-01

    Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed. PMID:21994866

  8. N-Terminal-Based Targeted, Inducible Protein Degradation in Escherichia coli

    PubMed Central

    Sekar, Karthik; Gentile, Andrew M.; Bostick, John W.; Tyo, Keith E. J.

    2016-01-01

    Dynamically altering protein concentration is a central activity in synthetic biology. While many tools are available to modulate protein concentration by altering protein synthesis rate, methods for decreasing protein concentration by inactivation or degradation rate are just being realized. Altering protein synthesis rates can quickly increase the concentration of a protein but not decrease, as residual protein will remain for a while. Inducible, targeted protein degradation is an attractive option and some tools have been introduced for higher organisms and bacteria. Current bacterial tools rely on C-terminal fusions, so we have developed an N-terminal fusion (Ntag) strategy to increase the possible proteins that can be targeted. We demonstrate Ntag dependent degradation of mCherry and beta-galactosidase and reconfigure the Ntag system to perform dynamic, exogenously inducible degradation of a targeted protein and complement protein depletion by traditional synthesis repression. Model driven analysis that focused on rates, rather than concentrations, was critical to understanding and engineering the system. We expect this tool and our model to enable inducible protein degradation use particularly in metabolic engineering, biological study of essential proteins, and protein circuits. PMID:26900850

  9. Laser induced plasma on copper target, a non-equilibrium model

    SciTech Connect

    Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis

    2014-02-15

    The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.

  10. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  11. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    PubMed

    Müller, Rebekka; Misund, Kristine; Holien, Toril; Bachke, Siri; Gilljam, Karin M; Våtsveen, Thea K; Rø, Torstein B; Bellacchio, Emanuele; Sundan, Anders; Otterlei, Marit

    2013-01-01

    Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA) is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM). Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  12. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  13. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  14. A Topical Mitochondria-Targeted Redox-Cycling Nitroxide Mitigates Oxidative Stress-Induced Skin Damage.

    PubMed

    Brand, Rhonda M; Epperly, Michael W; Stottlemyer, J Mark; Skoda, Erin M; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E; Greenberger, Joel S; Falo, Louis D

    2017-03-01

    Skin is the largest human organ, and it provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation-induced skin damage ranges from photoaging and cutaneous carcinogenesis caused by UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation-induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species. Mitochondria are particularly susceptible to oxidative stress, and mitochondrial-dependent apoptosis plays a major role in radiation-induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent reactive oxygen species accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrially targeted antioxidant prevents and mitigates radiation-induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin's antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress.

  15. Drug-induced interstitial lung diseases associated with molecular-targeted anticancer agents.

    PubMed

    Gemma, Akihiko

    2009-02-01

    Little was known about drug-induced interstitial lung disease (ILD) when acute ILD-type events developed in several Japanese patients treated with gefitinib. A better understanding of drug-induced ILD is required, including more reliable data about the incidence of events associated with different treatments and identification of the risk factors for this type of ILD. Recent advances in imaging, molecular examination, and pathology have been used in postmarketing surveillance studies designed and conducted by an independent academic team to define the risk and to increase the amount of evidence about ILD related to various molecularly targeted anticancer agents. These studies may shed light on the underlying mechanisms of drug-induced ILD and appropriate evidence-based strategies that can be used to prevent or manage these events.

  16. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  17. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells

    PubMed Central

    Byrne, Susan M.; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M.

    2015-01-01

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. PMID:25414332

  18. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals.

    PubMed

    Piasecki, Brian P; Burghoorn, Jan; Swoboda, Peter

    2010-07-20

    Cilia were present in the last eukaryotic common ancestor (LECA) and were retained by most organisms spanning all extant eukaryotic lineages, including organisms in the Unikonta (Amoebozoa, fungi, choanoflagellates, and animals), Archaeplastida, Excavata, Chromalveolata, and Rhizaria. In certain animals, including humans, ciliary gene regulation is mediated by Regulatory Factor X (RFX) transcription factors (TFs). RFX TFs bind X-box promoter motifs and thereby positively regulate >50 ciliary genes. Though RFX-mediated ciliary gene regulation has been studied in several bilaterian animals, little is known about the evolutionary conservation of ciliary gene regulation. Here, we explore the evolutionary relationships between RFX TFs and cilia. By sampling the genome sequences of >120 eukaryotic organisms, we show that RFX TFs are exclusively found in unikont organisms (whether ciliated or not), but are completely absent from the genome sequences of all nonunikont organisms (again, whether ciliated or not). Sampling the promoter sequences of 12 highly conserved ciliary genes from 23 diverse unikont and nonunikont organisms further revealed that phylogenetic footprints of X-box promoter motif sequences are found exclusively in ciliary genes of certain animals. Thus, there is no correlation between cilia/ciliary genes and the presence or absence of RFX TFs and X-box promoter motifs in nonanimal unikont and in nonunikont organisms. These data suggest that RFX TFs originated early in the unikont lineage, distinctly after cilia evolved. The evolutionary model that best explains these observations indicates that the transcriptional rewiring of many ciliary genes by RFX TFs occurred early in the animal lineage.

  19. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.

    PubMed

    Yao, Ke; Chen, Hanyong; Liu, Kangdong; Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2014-09-01

    Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1.

  20. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  1. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  2. Mitochondria Death/Survival Signaling Pathways in Cardiotoxicity Induced by Anthracyclines and Anticancer-Targeted Therapies

    PubMed Central

    Montaigne, David; Hurt, Christopher; Neviere, Remi

    2012-01-01

    Anthracyclines remain the cornerstone of treatment in many malignancies but these agents have a cumulative dose relationship with cardiotoxicity. Development of cardiomyopathy and congestive heart failure induced by anthracyclines are typically dose-dependent, irreversible, and cumulative. Although past studies of cardiotoxicity have focused on anthracyclines, more recently interest has turned to anticancer drugs that target many proteins kinases, such as tyrosine kinases. An attractive model to explain the mechanism of this cardiotoxicity could be myocyte loss through cell death pathways. Inhibition of mitochondrial transition permeability is a valuable tool to prevent doxorubicin-induced cardiotoxicity. In response to anthracycline treatment, activation of several protein kinases, neuregulin/ErbB2 signaling, and transcriptional factors modify mitochondrial functions that determine cell death or survival through the modulation of mitochondrial membrane permeability. Cellular response to anthracyclines is also modulated by a myriad of transcriptional factors that influence cell fate. Several novel targeted chemotherapeutic agents have been associated with a small but worrying risk of left ventricular dysfunction. Agents such as trastuzumab and tyrosine kinase inhibitors can lead to cardiotoxicity that is fundamentally different from that caused by anthracyclines, whereas biological effects converge to the mitochondria as a critical target. PMID:22482055

  3. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Béla; Zsengellér, Zsuzsanna; Zielonka, Jacek; Tanchian, Galin; Holovac, Eileen; Kechrid, Malek; Patel, Vivek; Stillman, Isaac E.; Parikh, Samir M.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2011-01-01

    Cisplatin is a widely used anti-neoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show that mitochondrial dysfunction is not only a feature of cisplatin nephrotoxicity, but that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin’s anti-neoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Since similar compounds appear to be safe in humans, mitochondrially-targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity. PMID:22120494

  4. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  5. Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging.

    PubMed

    Park, Gaeun; Baek, Sohee; Kim, Jong-Eun; Lim, Tae-gyu; Lee, Charles C; Yang, Hee; Kang, Young-Gyu; Park, Jun Seong; Augustin, Martin; Mrosek, Michael; Lee, Chang Yong; Dong, Zigang; Huber, Robert; Lee, Ki Won

    2015-12-01

    While skin aging is a naturally occurring process by senescence, exposure to ultraviolet (UV) radiation accelerates wrinkle formation and sagging of skin. UV induces skin aging by degrading collagen via activating matrix metalloproteinases (MMPs). In this study, we show that coumestrol, a metabolite of the soybean isoflavone daidzein, has a preventive effect on skin photoaging in three-dimensional human skin equivalent model. Coumestrol inhibited UVB-induced MMP-1 expression and activity. Whole human kinase profiling assay identified FLT3 kinase as a novel target protein of coumestrol in UVB-induced signaling pathway in skin. Coumestrol suppresses FLT3 kinase activity, and subsequently, Ras/MEK/ERK and Akt/p70 ribosomal S6 kinase pathway. This suppresses AP-1 activity and in turn, diminishes MMP-1 gene transcription. Using X-ray crystallography, the binding of coumestrol to FLT3 was defined and implied ATP-competitive inhibition. Residues Lys644 and Phe830 showed local changes to accommodate coumestrol in the ATP-binding pocket. 4-APIA, a pharmacological inhibitor of FLT3, inhibited MMP-1 expression and induced signal transduction changes similar to coumestrol. Taken together, coumestrol inhibits UVB-induced MMP-1 expression by suppressing FLT3 kinase activity. These findings suggest that coumestrol is a novel dietary compound with potential application in preventing and improving UVB-associated skin aging.

  6. Coordinated induction of Nrf2 target genes protects against iron nitrilotriacetate (FeNTA)-induced nephrotoxicity

    SciTech Connect

    Tanaka, Yuji; Aleksunes, Lauren M. |; Goedken, Michael J.; Chen, Chuan; Reisman, Scott A.; Manautou, Jose E.; Klaassen, Curtis D.

    2008-09-15

    The iron chelate, ferric nitrilotriacetate (FeNTA), induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage. Chronic exposure of FeNTA leads to a high incidence of renal adenocarcinomas in rodents. NF-E2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles, and regulates the basal and inducible expression of numerous detoxifying and antioxidant genes. To determine the roles of Nrf2 in regulating renal gene expression and protecting against oxidative stress-induced kidney damage, wild-type and Nrf2-null mice were administered FeNTA. Renal Nrf2 protein translocated to the nucleus at 6h after FeNTA treatment. FeNTA increased mRNA levels of Nrf2 target genes, including NQO1, GCLC, GSTpi1/2, Mrp1, 2, and 4 in kidneys from wild-type mice, but not Nrf2-null mice. Protein expression of NQO1, a prototypical Nrf2 target gene, was increased in wild-type mice, with no change in Nrf2-null mice. FeNTA produced more nephrotoxicity in Nrf2-null mice than wild-type mice as indicated by higher serum urea nitrogen and creatinine levels, as more urinary NAG, stronger 4-hydroxynonenal protein adduct staining, and more extensive proximal tubule damage. Furthermore, pretreatment with CDDO-Im, a potent small molecule Nrf2 activator, protected mice against FeNTA-induced renal toxicity. Collectively, these results suggest that activation of Nrf2 protects mouse kidneys from FeNTA-induced oxidative stress damage by coordinately up-regulating the expression of cytoprotective genes.

  7. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    SciTech Connect

    Read, David J.; Li Yong; Chao, Moses V.; Cavanagh, John B.; Glynn, Paul

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  8. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis.

    PubMed

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors.

  9. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis

    PubMed Central

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors. PMID:27648301

  10. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles

    PubMed Central

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C.; Langer, Robert

    2016-01-01

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  11. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis.

    PubMed

    Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P

    2017-04-15

    Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP.IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for

  12. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.

    PubMed

    Mao, Yinfei; Liu, Jinquan; He, Dinggen; He, Xiaoxiao; Wang, Kemin; Shi, Hui; Wen, Li

    2015-10-01

    Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.

  13. Homology Requirements for Targeting Heterologous Sequences during P-Induced Gap Repair in Drosophila Melanogaster

    PubMed Central

    Dray, T.; Gloor, G. B.

    1997-01-01

    The effect of homology on gene targeting was studied in the context of P-element-induced double-strand breaks at the white locus of Drosophila melanogaster. Double-strand breaks were made by excision of P-w(hd), a P-element insertion in the white gene. A nested set of repair templates was generated that contained the 8 kilobase (kb) yellow gene embedded within varying amounts of white gene sequence. Repair with unlimited homology was also analyzed. Flies were scored phenotypically for conversion of the yellow gene to the white locus. Targeting of the yellow gene was abolished when all of the 3' homology was removed. Increases in template homology up to 51 base pairs (bp) did not significantly promote targeting. Maximum conversion was observed with a construct containing 493 bp of homology, without a significant increase in frequency when homology extended to the tips of the chromosome. These results demonstrate that the homology requirements for targeting a large heterologous insertion are quite different than those for a point mutation. Furthermore, heterologous insertions strongly affect the homology requirements for the conversion of distal point mutations. Several aberrant conversion tracts, which arose from templates that contained reduced homology, also were examined and characterized. PMID:9335605

  14. Interactome of Radiation-Induced microRNA-Predicted Target Genes

    PubMed Central

    Lhakhang, Tenzin W.; Chaudhry, M. Ahmad

    2012-01-01

    The microRNAs (miRNAs) function as global negative regulators of gene expression and have been associated with a multitude of biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR). To further understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton, and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive modeling of the cellular stress response to IR exposure. PMID:22924026

  15. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  16. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  17. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  18. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells

    PubMed Central

    Church, George M.

    2015-01-01

    CRISPR / Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion / replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells. PMID:26949444

  19. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells

    PubMed Central

    López-Quesada, C.; Fontaine, A.-S.; Farré, A.; Joseph, M.; Selva, J.; Egea, G.; Ludevid, M. D.; Martín-Badosa, E.; Montes-Usategui, M.

    2014-01-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads. PMID:25071944

  20. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells.

    PubMed

    López-Quesada, C; Fontaine, A-S; Farré, A; Joseph, M; Selva, J; Egea, G; Ludevid, M D; Martín-Badosa, E; Montes-Usategui, M

    2014-07-01

    Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.

  1. Isomer production in intermediate-energy deuteron-induced reactions on a gold target

    NASA Astrophysics Data System (ADS)

    Balabekyan, A. R.; Karapetyan, G. S.; Demekhina, N. A.; Drnoyan, D. R.; Zhemenik, V. I.; Adam, J.; Zavorka, L.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. M.; Guimarães, V.; Deppman, A.

    2016-05-01

    Residual nuclei formed at ground and isomeric states from the interaction of 4.4 GeV deuteron with a gold target have been measured and investigated by the induced-activity method. Eight isomeric and ground-state pairs of target residues in the mass range of 44

  2. Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum.

    PubMed

    Gajate, C; Matos-da-Silva, M; Dakir, el-H; Fonteriz, R I; Alvarez, J; Mollinedo, F

    2012-05-24

    Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase- and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH(2)-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 α-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER.

  3. Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy

    PubMed Central

    Park, Sungwoo; Choi, Jayoung; Biering, Scott B.; Dominici, Erin; Williams, Lelia E.; Hwang, Seungmin

    2016-01-01

    ABSTRACT LC3 has been used as a marker to locate autophagosomes. However, it is also well established that LC3 can localize on various membranous structures other than autophagosomes. We recently demonstrated that the LC3 conjugation system (ATG7, ATG3, and ATG12–ATG5-ATG16L1) is required to target LC3 and IFNG (interferon, gamma)-inducible GTPases to the parasitophorus vacuole membrane (PVM) of a protist parasite Toxoplasma gondii and consequently for IFNG to control T. gondii infection. Here we show that not only LC3, but also its homologs (GABARAP, GABARAPL1, and GABARAPL2) localize on the PVM of T. gondii in a conjugation-dependent manner. Knockout/knockdown of all LC3 homologs led to a significant reduction in targeting of the IFNG-inducible GTPases to the PVM of T. gondii and the IFNG-mediated control of T. gondii infection. Furthermore, when we relocated the ATG12–ATG5-ATG16L1 complex, which specifies the conjugation site of LC3 homologs, to alternative target membranes, the IFNG-inducible GTPases were targeted to the new target membranes rather than the PVM of T. gondii. These data suggest that the localization of LC3 homologs onto a membrane by the LC3 conjugation system is necessary and sufficient for targeting of the IFNG-inducible GTPases to the membrane, implying Targeting by AutophaGy proteins (TAG). Our data further suggest that the conjugation of ubiquitin-like LC3 homologs to the phospholipids of membranes may change the destiny of the membranes beyond degradation through lysosomal fusion, as the conjugation of ubiquitin to proteins changes the destiny of the proteins beyond proteasomal degradation. PMID:27172324

  4. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device.

    PubMed

    Liu, Meng; Hui, Christy Y; Zhang, Qiang; Gu, Jimmy; Kannan, Balamurali; Jahanshahi-Anbuhi, Sana; Filipe, Carlos D M; Brennan, John D; Li, Yingfu

    2016-02-18

    We report on a paper device capable of carrying out target-induced rolling circle amplification (RCA) to produce massive DNA amplicons that can be easily visualized. Interestingly, we observed that RCA was more proficient on paper than in solution, which we attribute to a significantly higher localized concentration of immobilized DNA. Furthermore, we have successfully engineered a fully functional paper device for sensitive DNA or microRNA detection via printing of all RCA-enabling molecules within a polymeric sugar film formed from pullulan, which was integrated with the paper device. This encapsulation not only stabilizes the entrapped reagents at room temperature but also enables colorimetric bioassays with minimal steps.

  5. Fast and sensitive detection of indels induced by precise gene targeting

    PubMed Central

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla; Hansen, Lars; Thomsen, Allan Lind; Niola, Francesco; Vester-Christensen, Malene B.; Frödin, Morten; Clausen, Henrik; Wandall, Hans H.; Bennett, Eric P.

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis. PMID:25753669

  6. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients.

  7. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  8. Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity.

    PubMed

    Kruzel, Emilia K; Giles, Steven S; Hull, Christina M

    2012-06-01

    The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.

  9. M-Cell Targeting of Whole Killed Bacteria Induces Protective Immunity against Gastrointestinal Pathogens▿

    PubMed Central

    Chionh, Yok-Teng; Wee, Janet L. K.; Every, Alison L.; Ng, Garrett Z.; Sutton, Philip

    2009-01-01

    As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant. PMID:19380476

  10. M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens.

    PubMed

    Chionh, Yok-Teng; Wee, Janet L K; Every, Alison L; Ng, Garrett Z; Sutton, Philip

    2009-07-01

    As the majority of human pathogens infect via a mucosal surface, delivery of killed vaccines by mucosal routes could potentially improve protection against many such organisms. Our ability to develop effective killed mucosal vaccines is inhibited by a lack of adjuvants that are safe and effective in humans. The Ulex europaeus agglutinin I (UEA-I) lectin specifically binds M cells lining the murine gastrointestinal tract. We explored the potential for M-cell-targeted vaccination of whole, killed Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer, and Campylobacter jejuni, the most common cause of diarrhea. Oral delivery of UEA-I-agglutinated H. pylori or C. jejuni induced a significant increase in both serum and intestinal antibody levels. This elevated response (i) required the use of whole bacteria, as it did not occur with lysate; (ii) was not mediated by formation of particulate clumps, as agglutination with a lectin with a different glycan specificity had no effect; and (iii) was not due to lectin-mediated, nonspecific immunostimulatory activity, as UEA-I codelivery with nonagglutinated bacteria did not enhance the response. Vaccination with UEA-I-agglutinated, killed whole H. pylori induced a protective response against subsequent live challenge that was as effective as that induced by cholera toxin adjuvant. Moreover, vaccination against C. jejuni by this approach resulted in complete protection against challenge in almost all animals. We believe that this is the first demonstration that targeting of whole killed bacteria to mucosal M cells can induce protective immunity without the addition of an immunostimulatory adjuvant.

  11. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2

    PubMed Central

    Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-01-01

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation. PMID:27028995

  12. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice.

    PubMed

    Badillo-Godinez, O; Gutierrez-Xicotencatl, L; Plett-Torres, T; Pedroza-Saavedra, A; Gonzalez-Jaimes, A; Chihu-Amparan, L; Maldonado-Gama, M; Espino-Solis, G; Bonifaz, L C; Esquivel-Guadarrama, F

    2015-08-20

    Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.

  13. miR-22 contributes to endosulfan-induced endothelial dysfunction by targeting SRF in HUVECs.

    PubMed

    Xu, Dan; Guo, Yubing; Liu, Tong; Li, Shuai; Sun, Yeqing

    2017-03-05

    microRNAs (miRNAs) function in the posttranscriptional gene regulation, providing new insights into the epigenetic mechanism of toxicity induced by environmental pollutants. miR-22 was discovered to regulate cell proliferation and apoptosis in response to environmental toxicants. We have reported that endosulfan can cause endothelial toxicity in human umbilical vein endothelial cells (HUVECs). In the present study, we investigated the involvement of miR-22 in endosulfan-induced endothelial dysfunction. The expression level of miR-22 was increased in a dose-dependent manner by endosulfan exposure. Overexpression of miR-22 induced apoptosis and inflammation in HUVECs. Anti-miR-22 transfection significantly attenuated the increase in the percentage of apoptotic cells, caspase-3 activity and Interleukin (IL)-6, 8 mRNA levels in endosulfan-exposed HUVECs. Luciferase reporter assay confirmed that SRF and STAG2 were novel direct targets of miR-22. Endosulfan decreased mRNA expression of both SRF and STAG2, but only suppressed protein expression of SRF. Knockdown of SRF via siRNAs resulted in apoptosis and inflammation whereas STAG2 siRNAs only caused abnormal mitosis in HUVECs. Taken together, these findings will shed light on the role and mechanism of miR-22 in endosulfan-induced endothelial dysfunction via SRF in HUVECs.

  14. AQP9: a novel target for bone loss induced by microgravity.

    PubMed

    Bu, Guoyun; Shuang, Feng; Wu, Ye; Ren, Dongfeng; Hou, Shuxun

    2012-03-23

    The aim of current study was to elucidate whether aquaporin-9 (AQP9) expression was involved in the progression of bone loss induced by microgravity. We used the hind-limb suspension (HLS) mice model to simulate microgravity and induce bone loss. It was found that HLS exposure decreased femur bone mineral density (BMD), and enhanced femur AQP9 mRNA and protein levels. Then, the relationship between AQP9 mRNA expression and BMD was studied and it was showed that femur AQP9 mRNA level was negatively related to femur BMD in mice exposed to HLS. We sought to exam the function of AQP9 in the femur using the AQP9-null mice. It was found that AQP9 knockout attenuated bone loss and inhibited osteoclastogenesis under the condition of HLS exposure, but had no similar effect on bone under normal physiological conditions. In addition, it was found that exposure to simulated hypergravity or exercise training, main countermeasures against microgravity, reduced AQP9 mRNA and protein levels in femur of mice. Moreover, it was found that both aging and estrogen deprivation, another two risk factors of bone loss, had no significant effect on femur AQP9 expression. In conclusion, AQP9 plays an important role in the development of microgravity-induced bone loss, and may be a potential target for the prevention or management of microgravity-induced bone loss.

  15. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth

    PubMed Central

    Lee, Kang-In; Whang, Jake; Choi, Han-Gyu; Son, Yeo-Jin; Jeon, Haet Sal; Back, Yong Woo; Park, Hye-Soo; Paik, Seungwha; Park, Jeong-Kyu; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication. PMID:27901051

  16. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna.

    PubMed

    Naitou, Akiko; Kato, Yasuhiko; Nakanishi, Takashi; Matsuura, Tomoaki; Watanabe, Hajime

    2015-02-13

    Transcription activator-like effector nucleases (TALENs) are artificial nucleases harboring a customizable DNA-binding domain and a FokI nuclease domain. The high specificity of the DNA-binding domain and the ease of design have enabled researchers to use TALENs for targeted mutagenesis in various organisms. Here, we report the development of TALEN-dependent targeted gene disruption in the crustacean Daphnia magna, the emerging model for ecological and toxicological genomics. First, a reporter transgene DsRed2 (EF1α-1::DsRed2) was targeted. Using the Golden Gate method with a GoldyTALEN scaffold, we constructed homodimeric and heterodimeric TALENs containing wild-type and ELD/KKR FokI domains. mRNAs that coded for either the customized homodimeric or heterodimeric TALENs were injected into one-cell-stage embryos. The high mortality of embryos injected with homodimeric TALEN mRNAs prevented us from detecting mutations. In contrast, embryos injected with heterodimeric TALEN mRNAs survived and 78%-87% of the adults lost DsRed2 fluorescence in a large portion of cells throughout the body. In addition, these adults produced non-fluorescent progenies, all of which carried mutations at the dsRed2 locus. We also tested heterodimeric TALENs targeted for the endogenous eyeless gene and found that biallelic mutations could be transmitted through germ line cells at a rate of up to 22%. Both somatic and heritable mutagenesis efficiencies of TALENs were higher than those of the CRISPR/Cas9 system that we recently developed. These results suggest that the TALEN system may efficiently induce heritable mutations into the target genes, which will further contribute to the progress of functional genomics in D. magna.

  17. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles.

    PubMed

    Cheng, Yin-Jia; Luo, Guo-Feng; Zhu, Jing-Yi; Xu, Xiao-Ding; Zeng, Xuan; Cheng, Dong-Bing; Li, You-Mei; Wu, Yan; Zhang, Xian-Zheng; Zhuo, Ren-Xi; He, Feng

    2015-05-06

    Functional mesoporous silica particles have attracted growing research interest for controlled drug delivery in targeted cancer therapy. For the purpose of efficient targeting tumor cells and reducing the adverse effect of antitumor drug doxorubicin (DOX), biocompatible and enzyme-responsive mesoporous silica nanoparticles (MSNs) with tumor specificity were desired. To construct these functional MSNs, the classic rotaxane structure formed between alkoxysilane tether and α-cyclodextrin (α-CD) was employed to anchor onto the orifices of MSNs as gatekeeper in this work. After subsequent modification by multifunctional peptide (azido-GFLGR7RGDS with tumor-targeting, membrane-penetrating, and cathepsin B-responsive functions) to stabilize the gatekeeper, the resulting functional MSNs showed a strong ability to load and seal DOX in their nanopores. When incubating these DOX-loaded MSNs with tumor and normal cells, the nanoparticles could efficiently employ their surface-encoded RGDS and continuous seven arginine (R7) sequences to target tumor cells, penetrate the cell membrane, and enter tumor cells. Because cathepsin B overexpressed in late endosomes and lysosomes of tumor cells could specifically hydrolyze GFLG sequences of the nanovalves, the DOX-loaded MSNs showed an "off-on" drug release behavior that ∼80% loaded DOX could be released within 24 h and thus showed a high rate of apoptosis. Furthermore, in vitro cellular experiments indicated that DOX-loaded MSNs (DOX@MSN-GFLGR7RGDS/α-CD) had high growth inhibition toward αvβ3-positive HeLa cancerous cells. The research might offer a practical way for designing the tumor-targeted and enzyme-induced drug delivery system for cancer therapy.

  18. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  19. Targeting viral dsRNA for antiviral prophylaxis

    PubMed Central

    Fei, Zhou; Liu, Yang; Yan, Zhen; Fan, Daiming; Alexander, Alice; Yang, Jing-Hua

    2011-01-01

    Double-stranded (ds)RNA in the infected cells is a trait shared by most if not all viruses. While humans have developed variable immune responses, viruses have also developed countermeasures to defeat dsRNA-induced antiviral strategies. Thus, we proposed a broad antiviral strategy to antagonize the countermeasures of viruses and bypass the dsRNA-induced signals that are readily defeated by viruses. By rewiring the dsRNA-binding proteins in the dsRNA complex and reconnecting them to apoptosis signaling, we created several dsRNA-dependent caspase recruiters, termed dsCAREs, to bypass dsRNA-induced antiviral signals that would otherwise be targeted by viruses. Adenovirus and vesicular stomatitis virus, representing viruses of the dsDNA and negative-stranded RNA viral groups, were used to infect HEK293 cells. The dsCARE chimera was added in medium to evaluate its antiviral activity. The truncated dsCAREs were used as controls. We demonstrate that dsCARE suppresses viral infection starting at 0.1 μg/ml and reaches the peak at 2 μg/ml. The EC50 was ∼0.2 μg/ml. However, it had an undetectable effect on uninfected cells. Further data show that both dsRNA binding and apoptosis activation of dsCARE are essential for its antiviral activity. We conclude that dsRNA is a practical virus-associated molecular pattern that can be targeted for broad and rapid antiviral prophylaxis.—Fei, Z., Liu, Y., Yan, Z., Fan, D., Alexander, A., Yang, J.-H. Targeting viral dsRNA for antiviral prophylaxis. PMID:19880628

  20. Analgesia targeting IB4-positive neurons in cancer-induced mechanical hypersensitivity

    PubMed Central

    Ye, Yi; Dang, Dongmin; Viet, Chi T.; Dolan, John C.; Schmidt, Brian L.

    2013-01-01

    Cancer patients often suffer from pain and most will be prescribed μ-opioids. μ-opioids are not satisfactory in treating cancer pain and are associated with multiple debilitating side effects. Recent studies show that μ and δ opioid receptors are separately expressed on IB4 (−) and IB4 (+) neurons which control thermal and mechanical pain, respectively. In this study we investigated IB4 (+) and IB4 (−) neurons in mechanical and thermal hypersensitivity in an orthotopic mouse oral cancer model. We used a δ opioid receptor agonist and a P2X3 antagonist to target IB4 (+) neurons and to demonstrate that this subset plays a key role in cancer-induced mechanical allodynia, but not in thermal hyperalgesia. Moreover, selective removal of IB4 (+) neurons using IB4-SAP impacts cancer-induced mechanical but not thermal hypersensitivity. Our results demonstrate that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X3 antagonist, might be useful in treating oral cancer pain. Perspective To clarify the mechanisms of oral cancer pain, we examined the differential role of IB4 (+) and IB4 (−) neurons. Characterization of these two subsets of putative nociceptors is important for further development of effective clinical cancer pain relief. PMID:22483679

  1. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells.

    PubMed

    Guo, Xian-Ling; Li, Ding; Hu, Fei; Song, Jian-Rui; Zhang, Shan-Shan; Deng, Wei-Jie; Sun, Kai; Zhao, Qiu-Dong; Xie, Xu-Qin; Song, Yu-Jiao; Wu, Meng-Chao; Wei, Li-Xin

    2012-07-28

    Induction of cell death and inhibition of cell growth are the main targets of cancer therapy. Here we evaluated the role of autophagy on chemoresistance of human hepatocarcinoma (HCC) cell lines, focusing on its crosstalk with cell apoptosis and proliferation. In this study, a chemotherapeutic agent (cisplatin or 5FU) induced the formation of autophagosomes in three human HCC cell lines and upregulated the expression of autophagy protein LC3-II. Inhibition of autophagy by 3-methyladenine or si-beclin 1 increased chemotherapy-induced apoptosis in HCC cells. Meanwhile, increased damage of the mitochondrial membrane potential was also observed in HCC cells when autophagy was inhibited. Furthermore, inhibition of autophagy reduced clone formation and impaired cell growth of HCC cells when treated with chemotherapy. Co-administration of an autophagy inhibitor (chloroquine) and chemotherapy significantly inhibited tumor growth in a mouse xenograft tumor model, with greater extent of apoptosis and impaired proliferation of tumor cells. This study suggests that autophagy is a potential novel target to improve therapy efficiency of conventional chemotherapeutics towards HCC.

  2. miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb.

    PubMed

    Yang, Kun; Wu, Minhao; Li, Meiyu; Li, Dandan; Peng, Anping; Nie, Xinxin; Sun, Mingxia; Wang, Jinli; Wu, Yongjian; Deng, Qiuchan; Zhu, Min; Chen, Kang; Yuan, Jin; Huang, Xi

    2014-07-01

    miR-155 (microRNA-155) is an important noncoding RNA in regulating host inflammatory responses. However, its regulatory role in ocular infection remains unclear. Our study first explored the function of miR-155 in Pseudomonas aeruginosa-induced keratitis, one of the most common sight-threatening ocular diseases. We found that miR-155 expression was enhanced in human and mouse corneas after P. aeruginosa infection and was mainly expressed in macrophages but not neutrophils. In vivo studies demonstrated that miR-155 knockout mice displayed more resistance to P. aeruginosa keratitis, with a higher inducible nitric oxide synthase level and a lower bacterial burden. More importantly, in vitro data indicated that miR-155 suppressed the macrophage-mediated bacterial phagocytosis and intracellular killing of P. aeruginosa by targeting Rheb (Ras homolog enriched in brain). To the best of our knowledge, this is the first study to explore the role of miR-155 in bacterial keratitis, which may provide a promising target for clinical treatment of P. aeruginosa keratitis and other infectious diseases.

  3. The {alpha}-induced thick-target {gamma}-ray yield from light elements

    SciTech Connect

    Heaton, R.K. |

    1994-10-01

    The {alpha}-induced thick-target {gamma}-ray yield from light elements has been measured in the energy range 5.6 MeV {le} E{sub {alpha}} {le} 10 MeV. The {gamma}-ray yield for > 2.1 MeV from thick targets of beryllium, boron nitride, sodium fluoride, magnesium, aluminum and silicon were measured using the {alpha}-particle beam from the Lawrence Berkeley Laboratories 88 in. cyclotron. The elemental yields from this experiment were used to construct the {alpha}-induced direct production {gamma}-ray spectrum from materials in the SNO detector, a large volume ultra-low background neutrino detector located in the Creighton mine near Sudbury, Canada. This background source was an order of magnitude lower than predicted by previous calculations. These measurements are in good agreement with theoretical calculations of this spectrum based on a statistical nuclear model of the reaction, with the gross high energy spectrum structure being reproduced to within a factor of two. Detailed comparison of experimental and theoretical excitation population distribution of several residual nuclei indicate the same level of agreement within experimental uncertainties.

  4. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  5. Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor.

    PubMed

    Khamaisi, Mogher; Toukan, Hala; Axelrod, Jonathan H; Rosenberger, Christian; Skarzinski, Galia; Shina, Ahuva; Meidan, Rina; Koesters, Robert; Rosen, Seymour; Walkinshaw, Gail; Mimura, Imari; Nangaku, Masaomi; Heyman, Samuel N

    2015-04-01

    Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.

  6. Target-induced structure-switching DNA hairpins for sensitive electrochemical monitoring of mercury (II).

    PubMed

    Zhuang, Junyang; Fu, Libing; Tang, Dianping; Xu, Mingdi; Chen, Guonan; Yang, Huanghao

    2013-01-15

    A simple, sensitive and reusable electrochemical sensor was designed for determination of mercury (II) (Hg(2+)) by coupling target-induced conformational switch of DNA hairpins with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry. The hairpin probe consisted of a stem of 6 base pairs enclosing a 14 nucleotide (nt) loop and an additional 12 nt sticky end at the 3' end. Each hairpin was labeled with ferrocene (Fc) redox tag in the middle of the loop, which was immobilized on the electrode via self-assembly of the terminal thiol moiety at the 5' end. In the presence of target analyte, Hg(2+)-mediated base pairs induced the conformational change from the sticky end to open the hairpins, resulting in the ferrocene tags close to the electrode for the increasing redox current. The strong coordination reaction of T-Hg(2+)-T resulted in a good repeatability and intermediate precision down to 10%. The dynamic concentration range spanned from 5.0nM to 1.0μM Hg(2+) with a detection limit of 2.5nM at the 3s(blank) level. The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. Inspiringly, the developed sensor could be reused by introduction of iodide (I(-)).

  7. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  8. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  9. A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco.

    PubMed

    Dalakouras, Athanasios; Moser, Mirko; Krczal, Gabi; Wassenegger, Michael

    2010-07-01

    In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.

  10. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    PubMed Central

    Sadri, Navid; Zhang, Paul J.

    2013-01-01

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression. PMID:24216979

  11. Experimental model of transthoracic, vascular-targeted, photodynamically induced myocardial infarction

    PubMed Central

    Pokreisz, Peter; Schnitzer, Jan E.

    2013-01-01

    We describe a novel model of myocardial infarction (MI) in rats induced by percutaneous transthoracic low-energy laser-targeted photodynamic irradiation. The procedure does not require thoracotomy and represents a minimally invasive alternative to existing surgical models. Target cardiac area to be photodynamically irradiated was triangulated from the thoracic X-ray scans. The acute phase of MI was histopathologically characterized by the presence of extensive vascular occlusion, hemorrhage, loss of transversal striations, neutrophilic infiltration, and necrotic changes of cardiomyocytes. Consequently, damaged myocardium was replaced with fibrovascular and granulation tissue. The fibrotic scar in the infarcted area was detected by computer tomography imaging. Cardiac troponin I (cTnI), a specific marker of myocardial injury, was significantly elevated at 6 h (41 ± 6 ng/ml, n = 4, P < 0.05 vs. baseline) and returned to baseline after 72 h. Triphenyltetrazolium chloride staining revealed transmural anterolateral infarcts targeting 25 ± 3% of the left ventricle at day 1 with a decrease to 20 ± 3% at day 40 (n = 6 for each group, P < 0.01 vs. day 1). Electrocardiography (ECG) showed significant ST-segment elevation in the acute phase with subsequent development of a pathological Q wave and premature ventricular contractions in the chronic phase of MI. Vectorcardiogram analysis of spatiotemporal electrical signal transduction revealed changes in inscription direction, QRS loop morphology, and redistribution in quadrant areas. The photodynamically induced MI in n = 51 rats was associated with 12% total mortality. Histological findings, ECG abnormalities, and elevated cTnI levels confirmed the photosensitizer-dependent induction of MI after laser irradiation. This novel rodent model of MI might provide a platform to evaluate new diagnostic or therapeutic interventions. PMID:24213611

  12. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Kishore, B K; Carlson, N G; Ecelbarger, C M; Kohan, D E; Müller, C E; Nelson, R D; Peti-Peterdi, J; Zhang, Y

    2015-06-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action.

  13. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    PubMed Central

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  14. Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    PubMed Central

    Ahmad, Aftab; Hendry-Hofer, Tara B.; Loader, Joan E.; Claycomb, William C.; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L.; Chandler, Joshua D.; Day, Brian J.; Veress, Livia A.; White, Carl W.

    2015-01-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure. PMID:25188881

  15. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity.

    PubMed

    Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W

    2015-04-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.

  16. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

    PubMed Central

    Pubill, David; Garcia-Ratés, Sara; Camarasa, Jordi; Escubedo, Elena

    2011-01-01

    Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of α7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, α7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to α7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on α7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on α7 and heteromeric nAChR populations have been found.

  17. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  18. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  19. Characteristics of Movement-Induced Dose Reduction in Target Volume: A Comparison Between Photon and Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Shin, Dongho; Kwak, Jungwon; Park, Soah; Lim, Young Kyung; Kim, Dongwook; Park, Sung Yong Lee, Se Byeong; Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Kwan Ho

    2009-10-01

    We compared the main characteristics of movement-induced dose reduction during photon and proton beam treatment, based on an analysis of dose-volume histograms. To simulate target movement, a target contour was delineated in a scanned phantom and displaced by 3 to 20 mm. Although the dose reductions to the target in the 2 treatment systems were similar for transverse (perpendicular to beam direction) target motion, they were completely different for longitudinal (parallel to beam direction) target motion. While both modalities showed a relationship between the degree of target shift and the reduction in dose coverage, dose reduction showed a strong directional dependence in proton beam treatment. Clinical simulation of target movement for a prostate cancer patient showed that, although coverage and conformity indices for a 6-mm lateral movement of the prostate were reduced by 9% and 16%, respectively, for proton beam treatment, they were reduced by only 1% and 7%, respectively, for photon treatment. This difference was greater for a 15-mm target movement in the lateral direction, which lowered the coverage and conformity indices by 34% and 54%, respectively, for proton beam treatment, but changed little during photon treatment. In addition, we found that the equivalent uniform dose (EUD) and homogeneity index show similar characteristics during target movement. These results suggest that movement-induced dose reduction differs significantly between photon and proton beam treatment. Attention should be paid to the target margin in proton beam treatment due to the distinct characteristics of heavy ion beams.

  20. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress.

    PubMed

    Wei, Pei-Chi; Lo, Wen-Ting; Su, Mei-I; Shew, Jin-Yuh; Lee, Wen-Hwa

    2012-01-01

    Short interfering RNAs (siRNAs) target specific mRNAs for their degradation mediated by RNA-induced silencing complex (RISC). Persistent activation of siRNA-RISC frequently leads to non-targeting toxicity. However, how cells mediate this stress remains elusive. In this communication, we found that the presence of non-targeting siRNA selectively induced the expression of an endoplasmic reticulum (ER)-resident protein, non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), but not other ER-stress proteins including GRP78, Calnexin and XBP1. Cells suffering from constant non-targeting siRNA stress grew slower and prolonged G1 phase, while NPGPx-depleted cells accumulated mature non-targeting siRNA and underwent apoptosis. Upon the stress, NPGPx covalently bound to exoribonuclease XRN2, facilitating XRN2 to remove accumulated non-targeting siRNA. These results suggest that NPGPx serves as a novel responder to non-targeting siRNA-induced stress in facilitating XRN2 to release the non-targeting siRNA accumulation.

  1. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells

    PubMed Central

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer. PMID:26473737

  2. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Charngkaew, Komgrid; Boonkrai, Chatikorn; Somparn, Poorichaya; Uawithya, Panapat; Chomanee, Nusara; Payne, D Michael; Fenton, Robert A; Pisitkun, Trairak

    2017-01-27

    Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.

  3. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells.

    PubMed

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer.

  4. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To

  5. Targeting thioredoxin reductase by plumbagin contributes to inducing apoptosis of HL-60 cells.

    PubMed

    Zhang, Junmin; Peng, Shoujiao; Li, Xinming; Liu, Ruijuan; Han, Xiao; Fang, Jianguo

    2017-04-01

    Plumbagin (PLB), a natural naphthoquinone from the traditional folk medicines Plumbago zeylanica, Dionaea muscipula, or Nepenthes gracilis, has been documented possessing a wide variety of pharmacological activities. Although PLB demonstrates anticancer activity in multiple types of malignant cells, the cellular targets of PLB have not been well defined and remained only partially understood. We reported here that PLB selectively inhibits TrxR and elicits reactive oxygen species in human promyelocytic leukemia HL-60 cells, which leads to elevation of GSSG/GSH ratio and decrease of cellular thiol pool. As a consequence, PLB disturbs the cellular redox homeostasis, induces oxidative stress-mediated apoptosis and eventually selectively kills HL-60 cells. Inhibition of TrxR by PLB thus discloses an unprecedented mechanism underlying the anticancer efficacy of PLB, and sheds light in considering the usage of PLB as a promising cancer therapeutic agent.

  6. Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis

    PubMed Central

    Hua, Susan; Dias, Thilani H.

    2016-01-01

    Hypoxia is an important micro-environmental characteristic of rheumatoid arthritis (RA). Hypoxia-inducible factors (HIF) are key transcriptional factors that are highly expressed in RA synovium to regulate the adaptive responses to this hypoxic milieu. Accumulating evidence supports hypoxia and HIFs in regulating a number of important pathophysiological characteristics of RA, including synovial inflammation, angiogenesis, and cartilage destruction. Experimental and clinical data have confirmed the upregulation of both HIF-1α and HIF-2α in RA. This review will focus on the differential expression of HIFs within the synovial joint and its functional behavior in different cell types to regulate RA progression. Potential development of new therapeutic strategies targeting HIF-regulated pathways at sites of disease in RA will also be addressed. PMID:27445820

  7. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy.

    PubMed

    Themeli, Maria; Kloss, Christopher C; Ciriello, Giovanni; Fedorov, Victor D; Perna, Fabiana; Gonen, Mithat; Sadelain, Michel

    2013-10-01

    Progress in adoptive T-cell therapy for cancer and infectious diseases is hampered by the lack of readily available, antigen-specific, human T lymphocytes. Pluripotent stem cells could provide an unlimited source of T lymphocytes, but the therapeutic potential of human pluripotent stem cell-derived lymphoid cells generated to date remains uncertain. Here we combine induced pluripotent stem cell (iPSC) and chimeric antigen receptor (CAR) technologies to generate human T cells targeted to CD19, an antigen expressed by malignant B cells, in tissue culture. These iPSC-derived, CAR-expressing T cells display a phenotype resembling that of innate γδ T cells. Similar to CAR-transduced, peripheral blood γδ T cells, the iPSC-derived T cells potently inhibit tumor growth in a xenograft model. This approach of generating therapeutic human T cells 'in the dish' may be useful for cancer immunotherapy and other medical applications.

  8. Smart bombing a single targeted cell with femtogram order reagents using laser-induced shockwave technique

    NASA Astrophysics Data System (ADS)

    Okano, Kazunori; Takizawa, Noriko; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    Injection and delivery of small amount reagent in aqueous solution for cell chip was performed utilizing regeneratively amplified femtosecond laser system. In our new trial, the reagent integrated on a solid strip are released and delivered to targeted cells with the femutosecond laser-induced impulsive-force. The reagent was fixed in poly(vinyl alcohol) or polystyrene film on a glass-substrate strip. When a single pulsed femtosecond laser was focused in the solution, the film near the focal point was fragmented and the reagent was dispersed in 45-μm φ area at 50 μm from the surface of the reagent strip. As examples cardiomyocyte beating cells of P19CL6 were bombed with epinephrine and acetylcholine, and as a result the beating ratio of the cells were quickly stimulated and suppressed, respectively. The results demonstrate that the present method is a promising key nano/micro technology for diagnosis and drug discovery.

  9. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy.

    PubMed

    Benítez-Temiño, B; de la Cruz, R R; Pastor, A M

    2003-01-01

    The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.

  10. Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity.

    PubMed

    Xi, Lei; Zhu, Shu-Guang; Hobbs, Daniel C; Kukreja, Rakesh C

    2011-11-01

    We recently demonstrated protective effect of chronic oral nitrate supplementation against cardiomyopathy caused by doxorubicin (DOX), a highly effective anticancer drug. The present study was designed to identify novel protein targets related to nitrate-induced cardioprotection. Adult male CF-1 mice received cardioprotective regimen of nitrate (1 g NaNO(3) per litre of drinking water) for 7 days before DOX injection (15 mg/kg, i.p.) and continued for 5 days after DOX treatment. Subsequently the heart samples were collected for proteomic analysis with two-dimensional differential in-gel electrophoresis with 3 CyDye labelling. Using 1.5 cut-off ratio, we identified 36 proteins that were up-regulated by DOX in which 32 were completely reversed by nitrate supplementation (89%). Among 19 proteins down-regulated by DOX, 9 were fully normalized by nitrate (47%). The protein spots were further identified with Matrix Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF)/TOF tandem mass spectrometry. Three mitochondrial antioxidant enzymes were altered by DOX, i.e. up-regulation of manganese superoxide dismutase and peroxiredoxin 3 (Prx3), and down-regulation of Prx5, which were reversed by nitrate. These results were further confirmed by Western blots. Nitrate supplementation also significantly improved animal survival rate from 80% in DOX alone group to 93% in Nitrate + DOX group 5 days after the DOX treatment. In conclusion, the proteomic analysis has identified novel protein targets underlying nitrate-induced cardioprotection. Up-regulation of Prx5 by nitrate may explain the observed enhancement of cardiac antioxidant defence by nitrate supplementation.

  11. Periodontitis in Rats Induces Systemic Oxidative Stress That Is Controlled by Bone-Targeted Antiresorptives

    PubMed Central

    Oktay, Sehkar; Chukkapalli, Sasanka S.; Rivera-Kweh, Mercedes F.; Velsko, Irina M.; Holliday, L. Shannon; Kesavalu, Lakshmyya

    2015-01-01

    Background Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease–induced oxidative stress during oral infection. Methods Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bisenoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. Results Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. Conclusion To the best of the authors’ knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives. PMID:25101489

  12. A target-controlled infusion regimen for reducing remifentanil-induced coughs

    PubMed Central

    Kim, Jong-Yeop; Chae, Yun Jeong; Kim, Jin-Soo; Park, Yoon-Jeong

    2012-01-01

    Background This study evaluates the effectiveness of the target-controlled infusion (TCI) of remifentanil through stepwise increases in the effect-site concentration (Ceff) in preventing coughs. Methods In a preliminary study, we randomly selected 140 patients to receive remifentanil through two-step increases in Ceff (1.0 ng/ml to 4.0 ng/ml: Group R1-4; 2.0 ng/ml to 4.0 ng/ml: Group R2-4). Based on the results of the preliminary study, we employed another sample of 140 patients and implemented a three-step increase in TCI (1.0 ng/ml to 2.0 ng/ml to 4.0 ng/ml: Group R1-2-4). We then compared this treatment with direct targeting based on 4.0 ng/ml TCI (Group R4). We recorded the episodes of coughs, rating them as mild (1-2), moderate (3-4), or severe (5 or more). Results In Group R1-4, one patient (1.5%) coughed during the first step, and five (7.3%) coughed during the second step. In Group R2-4, nine (13.2%) coughed during the first step, but none coughed during the next step. Only one patient had a mild cough during the three-step increase in TCI, that is, patients in Group R1-2-4 were significantly less likely to cough than those in Group R4 (P < 0.001). Conclusions Stepwise increases in the TCI of remifentanil reduced the incidence of remifentanil-induced coughing, and the three-step increase in TCI nearly eliminated remifentanil-induced coughing. PMID:22870362

  13. Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans.

    PubMed

    Yang, Dong-Hoon; Jung, Kwang-Woo; Bang, Soohyun; Lee, Jang-Won; Song, Min-Hee; Floyd-Averette, Anna; Festa, Richard A; Ianiri, Giuseppe; Idnurm, Alexander; Thiele, Dennis J; Heitman, Joseph; Bahn, Yong-Sun

    2017-01-01

    Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.

  14. Experience-Dependent Rewiring of Specific Inhibitory Connections in Adult Neocortex

    PubMed Central

    Kätzel, Dennis; Miesenböck, Gero

    2014-01-01

    Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%–45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits. PMID:24586113

  15. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  16. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A.

    PubMed

    Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-Yu; Jiang, Xiaohong; Hou, Dongxia

    2014-11-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

  17. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?

    PubMed

    Haffner, Michael C; De Marzo, Angelo M; Meeker, Alan K; Nelson, William G; Yegnasubramanian, Srinivasan

    2011-06-15

    An emerging model of transcriptional activation suggests that induction of transcriptional programs, for instance by stimulating prostate or breast cells with androgens or estrogens, respectively, involves the formation of DNA damage, including DNA double strand breaks (DSB), recruitment of DSB repair proteins, and movement of newly activated genes to transcription hubs. The DSB can be mediated by the class II topoisomerase TOP2B, which is recruited with the androgen receptor and estrogen receptor to regulatory sites on target genes and is apparently required for efficient transcriptional activation of these genes. These DSBs are recognized by the DNA repair machinery triggering the recruitment of repair proteins such as poly(ADP-ribose) polymerase 1 (PARP1), ATM, and DNA-dependent protein kinase (DNA-PK). If illegitimately repaired, such DSBs can seed the formation of genomic rearrangements like the TMPRSS2-ERG fusion oncogene in prostate cancer. Here, we hypothesize that these transcription-induced, TOP2B-mediated DSBs can also be exploited therapeutically and propose that, in hormone-dependent tumors like breast and prostate cancers, a hormone-cycling therapy, in combination with topoisomerase II poisons or inhibitors of the DNA repair components PARP1 and DNA-PK, could overwhelm cancer cells with transcription-associated DSBs. Such strategies may find particular utility in cancers, like prostate cancer, which show low proliferation rates, in which other chemotherapeutic strategies that target rapidly proliferating cells have had limited success.

  18. Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle.

    PubMed Central

    Kolattukudy, P. E.; Quach, T.; Bergese, S.; Breckenridge, S.; Hensley, J.; Altschuld, R.; Gordillo, G.; Klenotic, S.; Orosz, C.; Parker-Thornburg, J.

    1998-01-01

    To explore the possible role of monocyte chemotactic protein (MCP-1) in inflammatory diseases of the heart, we expressed the murine MCP-1(JE) gene under the control of the alpha-cardiac myosin heavy chain promoter to attempt to target MCP-1 expression to the adult heart muscle. The five lines of transgenic mice thus produced showed targeted expression of MCP-1 transcripts and protein in the adult heart muscle and pulmonary vein but not in skeletal muscle. MCP-1 level in the transgenic hearts increased up to 30 to 45 days of age, and leukocyte infiltration into interstitium between cardiomyocytes increased up to 60 to 75 days. The infiltrate was mainly macrophages but not T cells. The presence of MCP-1 in the transgenic hearts did not induce cytokine production indicative of leukocyte activation. Echocardiographic analysis of 1-year-old mice that express MCP-1 in the myocardium and of age-matched controls revealed cardiac hypertrophy and dilation, increases in left ventricular (LV) mass, and systolic and diastolic left ventricular internal diameters. A significant decline in M-mode shortening fraction showed depressed contractile function. Transgenic hearts were 65% heavier, and histological analysis showed moderate myocarditis, edema, and some fibrosis. Thus, MCP-1 expression in the heart muscle may provide a model to investigate myocarditis and cardiomyopathy. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9422528

  19. Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy.

    PubMed

    Liu, Yanlei; Yang, Meng; Zhang, Jingpu; Zhi, Xiao; Li, Chao; Zhang, Chunlei; Pan, Fei; Wang, Kan; Yang, Yuming; Martinez de la Fuentea, Jesus; Cui, Daxiang

    2016-02-23

    How to improve effective accumulation and intratumoral distribution of plasmonic gold nanoparticles has become a great challenge for photothermal therapy of tumors. Herein, we reported a nanoplatform with photothermal therapeutic effects by fabricating Au nanorods@SiO2@CXCR4 nanoparticles and loading the prepared nanoparticles into the human induced pluripotent stem cells(AuNRs-iPS). In virtue of the prominent optical properties of Au nanorods@SiO2@CXCR4 and remarkable tumor target migration ability of iPS cells, the Au nanorods delivery mediated by iPS cells via the nanoplatform AuNRs-iPS was found to have a prolonged retention time and spatially even distribution in MGC803 tumor-bearing nude mice observed by photoacoustic tomography and two-photon luminescence. On the basis of these improvements, the nanoplatform displayed a robust migration capacity to target the tumor site and to improve photothermal therapeutic efficacy on inhibiting the growth of tumors in xenograft mice under a low laser power density. The combination of gold nanorods with human iPS cells as a theranostic platform paves an alternative road for cancer theranostics and holds great promise for clinical translation in the near future.

  20. In situ measurements of impact-induced pressure waves in sandstone targets

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Schäfer, Frank; Nau, Siegfried; Kuder, Jürgen; Poelchau, Michael H.; Thoma, Klaus; Kenkmann, Thomas

    2014-10-01

    In the present study we introduce an innovative method for the measurement of impact-induced pressure waves within geological materials. Impact experiments on dry and water-saturated sandstone targets were conducted at a velocity of 4600 m/s using 12 mm steel projectiles to investigate amplitudes, decay behavior, and speed of the waves propagating through the target material. For this purpose a special kind of piezoresistive sensor capable of recording transient stress pulses within solid brittle materials was developed and calibrated using a Split-Hopkinson pressure bar. Experimental impact parameters (projectile size and speed) were kept constant and yielded reproducible signal curves in terms of rise time and peak amplitudes. Pressure amplitudes decreased by 3 orders of magnitude within the first 250 mm (i.e., 42 projectile radii). The attenuation for water-saturated sandstone is higher compared to dry sandstone which is attributed to dissipation effects caused by relative motion between bulk material and interstitial water. The proportion of the impact energy radiated as seismic energy (seismic efficiency) is in the order of 10-3. The present study shows the feasibility of real-time measurements of waves caused by hypervelocity impacts on geological materials. Experiments of this kind lead to a better understanding of the processes in the crater subsurface during a hypervelocity impact.

  1. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  2. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  3. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses.

    PubMed

    Hildebrand, Laura; Seemann, Petra; Kurtz, Andreas; Hecht, Jochen; Contzen, Jörg; Gossen, Manfred; Stachelscheid, Harald

    2015-12-01

    Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.

  4. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin.

    PubMed

    Kegelman, Timothy P; Wu, Bainan; Das, Swadesh K; Talukdar, Sarmistha; Beckta, Jason M; Hu, Bin; Emdad, Luni; Valerie, Kristoffer; Sarkar, Devanand; Furnari, Frank B; Cavenee, Webster K; Wei, Jun; Purves, Angela; De, Surya K; Pellecchia, Maurizio; Fisher, Paul B

    2017-01-10

    Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.

  5. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release

    PubMed Central

    Neasta, Jérémie; Valmalle, Charlène; Coyne, Anne‐Claire; Carnazzi, Eric; Subra, Gilles; Galleyrand, Jean‐Claude; Gagne, Didier; M'Kadmi, Céline; Bernad, Nicole; Bergé, Gilbert; Cantel, Sonia; Marin, Philippe; Marie, Jacky; Banères, Jean‐Louis; Kemel, Marie‐Lou; Daugé, Valérie; Puget, Karine

    2016-01-01

    Background and Purpose Using an in‐house bioinformatics programme, we identified and synthesized a novel nonapeptide, H‐Pro‐Pro‐Thr‐Thr‐Thr‐Lys‐Phe‐Ala‐Ala‐OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. Experimental Approach The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra‐striatal injection of the peptide was investigated. A photoaffinity UV cross‐linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. Key Results The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine‐like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. Conclusion and Implications The synthetic nonapeptide acein interacted with high affinity with brain membrane‐bound ACE. This interaction occurs at a different site from the active site involved in the well‐known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected. PMID:27027724

  6. BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial

    PubMed Central

    Gasper, Melanie A.; Hesseling, Anneke C.; Mohar, Isaac; Myer, Landon; Azenkot, Tali; Passmore, Jo-Ann S.; Hanekom, Willem; Cotton, Mark F.; Crispe, I. Nicholas; Sodora, Donald L.; Jaspan, Heather B.

    2017-01-01

    BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants. METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm). RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells. CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination. TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580. FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments.

  7. Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves.

    PubMed

    Narváez-Vásquez, Javier; Tu, Chao-Jung; Park, Sang-Youl; Walling, Linda L

    2008-01-01

    The constitutive and wound-inducible leucine aminopeptidases (LAP-N and LAP-A, respectively) of tomato encode 60-kDa proteins with 5-kDa presequences that resemble chloroplast-targeting peptides. Cell fractionation studies and immunoblot analyses of chloroplast and total proteins have suggested a dual location of the mature LAP-A proteins in the cytosol and the plastids. In this study, the subcellular localization of tomato LAPs was further investigated using in vitro chloroplast-targeting assays and immunocytochemical techniques at the light and TEM levels. In vitro-translated LAP-A1 and LAP-N preproteins were readily transported into pea chloroplasts and processed into mature proteins of 55 kDa indicating the presence of a functional chloroplast-targeting signal in the LAP-A1 and LAP-N protein precursors. In addition, a LAP polyclonal and a LAP-A-specific antisera were used to immunolocalize LAP proteins in leaves from healthy, wounded and methyl jasmonate (MeJA)-treated plants. Low levels of LAPs and/or LAP-like proteins were detected in leaves from unwounded plants. The LAP polyclonal antiserum, which detected LAP-A, LAP-N and LAP-like proteins, and the LAP-A specific antibodies, which detected only LAP-A, showed that LAP levels increased in leaf sections after wounding and MeJA treatments. LAP-A proteins were primarily detected within the chloroplasts of spongy and palisade mesophyll cells. The localization of LAP-A was distinct from the location of early wound-response proteins that are important in the biosynthesis of jasmonic acid or systemin and more similar to the late wound-response proteins with primary roles in defense. The importance of these findings relative to the potential roles of LAP-A in defense is discussed.

  8. Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis.

    PubMed

    Wang, Hanghui; Song, Yixin; Hao, Dingjun; Bai, Min; Jin, Lifang; Gu, Jiying; Su, Yijin; Liu, Long; Jia, Chao; Du, Lianfang

    2014-07-01

    The specific and efficient delivery of small interfering RNA (siRNA) into cancer cells in vivo remains a major obstacle. In this study, we investigated whether ultrasound-targeted microbubble destruction (UTMD) combined with dual targeting of HSP72 and HSC70 in prostate cancer cell lines improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis. VCaP cells were transfected with siRNA oligonucleotides. Cell viability assays were used to evaluate the safety of UTMD. The expression of HSP70, HSP90, caspase-8, caspase-3, PARP-1 and cleaved caspase-3 were determined by quantitative PCR and western blotting. Apoptosis and transfection efficiency were detected by flow cytometry. We found that HSP72, HSC70 and HSP90 expression was absent or weak in normal prostate epithelial cells (RWPE-1), and became uniformly and strongly expressed in prostate cancer cells (VCaP). VCaP and RWPE-1 cells expressed very low levels of caspase-8, caspase-3, PARP-1 and cleaved caspase-3. UTMD combined with dual targeting of HSP72 and HSC70 siRNA impoved the efficiency of transfection, cell uptake of siRNA, downregulated HSP70 and HSP90 expression in VCaP cells on the mRNA and protein levels, and upregulated major apoptotic markers (PARP-1, caspase-8, caspase-3 and cleaved caspase-3), thus, inducing extensive tumor-specific apoptosis. The Cell Counting Kit-8 assay showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting of HSP72 and HSC70 may improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis, indicating a novel, potential means for targeting therapeutic strategy to prostate cancer cells.

  9. Targeting nasopharyngeal carcinoma by artesunate through inhibiting Akt/mTOR and inducing oxidative stress.

    PubMed

    Li, Qin; Ni, Wei; Deng, Zhifeng; Liu, Minghe; She, Lazhi; Xie, Qiong

    2017-01-11

    Drug repurposing has become an alternative therapeutic strategy for cancer treatment given the known pharmacokinetics and toxicity. The inhibitory effects of artesunate have been reported in various cancers. In this work, we investigated the effects of artesunate in nasopharyngeal carcinoma (NPC). We demonstrate that artesunate significantly inhibits proliferation via arresting NPC cells at G2/M phase. It also induces apoptosis through caspase-dependent and mitochondria-independent pathways in multiple NPC cell lines. The combination of artesunate and cisplatin is synergistic in targeting NPC cells in in vitro cellular culture system and in vivo xenograft tumor models. Artesunate inhibits phosphorylation of essential molecules involved in Akt/mTOR pathway in NPC cells, such as Akt, mTOR, and 4EBP1, and its inhibitory effects are partially abolished by overexpression of constitutively active Akt. In addition, artesunate also induces mitochondrial dysfunction and oxidative stress via inhibiting mitochondrial respiration, increasing levels of mitochondrial superoxide and cellular reactive oxygen species (ROS), leading to decreased ATP levels. Two ROS scavengers partially abolish the inhibitory effects of artesunate in NPC cells. These data suggest that both inhibition of Akt/mTOR pathway and induction of ROS are required for the action of artesunate in NPC cells. Our work demonstrates that artesunate is a potential candidate for NPC treatment. Our work also highlights the critical roles of Akt/mTOR pathway and mitochondrial function in NPC cells.

  10. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  11. Comparative Analysis of Induced vs. Spontaneous Models of Autoimmune Uveitis Targeting the Interphotoreceptor Retinoid Binding Protein

    PubMed Central

    Chen, Jun; Qian, Haohua; Horai, Reiko; Chan, Chi-Chao; Falick, Yishay; Caspi, Rachel R.

    2013-01-01

    Animal models of autoimmunity to the retina mimic specific features of human uveitis, but no model by itself reproduces the full spectrum of human disease. We compared three mouse models of uveitis that target the interphotoreceptor retinoid binding protein (IRBP): (i) the “classical” model of experimental autoimmune uveitis (EAU) induced by immunization with IRBP; (ii) spontaneous uveitis in IRBP T cell receptor transgenic mice (R161H) and (iii) spontaneous uveitis in Autoimmune Regulator (AIRE)−/− mice. Disease course and severity, pathology and changes in visual function were studied using fundus imaging and histological examinations, optical coherence tomography and electroretinography. All models were on the B10.RIII background. Unlike previously reported, IRBP-induced EAU in B10.RIII mice exhibited two distinct patterns of disease depending on clinical scores developed after onset: severe monophasic with extensive destruction of the retina and rapid loss of visual signal, or lower grade with a prolonged chronic phase culminating after several months in retinal degeneration and loss of vision. R161H and AIRE−/− mice spontaneously developed chronic progressive inflammation; visual function declined gradually as retinal degeneration developed. Spontaneous uveitis in R161H mice was characterized by persistent cellular infiltrates and lymphoid aggregation, whereas AIRE−/− mice characteristically developed multi-focal infiltrates and severe choroidal inflammation. These data demonstrate variability and unique distinguishing features in the different models of uveitis, suggesting that each one can represent distinct aspects of uveitis in humans. PMID:24015215

  12. Confinement effects of shock waves on laser-induced plasma from a graphite target

    SciTech Connect

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  13. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  14. Iron overload as a major targetable pathogenesis of asbestos-induced mesothelial carcinogenesis.

    PubMed

    Toyokuni, Shinya

    2014-01-01

    Few people expected that asbestos, a fibrous mineral, would be carcinogenic to humans. In fact, asbestos is a definite carcinogen in humans, causing a rare but aggressive cancer called malignant mesothelioma (MM). Mesothelial cells line the three somatic cavities and thus do not face the outer surface, but reduce the friction among numerous moving organs. MM has several characteristics: extremely long incubation period of 30-40 years after asbestos exposure, difficulty in clinical diagnosis at an early stage, and poor prognosis even under the current multimodal therapies. In Japan, 'Kubota shock' attracted considerable social attention in 2005 for asbestos-induced mesothelioma and, thereafter, the government enacted a law to provide the people suffering from MM a financial allowance. Several lines of recent evidence suggest that the major pathology associated with asbestos-induced MM is local iron overload, associated with asbestos exposure. Preclinical studies to prevent MM after asbestos exposure with iron reduction are in progress. In addition, novel target genes in mesothelial carcinogenesis have been discovered with recently recognized mesothelioma-prone families. Development of an effective preventive strategy is eagerly anticipated because of the long incubation period for MM.

  15. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA.

    PubMed

    Wu, Danhong; Zhang, Qing; Chu, Xia; Wang, Haibo; Shen, Guoli; Yu, Ruqin

    2010-01-15

    A novel electrochemical sensor has been developed for sensitive and selective detection of mercury (II) based on target-induced structure-switching DNA. A 33-mer oligonucleotide 1 with five self-complementary base pairs separated by seven thymine-thymine mismatches was first immobilized on the electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged oligonucleotide 2, leading to a high redox current. In the presence of Hg(2+), mercury-mediated base pairs (T-Hg(2+)-T) induced the folding of the oligonucleotide 1 into a hairpin structure, resulting in the release of the ferrocene-tagged oligonucleotide 2 from the electrode surface with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effect of the reaction temperature on the response of the sensor was also studied in detail. The results revealed that the sensor showed sensitive response to Hg(2+) in a concentration range from 0.1 nM to 5 microM with a detection limit of 0.06 nM. In addition, this strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions, which was superior to that of previous anodic stripping voltammetry (ASV)-based techniques. The excellent sensitivity and selectivity signified the potential of the sensor for Hg(2+) detection in real environmental samples.

  16. REDD1 Is a Major Target of Testosterone Action in Preventing Dexamethasone-Induced Muscle Loss

    PubMed Central

    Wu, Yong; Zhao, Weidong; Zhao, Jingbo; Zhang, Yuanfei; Qin, Weiping; Pan, Jiangping; Bauman, William A.; Blitzer, Robert D.; Cardozo, Christopher

    2010-01-01

    Glucocorticoids are a well-recognized and common cause of muscle atrophy that can be prevented by testosterone. However, the molecular mechanisms underlying such protection have not been described. Thus, the global effects of testosterone on dexamethasone-induced changes in gene expression were evaluated in rat gastrocnemius muscle using DNA microarrays. Gene expression was analyzed after 7-d administration of dexamethasone, dexamethasone plus testosterone, or vehicle. Dexamethasone changed expression of 876 probe sets by at least 2-fold. Among these, 474 probe sets were changed by at least 2-fold in the opposite direction in the dexamethasone plus testosterone group (genes in opposition). Major biological themes represented by genes in opposition included IGF-I signaling, myogenesis and muscle development, and cell cycle progression. Testosterone completely prevented the 22-fold increase in expression of the mammalian target of rapamycin (mTOR) inhibitor regulated in development and DNA damage responses 1 (REDD1), and attenuated dexamethasone induced increased expression of eIF4E binding protein 1, Forkhead box O1, and the p85 regulatory subunit of the IGF-I receptor but prevented decreased expression of IRS-1. Testosterone attenuated increases in REDD1 protein in skeletal muscle and L6 myoblasts and prevented dephosphorylation of p70S6 kinase at the mTOR-dependent site Thr389 in L6 myoblast cells. Effects of testosterone on REDD1 mRNA levels occurred within 1 h, required the androgen receptor, were blocked by bicalutamide, and were due to inhibition of transcriptional activation of REDD1 by dexamethasone. These data suggest that testosterone blocks dexamethasone-induced changes in expression of REDD1 and other genes that collectively would otherwise down-regulate mTOR activity and hence also down-regulate protein synthesis. PMID:20032058

  17. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-01-01

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4

  18. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro.

    PubMed

    Robinson, M K; Hodge, K M; Horak, E; Sundberg, A L; Russeva, M; Shaller, C C; von Mehren, M; Shchaveleva, I; Simmons, H H; Marks, J D; Adams, G P

    2008-11-04

    Inappropriate signalling through the EGFR and ErbB2/HER2 members of the epidermal growth factor family of receptor tyrosine kinases is well recognised as being causally linked to a variety of cancers. Consequently, monoclonal antibodies specific for these receptors have become increasingly important components of effective treatment strategies for cancer. Increasing evidence suggests that ErbB3 plays a critical role in cancer progression and resistance to therapy. We hypothesised that co-targeting the preferred ErbB2/ErbB3 heterodimer with a bispecific single-chain Fv (bs-scFv) antibody would promote increased targeting selectivity over antibodies specific for a single tumour-associated antigen (TAA). In addition, we hypothesised that targeting this important heterodimer could induce a therapeutic effect. Here, we describe the construction and evaluation of the A5-linker-ML3.9 bs-scFv (ALM), an anti-ErbB3/ErbB2 bs-scFv. The A5-linker-ML3.9 bs-scFv exhibits selective targeting of tumour cells in vitro and in vivo that co-express the two target antigens over tumour cells that express only one target antigen or normal cells that express low levels of both antigens. The A5-linker-ML3.9 bs-scFv also exhibits significantly greater in vivo targeting of ErbB2'+'/ErbB3'+' tumours than derivative molecules that contain only one functional arm targeting ErbB2 or ErbB3. Binding of ALM to ErbB2'+'/ErbB3'+' cells mediates inhibition of tumour cell growth in vitro by effectively targeting the therapeutic anti-ErbB3 A5 scFv. This suggests both that ALM could provide the basis for an effective therapeutic agent and that engineered antibodies selected to co-target critical functional pairs of TAAs can enhance the targeting specificity and efficacy of antibody-based cancer therapeutics.

  19. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting

    PubMed Central

    Cao, Jian; Wu, Lizhen; Zhang, Shang-Min; Lu, Min; Cheung, William K.C.; Cai, Wesley; Gale, Molly; Xu, Qi; Yan, Qin

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing tool and has been widely used for biomedical research. However, many challenges, such as off-target effects and lack of easy solutions for multiplex targeting, are still limiting its applications. To overcome these challenges, we first developed a highly efficient doxycycline-inducible Cas9-EGFP vector. This vector allowed us to track the cells for uniform temporal control and efficient gene disruption, even in a polyclonal setting. Furthermore, the inducible CRISPR/Cas9 system dramatically decreased off-target effects with a pulse exposure of the genome to the Cas9/sgRNA complex. To target multiple genes simultaneously, we established simple one-step cloning approaches for expression of multiple sgRNAs with improved vectors. By combining our inducible and multiplex genome editing approaches, we were able to simultaneously delete Lysine Demethylase (KDM) 5A, 5B and 5C efficiently in vitro and in vivo. This user friendly and highly efficient toolbox provides a solution for easy genome editing with tight temporal control, minimal off-target effects and multiplex targeting. PMID:27458201

  20. Proton-induced polonium production in massive lead bismuth target irradiated by 660 MeV protons

    NASA Astrophysics Data System (ADS)

    Polanski, Aleksander; Petrochenkov, Sergey; Pohorecki, Wladyslaw

    2006-06-01

    The paper presents study of polonium production in bismuth foils placed in lead target. Proton-induced production of residual nuclei 206Po, 207Po, 208Po, 209Po, 210Po in 209Bi foils placed in lead target irradiated by 660 MeV protons was calculated. A comparison with calculated spatial distribution of polonium production using an MCNPX code and experimental results has been performed. The results of calculation will be useful for design of target of Subcritical Assembly in Dubna (SAD).

  1. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects.

    PubMed

    Xie, Jun; Yan, Caiyun; Yan, Yu; Chen, Ling; Song, Lina; Zang, Fengchao; An, Yanli; Teng, Gaojun; Gu, Ning; Zhang, Yu

    2016-10-14

    The high performance and increased tumor-targeting accumulation of magnetic nanocrystals (MNCs) are the most important considerations in cancer targeted magnetic hyperthermia (TMH). To achieve these goals, our study was firstly done using well-established fluorescence/magnetic Mn-Zn ferrite MNCs (core size: 14 nm) as multi-modal imaging contrast agents and highly-efficient "heat generators", which were coated with a biocompatible PEG-phospholipid (DSPE-PEG2000) and further modified by a cyclic tripeptide of arginine-glycine-aspartic acid (RGD). By using a mouse model bearing breast carcinoma (4T1), we then systematically compared PEGylated MNCs (MNCs@PEG)- and RGD-PEGylated MNCs (MNCs@RGD)-mediated tumor targeting abilities by intravenous administration. The MNCs@PEG-based passive targeting could successfully accumulate at the tumor due to the enhanced permeability and retention (EPR) effects, but the non-targeted localization might make the MNCs@PEG "leaking" from larger pores of tumor fenestrated vascular networks. Our designed MNCs@RGD, simultaneously functionalized with PEG and RGD ligands, might promote a synergistic effect including efficient tumor vasculature active targeting and EPR-mediated passive targeting, improving total MNC concentration and retention time in tumor tissues. By combining fluorescence/magnetic resonance (MR)/thermal multi-modal imaging-guided diagnostics and continuous TMH treatment under an alternating current magnetic field (ACMF, 2.58 kA m(-1), 390 kHz), the tumor surface could be heated to approximately 43-44 °C based on the MNC-mediated repeated injections. Sufficient temperature elevation induced the apoptosis of tumor cells, and inhibited the tumor angiogenesis. Compared with MNCs@PEG, the active MNCs@RGD-based tumor targeting MR image was significantly more efficient due to both the higher and long-lasting tumor accumulation, but its antitumor efficacy was not obviously improved in the TMH treatments. To achieve a singularly

  2. RNAi Screen for NRF2 Inducers Identifies Targets That Rescue Primary Lung Epithelial Cells from Cigarette Smoke Induced Radical Stress

    PubMed Central

    Schumacher, Frances-Rose; Schubert, Steffen; Hannus, Michael; Sönnichsen, Birte; Ittrich, Carina; Kreideweiss, Stefan; Rippmann, Jörg F.

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the ‘druggable’ genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism. PMID:27832175

  3. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells

    PubMed Central

    Yusa, Kosuke; Rashid, S. Tamir; Strick-Marchand, Helene; Varela, Ignacio; Liu, Pei-Qi; Paschon, David E.; Miranda, Elena; Ordóñez, Adriana; Hannan, Nick; Rouhani, Foad Jafari; Darche, Sylvie; Alexander, Graeme; Marciniak, Stefan J.; Fusaki, Noemi; Hasegawa, Mamoru; Holmes, Michael C.; Di Santo, James P.; Lomas, David A.; Bradley, Allan; Vallier, Ludovic

    2011-01-01

    Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders1,2,3,4. However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications3,5. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome6. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)7 and piggyBac8,9 technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α1-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies. PMID:21993621

  4. Update of Targeted Therapy-Induced Hypertension: Basics for Non-Oncology Providers.

    PubMed

    Escalante, Carmen P; Lu, Maggie; Marten, Claire A

    2016-01-01

    Over the past several years, cancer treatments have expanded from usual chemotherapy standards with introduction of newer targeted therapies. As with chemotherapy, the targeted therapies also have unique side effects affecting various organ systems producing toxicities, such as cardiac and renal. This manuscript focuses on hypertension induced by vascular endothelial growth factor (VEGF) inhibitors and tyrosine kinase inhibitors (TKI). Hypertension due to these cancer therapies is important because these agents are now frequently used in common cancers. In addition, patients with cancer may not be treated in a comprehensive cancer center with experts available to manage the cancer and other side effects either from the malignancy or treatment of the malignancy. Especially in rural areas, patients are often managed or co-managed by a primary care provider with input from an oncologist that may not be nearby. Our aim is to provide an overview of the latest Federal Drug Administration (FDA) approved VEGF inhibitors and TKI's causing hypertension so that others managing patients on these treatments may easily recognize hypertension attributable to these agents and feel comfortable and confident in providing appropriate management and treatment of this side effect. This update includes characteristics, such as mechanism of action, metabolism and route of administration, and management and treatment of hypertension with aspects such as the timing, duration and monitoring of these agents. In addition, an algorithm for monitoring and treating hypertension before, during and after treatment with these therapies is included. It is imperative for patients to have hypertension promptly treated to prevent complications so they may continue with these agents with the least interruption or discontinuation of treatment, ensuring the best benefit available in their cancer trajectory.

  5. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).

    PubMed

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-05-07

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.

  6. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    SciTech Connect

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  7. The Nitroreductase System of Inducible Targeted Ablation Facilitates Cell-specific Regenerative Studies in Zebrafish

    PubMed Central

    White, David T.; Mumm, Jeff S.

    2013-01-01

    At the turn of the 20th century, classical regenerative biology – the study of organismal/tissue/limb regeneration in animals such as crayfish, snails, and planaria – garnered much attention. However, scientific luminaries such as Thomas Hunt Morgan eventually turned to other fields after concluding that inquiries into regenerative mechanisms were largely intractable beyond observational intrigues. The field of regeneration has enjoyed a resurgence in research activity at the turn of the 21st century, in large part due to “the promise” of cultured stem cells regarding reparative therapeutic approaches. Additionally, genomics-based methods that allow sophisticated genetic/molecular manipulations to be carried out in nearly any species have extended organismal regenerative biology well beyond observational limits. Throughout its history, complex paradigms such as limb regeneration – involving multiple tissue/cell types, thus, potentially multiple stem cell subtypes – have predominated the regenerative biology field. Conversely, cellular regeneration – the replacement of specific cell types – has been studied from only a few perspectives (predominantly muscle and mechanosensory hair cells). Yet, many of the degenerative diseases that regenerative biology hopes to address involve the loss of individual cell types; thus, a primary emphasis of the embryonic/induced stem cell field is defining culture conditions which promote cell-specific differentiation. Here we will discuss recent methodological approaches that promote the study of cell-specific regeneration. Such paradigms can reveal how the differentiation of specific cell types and regenerative potential of discrete stem cell niches are regulated. In particular, we will focus on how the nitroreductase (NTR) system of inducible targeted cell ablation facilitates: 1) large-scale genetic and chemical screens for identifying factors that regulate regeneration and, 2) in vivo time-lapse imaging

  8. Identification of novel therapeutic targets in the secretome of ionizing radiation‑induced senescent tumor cells.

    PubMed

    Hwang, Hyun Jung; Jung, Seung Hee; Lee, Hyung Chul; Han, Na Kyung; Bae, In Hwa; Lee, Minyoung; Han, Young-Hoon; Kang, Young-Sun; Lee, Su-Jae; Park, Heon Joo; Ko, Young-Gyu; Lee, Jae-Seon

    2016-02-01

    Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment. Some of these effects could be attributed to the senescence‑associated secretory phenotype that has the ability to promote tumor progression. However, secreted proteins from senescent tumor cells and their effects on the tumor microenvironment due to ionizing radiation (IR) exposure have not yet been fully elucidated. In the present study, we analyzed cytokines secreted from IR‑induced senescent MCF7 cells by using cytokine microarrays and confirmed by western blot analysis that increased secretion of osteoprotegerin (OPG), midkine (MDK) and apolipoprotein E3 (ApoE3) occurs in these cells. Invasive, migratory and wound‑healing activities were observed in MDA‑MB‑231 and MCF‑10A cells following treatment with recombinant human OPG, MDK and ApoE3 proteins. Additionally, tube‑formation activity was assessed in OPG‑, MDK‑ and ApoE3‑treated human umbilical vein endothelial cells (HUVECs). We found that OPG, MDK and ApoE3 affected cell motility and tube‑formation activity. Since OPG markedly affected cell motility, we examined the effect of senescent conditioned media containing neutralizing OPG antibodies on migration and wound‑healing activity. Our results demonstrated that IR‑induced senescent tumor cells influence the tumor microenvironment by increasing the production of cytokines, such as OPG, MDK and ApoE3. Furthermore, these data suggest that OPG is likely a promising target capable of reducing the deleterious effects on the tumor microenvironment during radiation therapy.

  9. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria.

    PubMed

    Geng, Ji; Li, Jing; Huang, Tao; Zhao, Kaidi; Chen, Qiuyun; Guo, Wenjie; Gao, Jing

    2016-09-01

    Despite advances in treatment, malignant glioma commonly exhibits recurrence, subsequently leading to a poor prognosis. As manganese (Mn) compounds can be transported by the transferrin‑transferrin receptor system, the present study synthesized and examined the potential use of Adpa‑Mn as a novel antitumor agent. Adpa‑Mn time and dose‑dependently inhibited U251 and C6 cell proliferation; however, it had little effect on normal astrocytes. Apoptosis was significantly elevated following treatment with Adpa‑Mn, as detected by chromatin condensation, Annexin V/propidium iodide staining, cytochrome c release from mitochondria to the cytoplasm, and the activation of caspases‑9, ‑7 and ‑3 and poly (ADP‑ribose) polymerase. In addition, Adpa‑Mn enhanced fluorescence intensity of monodansylcadaverine and elevated the expression levels of the autophagy‑related protein microtubule‑associated protein 1 light chain 3. Pretreatment with the autophagy inhibitors 3‑methyladenine and chloroquine enhanced Adpa‑Mn‑induced cell inhibition, thus indicating that autophagy has an essential role in this process. Furthermore, evidence of mitochondrial dysfunction was detected in the Adpa‑Mn‑treated group, including disrupted membrane potential, elevated levels of reactive oxygen species (ROS) and depleted adenosine triphosphate. Conversely, treatment with the mitochondrial permeability transition inhibitor cyclosporin A reversed Adpa‑Mn‑induced ROS production, mitochondrial damage and cell apoptosis, thus suggesting that Adpa‑Mn may target the mitochondria. Taken together, these data suggested that Adpa‑Mn may be considered for use as a novel anti‑glioma therapeutic option.

  10. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis.

    PubMed

    Wang, Li-Jing; Zhao, Yuan; Han, Bing; Ma, Yu-Guang; Zhang, Jie; Yang, Ding-Ming; Mao, Jian-Wen; Tang, Fu-Tian; Li, Wei-Dong; Yang, Yang; Wang, Rui; Geng, Jian-Guo

    2008-03-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a repellent for axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. We have previously shown that Slit2 is also secreted by a variety of human cancer cells whereby it acts as a chemoattractant to vascular endothelial cells for tumor angiogenesis. We used a blocking antibody to investigate the role of Slit-Robo signaling in tumor angiogenesis during oral carcinogenesis. In this report we undertook a multistage model of 7,12-dimethyl-1,2-benzanthracene-induced squamous cell carcinoma in the hamster buccal pouch. R5, a monoclonal antibody against the first immunoglobulin domain of Robo1, was used to study whether R5 blocks the Slit-Robo interaction and furthermore inhibits tumor angiogenesis and growth in our model. In addition, the expression of Slit2, von Willebrand factor, and vascular endothelial growth factor were examined using human tissue of oral cheek mucosa with oral squamous cell carcinoma. Our data showed that Slit2 was expressed minimally in normal and hyperplastic mucosa, moderately in dysplastic mucosa, and highly in neoplastic mucosa obtained from hamster buccal pouch. We also found that increased Slit2 expression was associated with higher tumor angiogenesis, as reflected by increased vascular endothelial growth factor expression and microvessel density. A similar Slit2 expression profile was found in human tissue. Importantly, interruption of the Slit2-Robo interaction using R5 inhibited tumor angiogenesis and growth in our in vivo model, which indicates that Slit2-mediated tumor angiogenesis is a critical process underlying the carcinogenesis of chemical-induced squamous cell carcinoma. Therefore, targeting Slit-Robo signaling may offer a novel antiangiogenesis approach for oral cancer therapy.

  11. Gold nanoparticle plasmonics enhanced ultrafast laser-induced optoporation and stimulation of targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Bergeron, Éric; Lavoie-Cardinal, Flavie; Boutopoulos, Christos; Salesse, Charleen; Winnik, Françoise M.; De Koninck, Paul

    2016-03-01

    Gold nanoparticles (AuNPs) have found numerous applications in nanomedicine in view of their robustness, ease of functionalization and low toxicity. Upon irradiation of AuNPs by a pulsed ultrafast laser, various highly localized phenomena can be obtained including a temperature rise, pressure wave, charge injection and production of nanobubbles close to the cellular membrane [1]. These phenomena can be used to manipulate, optoperforate, transfect and stimulate targeted cells [2-5]. Irradiating at 800 nm in the optically biological transparent window, we demonstrated local optoporation and transfection of cells as well as local stimulation of neurons. Two recent examples will be given: (i) Laser-induced selective optoporation of cells: The technique can be used on various types of cells and a proof of principle will be given on human cancer cells in a co-culture using functionalized AuNPs [6]. (ii) Laser-induced stimulation of neurons and monitoring of the localized Ca2+ signaling: This all optical method uses a standard confocal microscope to trigger a transient increase in free Ca2+ in neurons covered by functionalized AuNPs as well as to measure these local variations optically with the Ca2+ sensor GCaMP6s [7]. The proposed techniques provide a new complement to light-dependent methods in neuroscience. REFERENCES (by our group): (1) Boulais, J. Photochem. Photobiol. C Photochem. Rev. 17, 26 (2013); (2) Baumgart, Biomaterials 33, 2345 (2012); (3) Boulais, NanoLett. 12, 4763 (2012); (4) Boutopoulos, J. Biophotonics (2015); (5) Boutopoulos, Nanoscale 7, 11758 (2015); (6) Bergeron, Biomaterials, submitted (2015); (7) Lavoie-Cardinal, Nature Commun. submitted (2015).

  12. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1

    PubMed Central

    Tu, Huahua; Wei, Gang; Cai, Qinghe; Chen, Xianxiang; Sun, Zequn; Cheng, Caitao; Zhang, Linfei; Feng, Yong; Zhou, Huadong; Zhou, Bo; Zeng, Tiancai

    2015-01-01

    MircroRNA-212 (miR-212) is proposed as a novel tumor-related miRNA and has been found to be significantly deregulated in human cancers. In this study, the miR-212 expression was found to be obviously downregulated in hepatocellular carcinoma (HCC) tissues as compared with adjacent nontumor tissues. Clinical association analysis indicated that low expression of miR-212 was prominently correlated with poor prognostic features of HCC, including high AFP level, large tumor size, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the miR-212 expression was an independent prognostic marker for predicting both 5-year overall survival and disease-free survival of HCC patients. Our in vitro studies showed that upregulation of miR-212 inhibited cell proliferation and induced apoptosis in HepG2 cells. On the contrary, downregulation of miR-212 promoted cell proliferation and suppressed apoptosis in Huh7 cells. Interestingly, we found that upregulation of miR-212 decreased FOXA1 expression in HepG2 cells. Significantly, FOXA1 was identified as a direct target of miR-212 in HCC. FOXA1 was downregulated in HCC tissues as compared with noncancerous tissues. An inverse correlation between FOXA1 and miR-212 expression was observed in HCC tissues. Notably, FOXA1 knockdown inhibited cell proliferation and induced apoptosis in HepG2 cells. In conclusion, miR-212 is a potent prognostic marker and may suppress HCC tumor growth by inhibiting FOXA1 expression. PMID:26347321

  13. Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus.

    PubMed

    Mihaylova, Nikolina; Bradyanova, Silviya; Chipinski, Petroslav; Herbáth, Melinda; Chausheva, Stela; Kyurkchiev, Dobroslav; Prechl, József; Tchorbanov, Andrey I

    2017-03-16

    Systemic lupus erythematosus (SLE) is a polygenic pathological disorder which involves multiple organs. Self-specific B cells play a main role in the lupus pathogenesis by generating autoantibodies as well as by serving as important autoantigen-presenting cells. Autoreactive T lymphocytes, on the other hand, are responsible for B cell activation and proliferation, and cytokine production. Therefore, both factors promote the idea that a down-modulation of activated self-reactive T and B cells involved in the pathogenic immune response is a reasonable approach for SLE therapy. Annexin A1 (ANX A1) is expressed by many cell types and binds to phospholipids in a Ca(2+) dependent manner. Abnormal expression of ANX A1 was found on activated B and T cells in both murine and human autoimmunity, suggesting its potential role as a therapeutic target. While its role on T lymphocytes is through formyl peptide receptor-like molecules (FPRL), and the formed ANX A1/FPRL pathway modulates T cell receptor signalling, there is still no fool-proof data available for the role of ANX A1 in B cells. We employed a lupus model of Balb/c mice with pristane-induced SLE which very closely resembles human lupus. In the present study, we investigated the possibility to modulate the autoimmune response in a pristane-induced mouse model of SLE using an anti- ANX A1 antibody. Administration of this monoclonal antibody resulted in the inhibition of T-cell activation and proliferation, suppression of IgG anti-dsDNA antibody-secreting plasma cells and of proteinuria, decreased disease activity and prolonged survival compared to control group.

  14. Amelioration of Cisplatin-Induced Experimental Peripheral Neuropathy by a Small Molecule Targeting p75NTR

    PubMed Central

    Friesland, Amy; Weng, Zhiying; Duenas, Maria; Massa, Stephen M.; Longo, Frank M.; Lu, Qun

    2014-01-01

    Cisplatin is an effective and widely used first-line chemotherapeutic drug for treating cancers. However, many patients sustain cisplatin-induced peripheral neuropathy (CIPN), often leading to a reduction in drug dosages or complete cessation of treatment altogether. Therefore, it is important to understand cisplatin mechanisms in peripheral nerve tissue mediating its toxicity and identify signaling pathways for potential intervention. Rho GTPase activation is increased following trauma in several models of neuronal injury. Thus, we investigated whether components of the Rho signaling pathway represent important neuroprotective targets with the potential to ameliorate CIPN and thereby optimize current chemotherapy treatment regimens. We have developed a novel CIPN model in the mouse. Using this model and primary neuronal culture, we determined whether LM11A-31, a small-molecule, orally bioavailable ligand of the p75 neurotrophin receptor (p75NTR), can modulate Rho GTPase signaling and reduce CIPN. Von Frey filament analysis of sural nerve function showed that LM11A-31 treatment prevented decreases in peripheral nerve sensation seen with cisplatin treatment. Morphometric analysis of harvested sural nerves revealed that cisplatin-induced abnormal nerve fiber morphology and the decreases in fiber area were alleviated with concurrent LM11A-31 treatment. Cisplatin treatment increased RhoA activity accompanied by the reduced tyrosine phosphorylation of SHP-2, which was reversed by LM11A-31. LM11A-31 also countered the effects of calpeptin, which activated RhoA by inhibiting SHP-2 tyrosine phosphatase. Therefore, suppression of RhoA signaling by LM11A-31 that blocks proNGF binding to p75NTR or activates SHP-2 tyrosine phosphatase downstream of NGF receptor enhances neuroprotection in experimental CIPN in mouse model. PMID:25277379

  15. Oleanolic acid inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα

    PubMed

    Li, Hongmei; He, Ning; Li, Xueyan; Zhou, Li; Zhao, Mingyu; Jiang, Hairui; Zhang, Xiaojie

    2013-10-01

    Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid contained in a variety of plant species, exhibits broad biological properties, including anticancer effects. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. APL has a unique and specific chromosomal aberration, t(15;17), which results in the formation of a fusion gene and protein PML/RARα, which is not only necessary for the diagnosis of APL, but is also critical for APL pathogenesis. In the present study, the cytotoxic effect of OA on NB4 cells was investigated. Cell viability was assessed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of bax and bcl-2 mRNA were determined by quantitative PCR. Apoptosis was analyzed using DNA fragment analysis and cell cycle distributions were analyzed by flow cytometry. The activity of caspase-3 and caspase-9 was determined by colorimetric assays. The expression of the PML/RARα fusion protein was analyzed by western blotting. The MTT assay showed that OA inhibited the proliferation of the NB4 cells. The expression levels of pro-apoptotic bax mRNA were increased and the levels of anti-apoptotic bcl-2 mRNA were decreased following the treatment of the NB4 cells with OA at 80 μmol/l. Treatment of the NB4 cells with OA at 80 μmol/l induced apoptosis and G1 phase arrest, while caspase-9 and caspase-3 activity was significantly increased. Furthermore, the expression of the PML/RARα fusion protein was decreased. Together, these data suggest that OA exerts a cytotoxic effect that inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα, making it a potent therapeutic agent against leukemia.

  16. Drug-induced sleep endoscopy: conventional versus target controlled infusion techniques--a randomized controlled study.

    PubMed

    De Vito, Andrea; Agnoletti, Vanni; Berrettini, Stefano; Piraccini, Emanuele; Criscuolo, Armando; Corso, Ruggero; Campanini, Aldo; Gambale, Giorgio; Vicini, Claudio

    2011-03-01

    Understanding the sites of pharyngeal collapse is mandatory for surgical treatment decision-making in obstructive sleep-apnea-hypopnea syndrome patients. Drug-induced sleep endoscopy (DISE) allows for the direct observation of the upper airway during sedative-induced sleep. In order to re-create snoring and apnea patterns related to a spontaneous sleep situation, the authors used a target-controlled infusion (TCI) sleep endoscopy (DISE-TCI), comparing this technique to conventional DISE, in which sedation was reached by a manual bolus injection. The authors conducted a prospective, randomized, unicenter study. The apneic event observation and its correlation with pharyngeal collapse patterns is the primary endpoint; secondary endpoints are defined as stability and safety of sedation plans of DISE-TCI technique. From January 2009 to June 2009, 40 OSAHS patients were included in the study and randomized allocated in two groups: the bolus injection conventional DISE group and the DISE-TCI group. We recorded the complete apnea event at the oropharynx and hypopharynx levels in 4 patients of the conventional DISE group (20%) and in 17 patients of the DISE-TCI group (85%) (P < 0.0001). Two patients needed oxygen in the conventional DISE group because of severe desaturation that resulted from the first bolus of propofol (1 mg/kg) (P = 0.4872 ns). We recorded the instability of the sedation plan in 13 patients from the conventional DISE group (65%) and 1 patient from the DISE-TCI group (5%) (P = 0.0001). Our results suggest that the DISE-TCI technique should be the first choice in performing sleep endoscopy because of its increased accuracy, stability and safety.

  17. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  18. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity.

    PubMed

    Naranmandura, Hua; Xu, Shi; Sawata, Takashi; Hao, Wen Hui; Liu, Huan; Bu, Na; Ogra, Yasumitsu; Lou, Yi Jia; Suzuki, Noriyuki

    2011-07-18

    Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity.

  19. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction

    PubMed Central

    Watanabe, Ryo; Suzuki, Jun-ichi; Wakayama, Kouji; Maejima, Yasuhiro; Shimamura, Munehisa; Koriyama, Hiroshi; Nakagami, Hironori; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Morishita, Ryuichi; Komuro, Issei; Isobe, Mitsuaki

    2017-01-01

    A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure. PMID:28266578

  20. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells.

    PubMed

    Song, Li-Li; Tu, Yao-Yao; Xia, Li; Wang, Wei-Wei; Wei, Wei; Ma, Chun-Min; Wen, Dong-Hua; Lei, Hu; Xu, Han-Zhang; Wu, Ying-Li

    2014-01-01

    Despite considerable efficacy of arsenic trioxide (As2O3) in acute promyelocytic leukemia (APL) treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML), are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.

  1. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  2. Diacetoxyscirpenol as a new anticancer agent to target hypoxia-inducible factor 1

    PubMed Central

    Choi, Yong-Joon; Shin, Hyun-Woo; Chun, Yang-Sook; Leutou, Alain Simplice; Son, Byeng Wha; Park, Jong-Wan

    2016-01-01

    Hypoxia activates hypoxia-inducible factor 1, which promotes the progression of malignancy by stimulating angiogenesis and by augmenting the ability of tumors to survive. Thus, HIF-1 is one of the most compelling targets for treating cancers. The aim of this study was to find a small molecule that inhibits HIF-1 under hypoxia in cancer cells. 7,280 compounds in a chemical library were tested in a cancer cell line expressing luciferase HIF-dependently. Through three rounds of screening, we finally picked up a compound that originates from a marine bacterium parasitizing red alga. The antibiotic potently inhibited HIF-1 expression and its transcriptional activity in cancer cells exposed to hypoxia. Through two-step fractionation, diacetoxyscirpenol was purified and identified as a HIF-inhibiting ingredient. Mechanistically, diacetoxyscirpenol inhibits the synthesis of HIF-1α protein and also interferes with the dimerization of HIF-1α and ARNT. It attenuates HIF-mediated gene expression in cancer cells exposed to hypoxia, and by doing so reduces tumorigenic and angiogenic potentials of cancer cells. More importantly, diacetoxyscirpenol retarded tumor growth in mice, and reduced HIF-1α expression and vascular formation in the tumors. Overall, diacetoxyscirpenol is considered a potential drug deregulating the HIF-1 signaling pathway, and it could be beneficially employed for treating malignant tumors with hypoxic microenvironment. PMID:27613833

  3. Influence of electronic stopping on sputtering induced by cluster impact on metallic targets

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2009-04-01

    Using molecular-dynamics simulation, we model the sputtering of a Au (111) crystallite induced by the impact of Au{sub 13} projectiles with total energies up to 500 keV. Due to the uncertainty of the electronic stopping of Au moving in particular at small velocities, we performed several simulations, in which the electronic stopping parameters are systematically changed. Our results demonstrate the dominating influence of the cut-off energy E{sub c}, below which the high-velocity electronic stopping of atoms is switched off in the simulation. If E{sub c} is smaller than roughly one half the cohesive energy of the target, sputtering ceases after a few ps; the spike contribution to sputtering (also called phase explosion or gas-flow contribution) is entirely quenched and the sputtering yield is up to an order of magnitude smaller than when electronic stopping is taken into account only at higher atom energies. Our results demonstrate the importance of a careful modeling of electronic stopping in simulations of spike sputtering from metals.

  4. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  5. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1.

    PubMed

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-09-30

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  6. Targeting Thioredoxin-1 by dimethyl fumarate induces ripoptosome-mediated cell death

    PubMed Central

    Schroeder, Anne; Warnken, Uwe; Röth, Daniel; Klika, Karel D.; Vobis, Diana; Barnert, Andrea; Bujupi, Fatmire; Oberacker, Tina; Schnölzer, Martina; Nicolay, Jan P.; Krammer, Peter H.; Gülow, Karsten

    2017-01-01

    Constitutively active NFκB promotes survival of many cancers, especially T-cell lymphomas and leukemias by upregulating antiapoptotic proteins such as inhibitors of apoptosis (IAPs) and FLICE-like inhibitory proteins (cFLIPs). IAPs and cFLIPs negatively regulate the ripoptosome, which mediates cell death in an apoptotic or necroptotic manner. Here, we demonstrate for the first time, that DMF antagonizes NFκB by suppressing Thioredoxin-1 (Trx1), a major regulator of NFκB transcriptional activity. DMF-mediated inhibition of NFκB causes ripoptosome formation via downregulation of IAPs and cFLIPs. In addition, DMF promotes mitochondrial Smac release and subsequent degradation of IAPs, further enhancing cell death in tumor cells displaying constitutive NFκB activity. Significantly, CTCL patients treated with DMF display substantial ripoptosome formation and caspase-3 cleavage in T-cells. DMF induces cell death predominantly in malignant or activated T-cells. Further, we show that malignant T-cells can die by both apoptosis and necroptosis, in contrast to resting T-cells, which are restricted to apoptosis upon DMF administration. In summary, our data provide new mechanistic insight in the regulation of cell death by targeting NFκB via Trx1 in cancer. Thus, interference with Trx1 activity is a novel approach for treatment of NFκB-dependent tumors. PMID:28233787

  7. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    NASA Astrophysics Data System (ADS)

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, Kewei; Lai, Ren

    2015-09-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx-TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery.

  8. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1

    PubMed Central

    Yang, Shilong; Yang, Fan; Wei, Ningning; Hong, Jing; Li, Bowen; Luo, Lei; Rong, Mingqiang; Yarov-Yarovoy, Vladimir; Zheng, Jie; Wang, KeWei; Lai, Ren

    2015-01-01

    The capsaicin receptor TRPV1 ion channel is a polymodal nociceptor that responds to heat with exquisite sensitivity through an unknown mechanism. Here we report the identification of a novel toxin, RhTx, from the venom of the Chinese red-headed centipede that potently activates TRPV1 to produce excruciating pain. RhTx is a 27-amino-acid small peptide that forms a compact polarized molecule with very rapid binding kinetics and high affinity for TRPV1. We show that RhTx targets the channel's heat activation machinery to cause powerful heat activation at body temperature. The RhTx–TRPV1 interaction is mediated by the toxin's highly charged C terminus, which associates tightly to the charge-rich outer pore region of the channel where it can directly interact with the pore helix and turret. These findings demonstrate that RhTx binding to the outer pore can induce TRPV1 heat activation, therefore providing crucial new structural information on the heat activation machinery. PMID:26420335

  9. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  10. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  11. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    PubMed

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive.

  12. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network.

    PubMed

    Xu, Xiaohua; Warrington, Arthur E; Bieber, Allan J; Rodriguez, Moses

    2011-07-01

    Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes

  13. Sensory Rewiring in an Echolocator: Genome-Wide Modification of Retinogenic and Auditory Genes in the Bat Myotis davidii

    PubMed Central

    Hudson, Nicholas J.; Baker, Michelle L.; Hart, Nathan S.; Wynne, James W.; Gu, Quan; Huang, Zhiyong; Zhang, Guojie; Ingham, Aaron B.; Wang, Linfa; Reverter, Antonio

    2014-01-01

    Bats comprise 20% of all mammalian species and display a number of characteristics, including true flight, echolocation, and a heightened ability to resist viral load that uniquely position this group for comparative genomic studies. Here we searched for evidence of genomic variation consistent with sensory rewiring through bat evolution. We focused on two species with divergent sensory preferences. Myotis davidii is a bat species that echolocates and possesses dim- but not daylight-adapted vision whereas the black flying fox (Pteropus alecto) has highly developed day vision but does not echolocate. Using the naked mole rat as a reference, we found five functional genes (CYP1A2, RBP3, GUCY2F, CRYBB1, and GRK7) encoding visual proteins that have degenerated into pseudogenes in M. davidii but not P. alecto. In a second approach genome-wide codon usage bias (CUB) was compared between the two bat species. This CUB ranking systematically enriched for vision-related (CLN8, RD3, IKZF1, LAMC3, CRX, SOX8, VAX2, HPS1, RHO, PRPH2, and SOX9) and hearing-related (TPRN, TMIE, SLC52A3, OTOF, WFS1, SOD1, TBX18, MAP1A, OTOS, GPX1, and USH1G) machinery in M. davidii but not P. alecto. All vision and hearing genes selectively enriched in M. davidii for which orthologs could be identified also were more biased in the echolocating M. lucifugus than the nonecholocating P. vampyrus. We suggest that the existence of codon bias in vision- and hearing-related genes in a species that has evolved echolocation implies CUB is part of evolution’s toolkit to rewire sensory systems. We propose that the two genetic changes (pseudogene formation and CUB) collectively paint a picture of that incorporates a combination of destruction and gain-of-function. Together, they help explain how natural selection has reduced physiological costs associated with the development of a smaller eye poorly adapted to day vision but that also contribute to enhanced dim light vision and the hearing adaptations

  14. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    PubMed

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  15. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    SciTech Connect

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  16. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis.

    PubMed

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C; El-Cheikh, Marcia Cury

    2017-02-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  17. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis

    PubMed Central

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C.; El-Cheikh, Marcia Cury

    2017-01-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte–macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  18. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation.

    PubMed

    Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu

    2014-12-15

    Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.

  19. Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs)*

    PubMed Central

    Ma, Ning; Shan, Yongli; Liao, Baojian; Kong, Guanyi; Wang, Cheng; Huang, Ke; Zhang, Hui; Cai, Xiujuan; Chen, Shubin; Pei, Duanqing; Chen, Nansheng; Pan, Guangjin

    2015-01-01

    The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However, it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps, we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in β-hemoglobin gene (HBB) that cause severe β-thalassemia (β-Thal), corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting, and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing, we uncovered seven copy number variations, five small insertions/deletions, and 64 single nucleotide variations (SNVs) in β-Thal iPSCs before the gene targeting step and found a single small copy number variation, 19 insertions/deletions, and 340 single nucleotide variations in the final gene-corrected β-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps, suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting. PMID:25795783

  20. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

    PubMed

    Rodríguez, José A; Luria-Pérez, Rosendo; López-Valdés, Héctor E; Casero, David; Daniels, Tracy R; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; Ortiz-Sánchez, Elizabeth; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L

    2011-11-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

  1. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells

    PubMed Central

    Rodríguez, JoséA.; Luria-Pérez, Rosendo; López-Valdés, Héctor E.; Casero, David; Daniels, Tracy R.; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; ánchez, Elizabeth Ortiz-S; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew .C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L.

    2013-01-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies. PMID:21870996

  2. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2.

    PubMed

    Peck, Barrie; Chen, Chun-Yuan; Ho, Ka-Kei; Di Fruscia, Paolo; Myatt, Stephen S; Coombes, R Charles; Fuchter, Matthew J; Hsiao, Chwan-Deng; Lam, Eric W-F

    2010-04-01

    SIRT proteins play an important role in the survival and drug resistance of tumor cells, especially during chemotherapy. In this study, we investigated the potency, specificity, and cellular targets of three SIRT inhibitors, Sirtinol, Salermide, and EX527. Cell proliferative and cell cycle analyses showed that Sirtinol and Salermide, but not EX527, were effective in inducing cell death at concentrations of 50 micromol/L or over in MCF-7 cells. Instead, EX527 caused cell cycle arrest at G(1) at comparable concentrations. In vitro SIRT assays using a p53 peptide substrate showed that all three compounds are potent SIRT1/2 inhibitors, with EX527 having the highest inhibitory activity for SIRT1. Computational docking analysis showed that Sirtinol and Salermide have high degrees of selectivity for SIRT1/2, whereas EX527 has high specificity for SIRT1 but not SIRT2. Consistently, Sirtinol and Salermide, but not EX527, treatment resulted in the in vivo acetylation of the SIRT1/2 target p53 and SIRT2 target tubulin in MCF-7 cells, suggesting that EX527 is ineffective in inhibiting SIRT2 and that p53 mediates the cytotoxic function of Sirtinol and Salermide. Studies using breast carcinoma cell lines and p53-deficient mouse fibroblasts confirmed that p53 is essential for the Sirtinol and Salermide-induced apoptosis. Further, we showed using small interfering RNA that silencing both SIRTs, but not SIRT1 and SIRT2 individually, can induce cell death in MCF-7 cells. Together, our results identify the specificity and cellular targets of these novel inhibitors and suggest that SIRT inhibitors require combined targeting of both SIRT1 and SIRT2 to induce p53 acetylation and cell death. Mol Cancer Ther; 9(4); 844-55. (c)2010 AACR.

  3. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    PubMed

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.

  4. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  5. Inter- and Intrafractional Movement-Induced Dose Reduction of Prostate Target Volume in Proton Beam Treatment

    SciTech Connect

    Yoon, Myonggeun; Kim, Dongwook; Shin, Dong Ho; Park, Sung Yong Lee, Se Byeong; Kim, Dae Yong; Kim, Joo Young; Pyo, Hong Ryull; Cho, Kwan Ho

    2008-07-15

    Purpose: To quantify proton radiotherapy dose reduction in the prostate target volume because of the three-dimensional movement of the prostate based on an analysis of dose-volume histograms (DVHs). Methods and Materials: Twelve prostate cancer patients underwent scanning in supine position, and a target contour was delineated for each using a proton treatment planning system. To simulate target movement, the contour was displaced from 3 to 15 mm in 3-mm intervals in the superior-to-inferior (SI), inferior-to-superior (IS), anterior-to-posterior (AP), posterior-to-anterior (PA), and left-to-right (LR) directions. Results: For both intra- and interfractional movements, the average coverage index and conformity index of the target were reduced in all directions. For interfractional movements, the magnitude of dose reduction was greater in the LR direction than in the AP, PA, SI. and IS directions. Although the reduction of target dose was proportional to the magnitude of intrafractional movement in all directions, a proportionality between dose reduction and the magnitude of interfractional target movement was clear only in the LR direction. Like the coverage index and conformity index, the equivalent uniform dose and homogeneity index showed similar reductions for both types of target movements. Conclusions: Small target movements can significantly reduce target proton radiotherapy dose during treatment of prostate cancer patients. Attention should be given to interfractional target movement along the longitudinal direction, as image-guided radiotherapy may be ineffective if margins are not sufficient.

  6. Radiation-induced non-targeted response in vivo: role of the TGFβ-TGFBR1-COX-2 signalling pathway

    PubMed Central

    Chai, Y; Lam, R K K; Calaf, G M; Zhou, H; Amundson, S; Hei, T K

    2013-01-01

    Background: Previous studies from our group and others have shown that cyclooxygenase-2 (COX-2) has an essential role in radiation-induced non-targeted responses and genomic instability in vivo. However, the signalling pathways involved in such effects remain unclear. Methods: A 1 cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays. Nimesulide, a selective COX-2 inhibitor, was given to mice for five consecutive days before irradiation. Changes in transforming growth factor-beta (TGF-β) and TGF-β receptor type-1 (TGFBR1) mediated signalling pathways, in the out of radiation field lung and liver tissues were examined. Results: While the plasma level of cytokines remained unchanged, the expression of TGF-β and its receptors was elevated in non-targeted lung tissues after partial body irradiation. In contrast to the predominant expression of TGF-β in stromal and alveolar cells, but not in bronchial epithelial cells, TGF-β receptors, especially TGFBR1 were significantly elevated in non-targeted bronchial epithelial cells, which is consistent with the induction of COX-2. The different expression levels of TGFBR1 between liver and lung resulted in a tissue specific induction of COX-2 in these two non-targeted tissues. Multiple TGF-β induced signalling pathways were activated in the non-targeted lung tissues. Conclusion: The TGFβ-TGFBR1-COX-2 Signalling Pathway has a critical role in radiation-induced non-targeted response in vivo. PMID:23412109

  7. In Vivo Space Radiation-Induced Non-Targeted Responses: Late Effects On Molecular Signaling In Mitochondria

    PubMed Central

    Jain, Mohit R.; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M.; Pandey, Badri N.; Li, Hong; Rabin, Bernard M.; Azzam, Edouard I.

    2012-01-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that ‘network analyses’ is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation. PMID:21166651

  8. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  9. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  10. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  11. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    NASA Astrophysics Data System (ADS)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Chen, L. M.; Li, Y. T.; Fu, C. B.; Rhee, Y. J.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Zhang, K.; Han, B.; Liu, C.; Huang, K.; Ma, Y.; Li, Yi. F.; Xiong, J.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Zhang, J.

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 106) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  12. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects.

    PubMed

    Morgan, William F; Sowa, Marianne B

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (>1 Gy), at low doses (<100 mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  13. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  14. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics?

    PubMed Central

    Karuppagounder, Saravanan S; Ratan, Rajiv R

    2012-01-01

    A major challenge in developing stroke therapeutics that augment adaptive pathways to stress has been to identify targets that can activate compensatory programs without inducing or adding to the stress of injury. In this regard, hypoxia-inducible factor prolyl hydroxylases (HIF PHDs) are central gatekeepers of posttranscriptional and transcriptional adaptation to hypoxia, oxidative stress, and excitotoxicity. Indeed, some of the known salutary effects of putative ‘antioxidant' iron chelators in ischemic and hemorrhagic stroke may derive from their abilities to inhibit this family of iron, 2-oxoglutarate, and oxygen-dependent enzymes. Evidence from a number of laboratories supports the notion that HIF PHD inhibition can improve histological and functional outcomes in ischemic and hemorrhagic stroke models. In this review, we discuss this evidence and highlight important gaps in our understanding that render HIF PHD inhibition a promising but not yet preclinically validated target for protection and repair after stroke. PMID:22415525

  15. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics?

    PubMed

    Karuppagounder, Saravanan S; Ratan, Rajiv R

    2012-07-01

    A major challenge in developing stroke therapeutics that augment adaptive pathways to stress has been to identify targets that can activate compensatory programs without inducing or adding to the stress of injury. In this regard, hypoxia-inducible factor prolyl hydroxylases (HIF PHDs) are central gatekeepers of posttranscriptional and transcriptional adaptation to hypoxia, oxidative stress, and excitotoxicity. Indeed, some of the known salutary effects of putative 'antioxidant' iron chelators in ischemic and hemorrhagic stroke may derive from their abilities to inhibit this family of iron, 2-oxoglutarate, and oxygen-dependent enzymes. Evidence from a number of laboratories supports the notion that HIF PHD inhibition can improve histological and functional outcomes in ischemic and hemorrhagic stroke models. In this review, we discuss this evidence and highlight important gaps in our understanding that render HIF PHD inhibition a promising but not yet preclinically validated target for protection and repair after stroke.

  16. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis

    PubMed Central

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-01-01

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell–cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis. PMID:28209985

  17. Ig-like domain 6 of VCAM-1 is a potential therapeutic target in TNFα-induced angiogenesis.

    PubMed

    Kim, Taek-Keun; Park, Chang Sik; Na, Hee-Jun; Lee, Kangseung; Yoon, Aerin; Chung, Junho; Lee, Sukmook

    2017-02-17

    Tumor necrosis factor alpha (TNFα)-induced angiogenesis plays important roles in the progression of various diseases, including cancer, wet age-related macular degeneration, and rheumatoid arthritis. However, the relevance and role of vascular cell adhesion molecule-1 (VCAM-1) in angiogenesis have not yet been clearly elucidated. In this study, VCAM-1 knockdown shows VCAM-1 involvement in TNFα-induced angiogenesis. Through competitive blocking experiments with VCAM-1 Ig-like domain 6 (VCAM-1-D6) protein, we identified VCAM-1-D6 as a key domain regulating TNFα-induced vascular tube formation. We demonstrated that a monoclonal antibody specific to VCAM-1-D6 suppressed TNFα-induced endothelial cell migration and tube formation and TNFα-induced vessel sprouting in rat aortas. We also found that the antibody insignificantly affected endothelial cell viability, morphology and activation. Finally, the antibody specifically blocked VCAM-1-mediated cell-cell contacts by directly inhibiting VCAM-1-D6-mediated interaction between VCAM-1 molecules. These findings suggest that VCAM-1-D6 may be a potential novel therapeutic target in TNFα-induced angiogenesis and that antibody-based modulation of VCAM-1-D6 may be an effective strategy to suppress TNFα-induced angiogenesis.

  18. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy-lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a "double-edged sword" for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that "conventional" agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing

  19. Aberrant Restoration of Spines and their Synapses in l-DOPA-Induced Dyskinesia: Involvement of Corticostriatal but Not Thalamostriatal Synapses

    PubMed Central

    Zhang, Yiyue; Mendoza-Elias, Nasya; Rademacher, David J.; Tseng, Kuei Y.; Steece-Collier, Kathy

    2013-01-01

    We examined the structural plasticity of excitatory synapses from corticostriatal and thalamostriatal pathways and their postsynaptic targets in adult Sprague-Dawley rats to understand how these striatal circuits change in l-DOPA-induced dyskinesias (LIDs). We present here detailed electron and light microscopic analyses that provide new insight into the nature of the structural and synaptic remodeling of medium spiny neurons in response to LIDs. Numerous studies have implicated enhanced glutamate signaling and persistent long-term potentiation as central to the behavioral sensitization phenomenon of LIDs. Moreover, experience-dependent alterations in behavior are thought to involve structural modifications, specifically alterations in patterns of synaptic connectivity. Thus, we hypothesized that in the striatum of rats with LIDs, one of two major glutamatergic pathways would form new or altered contacts, especially onto the spines of medium spiny neuron (MSNs). Our data provide compelling evidence for a dramatic rewiring of the striatum of dyskinetic rats and that this rewiring involves corticostriatal but not thalamostriatal contacts onto MSNs. There is a dramatic increase in corticostriatal contacts onto spines and dendrites that appear to be directly linked to dyskinetic behaviors, since they were not seen in the striatum of animals that did not develop dyskinesia. There is also an aberrant increase in spines receiving more than one excitatory contact(i.e., multisynaptic spines) in the dyskinetic animals compared with the 6-hydroxydopamine-treated and control rats. Such alterations could substantially impair the ability of striatal neurons to gate cortically driven signals and contribute to the loss of bidirectional synaptic plasticity. PMID:23843533

  20. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    PubMed Central

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs. PMID:28053954

  1. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    PubMed

    Forster, Michael; Chaikuad, Apirat; Bauer, Silke M; Holstein, Julia; Robers, Matthew B; Corona, Cesear R; Gehringer, Matthias; Pfaffenrot, Ellen; Ghoreschi, Kamran; Knapp, Stefan; Laufer, Stefan A

    2016-11-17

    Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.

  2. DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells.

    PubMed

    Zhang, Yinghao; Chang, Fang-Mei; Huang, Jianjun; Junco, Jacob J; Maffi, Shivani K; Pridgen, Hannah I; Catano, Gabriel; Dang, Hong; Ding, Xiang; Yang, Fuquan; Kim, Dae Joon; Slaga, Thomas J; He, Rongqiao; Wei, Sung-Jen

    2014-02-01

    Timely removal of oxidatively damaged proteins is critical for cells exposed to oxidative stresses; however, cellular mechanism for clearing oxidized proteins is not clear. Our study reveals a novel type of protein modification that may play a role in targeting oxidized proteins and remove them. In this process, DSS1 (deleted in split hand/split foot 1), an evolutionally conserved small protein, is conjugated to proteins induced by oxidative stresses in vitro and in vivo, implying oxidized proteins are DSS1 clients. A subsequent ubiquitination targeting DSS1-protein adducts has been observed, suggesting the client proteins are degraded through the ubiquitin-proteasome pathway. The DSS1 attachment to its clients is evidenced to be an enzymatic process modulated by an unidentified ATPase. We name this novel protein modification as DSSylation, in which DSS1 plays as a modifier, whose attachment may render target proteins a signature leading to their subsequent ubiquitination, thereby recruits proteasome to degrade them.

  3. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  4. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes.

    PubMed

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun; Kim, Young Woo; Cho, Il Je; Kim, Sang Chan; Shin, Sang Mi; Ki, Sung Hwan

    2014-01-15

    Isorhamentin is a 3'-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes.

  5. Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis☆

    PubMed Central

    Gupta, Anuradha; Misra, Amit; Deretic, Vojo

    2017-01-01

    One of the promising host-directed chemotherapeutic interventions in tuberculosis (TB) is based on inducing autophagy as an immune effector. Here we consider the strengths and weaknesses of potential autophagy-based pharmacological intervention. Using the existing drugs that induce autophagy is an option, but it has limitations given the broad role of autophagy in most cells, tissues, and organs. Thus, it may be desirable that the agent being used to modulate autophagy is applied in a targeted manner, e.g. delivered to affected tissues, with infected macrophages being an obvious choice. This review addresses the advantages and disadvantages of delivering drugs to induce autophagy in M. tuberculosis-infected macrophages. One option, already being tested in models, is to design particles for inhalation delivery to lung macrophages. The choice of drugs, drug release kinetics and intracellular residence times, non-target cell exposure and feasibility of use by patients is discussed. We term here this (still experimental) approach, of compartment-targeting, autophagy-based, host-directed therapy as “Track-II antituberculosis chemotherapy.” PMID:26829287

  6. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity.

    PubMed

    Jiang, Ping-Lun; Lin, Hung-Jun; Wang, Hsiao-Wen; Tsai, Wen-Yu; Lin, Shen-Fu; Chien, Mei-Yin; Liang, Pi-Hui; Huang, Yi-You; Liu, Der-Zen

    2015-01-01

    Mucosal surfaces contain specialized dendritic cells (DCs) that are able to recognize foreign pathogens and mount protective immunity. We previously demonstrated that intranasal administration of targeted galactosylated liposomes can elicit mucosal and systemic antibody responses. In the present study, we assessed whether galactosylated liposomes could act as an effective DC-targeted mucosal vaccine that would be capable of inducing systemic anti-tumor immunity as well as antibody responses. We show that targeted galactosylated liposomes effectively facilitated antigen uptake by DCs beyond that mediated by unmodified liposomes both in vitro and in vivo. Targeted galactosylated liposomes induced higher levels of pro-inflammatory cytokines than unmodified liposomes in vitro. C57BL/6 mice thrice immunized intranasally with ovalbumin (OVA)-encapsulated galactosylated liposomes produced high levels of OVA-specific IgG antibodies in their serum. Spleen cells from mice receiving galactosylated liposomes were restimulated with OVA and showed significantly augmented levels of IFN-γ, IL-4, IL-5 and IL-6. In addition, intranasal administration of OVA-encapsulated beta-galactosylated liposomes resulted in complete protection against EG7 tumor challenge in C57BL/6 mice. Taken together, these results indicate that nasal administration of a galactosylated liposome vaccine mediates the development of an effective immunity against tumors and might be useful for further clinical anti-tumoral applications.

  7. Laser induced shock pressure multiplication in multi layer thin foil targets

    NASA Astrophysics Data System (ADS)

    Shukla, Mayank; Kashyap, Yogesh; Sarkar, P. S.; Sinha, A.; Pant, H. C.; Rao, R. S.; Gupta, N. K.; Senecha, V. K.; Godwal, B. K.

    2006-04-01

    The impedance mismatch technique has been used for shock pressure amplification in two- and three-layer thin planar foil targets. Numerical simulation results using one-dimensional radiation hydrocode MULTI in two-layer targets consisting of Al-Au and Al-Cu and three-layer target consisting of plastic-Al-Au and foam-Al-Au, respectively, are presented. These results show a pressure enhancement up to 25 and 29 Mbar for plastic-Al-Au and foam-Al-Au targets, respectively, from an initial pressure of 7 Mbar in the reference material using laser intensity of 5 × 1013 W cm-2 at 1.064 µm. This enhancement is more as compared with 18 and 22 Mbar found in plastic-Au and foam-Au two-layer targets, respectively. Results of laser driven shock wave experiments for equation of state (EOS) studies of Au and Cu in two-layer target are also presented. A Nd : YAG laser chain (2 J, 1.06 µm wavelength, 200 ps pulse FWHM) is used for generating shocks in the planar Al foils and Al-Au (or Al-Cu) layered targets. The EOS of Au and Cu in the pressure range of 9-14 Mbar obtained shows remarkable agreement with the simulation results and with experimental data of other laboratories and SESAME data.

  8. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    DTIC Science & Technology

    2009-04-01

    N- acetyl -L- cysteine ( NAC ), catalase, and the glutathione peroxidase mimic ebselen. mtTFA siRNA transfection inhibited estrogen-induced proliferation...chemical antioxidants, [N- acetylcysteine ( NAC ) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of...8. The growth of E2-induced transformed clone was highly responsive to E2 and was inhibited by both antioxidants, ebselen and N- acetyl cysteine

  9. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting.

    PubMed

    Jatana, Nidhi; Thukral, Lipi; Latha, N

    2016-01-01

    Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.

  10. Self-Induced Attentional Blink: A Cause of Errors in Multiple-Target Visual Search

    DTIC Science & Technology

    2012-08-15

    found that an attentional blink can underlie SOS errors. Summary Visual search, looking for a target amongst distractors , is key to everyday...Participants completed a visual search task for target “T” shapes amongst distractor “L” shapes on a white background. Targets were either of high salience (57...65% black) or low salience (22–45%) while the majority of distractors were low salience (Figure 1A). There were 25 items (1.3° × 1.3°) in each

  11. Rewiring of human lung cell lineage and mitotic networks in lung adenocarcinomas

    PubMed Central

    Kim, Il-Jin; Quigley, David; To, Minh D.; Pham, Patrick; Lin, Kevin; Jo, Brian; Jen, Kuang-Yu; Raz, Dan; Kim, Jae; Mao, Jian-Hua; Jablons, David; Balmain, Allan

    2015-01-01

    Analysis of gene expression patterns in normal tissues and their perturbations in tumors can help to identify the functional roles of oncogenes or tumor suppressors and identify potential new therapeutic targets. Here, gene expression correlation networks were derived from 92 normal human lung samples and patient-matched adenocarcinomas. The networks from normal lung show that NKX2-1 is linked to the alveolar type 2 lineage, and identify PEBP4 as a novel marker expressed in alveolar type 2 cells. Differential correlation analysis shows that the NKX2-1 network in tumors includes pathways associated with glutamate metabolism, and identifies Vaccinia-related kinase (VRK1) as a potential drug target in a tumor-specific mitotic network. We show that VRK1 inhibition cooperates with inhibition of PARP signaling to inhibit growth of lung tumor cells. Targeting of genes that are recruited into tumor mitotic networks may provide a wider therapeutic window than that seen by inhibition of known mitotic genes. PMID:23591868

  12. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity

    PubMed Central

    Pogue, Sarah L.; Taura, Tetsuya; Bi, Mingying; Yun, Yong; Sho, Angela; Mikesell, Glen; Behrens, Collette; Sokolovsky, Maya; Hallak, Hussein; Rosenstock, Moti; Sanchez, Eric; Chen, Haiming; Berenson, James; Doyle, Anthony; Nock, Steffen; Wilson, David S.

    2016-01-01

    Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα’s TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. PMID:27611189

  13. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    SciTech Connect

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  14. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction.

    PubMed

    Yao, Qin; Cao, Siyu; Li, Chun; Mengesha, Asferd; Kong, Beihua; Wei, Mingqian

    2011-04-15

    Transforming growth factor-β1 (TGF-β1) induces stromal fibroblast-to-myofibroblast transdifferentiation in the tumor-stroma interactive microenvironment via modulation of multiple phenotypic and functional genes, which plays a critical role in tumor progression. Up to now, the involvement of micro-RNAs (miRNAs) and their roles in TGF-β1-induced myofibroblast differentiation in tumor-stroma interaction are unclear. Using quantitative real-time RT-PCR, we demonstrated that the expression of micro-RNA-21 (miR-21) was upregulated in activated fibroblasts after treatment with TGF-β1 or conditioned medium from cancer cells. To determine the potential roles of miR-21 in TGF-β1-mediated gene regulation during myofibroblast conversion, we showed that miR-21 expression was downregulated by miR-21 inhibitor and upregulated by miR-21 mimic. Interestingly, downregulation of miR-21 with the inhibitor effectively inhibited TGF-β1-induced myofibroblast differentiation while upregulation of miR-21 with a mimic significantly promoted myofibroblast differentiation. We further demonstrated that MiR-21 directly targeted and downregulated programmed cell death 4 (PDCD4) gene, which in turn acted as a negative regulator of several phenotypic and functional genes of myofibroblasts. Taken together, these results suggested that miR-21 participated in TGF-β1-induced myofibroblast transdifferentiation in cancer stroma by targeting PDCD4.

  15. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    SciTech Connect

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun; Kim, Young Woo; Cho, Il Je; Kim, Sang Chan; Shin, Sang Mi; Ki, Sung Hwan

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  16. Thick target yields of proton induced gamma-ray emission from Al, Si and P

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.; Fathollahi, V.

    2017-03-01

    Thick target excitation yield curves of gamma-rays from the reactions 27Al(p,p‧γ)27Al (Eγ = 844 and 1014 keV), 27Al(p,αγ)27Al (Eγ = 1369 keV), 28Si(p,p‧γ)28Si (Eγ = 1779 keV), 29Si(p,p‧γ)29Si (Eγ = 1273 keV) and 31P(p,p‧γ)31P (Eγ = 1266 keV) were measured by bombarding pure-element targets with protons at energies below 3 MeV. Gamma-rays were detected with a High Purity Ge detector placed at an angle of 90° with respect to the beam direction. The obtained thick target gamma-ray yields were compared with the previously published data. The overall systematic uncertainty of the thick target yield values was estimated to be better than ±9%.

  17. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  18. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways

    PubMed Central

    Ge, Qin-Min; Huang, Chun-Mei; Zhu, Xiang-Yang; Bian, Fan; Pan, Shu-Ming

    2017-01-01

    Objective To identify specific miRNAs involved in sepsis-induced AKI and to explore their targeting pathways. Methods The expression profiles of miRNAs in serum from patients with sepsis-induced AKI (n = 6), sepsis-non AKI (n = 6), and healthy volunteers (n = 3) were investigated by microarray assay and validated by quantitative PCR (qPCR). The targets of the differentially expressed miRNAs were predicted by Target Scan, mirbase and Miranda. Then the significant functions and involvement in signaling pathways of gene ontology (GO) and KEGG pathways were analyzed. Furthermore, eight miRNAs were randomly selected out of the differentially expressed miRNAs for further testing by qPCR. Results qPCR analysis confirmed that the expressions levels of hsa-miR-23a-3p, hsa-miR-4456, hsa-miR-142-5p, hsa-miR-22-3p and hsa-miR-191-5p were significantly lower in patients with sepsis compared with the healthy volunteers, while hsa-miR-4270, hsa-miR-4321, hsa-miR-3165 were higher in the sepsis patients. Statistically, miR-4321; miR-4270 were significantly upregulated in the sepsis-induced AKI compared with sepsis-non AKI, while only miR-4321 significantly overexpressed in the sepsis groups compared with control groups. GO analysis showed that biological processes regulated by the predicted target genes included diverse terms. They were related to kidney development, regulation of nitrogen compound metabolic process, regulation of cellular metabolic process, cellular response to oxidative stress, mitochondrial outer membrane permeabilization, etc. Pathway analysis showed that several significant pathways of the predicted target genes related to oxidative stress. miR-4321 was involved in regulating AKT1, mTOR and NOX5 expression while miR-4270 was involved in regulating PPARGC1A, AKT3, NOX5, PIK3C3, WNT1 expression. Function and pathway analysis highlighted the possible involvement of miRNA-deregulated mRNAs in oxidative stress and mitochondrial dysfunction. Conclusion This study

  19. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim

    PubMed Central

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-01-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells. PMID:28105181

  20. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    PubMed

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  1. Genetic Immunization With In Vivo Dendritic Cell-targeting Liposomal DNA Vaccine Carrier Induces Long-lasting Antitumor Immune Response

    PubMed Central

    Garu, Arup; Moku, Gopikrishna; Gulla, Suresh Kumar; Chaudhuri, Arabinda

    2016-01-01

    A major limiting factor retarding the clinical success of dendritic cell (DC)-based genetic immunizations (DNA vaccination) is the scarcity of biologically safe and effective carrier systems for targeting the antigen-encoded DNA vaccines to DCs under in vivo settings. Herein, we report on a potent, mannose receptor selective in vivo DC-targeting liposomes of a novel cationic amphiphile with mannose-mimicking shikimoyl head-group. Flow cytometric experiments with cells isolated from draining lymph nodes of mice s.c. immunized with lipoplexes of pGFP plasmid (model DNA vaccine) using anti-CD11c antibody-labeled magnetic beads revealed in vivo DC-targeting properties of the presently described liposomal DNA vaccine carrier. Importantly, s.c. immunizations of mice with electrostatic complex of the in vivo DC-targeting liposome and melanoma antigen-encoded DNA vaccine (p-CMV-MART1) induced long-lasting antimelanoma immune response (100 days post melanoma tumor challenge) with remarkable memory response (more than 6 months after the second tumor challenge). The presently described direct in vivo DC-targeting liposomal DNA vaccine carrier is expected to find future exploitations toward designing effective vaccines for various infectious diseases and cancers. PMID:26666450

  2. Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy.

    PubMed

    Feng, Guangxue; Qin, Wei; Hu, Qinglian; Tang, Ben Zhong; Liu, Bin

    2015-12-09

    Targeted delivery of drugs toward mitochondria of specific cancer cells dramatically improves therapy efficiencies especially for photodynamic therapy (PDT), as reactive oxygen species (ROS) are short in lifetime and small in radius of action. Different from chemical modification, nanotechnology has been serving as a simple and nonchemical approach to deliver drugs to cells of interest or specific organelles, such as mitochondria, but there have been limited examples of dual-targeted delivery for both cells and mitochondria. Here, cellular and mitochondrial dual-targeted organic dots for image-guided PDT are reported based on a fluorogen with aggregation-induced emission (AIEgen) characteristics. The AIEgen possesses enhanced red fluorescence and efficient ROS production in aggregated states. The AIE dot surfaces are functionalized with folate and triphenylphosphine, which can selectively internalize into folate-receptor (FR) positive cancer cells, and subsequently accumulate at mitochondria. The direct ROS generation at mitochondria sites is found to depolarize mitochondrial membrane, affect cell migration, and lead to cell apoptosis and death with enhanced PDT effects as compared to ROS generated randomly in cytoplasm. This report demonstrates a simple and general nanocarrier approach for cellular and mitochondrial dual-targeted PDT, which opens new opportunities for dual-targeted delivery and therapy.

  3. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE.

    PubMed

    Smith, Siobhán; Fernando, Thilini; Wu, Pei Wen; Seo, Jane; Ní Gabhann, Joan; Piskareva, Olga; McCarthy, Eoghan; Howard, Donough; O'Connell, Paul; Conway, Richard; Gallagher, Phil; Molloy, Eamonn; Stallings, Raymond L; Kearns, Grainne; Forbess, Lindsy; Ishimori, Mariko; Venuturupalli, Swamy; Wallace, Daniel; Weisman, Michael; Jefferies, Caroline A

    2017-05-01

    Systemic lupus erythematosus (SLE) is a complex disease targeting multiple organs as a result of overactivation of the type I interferon (IFN) system, a feature currently being targeted by multiple biologic therapies against IFN-α. We have identified an estrogen-regulated microRNA, miR-302d, whose expression is decreased in SLE patient monocytes and identify its target as interferon regulatory factor (IRF)-9, a critical component of the transcriptional complex that regulates expression of interferon-stimulated genes (ISGs). In keeping with the reduced expression of miR-302d in SLE patient monocytes, IRF9 levels were increased, as was expression of a number of ISGs including MX1 and OAS1. In vivo evaluation revealed that miR-302d protects against pristane-induced inflammation in mice by targeting IRF9 and hence ISG expression. Importantly, patients with enhanced disease activity have markedly reduced expression of miR-302d and enhanced IRF9 and ISG expression, with miR-302d negatively correlating with IFN score. Together these findings identify miR-302d as a key regulator of type I IFN driven gene expression via its ability to target IRF9 and regulate ISG expression, underscoring the importance of non-coding RNA in regulating the IFN pathway in SLE.

  4. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    PubMed

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  5. EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer.

    PubMed

    Kedmi, Merav; Ben-Chetrit, Nir; Körner, Cindy; Mancini, Maicol; Ben-Moshe, Noa Bossel; Lauriola, Mattia; Lavi, Sara; Biagioni, Francesca; Carvalho, Silvia; Cohen-Dvashi, Hadas; Schmitt, Fernando; Wiemann, Stefan; Blandino, Giovanni; Yarden, Yosef

    2015-03-17

    Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.

  6. Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation.

    PubMed

    Zhang, Shu Xing; Garcia-Gras, Eduardo; Wycuff, Diane R; Marriot, Suzanne J; Kadeer, Nijiati; Yu, Wei; Olson, Eric N; Garry, Daniel J; Parmacek, Michael S; Schwartz, Robert J

    2005-05-13

    Serum-response factor (SRF) is an obligatory transcription factor, required for the formation of vertebrate mesoderm leading to the origin of the cardiovascular system. Protein A-TEV-tagged chromatin immunoprecipitation technology was used to collect direct SRF-bound gene targets from pluripotent P19 cells, induced by Me2SO treatment into an enriched cardiac cell population. From 242 sequenced DNA fragments, we identified 188 genomic DNA fragments as potential direct SRF targets that contain CArG boxes and CArG-like boxes. Of the 92 contiguous genes that were identified, a subgroup of 43 SRF targets was then further validated by co-transfection assays with SRF. Expression patterns of representative candidate genes were compared with the LacZ reporter expression activity of the endogenous SRF gene. According to the Unigene data base, 84% of the SRF target candidates were expressed, at least, in the heart. In SRF null embryonic stem cells, 81% of these SRF target candidates were greatly affected by the absence of SRF. Among these SRF-regulated genes, Raf1, Map4k4, and Bicc1 have essential roles in mesoderm formation. The 12 regulated SRF target genes, Mapk10 (JNK3), Txnl2, Azi2, Tera, Sema3a, Lrp4, Actc1, Myl3, Hspg2, Pgm2, Hif3a, and Asb5, have been implicated in cardiovascular formation, and the Ski and Hes6 genes have roles in muscle differentiation. SRF target genes related to cell mitosis and cycle, E2f5, Npm1, Cenpb, Rbbp6, and Scyl1, expressed in the heart tissue were differentially regulated in SRF null ES cells.

  7. High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics

    SciTech Connect

    Pan, Jian-Bo; Ji, Nan; Pan, Wen; Hong, Ru; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Drugs may induce adverse drug reactions (ADRs) when they unexpectedly bind to proteins other than their therapeutic targets. Identification of these undesired protein binding partners, called off-targets, can facilitate toxicity assessment in the early stages of drug development. In this study, a computational framework was introduced for the exploration of idiosyncratic mechanisms underlying analgesic-induced severe adverse drug reactions (SADRs). The putative analgesic-target interactions were predicted by performing reverse docking of analgesics or their active metabolites against human/mammal protein structures in a high-throughput manner. Subsequently, bioinformatics analyses were undertaken to identify ADR-associated proteins (ADRAPs) and pathways. Using the pathways and ADRAPs that this analysis identified, the mechanisms of SADRs such as cardiac disorders were explored. For instance, 53 putative ADRAPs and 24 pathways were linked with cardiac disorders, of which 10 ADRAPs were confirmed by previous experiments. Moreover, it was inferred that pathways such as base excision repair, glycolysis/glyconeogenesis, ErbB signaling, calcium signaling, and phosphatidyl inositol signaling likely play pivotal roles in drug-induced cardiac disorders. In conclusion, our framework offers an opportunity to globally understand SADRs at the molecular level, which has been difficult to realize through experiments. It also provides some valuable clues for drug repurposing. - Highlights: • A novel computational framework was developed for mechanistic study of SADRs. • Off-targets of drugs were identified in large scale and in a high-throughput manner. • SADRs like cardiac disorders were systematically explored in molecular networks. • A number of ADR-associated proteins were identified.

  8. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits.

    PubMed

    Hamani, Clement; Amorim, Beatriz O; Wheeler, Anne L; Diwan, Mustansir; Driesslein, Klaus; Covolan, Luciene; Butson, Christopher R; Nobrega, José N

    2014-11-01

    Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity.

  9. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling.

    PubMed

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-su; Einhorn, Thomas A; Liu, Chuan-ju

    2016-02-11

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis.

  10. Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling

    PubMed Central

    Zhao, Yun-peng; Wei, Jian-lu; Tian, Qing-yun; Liu, Alexander Tianxing; Yi, Young-Su; Einhorn, Thomas A.; Liu, Chuan-ju

    2016-01-01

    Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 cells and also in a mouse air-pouch model of inflammation. PGRN-deficiency enhanced, whereas administration of recombinant PGRN effectively inhibited, titanium particle-induced inflammation in an air pouch model. In addition, PGRN also significantly inhibited titanium particle-induced osteoclastogenesis and calvarial osteolysis in vitro, ex vivo and in vivo. Mechanistic studies demonstrated that the inhibition of PGRN on titanium particle induced-inflammation is primarily via neutralizing the titanium particle-activated TNFα/NF-κB signaling pathway and this is evidenced by the suppression of particle-induced IκB phosphorylation, NF-κB p65 nuclear translocation, and activity of the NF-κB-specific reporter gene. Collectively, these findings not only demonstrate that PGRN plays an important role in inhibiting titanium particle-induced inflammation, but also provide a potential therapeutic agent for the prevention of wear debris-induced inflammation and osteolysis. PMID:26864916

  11. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    PubMed

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  12. Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Ratto, Fulvio; Centi, Sonia; Landini, Ida; Nobili, Stefania; Witort, Ewa; Fusi, Franco; Capaccioli, Sergio; Mini, Enrico; Pini, Roberto

    2014-03-01

    Gold nanorods (GNRs) are optimal contrast agents for near-infrared (NIR) laser-induced photothermal ablation of cancer. Selective targeting of cancer cells can be pursued by attaching specific molecules on the particles surface or by the use of cellular vectors loaded with GNRs. We performed and tested various targeting approaches by means of GNRs functionalization with (i) antibodies against Cancer-Antigen-125 (CA-125), (ii) inhibitors of the carbonic anhydrase 9 (CA9) and (iii) by the use of macrophages as cellular vectors. GNRs with a NIR absorption band at 810 nm were synthesized and PEGylated. For GNRs functionalization the targets of choice were CA-125, the most widely used biomarker for ovarian cancer, and CA9, overexpressed by hypoxic cells which are often located within the tumor mass. In the case of cellular vectors, to be used as Trojan horses naturally able to reach tumor areas, the surface of PEG-GNRs was modified to achieve unspecific interactions with macrophage membranes. In all cases the cellular uptake was evaluated by silver staining and cell viability was assessed by MTT test. Then tests of laser-induced GNRs-mediated hyperthermia were performed in various cell cultures illuminating with an 810 nm diode laser (CW, 0,5-4 W/cm2 power density, 1-10 min exposure time) and cell death was evaluated. Each targeting strategy we tested may be used alone or in combination, to maximize the tumor loading and therefore the efficiency of the laser treatment. Moreover, a multiple approach could help when the tumor variability interferes with the targeting directed to a single marker.

  13. Ultrasonic Backscatter Imaging by Shear-Wave-Induced Echo Phase Encoding of Target Locations

    PubMed Central

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus. PMID:21244978

  14. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    PubMed Central

    Ghonim, Mohamed A.; Pyakurel, Kusma; Mishra, Anil

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  15. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  16. How Factors Involved in the Resolution of Crystal-Induced Inflammation Target IL-1β

    PubMed Central

    Oliviero, Francesca; Scanu, Anna

    2017-01-01

    One of the main clinical features characterizing crystal-induced inflammation is its spontaneous resolution. The aim of this review is to outline the various factors involved in the self-limiting course of crystal-induced inflammation focusing on their effect on IL-1β production. Endogenous molecules that are induced or locally recruited by the process itself, inhibitory proteins naturally present in the joint and exogenous dietary factors are discussed. Aside from the classical well-known molecules involved in the resolution of crystal-induced acute attack such as TGFβ, IL-10, IL-1Ra, and lipoproteins, particular attention is paid to recently uncovered mechanisms such as the aggregation of neutrophil extracellular traps, the release of ectosomes from neutrophil surface, and alpha-1-anti-trypsin-mediated IL-1 inhibition.

  17. NOVEL MOLECULAR TARGETS IMPLICATED IN TESTICULAR DYSGENESIS INDUCED BY GESTATIONAL EXPOSURE TO DIETHYLHEXYL PHTHALATE (DEHP)

    EPA Science Inventory

    Phthalate-induced Testicular Dysgenesis Syndrome describes reproductive alterations in human males such as: hypospadias, cryptorchism, low sperm counts, and testicular cancer. This work is the first comprehensive evaluation of the rat fetal testis proteome following phthalate exp...

  18. Mechanical Strains Induced in Osteoblasts by Use of Point Femtosecond Laser Targeting

    PubMed Central

    Bomzon, Ze'ev; Day, Daniel; Gu, Min; Cartmell, Sarah

    2006-01-01

    A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering. PMID:23165014

  19. Fatigue-induced changes of impedance and performance in target tracking.

    PubMed

    Selen, L P J; Beek, P J; van Dieën, J H

    2007-07-01

    Kinematic variability is caused, in part, by force fluctuations. It has been shown empirically and numerically that the effects of force fluctuations on kinematics can be suppressed by increasing joint impedance. Given that force variability increases with muscular fatigue, we hypothesized that joint impedance would increase with fatigue to retain a prescribed accuracy level. To test this hypothesis, subjects tracked a target by elbow flexion and extension both with fatigued and unfatigued elbow flexor and extensor muscles. Joint impedance was estimated from controlled perturbations to the elbow. Contrary to the hypothesis, elbow impedance decreased, whereas performance, expressed as the time-on-target, was unaffected by fatigue. Further analysis of the data revealed that subjects changed their control strategy with increasing fatigue. Although their overall kinematic variability increased, task performance was retained by staying closer to the center of the target when fatigued. In conclusion, the present study reveals a limitation of impedance modulation in the control of movement variability.

  20. Pion induced reaction with carbon and polyethylene targets obtained by HADES-GSI in 2014

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, Pablo

    2016-08-01

    In the summer of 2014, HADES was conducting measurements with secondary pion-beam using different targets. The program was devoted to measure dilepton radiation from baryonic resonances. In particular we investigated a sub-threshold coupling of ρ to baryonic resonances in the second resonance region (N(1520), N(1535)). Most of the beam time was dedicated to measurement of e+e- production from Polyethylene target at pion beam momentum of 0.69 GeV/c. In addition we run part of the time with pure carbon target. This allow us to study exclusive π- + p → ne-e+ channel. The normalization of spectra has been done using elastic scattering of pion on proton and carbon. The simulations of dilepton yields for π0, Δ and N(1520) Dalitz decay using PLUTO was carried out.

  1. Stress-Induced Pain: A Target for the Development of Novel Therapeutics

    PubMed Central

    Johnson, Anthony C.

    2014-01-01

    Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain. PMID:25194019

  2. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  3. Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitrochondrial Oxidants

    DTIC Science & Technology

    2007-04-01

    that E2-induced cell growth was reduced by antioxidants N- acetyl -L- cysteine ( NAC ), catalase, and the glutathione peroxidase mimic ebselen. mtTFA...13. SUPPLEMENTARY NOTES 14. ABSTRACT We have completed proposed research in the First Year Task (i) both antioxidants, N- acetylcysteine ...induced conversion of normal cells to transformed cells is inhibited by treatment with N- acetylcysteine and ebselen, overexpression of MnSOD or catalase

  4. miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3

    PubMed Central

    Chang, Shun-Wu; Yue, Jie; Wang, Bao-Chun; Zhang, Xue-Li

    2015-01-01

    Objective: Colorectal cancer (CRC) is one of the major healthcare problems worldwide. A lot of miRNAs are aberrantly expressed in CRC and involved in its development and progression. The purpose of this study was to investigate the expression and function of miR-503 in CRC. Methods: miR-503 expression was detected in CRC tissues and cell lines by Quantitative real-time PCR. Cell proliferation was assessed by MTT assay. Cell apoptosis and cell cycle distribution were measured by flow cytometry. Moreover, luciferase reporter assay and western blot were performed to determine the potential target of miR-503 in CRC cells. Results: miR-503 was significantly decreased in CRC tissues and cell lines in comparison with controls. Overexpression of miR-503 in CRC cells remarkably inhibited cell proliferation and induced apoptosis. Furthermore, E2F3 was identified as a direct target of miR-503 in CRC cells and down-regulation of E2F3 had a similar effect as miR-503 overexpression on CRC cells. In addition, the expression of E2F3 was negatively correlated with miR-503 level in CRC tissues. Conclusions: miR-503 inhibits cell proliferation and induces apoptosis by directly targeting E2F3 in CRC cells, indicating its potential application in CRC diagnosis and therapy. PMID:26722476

  5. Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption.

    PubMed

    Huang, Qin; Deng, Jinmu; Wang, Feng; Chen, Song; Liu, Yingjiang; Wang, Zhibiao; Wang, Zhigang; Cheng, Yuan

    2012-01-01

    This study aimed to investigate the feasibility of targeted gene transfer into central nervous system (CNS) by MRI-guided focused ultrasound-induced blood-brain barrier (BBB) disruption. Before each sonication, T2-weighted images were obtained to select the target region. Followed by injecting DNA-loaded microbubbles into the tail vein, sonication was performed. The state of local BBB, distribution of plasmid DNA through the opened BBB, the ultrastructural changes of neurons and BDNF expression were detected. The results showed that MRI-guided focused ultrasound (FUS) could accomplish noninvasive, transient, and local BBB disruption, at 1h after sonication, plasmid DNA across the opened BBB had been internalized into the neurons presenting heterogeneous distribution and numerous transparent vesicles were observed in the cytoplasm of the neurons at the sonicated region, suggesting vesicle-mediated endocytosis. At 48 h after sonication, the expressions of exogenous gene pBDNF-EGFP were observed in the cytoplasm of some neurons, and BDNF expressions were markedly enhanced by the combination of ultrasound and pBDNF-EGFP-loaded microbubbles about 20-fold than that of the control group (P<0.01). The method by using MRI-guided FUS to induce the local BBB disruption could accomplish effective targeted exogenous gene transfer in CNS. This technique may provide a new option for the treatment of various CNS diseases.

  6. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy

    PubMed Central

    Wilfinger, Nastasia; Austin, Shane; Scheiber-Mojdehkar, Barbara; Berger, Walter; Reipert, Siegfried; Praschberger, Monika; Paur, Jakob; Trondl, Robert; Keppler, Bernhard K.; Zielinski, Christoph C.; Nowikovsky, Karin

    2016-01-01

    This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway. PMID:26517689

  7. Nonlinear surface plasma wave induced target normal sheath acceleration of protons

    SciTech Connect

    Liu, C. S.; Tripathi, V. K. Shao, Xi; Liu, T. C.

    2015-02-15

    The mode structure of a large amplitude surface plasma wave (SPW) over a vacuum–plasma interface, including relativistic and ponderomotive nonlinearities, is deduced. It is shown that the SPW excited by a p-polarized laser on a rippled thin foil target can have larger amplitude than the transmitted laser amplitude and cause stronger target normal sheath acceleration of protons as reported in a recent experiment. Substantial enhancement in proton number also occurs due to the larger surface area covered by the SPW.

  8. STAT3 as a target for inducing apoptosis in solid and hematological tumors

    PubMed Central

    Siddiquee, Khandaker Al Zaid; Turkson, James

    2008-01-01

    Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented. PMID:18227858

  9. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium.

    PubMed

    Hadi, Tarik; Bardou, Marc; Mace, Guillaume; Sicard, Pierre; Wendremaire, Maeva; Barrichon, Marina; Richaud, Sarah; Demidov, Oleg; Sagot, Paul; Garrido, Carmen; Lirussi, Frédéric

    2015-06-01

    Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth.

  10. Regulation of Small RNAs and Corresponding Targets in Nod Factor-Induced Phaseolus vulgaris Root Hair Cells

    PubMed Central

    Formey, Damien; Martín-Rodríguez, José Ángel; Leija, Alfonso; Santana, Olivia; Quinto, Carmen; Cárdenas, Luis; Hernández, Georgina

    2016-01-01

    A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean–rhizobia symbiosis. PMID:27271618

  11. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  12. A novel mucosal vaccine targeting Peyer's patch M cells induces protective antigen-specific IgA responses.

    PubMed

    Shima, Hideaki; Watanabe, Takashi; Fukuda, Shinji; Fukuoka, Shin-Ichi; Ohara, Osamu; Ohno, Hiroshi

    2014-11-01

    Mucosal vaccines can induce mucosal immunity, including antigen-specific secretory IgA production, to protect from invasion by pathogens and to neutralize toxins at mucosal surfaces. We established an effective antigen-delivering fusion protein, anti-GP2-SA, as a mucosal vaccine. The anti-GP2-SA consists of streptavidin (SA) fused to the antigen-binding fragment region from a mAb against glycoprotein 2 (GP2), an antigen-uptake receptor specifically expressed on M cells. Anti-GP2-SA targets antigen-sampling M cells in the follicle-associated epithelium covering Peyer's patches. Immunofluorescence showed that anti-GP2-SA specifically bound to M cells. Orally administered biotinylated ovalbumin peptide (bOVA) conjugated with anti-GP2-SA more efficiently induced OVA-specific fecal IgA secretion compared with bOVA alone or bOVA conjugated with SA. Furthermore, mice immunized by oral administration of the biotinylated Salmonella enterica serovar Typhimurium (S. Typhimurium) lysate conjugated with anti-GP2-SA were significantly better protected from subsequent infection by virulent S. Typhimurium than mice treated with the bacterial lysate alone or conjugated with SA. These results suggest that anti-GP2-SA-based M-cell-targeting vaccines are a novel strategy for inducing efficient mucosal immunity.

  13. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    SciTech Connect

    Naranmandura, Hua; Xu, Shi; Koike, Shota; Pan, Li Qiang; Chen, Bin; Wang, Yan Wei; Rehman, Kanwal; Wu, Bin; Chen, Zhe; Suzuki, Noriyuki

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  14. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation

    PubMed Central

    2010-01-01

    Background Mercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies. Results Hepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations. Conclusion Mercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling pathway, gluconeogenesis, and

  15. Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells.

    PubMed

    Ashour, Ahmed A; Abdel-Aziz, Abdel-Aziz H; Mansour, Ahmed M; Alpay, S Neslihan; Huo, Longfei; Ozpolat, Bulent

    2014-01-01

    Pancreatic cancer (PaCa) is one of the most aggressive, apoptosis-resistant and currently incurable cancers with a poor survival rate. Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase, whose role in PaCa survival is not yet known. Here, we show that eEF-2K is overexpressed in PaCa cells and its down-regulation induces apoptotic cell death. Rottlerin (ROT), a polyphenolic compound initially identified as a PKC-δ inhibitor, induces apoptosis and autophagy in a variety of cancer cells including PaCa cells. We demonstrated that ROT induces intrinsic apoptosis, with dissipation of mitochondrial membrane potential (ΔΨm), and stimulates extrinsic apoptosis with concomitant induction of TNF-related apoptosis inducing ligand (TRAIL) receptors, DR4 and DR5, with caspase-8 activation, in PANC-1 and MIAPaCa-2 cells. Notably, while none of these effects were dependent on PKC-δ inhibition, ROT down-regulates eEF-2K at mRNA level, and induce eEF-2K protein degradation through ubiquitin-proteasome pathway. Down-regulation of eEF-2K recapitulates the events observed after ROT treatment, while its over-expression suppressed the ROT-induced apoptosis. Furthermore, eEF-2K regulates the expression of tissue transglutaminase (TG2), an enzyme previously implicated in proliferation, drug resistance and survival of cancer cells. Inhibition of eEF-2K/TG2 axis leads to caspase-independent apoptosis which is associated with induction of apoptosis-inducing factor (AIF). Collectively, these results indicate, for the first time, that the down-regulation of eEF-2K leads to induction of intrinsic, extrinsic as well as AIF-dependent apoptosis in PaCa cells, suggesting that eEF-2K may represent an attractive therapeutic target for the future anticancer agents in PaCa.

  16. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours

    PubMed Central

    Coutelle, O; Schiffmann, L M; Liwschitz, M; Brunold, M; Goede, V; Hallek, M; Kashkar, H; Hacker, U T

    2015-01-01

    Background: Effective vascular normalisation following vascular endothelial growth factor (VEGF) inhibition is associated with endothelial cell regression leaving empty basement membrane sleeves (BMS). These long-lived BMS permit the rapid regrowth of tumour vasculature upon treatment cessation and promote resistance to VEGF-targeting drugs. Previous attempts at removing BMS have failed. Angiopoietin-2 (Ang2) is a vascular destabilizing factor that antagonises normalisation. We hypothesised that Ang2 inhibition could permit vascular normalisation at significantly reduced doses of VEGF inhibition, avoiding excessive vessel regression and the formation of empty BMS. Methods: Mice xenografted with human colorectal cancer cells (LS174T) were treated with low (0.5 mg kg−1) or high (5 mg kg−1) doses of the VEGF-targeting antibody bevacizumab with or without an Ang2 blocking peptibody L1-10. Tumour growth, BMS formation and normalisation parameters were examined including vessel density, pericyte coverage, adherence junctions, leakiness, perfusion, hypoxia and proliferation. Results: Dual targeting of VEGF and Ang2 achieved effective normalisation at only one-tenth of the dose required with bevacizumab alone. Pericyte coverage, vascular integrity, adherence junctions and perfusion as prerequisites for improved access of chemotherapy were improved without inducing empty BMS that facilitate rapid vascular regrowth. Conclusions: Dual targeting of VEGF and Ang2 can potentiate the effectiveness of VEGF inhibitors and avoid the formation of empty BMS. PMID:25562438

  17. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression.

    PubMed

    Kia, Azadeh; Przystal, Justyna M; Nianiaris, Nastasia; Mazarakis, Nicholas D; Mintz, Paul J; Hajitou, Amin

    2012-12-01

    The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.

  18. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis.

    PubMed

    Omar, Hany A; Mohamed, Wafaa R; Arab, Hany H; Arafa, El-Shaimaa A

    2016-01-01

    Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.

  19. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis

    PubMed Central

    Omar, Hany A.; Mohamed, Wafaa R.; Arab, Hany H.; Arafa, El-Shaimaa A.

    2016-01-01

    Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways. PMID:27031695

  20. Imaging and analysis of photomechanical effects induced in water by high-power laser-target interaction

    NASA Astrophysics Data System (ADS)

    Siano, S.; Pini, R.; Salimbeni, R.; Vannini, M.

    1996-05-01

    The kinetics of cavitation and associated photo-mechanical effects induced by underwater pulsed-laser irradiation of solid targets has been studied experimentally and analyzed with theoretical methods. A xenon-chloride excimer laser of 150 ns pulse duration has been utilized to produce ablation and local photofragmentation of artificial samples of hard tissues at fluences of 12 24 J/cm2. The evolution of pressure wave and cavitation formations developing in the liquid from the target surface after laser irradiation has been observed with a time-resolved imaging technique employing a pump-probe laser arrangement. The analysis of experimental results has been performed by using the theoretical model of “point explosion” that has been successfully applied to fit the cavitation kinetics, providing also quantitative information on the energy transfer during photo-acoustic interactions.

  1. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics.

    PubMed

    Hu, Qinglian; Gao, Meng; Feng, Guangxue; Liu, Bin

    2014-12-15

    Subcellular organelle-specific reagents for simultaneous tumor targeting, imaging, and treatment are of enormous interest in cancer therapy. Herein, we present a mitochondria-targeting probe (AIE-mito-TPP) by conjugating a triphenylphosphine (TPP) with a fluorogen which can undergo aggregation-induced emission (AIE). Owing to the more negative mitochondrial membrane potential of cancer cells than normal cells, the AIE-mito-TPP probe can selectively accumulate in cancer-cell mitochondria and light up its fluorescence. More importantly, the probe exhibits selective cytotoxicity for studied cancer cells over normal cells. The high potency of AIE-mito-TPP correlates with its strong ability to aggregate in mitochondria, which can efficiently decrease the mitochondria membrane potential and increase the level of intracellular reactive oxygen species (ROS) in cancer cells. The mitochondrial light-up probe provides a unique strategy for potential image-guided therapy of cancer cells.

  2. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke.

    PubMed

    Speer, Rachel E; Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J; Ratan, Rajiv R

    2013-09-01

    Neurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases.

  3. Hypoxia inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke

    PubMed Central

    Speer, Rachel E.; Karuppagounder, Saravanan S.; Basso, Manuela; Sleiman, Sama; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J.; Ratan, Rajiv R.

    2015-01-01

    Neurologic conditions including stroke, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia Inducible Factor-1alpha (HIF-1α) mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway are neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adpatation in detail, and provide perspective on which targets within this pathway appear to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases. PMID:23376032

  4. TRPA1 deficiency is protective in cuprizone-induced demyelination-A new target against oligodendrocyte apoptosis.

    PubMed

    Sághy, Éva; Sipos, Éva; Ács, Péter; Bölcskei, Kata; Pohóczky, Krisztina; Kemény, Ágnes; Sándor, Zoltán; Szőke, Éva; Sétáló, György; Komoly, Sámuel; Pintér, Erika

    2016-12-01

    Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca(2+) permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca(2+) concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180.

  5. Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation.

    PubMed

    Tao, Yan-Fang; Li, Zhi-Heng; Du, Wei-Wei; Xu, Li-Xiao; Ren, Jun-Li; Li, Xiao-Lu; Fang, Fang; Xie, Yi; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Li, Gang; Wu, Yi; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Lu, Jun; Pan, Jian

    2017-03-01

    Decreased autophagy is accompanied by the development of a myeloproliferative state or acute myeloid leukemia (AML). AML cells are often sensitive to autophagy‑inducing stimuli, prompting the idea that targeting autophagy can be useful in AML cytotoxic therapy. AML NB4 cells overexpressing microtubule-associated protein 1 light chain 3-green fluorescent protein were screened with 69 inhibitors to analyze autophagy activity. AML cells were treated with the polo-like kinase 1 (PLK1) inhibitors RO3280 and BI2536 before autophagy analysis. Cleaved LC3 (LC3-II) and the phosphorylation of mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase, and Unc-51-like kinase 1 during autophagy was detected with western blotting. Autophagosomes were detected using transmission electron microscopy. Several inhibitors had promising autophagy inducer effects: BI2536, MLN0905, SK1-I, SBE13 HCL and RO3280. Moreover, these inhibitors all targeted PLK1. Autophagy activity was increased in the NB4 cells treated with RO3280 and BI2536. Inhibition of PLK1 expression in NB4, K562 and HL-60 leukemia cells with RNA interference increased LC3-II and autophagy activity. The phosphorylation of mTOR was reduced significantly in NB4 cells treated with RO3280 and BI2536, and was also reduced significantly when PLK1 expression was downregulated in the NB4, K562 and HL-60 cells. We demonstrate that PLK1 inhibition induces AML cell autophagy and that it results in mTOR dephosphorylation. These results may provide new insights into the molecular mechanism of PLK1 in regulating autophagy.

  6. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    SciTech Connect

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek; and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  7. Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation

    PubMed Central

    Tao, Yan-Fang; Li, Zhi-Heng; Du, Wei-Wei; Xu, Li-Xiao; Ren, Jun-Li; Li, Xiao-Lu; Fang, Fang; Xie, Yi; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Li, Gang; Wu, Yi; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Lu, Jun; Pan, Jian

    2017-01-01

    Decreased autophagy is accompanied by the development of a myeloproliferative state or acute myeloid leukemia (AML). AML cells are often sensitive to autophagy-inducing stimuli, prompting the idea that targeting autophagy can be useful in AML cytotoxic therapy. AML NB4 cells overexpressing microtubule-associated protein 1 light chain 3-green fluorescent protein were screened with 69 inhibitors to analyze autophagy activity. AML cells were treated with the polo-like kinase 1 (PLK1) inhibitors RO3280 and BI2536 before autophagy analysis. Cleaved LC3 (LC3-II) and the phosphorylation of mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase, and Unc-51-like kinase 1 during autophagy was detected with western blotting. Autophagosomes were detected using transmission electron microscopy. Several inhibitors had promising autophagy inducer effects: BI2536, MLN0905, SK1-I, SBE13 HCL and RO3280. Moreover, these inhibitors all targeted PLK1. Autophagy activity was increased in the NB4 cells treated with RO3280 and BI2536. Inhibition of PLK1 expression in NB4, K562 and HL-60 leukemia cells with RNA interference increased LC3-II and autophagy activity. The phosphorylation of mTOR was reduced significantly in NB4 cells treated with RO3280 and BI2536, and was also reduced significantly when PLK1 expression was downregulated in the NB4, K562 and HL-60 cells. We demonstrate that PLK1 inhibition induces AML cell autophagy and that it results in mTOR dephosphorylation. These results may provide new insights into the molecular mechanism of PLK1 in regulating autophagy. PMID:28184925

  8. CX-5461 induces autophagy and inhibits tumor growth via mammalian target of rapamycin-related signaling pathways in osteosarcoma

    PubMed Central

    Li, Leiming; Li, Yan; Zhao, Jiansong; Fan, Shuli; Wang, Liguo; Li, Xu

    2016-01-01

    Osteosarcoma (OS) is the most common primary bone tumor, but molecular mechanisms of the disease have not been well understood, and treatment of metastatic OS remains a challenge. Rapid ribosomal RNA synthesis in cancer is transcribed by RNA polymerase I, which results in unbridled cell growth. The recent discovery of CX-5461, a selective RNA polymerase I inhibitor, exerted its inhibitory effect of ribosomal RNA synthesis and antiproliferative potency. Here, we demonstrate that CX-5461 induces G2 arrest in the cell cycle and expression of microtubule-associated protein 1 light chain 3 II isoform in OS cell lines. Autophagic vacuoles could be observed in electron microscopy and 3-methyladenine prevented cell death mediated by CX-5461. Moreover, it significantly augmented phosphorylated AMP-Activated Protein Kinases α (p-AMPK α). (Thr172) expression in U2-OS cells and decreased p-Akt (Ser473) expression in MNNG cells, respectively, which repressed their downstream effector, mammalian target of rapamycin. On the other hand, CX-5461 increased p53 accumulation and messenger RNA level of its target genes, p21, MDM2, and Sestrin1/2 in U2-OS cells. Knockdown of p53 expression markedly impaired cell death as well as the expression of light chain 3-II and p21 induced by CX-5461. It also significantly enhanced doxorubicin-mediated cytotoxic effect in vitro and in vivo together with additive expression of p53, p21, and light chain 3-II in U2-OS cells. Our data indicate that CX-5461 might induce autophagy via mammalian target of rapamycin-associated signaling pathways dependent on p53 status and exert p53-dependent synergistic antitumor effect combined with doxorubicin in OS. These results suggest that CX-5461 might be promising in clinical therapy for OS, especially cases harboring wild-type p53. PMID:27729807

  9. Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity - a high-speed videography study.

    PubMed

    Kohsakowski, Sebastian; Gökce, Bilal; Tanabe, Rie; Wagener, Philipp; Plech, Anton; Ito, Yoshiro; Barcikowski, Stephan

    2016-06-28

    Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 μs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 μm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed.

  10. Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea.

    PubMed

    Traxdorf, Maximilian; Tschaikowsky, Klaus; Scherl, Claudia; Bauer, Judith; Iro, Heinrich; Angerer, Florian

    2016-12-06

    The aim of this study was to establish a standardized protocol for drug-induced sleep endoscopy (DISE) to differentiate obstruction patterns in obstructive sleep apnea (OSA). Target-controlled infusion (TCI) of the sedative propofol was combined with real-time monitoring of the depth of sedation using bispectral analysis. In an observational study 57 patients (mean age 44.8 years, ± SD 10.5; mean apnea hypopnea Index (AHI) 30.8/hr, ± SD 21.6, mean BMI 28.2 kg/m(2), ± SD 5.3) underwent cardiorespiratory polysomnography followed by DISE with TCI and bispectral analysis. Sleep was induced solely by the intravenous infusion of propofol with a TCI-pump, with an initial target plasma level of 2.0 µg/ml. Under continuous monitoring of the patient's respiration, state of consciousness and value of the bispectral analysis, the target plasma propofol level was raised in steps of 0.2 µg/ml/2 min until the desired depth of sedation was reached. The mean value of the bispectral analysis at the target depth of sedation was determined and the obstruction patterns during DISE-TCI-bispectral analysis then classified according to the VOTE-system. Subsequently the results were analyzed according to polysomnographic and anthropometric data. The occurrence of multilevel obstruction sites across all degrees of severity of OSA clarifies the need for sleep endoscopy prior to upper airway surgery. The advantage of this technique is the reproducibility of the protocol even for heterogeneous groups of patients. In addition, the gradual controlled and standardized increase of the plasma level of propofol with real-time control of the bispectral index leads to a precisely controllable depth of sedation. The DISE-TCI-bispectral analysis procedure is a step towards a required reproducible protocol of sleep endoscopy - capable of standardization. However it is not yet known whether these observed obstruction patterns also correspond to findings in natural sleep.

  11. Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation.

    PubMed

    Chang, Cheng-Yi; Shen, Chiung-Chyi; Su, Hong-Lin; Chen, Chun-Jung

    2011-12-01

    Gefitinib, a selective epidermal growth factor receptor tyrosine kinase inhibitor, is under clinical testing and use in cancer patients, including glioma. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma remain largely uncharacterized. Gefitinib inhibits cell growth and induces apoptosis in human glioma cells. Gefitinib also induces death of H4 cells with characteristics of the intrinsic apoptotic pathway, including Bax mitochondrial translocation, mitochondrial outer membrane permeabilization, cytochrome c cytosolic release, and caspase-9/caspase-3 activation. The importance of Bax in mediating gefitinib-induced apoptosis was confirmed by the attenuation of apoptosis by Bax siRNA and Bax channel blocker. Gefitinib caused Bad dephosphorylation, particularly in serine-112, and increased its binding preference to Bcl-2 and Bcl-xL. The dephosphorylation of Bad in gefitinib-treated cells was accompanied by reduced intracellular cyclic AMP content and protein kinase A (PKA) activity. Adenylyl cyclase activator forskolin attenuated, but PKA inhibitor H89 augmented, gefitinib-induced Bad dephosphorylation, Bax mitochondrial translocation, caspase-9/caspase-3 activation, and viability loss. Intriguingly, a nonselective protein phosphatase inhibitor okadaic acid alleviated gefitinib-induced alterations, except Bad dephosphorylation. In parallel with the higher basal PKA activity, response of U87 cells to gefitinib treatment was delayed and relatively resistant compared with that of H4 and T98G cells. Inactivation of PKA sensitized H4, T98G, and U87 cells to gefitinib cytotoxicity, Bad dephosphorylation in serine-112, and caspase-9/caspase-3 activation. Our findings suggest the involvement of the Bad/Bax signaling pathway in gefitinib-induced glioma apoptosis. Furthermore, the inactivation of PKA was shown to play a role in triggering the proapoptotic function of Bad.

  12. Divergence and rewiring of regulatory networks for neural development between human and other species.

    PubMed

    Wang, Ping; Zhao, Dejian; Rockowitz, Shira; Zheng, Deyou

    2016-01-01

    Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.

  13. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Stefanini, C.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Keeley, N.; Lay, J. A.; Marquinez-Duran, G.; Martel, I.; Mazzocchi, C.; Molini, P.; Nicoletto, M.; Pakou, A.; Parkar, V. V.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sava, T.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Toniolo, N.; Zerva, K.

    2015-10-01

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  14. Target residues formed in the 4.4 GeV deuteron-induced reaction on gold

    NASA Astrophysics Data System (ADS)

    Balabekyan, A. R.; Demekhina, N. A.; Karapetyan, G. S.; Drnoyan, D. R.; Zhemenik, V. I.; Adam, J.; Zavorka, L.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. M.; Khushvaktov, J.; Karayan, L.; Guimarães, V.; Deppman, A.; Garcia, F.

    2014-11-01

    The production cross sections for 110 radioactive nuclides, with mass numbers 22 ≤A ≤198 , were obtained from the interaction of 4.4 GeV deuteron with a 197Au target using the induced-activity method. The deuteron beam was obtained from the Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna. Using the charge distribution data, we derived the total mass-yield distribution. The analysis of the mass-yield distribution allowed us to consider the coexistence of different channels in the interaction such as evaporation, fission, and multifragmentation.

  15. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  16. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site.

    PubMed

    Bradley, Todd; Fera, Daniela; Bhiman, Jinal; Eslamizar, Leila; Lu, Xiaozhi; Anasti, Kara; Zhang, Ruijung; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Stolarchuk, Christina; Lloyd, Krissey E; Parks, Robert; Eaton, Amanda; Foulger, Andrew; Nie, Xiaoyan; Karim, Salim S Abdool; Barnett, Susan; Kelsoe, Garnett; Kepler, Thomas B; Alam, S Munir; Montefiori, David C; Moody, M Anthony; Liao, Hua-Xin; Morris, Lynn; Santra, Sampa; Harrison, Stephen C; Haynes, Barton F

    2016-01-05

    Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization.

  17. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.

    2013-07-01

    Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.

  18. Targeted Delivery of Shear Stress-Inducible Micrornas by Nanoparticles to Prevent Vulnerable Atherosclerotic Lesions

    PubMed Central

    Wong, Wing Tak; Ma, Shuangtao; Tian, Xiao Yu; Gonzalez, Andrea Banuet; Ebong, Eno E.; Shen, Haifa

    2016-01-01

    Atherosclerosis is a chronic inflammatory vascular wall disease, and endothelial cell dysfunction plays an important role in its development and progression. Under the influence of laminar shear stress, however, the endothelium releases homeostatic factors such as nitric oxide and expresses of vasoprotective microRNAs that are resistant to atherosclerosis. Adhesion molecules such as E-selectin, exhibited on the endothelial surface, recruit monocytes that enter the vessel wall to form foam cells. Accumulation of these foam cells form fatty streaks that may progress to atherosclerotic plaques in the blood vessel wall. Interestingly, E-selectin may also serve as an affinity moiety for targeted drug delivery against atherosclerosis. We have recently developed an E-selectin-targeted platform that enriches therapeutic microRNAs in the inflamed endothelium to inhibit formation of vulnerable atherosclerotic plaques. PMID:27826369

  19. Targeting megakaryocytic induced fibrosis by AURKA inhibition in the myeloproliferative neoplasms

    PubMed Central

    Wen, Qiang Jeremy; Yang, Qiong; Goldenson, Benjamin; Malinge, Sébastien; Lasho, Terra; Schneider, Rebekka K.; Breyfogle, Lawrence J.; Schultz, Rachael; Gilles, Laure; Koppikar, Priya; Abdel-Wahab, Omar; Pardanani, Animesh; Stein, Brady; Gurbuxani, Sandeep; Mullally, Ann; Levine, Ross; Tefferi, Ayalew; Crispino, John D.

    2015-01-01

    Primary myelofibrosis (PMF) is characterized by bone marrow fibrosis, myeloproliferation, extramedullary hematopoiesis, splenomegaly and leukemic progression. Moreover, the bone marrow and spleen of patients are full of atypical megakaryocytes that are postulated to contribute to fibrosis through the release of cytokines including TGF-β. Although the JAK inhibitor ruxolitinib provides symptomatic relief, it does not reduce the mutant allele burden or significantly reverse fibrosis. Here we show through pharmacologic and genetic studies that, apart from JAK2, Aurora kinase A (AURKA) is a novel therapeutic target in PMF. MLN8237, a selective AURKA inhibitor promoted polyploidization and differentiation of PMF megakaryocytes and displayed potent anti-fibrotic and anti-tumor activity in vivo. We also reveal that loss of one allele of AURKA is sufficient to ameliorate fibrosis and other PMF phenotypes in vivo. Our data suggest that megakaryocytes are drivers of fibrosis and that targeting them with AURKA inhibitors will provide therapeutic benefit in PMF. PMID:26569382

  20. Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum

    NASA Astrophysics Data System (ADS)

    Samad, Abdul Fatah A.; Ali, Nazaruddin Muhammad; Ismail, Ismanizan; Murad, Abdul Munir Abdul

    2016-11-01

    A recent discovery showed small non-coding RNA known as microRNA has a crucial role in plant development and plant survival in extreme condition. In the past few years, researchers have managed to identify the various families of transcription factors that play a crucial role in regulating plant development and plant responses to stresses. This study focuses on the expression pattern of miRNA targeted transcription factor under biotic stress in a plant rich with secondary metabolite, Persicaria minor. A pathogenic fungus, Fusarium oxysporum was used in the biotic stress treatment since the previous study revealed this fungus could trigger plant defense system. Two small RNA libraries were constructed which consist of control and treated samples. In order to identify the potential target, psRobot target prediction software was used for each miRNA that shows significant change due to the infection. The result showed miR156b/c, miR172a, miR319, miR858, and miR894 were found to be targeting a wide range of transcription factors that involve in plant development and plant response towards stresses. The expression of miR156b/c and miR172 were up-regulated while the expression of miR319, miR858, and miR894 was found to be down-regulated. These results may provide a certain level of networking between those two regulatory molecules in plant genetic system under biotic stress.

  1. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    DTIC Science & Technology

    2007-05-01

    imbalance is the result of overexpression of estrogen activating enzymes and/or deficient expression of the deactivating (protective) enzymes. This...estrogen levels are excessive synthesis of estrogens by overexpression of CYP19 in target tissues [59–61] and/or the presence of unregulated sulfatase that...6800 nM 4- OHE2 failed to detect any significant increase in mutant fraction after a single 16 hr treatment, and therefore multiple treatments were

  2. MICU1 may be a promising intervention target for gut-derived sepsis induced by intra-abdominal hypertension

    PubMed Central

    Leng, Yuxin; Ge, Qinggang; Zhao, Zhiling; Wang, Kun; Yao, Gaiqi

    2016-01-01

    Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients, for which there is no targeted therapy. IAH-induced dysfunction of intestinal barriers is closely associated with oxidative imbalances, which are considered to provide a pathophysiological basis for subsequent gut-derived sepsis. However, the upstream mechanism that produces oxidative damage during IAH remains unknown. It is not clear whether ‘mitochondrial Ca2+ uptake 1’ (MICU1, the key protein regulating the oxidative process) is involved in preventing Ca2+m (mitochondrial Ca2+) overload. Here, we detected changes in the expression of MICU1 during the development of increased intestinal permeability in rats with IAH, and we explored the related mechanism regulating epithelial-barrier functions by knocking-down micu1 in Caco-2 cells. Our results demonstrated that, to combat IAH-induced dysfunction of intestinal barriers, MICU1 undergoes a compensatory increase in expression, whereas ‘mitochondrial calcium uniporter’ (MCU) – a conserved Ca2+ transporter – becomes transcriptionally suppressed. Silencing the expression of MICU1 destroyed Caco-2 cell barrier integrity, promoted paracellular permeability, and impaired the expression of tight junction proteins (occludin, ZO-1, and claudin 1). Meanwhile, oxidative imbalances were induced; malondialdehyde (MDA), a product of oxidation, was increased and antioxidant products (GSH-Px, CAT, and SOD) were decreased. In MICU1-deficient Caco-2 cells, proliferation was inhibited and apoptosis was promoted. Collectively, our results indicate that MICU1-related oxidation/antioxidation disequilibrium is strongly involved in IAH-induced damage to intestinal barriers. MICU1-targeted treatment may hold promise for preventing the progression of IAH to gut-derived sepsis. PMID:27924224

  3. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets.

    PubMed

    Kim, Baek Gil; Kang, Suki; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Lee, Sung Hwan; Cho, Nam Hoon

    2016-05-10

    Tumor growth-generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously.

  4. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets

    PubMed Central

    Kim, Baek Gil; Kang, Suki; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Lee, Sung Hwan; Cho, Nam Hoon

    2016-01-01

    Tumor growth–generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously. PMID:27027350

  5. Therapeutic Targeting of CPT-11 Induced Diarrhea: A Case for Prophylaxis

    PubMed Central

    Swami, Umang; Goel, Sanjay; Mani, Sridhar

    2014-01-01

    CPT-11 (irinotecan), a DNA topoisomerase I inhibitor is one of the main treatments for colorectal cancer. The main dose limiting toxicities are neutropenia and late onset diarrhea. Though neutropenia is manageable, CPT-11 induced diarrhea is frequently severe, resulting in hospitalizations, dose reductions or omissions leading to ineffective treatment administration. Many potential agents have been tested in preclinical and clinical studies to prevent or ameliorate CPT-11 induced late onset diarrhea. It is predicted that prophylaxis of CPT-11 induced diarrhea will reduce sub-therapeutic dosing as well as hospitalizations and will eventually lead to dose escalations resulting in better response rates. This article reviews various experimental agents and strategies employed to prevent this debilitating toxicity. Covered topics include schedule/dose modification, intestinal alkalization, structural/chemical modification, genetic testing, anti-diarrheal therapies, transporter (ABCB1, ABCC2, BCRP2) inhibitors, enzyme (β-glucuronidase, UGT1A1, CYP3A4, carboxylesterase, COX-2) inducers and inhibitors, probiotics, antibiotics, adsorbing agents, cytokine and growth factor activators and inhibitors and other miscellaneous agents. PMID:23597015

  6. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of dsRNA fragments of rust pathogen genes in wheat seedlings through the barley stripe mosaic virus (BSMV) based host-induced gene silencing (HIGS) system can reduce the expression of the corresponding genes in the rust fungus. The highest levels of suppression have generally been observe...

  7. Rescuing Stimuli from Invisibility: Inducing a Momentary Release from Visual Masking with Pre-Target Entrainment

    ERIC Educational Resources Information Center

    Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.; Lleras, Alejandro

    2010-01-01

    At near-threshold levels of stimulation, identical stimulus parameters can result in very different phenomenal experiences. Can we manipulate which stimuli reach consciousness? Here we show that consciousness of otherwise masked stimuli can be experimentally induced by sensory entrainment. We preceded a backward-masked stimulus with a series of…

  8. Receptor for advanced glycation end as drug targets in diabetes-induced skin lesion.

    PubMed

    Chen, Xiang-Fang; Tang, Wei; Lin, Wei-Dong; Liu, Zi-Yu; Lu, Xiao-Xiao; Zhang, Bei; Ye, Fei; Liu, Zhi-Min; Zou, Jun-Jie; Liao, Wan-Qing

    2017-01-01

    The involvement of the receptor for advanced glycation end (RAGE) in different diseases has been reviewed in great detail, previously, but the effects of diabetic drugs on RAGE-induced skin lesion during long course diabetes remains poorly understood. In the present study, we have shown that RAGE was overexpressed in both diabetic rats and human keratinocytes (HaCaT cells). Cell cycle arrest and apoptosis as well as alternations of relative protein levels were also found in diabetic rats and HaCaT cells with overexpression of RAGE that were rectified by metformin (Met) treatment. Moreover, overexpression of RAGE was also found to induce secretions of TNF-α, IL-1β, IL-6, ICAM-1 and COX-2 in HaCaT cells, and Met treatment corrected these inflammatory factor secretions. In addition, treatment with Met markedly reduced RAGE overexpression-induced p38 and NF-κB activation. Taken together, the findings of the present study have demonstrated, for the first time that Met protects HaCaT cells against diabetes-induced injuries and inflammatory responses through inhibiting activated RAGE.

  9. Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines

    PubMed Central

    Zhang, Xing-Mei; Zhu, Jie

    2011-01-01

    Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18. PMID:22131947

  10. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    SciTech Connect

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan; Reddy, Kanamata; Kurinov, Igor; Carper, Andria; Langfald, Alyssa; Oi, Naomi; Kim, Myoung Ok; Zhu, Feng; Sosa, Carlos P.; Zhou, Keyuan; Bode, Ann M.; Dong, Zigang

    2012-06-27

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific binding of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.

  11. Receptor for advanced glycation end as drug targets in diabetes-induced skin lesion

    PubMed Central

    Chen, Xiang-Fang; Tang, Wei; Lin, Wei-Dong; Liu, Zi-Yu; Lu, Xiao-Xiao; Zhang, Bei; Ye, Fei; Liu, Zhi-Min; Zou, Jun-Jie; Liao, Wan-Qing

    2017-01-01

    The involvement of the receptor for advanced glycation end (RAGE) in different diseases has been reviewed in great detail, previously, but the effects of diabetic drugs on RAGE-induced skin lesion during long course diabetes remains poorly understood. In the present study, we have shown that RAGE was overexpressed in both diabetic rats and human keratinocytes (HaCaT cells). Cell cycle arrest and apoptosis as well as alternations of relative protein levels were also found in diabetic rats and HaCaT cells with overexpression of RAGE that were rectified by metformin (Met) treatment. Moreover, overexpression of RAGE was also found to induce secretions of TNF-α, IL-1β, IL-6, ICAM-1 and COX-2 in HaCaT cells, and Met treatment corrected these inflammatory factor secretions. In addition, treatment with Met markedly reduced RAGE overexpression-induced p38 and NF-κB activation. Taken together, the findings of the present study have demonstrated, for the first time that Met protects HaCaT cells against diabetes-induced injuries and inflammatory responses through inhibiting activated RAGE. PMID:28337263

  12. Perspective in chronic kidney disease: targeting hypoxia-inducible factor (HIF) as potential therapeutic approach.

    PubMed

    Deshmukh, Aaishwarya B; Patel, Jayvadan K; Prajapati, Ashish R; Shah, Shreya

    2012-01-01

    Tissue hypoxia is a pathologic feature of many human diseases like cancer, myocardial infarction, stroke, and kidney disease. Convincing data from clinical studies in patients with chronic renal failure point to chronic hypoxia of kidneys as the end result of multiple processes and mechanisms. In acute as well as chronic diseases, tissue hypoxia not only implies a risk of energy deprivation but also induces regulatory mechanisms with profound influence on gene expression. Moreover, once established, accumulating evidence points to this chronic hypoxia as the central player along with final common pathway to end-stage renal disease (ESRD). An evolutionarily preserved oxygen-sensing mechanism enables cells to adapt and maintain homeostasis under hypoxic conditions by transcriptional activation of a host of genes mediating metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, in addition to cell survival. The endogenous oxygen-sensing mechanism incorporates hypoxia-inducible factors (HIFs) that hub cellular response to hypoxia and comprises a family of oxygen-sensitive basic helix-loop-helix proteins that control the cellular transcriptional response to hypoxia. Hypoxia-inducible factor 1 (HIF-1) is thus a significant mediator of physiological responses to acute and chronic hypoxia. Since HIF is activated to suboptimal levels in pathogenic renal states, therapeutic activation holds a promising novel and effective approach to the treatment of ESRD. Current insights into the regulation of HIF may augment the understanding of the role of hypoxia in renal failure progression and may unbolt new options to improve hypoxia tolerance and induce nephroprotection.

  13. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia

    PubMed Central

    Schermer, Bernhard; Höpker, Katja; Omran, Heymut; Ghenoiu, Cristina; Fliegauf, Manfred; Fekete, Andrea; Horvath, Judit; Köttgen, Michael; Hackl, Matthias; Zschiedrich, Stefan; Huber, Tobias B; Kramer-Zucker, Albrecht; Zentgraf, Hanswalter; Blaukat, Andree; Walz, Gerd; Benzing, Thomas

    2005-01-01

    Mutations in proteins localized to cilia and basal bodies have been implicated in a growing number of human diseases. Access of these proteins to the ciliary compartment requires targeting to the base of the cilia. However, the mechanisms involved in transport of cilia proteins to this transitional zone are elusive. Here we show that nephrocystin, a ciliary protein mutated in the most prevalent form of cystic kidney disease in childhood, is expressed in respiratory epithelial cells and accumulates at the base of cilia, overlapping with markers of the basal body area and the transition zone. Nephrocystin interacts with the phosphofurin acidic cluster sorting protein (PACS)-1. Casein kinase 2 (CK2)-mediated phosphorylation of three critical serine residues within a cluster of acidic amino acids in nephrocystin mediates PACS-1 binding, and is essential for colocalization of nephrocystin with PACS-1 at the base of cilia. Inhibition of CK2 activity abrogates this interaction and results in the loss of correct nephrocystin targeting. These data suggest that CK2-dependent transport processes represent a novel pathway of targeting proteins to the cilia. PMID:16308564

  14. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    PubMed

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  15. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts

    PubMed Central

    Shimada, Yukiko; Mohn, Fabio; Bühler, Marc

    2016-01-01

    Small RNAs regulate chromatin modification and transcriptional gene silencing across the eukaryotic kingdom. Although these processes have been well studied, fundamental mechanistic aspects remain obscure. Specifically, it is unclear exactly how small RNA-loaded Argonaute protein complexes target chromatin to mediate silencing. Here, using fission yeast, we demonstrate that transcription of the target locus is essential for RNA-directed formation of heterochromatin. However, high transcriptional activity is inhibitory; thus, a transcriptional window exists that is optimal for silencing. We further found that pre-mRNA splicing is compatible with RNA-directed heterochromatin formation. However, the kinetics of pre-mRNA processing is critical. Introns close to the 5′ end of a transcript that are rapidly spliced result in a bistable response whereby the target either remains euchromatic or becomes fully silenced. Together, our results discount siRNA–DNA base pairing in RNA-mediated heterochromatin formation, and the mechanistic insights further reveal guiding paradigms for the design of small RNA-directed chromatin silencing studies in multicellular organisms. PMID:27941123

  16. Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Gómez-Ramos, M.; Moro, A. M.

    2017-03-01

    Background: Reactions involving weakly bound nuclei require formalisms able to deal with continuum states. The majority of these formalisms struggle to treat collective excitations of the systems involved. For continuum-discretized coupled channels (CDCC), extensions to include target excitation have been developed but have only been applied to a small number of cases. Purpose: In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. Methods: We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Results: Reactions 58Ni(d ,d )*58Ni , 24Mg(d ,d )*24Mg , 144Sm(6Li,6Li)*144Sm , and 9Be(6Li,6Li)*9Be are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. Conclusions: The studied CDCC method has proven to be an accurate tool to describe target excitation in reactions with weakly bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross-section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  17. Measurement of proton-induced target fragmentation cross sections in carbon

    NASA Astrophysics Data System (ADS)

    Matsushita, K.; Nishio, T.; Tanaka, S.; Tsuneda, M.; Sugiura, A.; Ieki, K.

    2016-02-01

    In proton therapy, positron emitter nuclei are generated via the target nuclear fragmentation reactions between irradiated proton and nuclei constituting a human body. The proton-irradiated volume can be confirmed with measurement of annihilation γ-rays from the generated positron emitter nuclei. To achieve the high accuracy of proton therapy, in vivo dosimetry, i.e., evaluation of the irradiated dose during the treatment is important. To convert the measured activity distribution to irradiated dose, cross-sectional data for positron emitter production is necessary, which is currently insufficient in the treatment area. The purpose of this study is to collect cross-sectional data of 12C (p , pn)11C and 12C (p , p 2 n)10C reactions between the incident proton and carbon nuclei, which are important target nuclear fragmentation reactions, to estimate the range and exposure dose distribution in the patient's body. Using planar-type PET capable of measuring annihilation γ-rays at high positional resolution and thick polyethylene target, we measured cross-sectional data in continuous wide energy range. The cross section of 12C (p , pn)11C is in good agreement with existing experimental data. The cross section of 12C (p , p 2 n)10C is reported for the first data in the low-energy range of 67.6-10.5 MeV near the Bragg peak of proton beam.

  18. Targeting hepatitis B virus and human papillomavirus induced carcinogenesis: novel patented therapeutics.

    PubMed

    Kanwar, Rupinder K; Singh, Neha; Gurudevan, Sneha; Kanwar, Jagat R

    2011-05-01

    Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications.

  19. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma.

    PubMed

    Takahashi, D Koji; Gu, Feng; Parada, Isabel; Vyas, Shri; Prince, David A

    2016-07-01

    Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments.

  20. Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression

    PubMed Central

    Dalal, Chiraj K; Zuleta, Ignacio A; Mitchell, Kaitlin F; Andes, David R; El-Samad, Hana; Johnson, Alexander D

    2016-01-01

    Evolutionary changes in transcription networks are an important source of diversity across species, yet the quantitative consequences of network evolution have rarely been studied. Here we consider the transcriptional ‘rewiring’ of the three GAL genes that encode the enzymes needed for cells to convert galactose to glucose. In Saccharomyces cerevisiae, the transcriptional regulator Gal4 binds and activates these genes. In the human pathogen Candida albicans (which last shared a common ancestor with S. cerevisiae some 300 million years ago), we show that different regulators, Rtg1 and Rtg3, activate the three GAL genes. Using single-cell dynamics and RNA-sequencing, we demonstrate that although the overall logic of regulation is the same in both species—the GAL genes are induced by galactose—there are major differences in both the quantitative response of these genes to galactose and in the position of these genes in the overall transcription network structure of the two species. DOI: http://dx.doi.org/10.7554/eLife.18981.001 PMID:27614020

  1. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance.

    PubMed

    Yamamizo, Chihiro; Kuchimura, Kazuo; Kobayashi, Akira; Katou, Shinpei; Kawakita, Kazuhito; Jones, Jonathan D G; Doke, Noriyuki; Yoshioka, Hirofumi

    2006-02-01

    Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.

  2. Ligand-binding dynamics rewire cellular signaling via Estrogen Receptor-α

    PubMed Central

    Srinivasan, Sathish; Nwachukwu, Jerome C.; Parent, Alex A.; Cavett, Valerie; Nowak, Jason; Hughes, Travis S.; Kojetin, Douglas J.; Katzenellenbogen, John A.; Nettles, Kendall W.

    2013-01-01

    Ligand-binding dynamics control allosteric signaling through the estrogen receptor-α (ERα), but the biological consequences of such dynamic binding orientations are unknown. Here, we compare a set of ER ligands having dynamic binding orientation (dynamic ligands) with a control set of isomers that are constrained to bind in a single orientation (constrained ligands). Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network. In contrast, proliferation driven by dynamic ligands is associated with induction of ERα-mediated transcription in a DNA-binding domain (DBD)-dependent manner. Further, dynamic ligands displayed enhanced anti-inflammatory activity. The DBD-dependent profile was predictive of these signaling patterns in a larger diverse set of natural and synthetic ligands. Thus, ligand dynamics directs unique signaling pathways, and reveals a novel role of the DBD in allosteric control of ERα-mediated signaling. PMID:23524984

  3. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    PubMed

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  4. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma

    PubMed Central

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), which represents a rapidly progressing malignancy arising in HIV-infected patients. Conventional chemotherapy for PEL treatment induces unwanted toxicity and is ineffective — PEL continues to portend nearly 100% mortality within a period of months, which requires novel therapeutic strategies. The amino acid transporter, xCT, is essential for the uptake of cystine required for intracellular glutathione (GSH) synthesis and for maintaining the intracellular redox balance. Inhibition of xCT induces growth arrest in a variety of cancer cells, although its role in virus-associated malignancies including PEL remains unclear. In the current study, we identify that xCT is expressed on the surface of patient-derived KSHV+ PEL cells, and targeting xCT induces caspase-dependent cell apoptosis. Further experiments demonstrate the underlying mechanisms including host and viral factors: reducing intracellular GSH while increasing reactive oxygen species (ROS), repressing cell-proliferation-related signaling, and inducing viral lytic genes. Using an immune-deficient xenograft model, we demonstrate that an xCT selective inhibitor, Sulfasalazine (SASP), prevents PEL tumor progression in vivo. Together, our data provide innovative and mechanistic insights into the role of xCT in PEL pathogenesis, and the framework for xCT-focused therapies for AIDS-related lymphoma in future. PMID:24708874

  5. Low intensity ultrasound induces apoptosis via MPT channel on mitochondrial membrane: Target for regulating cancer therapy or not?

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To discuss how the mitochondrion is involved in low intensity ultrasound induced apoptosis, HepG2 cells were irradiated by low intensity focused ultrasound (ISPTA = 3W/cm2, 1 min) and then cultured from 3-12 h post irradiation in the study. The morphological alteration was examined by light and fluorescent microscopy respectively. Cell viability and apoptosis were examined by trypan blue staining and flow cytometry with double staining of FITC-labelled Annexin-V/PI. Key proteins responded to irradiation were screened out by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and shotgun proteomic methods with Agilent 1100 HPLC-Chip-MS technology. Representative apoptotic morphological characteristics and increased percentage of apoptotic cells were achieved. Six important proteins (4 up-regulated and 2 down-regulated) were selected and analyzed. It revealed low intensity focused ultrasound could induce apoptosis in HepG2 cells and the US-induced apoptosis was mitochondria-dependent and caspases-dependent. Moreover, mitochondrial membrane permeability transition (MPT) is related to ultrasound induced apoptosis, but VDAC may be not the main MPT channel. Understanding it could help to assist the cancer therapy by regulating the MPT as the target.

  6. The ClC-3 chloride channel associated with microtubules is a target of paclitaxel in its induced-apoptosis.

    PubMed

    Zhang, Haifeng; Li, Huarong; Yang, Lili; Deng, Zhiqin; Luo, Hai; Ye, Dong; Bai, Zhiquan; Zhu, Linyan; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2013-01-01

    Recent evidences show that cationic fluxes play a pivotal role in cell apoptosis. In this study, the roles of Cl(-) channels in paclitaxel-induced apoptosis were investigated in nasopharyngeal carcinoma CNE-2Z cells. Chloride current and apoptosis were induced by paclitaxel and inhibited by chloride channel blockers. Paclitaxel-activated current possessed similar properties to volume-activated chloride current. After ClC-3 was knocked-down by ClC-3-siRNA, hypotonicity-activated and paclitaxel-induced chloride currents were obviously decreased, indicating that the chloride channel involved in paclitaxel-induced apoptosis may be ClC-3. In early apoptotic cells, ClC-3 was up-regulated significantly; over-expressed ClC-3 was accumulated in cell membrane to form intercrossed filaments, which were co-localized with α-tubulins; changes of ultrastructures and decrease of flexibility in cell membrane were detected by atomic force microscopy. These suggest that ClC-3 is a critical target of paclitaxel and the involvement of ClC-3 in apoptosis may be associated with its accumulation with membrane microtubules and its over activation.

  7. Calpain and Reactive Oxygen Species Targets Bax for Mitochondrial Permeabilisation and Caspase Activation in Zerumbone Induced Apoptosis

    PubMed Central

    Sobhan, Praveen K.; Seervi, Mahendra; Deb, Lokesh; Varghese, Saneesh; Soman, Anjana; Joseph, Jeena; Mathew, Krupa Ann; Raghu, Godi; Thomas, George; E, Sreekumar; S, Manjula; R, Santosh Kumar T.

    2013-01-01

    Fluorescent protein based signaling probes are emerging as valuable tools to study cell signaling because of their ability to provide spatio- temporal information in non invasive live cell mode. Previously, multiple fluorescent protein probes were employed to characterize key events of apoptosis in diverse experimental systems. We have employed a live cell image based approach to visualize the key events of apoptosis signaling induced by zerumbone, the active principle from ginger Zingiber zerumbet, in cancer cells that enabled us to analyze prominent apoptotic changes in a hierarchical manner with temporal resolution. Our studies substantiate that mitochondrial permeabilisation and cytochrome c dependent caspase activation dominate in zerumbone induced cell death. Bax activation, the essential and early event of cell death, is independently activated by reactive oxygen species as well as calpains. Zerumbone failed to induce apoptosis or mitochondrial permeabilisation in Bax knockout cells and over-expression of Bax enhanced cell death induced by zerumbone confirming the essential role of Bax for mitochondrial permeabilsation. Simultaneous inhibition of reactive oxygen species and calpain is required for preventing Bax activation and cell death. However, apoptosis induced by zerumbone was prevented in Bcl 2 and Bcl-XL over-expressing cells, whereas more protection was afforded by Bcl 2 specifically targeted to endoplasmic reticulum. Even though zerumbone treatment down-regulated survival proteins such as XIAP, Survivin and Akt, it failed to affect the pro-apoptotic proteins such as PUMA and BIM. Multiple normal diploid cell lines were employed to address cytotoxic activity of zerumbone and, in general, mammary epithelial cells, endothelial progenitor cells and smooth muscle cells were relatively resistant to zerumbone induced cell death with lesser ROS accumulation than cancer cells. PMID:23593137

  8. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  9. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  10. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1.

    PubMed

    Santala, Suvi; Efimova, Elena; Koskinen, Perttu; Karp, Matti Tapani; Santala, Ville

    2014-03-21

    Wax esters are industrially relevant high-value molecules. For sustainable production of wax esters, bacterial cell factories are suggested to replace the chemical processes exploiting expensive starting materials. However, it is well recognized that new sophisticated solutions employing synthetic biology toolbox are required to improve and tune the cellular production platform to meet the product requirements. For example, saturated wax esters with alkanol chain lengths C12 or C14 that are convenient for industrial uses are rare among bacteria. Acinetobacter baylyi ADP1, a natural producer of wax esters, is a convenient model organism for studying the potentiality and modifiability of wax esters in a natural host by means of synthetic biology. In order to establish a controllable production platform exploiting well-characterized biocomponents, and to modify the wax ester synthesis pathway of A. baylyi ADP1 in terms product quality, a fatty acid reductase complex LuxCDE with an inducible arabinose promoter was employed to replace the natural fatty acyl-CoA reductase acr1 in ADP1. The engineered strain was able to produce wax esters by the introduced synthetic pathway. Moreover, the fatty alkanol chain length profile of wax esters was found to shift toward shorter and more saturated carbon chains, C16:0 accounting for most of the alkanols. The study demonstrates the potentiality of recircuiting a biosynthesis pathway in a natural producer, enabling a regulated production of a customized bioproduct. Furthermore, the LuxCDE complex can be potentially used as a well-characterized biopart in a variety of synthetic biology applications involving the production of long-chain hydrocarbons.

  11. Rewiring the primary somatosensory cortex in carpal tunnel syndrome with acupuncture.

    PubMed

    Maeda, Yumi; Kim, Hyungjun; Kettner, Norman; Kim, Jieun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Ong-Sutherland, Rebecca; Mezzacappa, Pia; Libby, Alexandra; Mawla, Ishtiaq; Morse, Leslie R; Kaptchuk, Ted J; Audette, Joseph; Napadow, Vitaly

    2017-03-02

    imaging of white matter microstructure adjacent to the primary somatosensory cortex. Compared to healthy adults (n = 34, 28 female, 49.7 ± 9.9 years old), patients with carpal tunnel syndrome demonstrated increased fractional anisotropy in several regions and, for these regions we found that improvement in median nerve latency was associated with reduction of fractional anisotropy near (i) contralesional hand area following verum, but not sham, acupuncture; (ii) ipsilesional hand area following local, but not distal or sham, acupuncture; and (iii) ipsilesional leg area following distal, but not local or sham, acupuncture. As these primary somatosensory cortex subregions are distinctly targeted by local versus distal acupuncture electrostimulation, acupuncture at local versus distal sites may improve median nerve function at the wrist by somatotopically distinct neuroplasticity in the primary somatosensory cortex following therapy. Our study further suggests that improvements in primary somatosensory cortex somatotopy can predict long-term clinical outcomes for carpal tunnel syndrome.

  12. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells.

    PubMed

    Kim, Seok-Jo; Cheresh, Paul; Williams, David; Cheng, Yuan; Ridge, Karen; Schumacker, Paul T; Weitzman, Sigmund; Bohr, Vilhelm A; Kamp, David W

    2014-02-28

    Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5-25 μg/cm(2)) or H2O2 (100-250 μM)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317-323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1(-/-) mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.

  13. Dynamics of 16,18O-induced reactions using Ni, Ge and Mo targets

    NASA Astrophysics Data System (ADS)

    Rajni; Kaur, Gurvinder; Sharma, Manoj K.

    2016-11-01

    Dynamical cluster decay model (DCM) based on the collective clusterization approach is employed to explore the dynamics of various even-mass Zr isotopes formed in 16O-induced reactions. In reference to the measured fusion cross-section data, various decay modes contributing towards 86,88,90,92Zr∗ nuclei are investigated. Also, the role of deformations and orientation degree of freedom is analyzed by comparing results with spherical choice of fragmentation. In addition to this, the effect of entrance channel is explored for 92Zr∗ and 76Kr∗ nuclei formed in 16O and 18O-induced reactions. Besides this, the dynamics of relatively heavier mass Sn isotopes is exercised using 16O and 18O projectiles. The DCM calculated decay cross-sections find good agreement with available experimental data.

  14. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1

    PubMed Central

    Yu, Yonghui; Li, Xiao; Liu, Lingying; Chai, Jiake; Haijun, Zhang; Chu, Wanli; Yin, Huinan; Ma, Li; Duan, Hongjie; Xiao, Mengjing

    2016-01-01

    Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway. PMID:27766036

  15. Emerging mechanistic targets in lung injury induced by combustion-generated particles.

    PubMed

    Fariss, Marc W; Gilmour, M Ian; Reilly, Christopher A; Liedtke, Wolfgang; Ghio, Andrew J

    2013-04-01

    The mechanism for biological effect following exposure to combustion-generated particles is incompletely defined. The identification of pathways regulating the acute toxicological effects of these particles provides specific targets for therapeutic manipulation in an attempt to impact disease following exposures. Transient receptor potential (TRP) cation channels were identified as "particle sensors" in that their activation was coupled with the initiation of protective responses limiting airway deposition and inflammatory responses, which promote degradation and clearance of the particles. TRPA1, V1, V4, and M8 have a capacity to mediate adverse effects after exposure to combustion-generated particulate matter (PM); relative contributions of each depend upon particle composition, dose, and deposition. Exposure of human bronchial epithelial cells to an organic extract of diesel exhaust particle was followed by TRPV4 mediating Ca(++) influx, increased RAS expression, mitogen-activated protein kinase signaling, and matrix metalloproteinase-1 activation. These novel pathways of biological effect can be targeted by compounds that specifically inhibit critical signaling reactions. In addition to TRPs and calcium biochemistry, humic-like substances (HLS) and cell/tissue iron equilibrium were identified as potential mechanistic targets in lung injury after particle exposure. In respiratory epithelial cells, iron sequestration by HLS in wood smoke particle (WSP) was associated with oxidant generation, cell signaling, transcription factor activation, and release of inflammatory mediators. Similar to WSP, cytotoxic insoluble nanosized spherical particles composed of HLS were isolated from cigarette smoke condensate. Therapies that promote bioelimination of HLS and prevent the disruption of iron homeostasis could function to reduce the harmful effects of combustion-generated PM exposure.

  16. Targeting apoptotic signalling pathway and pro-inflammatory cytokine expression as therapeutic intervention in TPE induced lung damage.

    PubMed

    Narayanan, Kishore; Krishnamoorthy, Bhavani; Ezhilarasan, Ravesanker; Miyamoto, Shigeki; Balakrishnan, Arun

    2003-01-01

    Tropical pulmonary eosinophilia (TPE) is an occult manifestation of filariasis, brought about by helminth parasites Wuchereria bancrofti and Brugia malayi. Treatment of patients suffering from TPE involves the administration of diethyl carbamazine and Ivermectin. Although the drugs are able to block acute inflammation, they are not able to alleviate chronic basal inflammation. We have attempted to examine the disease by targeting two important components; namely filarial parasitic sheath proteins (FPP) induced apoptosis and pro-inflammatory cytokine response in human laryngeal carcinoma cells of epithelial origin (HEp-2) cells an epithelial cell line. Earlier studies by us have shown that FPP exposure induced apoptosis in these cells. In this study with hydrocortisone, calpain inhibitor (ALLN) and phorbol myristate acetate (PMA) treatments we demonstrate that apoptosis is inhibited as shown by [3H] thymidine incorporation studies, propidium iodide staining and Annexin V staining. Hydrocortisone at a dose, which inhibits cell death also down regulated, the expression of pro-inflammatory cytokines IL-6 and IL-8. These findings give us insights into the multifaceted approach one may adopt to target critical signalling molecules using appropriate inhibitors, which could eventually be used to reduce lung damage in TPE.

  17. A dual-targeting, p53-independent, apoptosis-inducing platinum(II) anticancer complex, [Pt(BDI(QQ))]Cl.

    PubMed

    Suntharalingam, Kogularamanan; Wilson, Justin J; Lin, Wei; Lippard, Stephen J

    2014-03-01

    The therapeutic index and cellular mechanism of action of [Pt(BDI(QQ))]Cl, a monocationic, square-planar platinum(II) complex, are reported. [Pt(BDI(QQ))]Cl was used to treat several cell lines, including wild type and cisplatin-resistant ovarian carcinoma cells (A2780 and A2780CP70) and non-proliferating lung carcinoma cells (A549). [Pt(BDI(QQ))]Cl selectively kills cancer cells over healthy cells and exhibits no cross-resistance with cisplatin. The mechanism of cell killing was established through detailed cell-based assays. [Pt(BDI(QQ))]Cl exhibits dual-threat capabilities, targeting nuclear DNA and mitochondria simultaneously. [Pt(BDI(QQ))]Cl induces DNA damage, leading to p53 enrichment, mitochondrial membrane potential depolarisation, and caspase-mediated apoptosis. [Pt(BDI(QQ))]Cl also accumulates in the mitochondria, resulting in direct mitochondrial damage. Flow cytometric studies demonstrated that [Pt(BDI(QQ))]Cl has no significant effect on cell cycle progression. Remarkably, p53-status is a not a determinant of [Pt(BDI(QQ))]Cl activity. In p53-null cells, [Pt(BDI(QQ))]Cl induces cell death through mitochondrial dysfunction. Cancers with p53-null status could therefore be targeted using [Pt(BDI(QQ))]Cl.

  18. Behavioural Effects of Using Sulfasalazine to Inhibit Glutamate Released by Cancer Cells: A Novel target for Cancer-Induced Depression

    PubMed Central

    Nashed, Mina G.; Ungard, Robert G.; Young, Kimberly; Zacal, Natalie J.; Seidlitz, Eric P.; Fazzari, Jennifer; Frey, Benicio N.; Singh, Gurmit

    2017-01-01

    Despite the lack of robust evidence of effectiveness, current treatment options for cancer-induced depression (CID) are limited to those developed for non-cancer related depression. Here, anhedonia-like and coping behaviours were assessed in female BALB/c mice inoculated with 4T1 mammary carcinoma cells. The behavioural effects of orally administered sulfasalazine (SSZ), a system xc− inhibitor, were compared with fluoxetine (FLX). FLX and SSZ prevented the development of anhedonia-like behaviour on the sucrose preference test (SPT) and passive coping behaviour on the forced swim test (FST). The SSZ metabolites 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) exerted an effect on the SPT but not on the FST. Although 5-ASA is a known anti-inflammatory agent, neither treatment with SSZ nor 5-ASA/SP prevented tumour-induced increases in serum levels of interleukin-1β (IL-1β) and IL-6, which are indicated in depressive disorders. Thus, the observed antidepressant-like effect of SSZ may primarily be attributable to the intact form of the drug, which inhibits system xc−. This study represents the first attempt at targeting cancer cells as a therapeutic strategy for CID, rather than targeting downstream effects of tumour burden on the central nervous system. In doing so, we have also begun to characterize the molecular pathways of CID. PMID:28120908

  19. Targeted therapy for Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation.

    PubMed

    Lee, Hyun Gyu; Kim, Hyemi; Kim, Eun Jung; Park, Pil-Gu; Dong, Seung Myung; Choi, Tae Hyun; Kim, Hyunki; Chong, Curtis R; Liu, Jun O; Chen, Jianmeng; Ambinder, Richard F; Hayward, S Diane; Park, Jeon Han; Lee, Jae Myun

    2015-10-13

    The constant presence of the viral genome in Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) suggests the applicability of novel EBV-targeted therapies. The antiviral nucleoside drug, ganciclovir (GCV), is effective only in the context of the viral lytic cycle in the presence of EBV-encoded thymidine kinase (TK)/protein kinase (PK) expression. In this study, screening of the Johns Hopkins Drug Library identified gemcitabine as a candidate for combination treatment with GCV. Pharmacological induction of EBV-TK or PK in EBVaGC-originated tumor cells were used to study combination treatment with GCV in vitro and in vivo. Gemcitabine was found to be a lytic inducer via activation of the ataxia telangiectasia-mutated (ATM)/p53 genotoxic stress pathway in EBVaGC. Using an EBVaGC mouse model and a [125I] fialuridine (FIAU)-based lytic activation imaging system, we evaluated gemcitabine-induced lytic activation in an in vivo system and confirmed the efficacy of gemcitabine-GCV combination treatment. This viral enzyme-targeted anti-tumor strategy may provide a new therapeutic approach for EBVaGCs.

  20. miR-613 suppresses ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting the programmed cell death 10 gene.

    PubMed

    Wu, Zhenhua; Qi, Yujuan; Guo, Zhigang; Li, Peijun; Zhou, Ding

    2016-09-05

    MicroRNAs (miRNAs) are important gene regulators in both biological and pathological processes, including myocardial ischemia/reperfusion (I/R) injury. This study investigated the effect of miR-613 on I/R-induced cardiomyocyte apoptosis and its molecular mechanism of action. Hypoxia/reoxygenation (H/R) significantly increased the release of lactate dehydrogenase (LDH), levels of malondialdehyde (MDA), and cardiomyocyte apoptosis, but these effects were attenuated by an miR-613 mimic. Programmed cell death 10 (PDCD10) was identified as a target gene of miR-613. miR-613 significantly increased the phosphorylation of Akt (p-Akt). An miR-613 mimic lowered the level of expression of pro-apoptotic proteins, C/EBP homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase (p-JNK), and it up-regulated the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). All of these effects were reversed by restoration of PDCD10. Taken together, the current findings indicate that miR-613 inhibits I/R-induced cardiomyocyte apoptosis by targeting PDCD10 by regulating the PI3K/AKT signaling pathway.

  1. Rewiring of the Jasmonate Signaling Pathway in Arabidopsis during Insect Herbivory

    PubMed Central

    Verhage, Adriaan; Vlaardingerbroek, Ido; Raaymakers, Ciska; Van Dam, Nicole M.; Dicke, Marcel; Van Wees, Saskia C. M.; Pieterse, Corné M. J.

    2011-01-01

    Plant defenses against insect herbivores and necrotrophic pathogens are differentially regulated by different branches of the jasmonic acid (JA) signaling pathway. In Arabidopsis, the basic helix-loop-helix leucine zipper transcription factor (TF) MYC2 and the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain TF ORA59 antagonistically control these distinct branches of the JA pathway. Feeding by larvae of the specialist insect herbivore Pieris rapae activated MYC2 transcription and stimulated expression of the MYC2-branch marker gene VSP2, while it suppressed transcription of ORA59 and the ERF-branch marker gene PDF1.2. Mutant jin1 and jar1-1 plants, which are impaired in the MYC2-branch of the JA pathway, displayed a strongly enhanced expression of both ORA59 and PDF1.2 upon herbivory, indicating that in wild-type plants the MYC2-branch is prioritized over the ERF-branch during insect feeding. Weight gain of P. rapae larvae in a no-choice setup was not significantly affected, but in a two-choice setup the larvae consistently preferred jin1 and jar1-1 plants, in which the ERF-branch was activated, over wild-type Col-0 plants, in which the MYC2-branch was induced. In MYC2- and ORA59-impaired jin1-1/RNAi-ORA59 plants this preference was lost, while in ORA59-overexpressing 35S:ORA59 plants it was gained, suggesting that the herbivores were stimulated to feed from plants that expressed the ERF-branch rather than that they were deterred by plants that expressed the MYC2-branch. The feeding preference of the P. rapae larvae could not be linked to changes in glucosinolate levels. Interestingly, application of larval oral secretion into wounded leaf tissue stimulated the ERF-branch of the JA pathway, suggesting that compounds in the oral secretion have the potential to manipulate the plant response toward the caterpillar-preferred ERF-regulated branch of the JA response. Our results suggest that by activating the MYC2-branch of the JA pathway, plants prevent stimulation

  2. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.

  3. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage.

    PubMed

    Chung, Yih-Lin; Pui, Newman N M

    2015-01-01

    We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury.

  4. Amorfrutin C Induces Apoptosis and Inhibits Proliferation in Colon Cancer Cells through Targeting Mitochondria.

    PubMed

    Weidner, Christopher; Rousseau, Morten; Micikas, Robert J; Fischer, Cornelius; Plauth, Annabell; Wowro, Sylvia J; Siems, Karsten; Hetterling, Gregor; Kliem, Magdalena; Schroeder, Frank C; Sauer, Sascha

    2016-01-22

    A known (1) and a structurally related new natural product (2), both belonging to the amorfrutin benzoic acid class, were isolated from the roots of Glycyrrhiza foetida. Compound 1 (amorfrutin B) is an efficient agonist of the nuclear peroxisome proliferator activated receptor (PPAR) gamma and of other PPAR subtypes. Compound 2 (amorfrutin C) showed comparably lower PPAR activation potential. Amorfrutin C exhibited striking antiproliferative effects for human colorectal cancer cells (HT-29 and T84), prostate cancer (PC-3), and breast cancer (MCF7) cells (IC50 values ranging from 8 to 16 μM in these cancer cell lines). Notably, amorfrutin C (2) showed less potent antiproliferative effects in primary colon cells. For HT-29 cells, compound 2 induced G0/G1 cell cycle arrest and modulated protein expression of key cell cycle modulators. Amorfrutin C further induced apoptotic events in HT-29 cells, including caspase activation, DNA fragmentation, PARP cleavage, phosphatidylserine externalization, and formation of reactive oxygen species. Mechanistic studies revealed that 2 disrupts the mitochondrial integrity by depolarization of the mitochondrial membrane (IC50 0.6 μM) and permanent opening of the mitochondrial permeability transition pore, leading to increased mitochondrial oxygen consumption and extracellular acidification. Structure-activity-relationship experiments revealed the carboxylic acid and the hydroxy group residues of 2 as fundamental structural requirements for inducing these apoptotic effects. Synergy analyses demonstrated stimulation of the death receptor signaling pathway. Taken together, amorfrutin C (2) represents a promising lead for the development of anticancer drugs.

  5. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    PubMed

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  6. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation.

    PubMed

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu

    2015-01-15

    Generation of functional organs from patients' own cells is one of the ultimate goals of regenerative medicine. As a novel approach to creation of organs from pluripotent stem cells (PSCs), we employed blastocyst complementation in organogenesis-disabled animals and successfully generated PSC-derived pancreas and kidneys. Blastocyst complementation, which exploits the capacity of PSCs to participate in forming chimeras, does not, however, exclude contribution of PSCs to the development of tissues-including neural cells or germ cells-other than those specifically targeted by disabling of organogenesis. This fact provokes ethical controversy if human PSCs are to be used. In this study, we demonstrated that forced expression of Mix-like protein 1 (encoded by Mixl1) can be used to guide contribution of mouse embryonic stem cells to endodermal organs after blastocyst injection. We then succeeded in applying this method to generate functional pancreas in pancreatogenesis-disabled Pdx1 knockout mice using a newly developed tetraploid-based organ-complementation method. These findings hold promise for targeted organ generation from patients' own PSCs in livestock animals.

  7. Celastrol ameliorates Cd-induced neuronal apoptosis by targeting NOX2-derived ROS-dependent PP5-JNK signaling pathway.

    PubMed

    Xu, Chong; Wang, Xiaoxue; Gu, Chenjian; Zhang, Hai; Zhang, Ruijie; Dong, Xiaoqing; Liu, Chunxiao; Hu, Xiaoyu; Ji, Xiang; Huang, Shile; Chen, Long

    2017-04-01

    Celastrol, a plant-derived triterpene, has neuroprotective benefit in the models of neurodegenerative disorders that are characterized by overproduction of reactive oxygen species (ROS). Recently, we have reported that cadmium (Cd) activates c-Jun N-terminal kinase (JNK) pathway leading to neuronal cell death by inducing ROS inactivation of protein phosphatase 5 (PP5), and celastrol prevents Cd-activated JNK pathway against neuronal apoptosis. Therefore, we hypothesized that celastrol could hinder Cd induction of ROS-dependent PP5-JNK signaling pathway from apoptosis in neuronal cells. Here, we show that celastrol attenuated Cd-induced expression of NADPH oxidase 2 (NOX2) and its regulatory proteins (p22(phox) , p40(phox) , p47(phox) , p67(phox) , and Rac1), as well as the generation of ROS in PC12 cells and primary neurons. Also, N-acetyl-l-cysteine, a ROS scavenger, potentiated celastrol's inhibition of the events in the cells triggered by Cd, implying neuroprotection by celastrol via blocking Cd-evoked NOX2-derived ROS. Further research revealed that celastrol was involved in the regulation of PP5 inactivation and JNK/c-Jun activation induced by Cd, as celastrol prevented Cd from reducing PP5 expression, and over-expression of wild-type PP5 or dominant negative c-Jun strengthened celastrol's inhibition of Cd-induced phosphorylation of JNK and/or c-Jun, as well as apoptosis in neuronal cells. Of importance, inhibiting NOX2 with apocynin or silencing NOX2 by RNA interference enhanced the inhibitory effects of celastrol on Cd-induced inactivation of PP5, activation of JNK/c-Jun, ROS, and apoptosis in the cells. Furthermore, we noticed that expression of wild-type PP5 or dominant negative c-Jun, or pretreatment with JNK inhibitor SP600125 reinforced celastrol's suppression of Cd-induced NOX2 and its regulatory proteins, and consequential ROS in neuronal cells. These findings indicate that celastrol ameliorates Cd-induced neuronal apoptosis via targeting NOX2-derived

  8. Non-cell autonomous effects of targeting inducible PGE2 synthesis during inflammation-associated colon carcinogenesis.

    PubMed

    Nakanishi, Masako; Perret, Christine; Meuillet, Emmanuelle J; Rosenberg, Daniel W

    2015-04-01

    Microsomal PGE2 synthase-1 (mPGES-1), the terminal enzyme in the formation of inducible PGE2, represents a potential target for cancer chemoprevention. We have previously shown that genetic abrogation of mPGES-1 significantly suppresses tumorigenesis in two preclinical models of intestinal cancer. In this study, we examined the role of mPGES-1 during colon tumorigenesis in the presence of dextran sulfate sodium (DSS)-induced inflammatory microenvironment. Using Apc (Δ14/+) in which the mPGES-1 gene is either wild-type (D14:WT) or deleted (D14:KO), we report that mPGES-1 deficiency enhances sensitivity to acute mucosal injury. As a result of the increased epithelial damage, protection against adenoma formation is unexpectedly compromised in the D14:KO mice. Examining the DSS-induced acute injury, cryptal structures are formed within inflamed areas of colonic mucosa of both genotypes that display the hallmarks of early neoplasia. When acute epithelial injury is balanced by titration of DSS exposures, however, these small cryptal lesions progress rapidly to adenomas in the D14:WT mice. Given that mPGES-1 is highly expressed within the intestinal stroma under the inflammatory conditions of DSS-induced ulceration, we propose a complex and dual role for inducible PGE2 synthesis within the colonic mucosa. Our data suggest that inducible PGE2 is critical for the maintenance of an intact colonic epithelial barrier, while promoting epithelial regeneration. This function is exploited during neoplastic transformation in Apc (Δ14/+) mice as PGE2 contributes to the growth and expansion of the early initiated cryptal structures. Taken together, inducible PGE2 plays a complex role in inflammation-associated cancers that requires further analysis. Inducible PGE2 production by mPGES-1 is critical for the colonic mucosal homeostasis. This function is exploited in the presence of the neoplastic transformation in Apc (Δ14/+) mice as PGE2 contributes to the growth and expansion of

  9. Non-cell autonomous effects of targeting inducible PGE2 synthesis during inflammation-associated colon carcinogenesis

    PubMed Central

    Nakanishi, Masako; Perret, Christine; Meuillet, Emmanuelle J.; Rosenberg, Daniel W.

    2015-01-01

    Microsomal PGE2 synthase-1 (mPGES-1), the terminal enzyme in the formation of inducible PGE2, represents a potential target for cancer chemoprevention. We have previously shown that genetic abrogation of mPGES-1 significantly suppresses tumorigenesis in two preclinical models of intestinal cancer. In this study, we examined the role of mPGES-1 during colon tumorigenesis in the presence of dextran sulfate sodium (DSS)-induced inflammatory microenvironment. Using Apc Δ14/+ in which the mPGES-1 gene is either wild-type (D14:WT) or deleted (D14:KO), we report that mPGES-1 deficiency enhances sensitivity to acute mucosal injury. As a result of the increased epithelial damage, protection against adenoma formation is unexpectedly compromised in the D14:KO mice. Examining the DSS-induced acute injury, cryptal structures are formed within inflamed areas of colonic mucosa of both genotypes that display the hallmarks of early neoplasia. When acute epithelial injury is balanced by titration of DSS exposures, however, these small cryptal lesions progress rapidly to adenomas in the D14:WT mice. Given that mPGES-1 is highly expressed within the intestinal stroma under the inflammatory conditions of DSS-induced ulceration, we propose a complex and dual role for inducible PGE2 synthesis within the colonic mucosa. Our data suggest that inducible PGE2 is critical for the maintenance of an intact colonic epithelial barrier, while promoting epithelial regeneration. This function is exploited during neoplastic transformation in Apc Δ14/+ mice as PGE2 contributes to the growth and expansion of the early initiated cryptal structures. Taken together, inducible PGE2 plays a complex role in inflammation-associated cancers that requires further analysis. Inducible PGE2 production by mPGES-1 is critical for the colonic mucosal homeostasis. This function is exploited in the presence of the neoplastic transformation in Apc Δ14/+ mice as PGE2 contributes to the growth and expansion of the

  10. Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death.

    PubMed

    Sanchez, Claire; El Hajj Diab, Darine; Connord, Vincent; Clerc, Pascal; Meunier, Etienne; Pipy, Bernard; Payré, Bruno; Tan, Reasmey P; Gougeon, Michel; Carrey, Julian; Gigoux, Véronique; Fourmy, Daniel

    2014-02-25

    Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of β-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors.

  11. Highly sensitive detection of 25-HydroxyvitaminD3 by using a target-induced displacement of aptamer.

    PubMed

    Lee, Bang Hyun; Nguyen, Van Thuan; Gu, Man Bock

    2017-02-15

    For the prevention of 25-HydroxyvitaminD3 deficiency, in this study, aptamers which can bind to 25-HydroxyvitaminD3 with high specificity and affinity, were successfully developed by using immobilization-free, graphene oxide-based systemic evolution of ligands by exponential enrichment (GO-SELEX) method. The 9 sequences including VDBA14 aptamer were obtained out of 16 aptamer candidates, based on the specificity and affinity of the aptamers confirmed by both the gold nanoparticles (AuNPs)-based colorimetric assay and the isothermal titration calorimetry (ITC) method. Among them, the aptamer, VDBA14, developed in this study was found to show a great affinity to 25-HydroxyvitaminD3, with 11nM of its Kd value. Moreover, the circular dichroism (CD) analysis data indicated the target-induced displacement of the aptamer VDBA14clearly. In addition, this target-induced change of the aptamer was also confirmed again by conducting two different experimental formats, the use of streptavidin-coated 96-well plates and the use of magnetic beads. The results clearly indicated that the structure of VDBA14 aptamer was changed upon the binding of the target, 25-HydroxyvitaminD3, and so the indicator sequences (partially complementary to the aptamer sequence) tagged with an enzyme as a signaling molecule could be de-hybridized from the aptamer. Finally, the limit of detection for vitamin D based on AuNPs-based colorimetric assay using VDBA14 aptamer was found to be 1µM. All these results were taken together, the aptamer which was developed could play an exquisite role in the fields of early medical diagnosis of vitamin D deficiency with accurate, rapid and simple analytical method.

  12. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling.

    PubMed

    Erikson, John M; Valente, Anthony J; Mummidi, Srinivas; Kandikattu, Hemanth Kumar; DeMarco, Vincent G; Bender, Shawn B; Fay, William P; Siebenlist, Ulrich; Chandrasekar, Bysani

    2017-02-10

    Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.

  13. Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways.

    PubMed

    Liu, Xiang-Dong; Zhang, Lian-Yun; Zhu, Tie-Chui; Zhang, Rui-Fang; Wang, Shu-Long; Bao, Yan

    2015-01-01

    Recent findings have shown that microRNAs play critical roles in the pathogenesis of diabetic nephropathy. miR-34c has been found to inhibit fibrosis and the epithelial-mesenchymal transition of kidney cells. However, the role of miR-34c in diabetic nephropathy has not been well studied. The current study was designed to investigate the role and potential underlying mechanism of miR-34c in regulating diabetic nephropathy. After treating podocytes with high glucose (HG) in vitro, we found that miR-34c was downregulated and that overexpression of miR-34c inhibited HG-induced podocyte apoptosis. The direct interaction between miR-34c and the 3'-untranslated region (UTR) of Notch1 and Jagged1 was validated by dual-luciferase reporter assay. Moreover, Notch1 and Jagged1 as putative targets of miR-34c were downregulated by miR-34c overexpression in HG-treated podocytes. Overexpression of miR-34c inhibited HG-induced Notch signaling pathway activation, as indicated by decreased expression of the Notch intracellular domain (NICD) and downstream genes including Hes1 and Hey1. Furthermore, miR-34c overexpression increased the expression of the anti-apoptotic gene Bcl-2, and decreased the expression of the pro-apoptotic protein Bax and cleaved Caspase-3. Additionally, the phosphorylation of p53 was also downregulated by miR-34c overexpression. Taken together, our findings suggest that miR-34c overexpression inhibits the Notch signaling pathway by targeting Notch1 and Jaggged1 in HG-treated podocytes, representing a novel and potential therapeutic target for the treatment of diabetic nephropathy.

  14. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    SciTech Connect

    Brüning, Ansgar Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  15. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells.

    PubMed

    Chen, Min; Liu, Bingqian; Ma, Jian; Ge, Jian; Wang, Kaijun

    2017-04-01

    The retina of the human eye is extremely vulnerable to oxidative damage. Previous studies have demonstrated that oxidative stress is the predominant mechanism associated with the pathogenesis of age‑related macular degeneration, diabetic retinopathy, glaucoma and retinitis pigmentosa. MTP‑131, a novel mitochondria‑targeted peptide, has been demonstrated to specifically concentrate in the inner mitochondria membrane and to exhibit remarkable antioxidant effects both in vitro and in animal models. In the present study, the protective effect of MTP‑131 was evaluated in response to hydrogen peroxide (H2O2)‑induced oxidative damage in a retinal ganglion cell line, RGC‑5. Cell viability was measured by lactate dehydrogenase (LDH) assay. Changes of mitochondrial membrane potential and generation of intracellular reactive oxygen species (ROS) were measured by flow cytometry and confocal microscopy, respectively. Annexin V‑fluorescein isothiocyanate/propidium iodide staining was used for assessment of apoptosis. Release of cytochrome c was analyzed by confocal microscopy. Pretreatment of cells with MTP‑131 inhibited H2O2‑induced cytotoxicity and reduced LDH release in a dose‑dependent manner, compared with cells treated with H2O2 alone. Mitochondrial depolarization and ROS generation were also prevented by MTP‑131 pretreatment. In addition, MTP‑131 pretreatment inhibited cytochrome c release from mitochondria to cytoplasm, and significantly reduced apoptosis in RGC‑5 cells, compared with cells treated with H2O2 alone. In conclusion, mitochondria‑targeted peptide MTP‑131 exhibited a protective effect against oxidative stress‑induced apoptosis in RGC‑5 cells, which may provide a novel approach for the treatment of age‑associated retinal diseases.

  16. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  17. Induced ion currents and the endothelin pathway as targets for anti-arrhythmic agents.

    PubMed

    Dai, De-Zai; Dai, Yin

    2008-09-01

    The development of novel anti-arrhythmic drugs is necessary, specifically agents that do not cause torsades de pointes (Tdp). Ion channelopathy that is involved in mechanisms underlying sudden cardiac death (SCD) includes both ion channels in the membrane, and the calcium-releasing channels and the calcium uptake process in the sarcoplasmic reticulum. Advances in the understanding of abnormalities of ion channels in the myocardium caused by congenital defects or by a failing heart and cardiomyopathy offer further insights into the relationship between channelopathy and SCD. Enhanced L-type Ca2+ current (ICa.L) activity has been detected in the hearts of patients with a mutation of the Cav1.2 gene; these patients exhibit a high risk of SCD. Rats with thyroxin-induced cardiomyopathy demonstrate an increase in ICa.L activity that is responsible for exacerbated ventricular fibrillation (VF). This is suppressed by propranolol or CPU-86017, a class III anti-arrhythmic agent with potent antioxidant activity. Interestingly, an increase in rapidly (IKr) and slowly (IKs) activating delayed rectifying K+ currents is caused by gain-of-function mutations of the KCNH2 and KCNQ1 genes, respectively, in patients with short QT syndrome (SQT). Increased IKr and IKs, which are associated with exacerbated VF, are also found in models of thyroxin-induced cardiomyopathy and are suppressed by CPU-86017. ICa.L, IKr and IKs can also be induced in cardiomyocytes when incubated with isoproterenol. A reversal of upstream lesions by an endothelin receptor antagonist CPU-0213 provides suppression of ventricular tachyarrhythmias and upregulates FK506 binding protein 12.6. CPU-86017 and its chiral isomer SR-CPU-86017 relieve upstream lesions, with mild suppression of IKr and moderate suppression of IKs and ICa.L. These agents may be promising as anti-arrhythmic agents that produce less Tdp tachyarrhythmias.

  18. Annexin-I as a potential target for green tea extract induced actin remodeling.

    PubMed

    Xiao, Gui-Shan; Jin, Yu-Sheng; Lu, Qing-Yi; Zhang, Zuo-Feng; Belldegrun, Arie; Figlin, Robert; Pantuck, Allan; Yen, Yun; Li, Frederick; Rao, Jianyu

    2007-01-01

    Using a multistep human urothelial model, we previously showed that green tea extract (GTE) selectively modulates actin remodeling in transformed cells (MC-T11), which resulted in increased cell adhesion and reduced cell motility (Lu et al., Clin Cancer Res 2005;11:1675-83). This study further analyzed which actin binding proteins (ABPs) might be involved in this process. Proteomic profiles of GTE treated and untreated MC-T11 cells using two-dimensional gel electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC/MS/MS) and matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) identified 20 GTE-induced proteins. Among them, 3 were ABPs (tropomodulin, cofilin and annexin-I), and only annexin-I showed a dose- and time-dependent expression. The increased annexin-I correlated with actin remodeling, and was the result of transcription level up-regulation, as determined by RT-PCR, pull-down immunoblot and siRNA analyses. 5-Azacytidine, a DNA methylation inhibitor, exhibited no effect on annexin-I expression when used alone, but had an additive effect for GTE-induced annexin-I expression. Immunohistochemistry of bladder cancer tissue array showed a decrease of annexin-I expression in carcinoma in situ and low grade papillary carcinoma (n = 32, 0% positive) compared to nontumor urothelium (n = 18, 89% positive) (p < 0.001 by Fisher exact test), but increased in some (6 of 15, 40%) high-grade tumors. Together, GTE induced annexin-I expression plays a role in regulating actin remodeling and decreased annexin-I expression is a common event in early stage of bladder cancer development.

  19. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  20. siRNA targeting PLK-1 induces apoptosis of synoviocytes in rheumatoid arthritis

    SciTech Connect

    Wada, Makoto; Kawahito, Yutaka . E-mail: kawahity@koto.kpu-m.ac.jp; Kimura, Shinya; Kohno, Masataka; Ishino, Hidetaka; Kimura, Mizuho; Omoto, Atsushi; Yamamoto, Aihiro; Hamaguchi, Masahide; Tsubouchi, Yasunori; Tokunaga, Daisaku; Hojo, Tatsuya; Ashihara, Eishi; Maekawa, Taira; Yoshikawa, Toshikazu

    2007-06-01

    Polo-like kinase-1 (PLK-1) is a member of the PLK family and participates in the control of cell mitosis. Here, we show that immunoreactive PLK-1 is strongly expressed in synoviocytes and some infiltrative mononuclear cells in synovial tissues from patients with rheumatoid arthritis (RA), while patients with osteoarthritis and injury show little or no expression of PLK-1 in synovial tissues. Western blot analysis shows that PLK is expressed and its expression is enhanced by IL-1{beta} in RA synoviocytes. IL-1{beta} also enhanced the cell growth of RA synoviocytes. Moreover, siRNA targeted against PLK-1 significantly decreases the expression of PLK-1 of RA synoviocytes stimulated by IL-1{beta} and suppresses the proliferation of these synoviocytes through apoptosis. These findings suggest that PLK-1 plays a critical role in the proliferation of RA synoviocytes leading to bone destruction, and siRNA against PLK-1 is potentially useful for the treatment of RA.

  1. Enterocolitis induced by autoimmune targeting of enteric glial cells: A possible mechanism in Crohn's disease?

    NASA Astrophysics Data System (ADS)

    Cornet, Anne; Savidge, Tor C.; Cabarrocas, Julie; Deng, Wen-Lin; Colombel, Jean-Frederic; Lassmann, Hans; Desreumaux, Pierre; Liblau, Roland S.

    2001-11-01

    Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8+ T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.

  2. Hypoxia- and radiation-inducible, breast cell-specific targeting of retroviral vectors

    SciTech Connect

    Lipnik, Karoline; Greco, Olga; Scott, Simon; Knapp, Elzbieta; Mayrhofer, Elisabeth; Rosenfellner, Doris; Guenzburg, Walter H.; Salmons, Brian; Hohenadl, Christine . E-mail: christine.hohenadl@vu-wien.ac.at

    2006-05-25

    To facilitate a more efficient radiation and chemotherapy of mammary tumours, synthetic enhancer elements responsive to hypoxia and ionizing radiation were coupled to the mammary-specific minimal promoter of the murine whey acidic protein (WAP) encoding gene. The modified WAP promoter was introduced into a retroviral promoter conversion (ProCon) vector. Expression of a transduced reporter gene in response to hypoxia and radiation was analysed in stably infected mammary cancer cell lines and an up to 9-fold increase in gene expression demonstrated in comparison to the respective basic vector. Expression analyses in vitro, moreover, demonstrated a widely preserved mammary cell-specific promoter activity. For in vivo analyses, xenograft tumours consisting of infected human mammary adenocarcinoma cells were established in SCID/beige mice. Immunohistochemical analyses demonstrated a hypoxia-specific, markedly increased WAP promoter-driven expression in these tumours. Thus, this retroviral vector will facilitate a targeted gene therapeutic approach exploiting the unique environmental condition in solid tumours.

  3. Stress-induced molecules MICA as potential target for radioimmunotherapy of cancer

    NASA Astrophysics Data System (ADS)

    Abakushina, E. V.; Anokhin, Yu N.; Abakushin, D. N.; Kaprin, A. D.

    2017-01-01

    Improving the treatment of cancer, increasing their effectiveness and safety is the main objective in the medicine. Molecular nuclear medicine plays an important role in the therapy of cancer. Radioimmunotherapy (RIT) involves the use of antibodies conjugated with therapeutic radionuclides. More often for RIT use the radiolabeled monoclonal antibodies against tumor-associated antigens. Encouraging results have been achieved with this technology in the management of hematologic malignancies. On the contrary, solid tumors have been less responsive. Despite these encouraging results, new potential target for radioimmunodetection and RIT should be found. It was found to increase the level of tumor-associated molecules MICA in the serum of cancer patients. Use of anti-MICA monoclonal antibodies capable a specifically attach to cancer cell via NKG2D ligands and destroy it, is a very promising direction, both therapeutic and diagnostic standpoint.

  4. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease?

    PubMed

    Cornet, A; Savidge, T C; Cabarrocas, J; Deng, W L; Colombel, J F; Lassmann, H; Desreumaux, P; Liblau, R S

    2001-11-06

    Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8(+) T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.

  5. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  6. Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6.

    PubMed

    Xu, Xiaofang; Ge, Shengfang; Jia, Renbing; Zhou, Yixiong; Song, Xin; Zhang, He; Fan, Xianqun

    2015-06-01

    Previous findings showed that miR-181b is upregulated under hypoxic conditions in retinoblastoma cells. Since hypoxia is a common feature of retinoblastoma that affects tumor progression as well as tumor therapy, in the present study, we investigated the regulatory mechanism of miR-181b under hypoxic conditions, and examined the role of miR-181b in retinoblastoma responses to hypoxia (chemoresistance and angiogenesis) and possible downstream genes. The level of hypoxia-inducible factor-1α (HIF-1α) and miR-181b was detected to examine the link between them. Tube formation and cell cytotoxicity assays were used to clarify the effects of miR-181b on hypoxic responses of retinoblastoma cells. Bioinformatics analysis was performed to predict potential targets of miR-181b and western blotting was used to verify these targets. The results showed a significantly increased expression of HIF-1α in hypoxia-treated retinoblastoma cells. Downregulation of HIF-1α using a small-interfering RNA (siRNA) knockdown technology did not decrease the expression of miR-181b. Through gain- and loss-of-function studies, miR-181b was demonstrated to significantly stimulate the ability of capillary tube formation of endothelial cells. Programmed cell death-10 (PDCD10) and GATA binding protein 6 (GATA6) were identified as the target genes of miR‑181b. To the best of our knowledge, results of the present study provide the first evidence that miR-181b was upregulated by hypoxia in retinoblastoma in an HIF-1α-independent manner. miR-181b increased tumor angiogenesis of retinoblastoma cells. Additionally, miR-181b exerts its angiogenic function, at least in part, by inhibiting PDCD10 and GATA6. Thus, it is a new potentially useful therapeutic target for retinoblastoma.

  7. Inducible Glutamate Oxaloacetate Transaminase as a Therapeutic Target Against Ischemic Stroke

    PubMed Central

    Khanna, Savita; Briggs, Zachary

    2015-01-01

    Abstract Significance: Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. Recent Advances: Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. Critical Issues: Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. Future Directions: Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies. Antioxid. Redox Signal. 22, 175–186. PMID:25343301

  8. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury.

    PubMed

    Bolisetty, Subhashini; Traylor, Amie; Joseph, Reny; Zarjou, Abolfazl; Agarwal, Anupam

    2016-03-01

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. The beneficial effects of HO-1 expression are not merely due to degradation of the pro-oxidant heme but are also credited to the by-products that have potent, protective effects, including antioxidant, anti-inflammatory, and prosurvival properties. This is well reflected in the preclinical animal models of injury in both renal and nonrenal settings. However, excessive accumulation of the by-products can be deleterious and lead to mitochondrial toxicity and oxidative stress. Therefore, use of the HO system in alleviating injury merits a targeted approach. Based on the higher susceptibility of the proximal tubule segment of the nephron to injury, we generated transgenic mice using cre-lox technology to enable manipulation of HO-1 (deletion or overexpression) in a cell-specific manner. We demonstrate the validity and feasibility of these mice by breeding them with proximal tubule-specific Cre transgenic mice. Similar to previous reports using chemical modulators and global transgenic mice, we demonstrate that whereas deletion of HO-1, specifically in the proximal tubules, aggravates structural and functional damage during cisplatin nephrotoxicity, selective overexpression of HO-1 in proximal tubules is protective. At the cellular level, cleaved caspase-3 expression, a marker of apoptosis, and p38 signaling were modulated by HO-1. Use of these transgenic mice will aid in the evaluation of the effects of cell-specific HO-1 expression in response to injury and assist in the generation of targeted approaches that will enhance recovery with reduced, unwarranted adverse effects.

  9. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation

    PubMed Central

    Molleston, Jerome M.; Sabin, Leah R.; Moy, Ryan H.; Menghani, Sanjay V.; Rausch, Keiko; Gordesky-Gold, Beth; Hopkins, Kaycie C.; Zhou, Rui; Jensen, Torben Heick; Wilusz, Jeremy E.; Cherry, Sara

    2016-01-01

    RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. PMID:27474443

  10. Transient antibody targeting of CD45RC induces transplant tolerance and potent antigen-specific regulatory T cells

    PubMed Central

    Picarda, Elodie; Bézie, Séverine; Boucault, Laetitia; Autrusseau, Elodie; Kilens, Stéphanie; Martinet, Bernard; Daguin, Véronique; Donnart, Audrey; Charpentier, Eric; Anegon, Ignacio

    2017-01-01

    Rat and human CD4+ and CD8+ Tregs expressing low levels of CD45RC have strong immunoregulatory properties. We describe here that human CD45 isoforms are nonredundant and identify distinct subsets of cells. We show that CD45RC is not expressed by CD4+ and CD8+ Foxp3+ Tregs, while CD45RA/RB/RO are. Transient administration of a monoclonal antibody (mAb) targeting CD45RC in a rat cardiac allotransplantation model induced transplant tolerance associated with inhibition of allogeneic humoral responses but maintained primary and memory responses against cognate antigens. Anti-CD45RC mAb induced rapid death of CD45RChigh T cells through intrinsic cell signaling but preserved and potentiated CD4+ and CD8+ CD45RClow/– Tregs, which are able to adoptively transfer donor-specific tolerance to grafted recipients. Anti-CD45RC treatment results in distinct transcriptional signature of CD4+ and CD8+ CD45RClow/– Tregs. Finally, we demonstrate that anti-human CD45RC treatment inhibited graft-versus-host disease (GVHD) in immune-humanized NSG mice. Thus, short-term anti-CD45RC is a potent therapeutic candidate to induce transplantation tolerance in human. PMID:28194440

  11. Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway

    PubMed Central

    Fabris, L; Berton, S; Citron, F; D'Andrea, S; Segatto, I; Nicoloso, M S; Massarut, S; Armenia, J; Zafarana, G; Rossi, S; Ivan, C; Perin, T; Vaidya, J S; Avanzo, M; Roncadin, M; Schiappacassi, M; Bristow, R G; Calin, G; Baldassarre, G; Belletti, B

    2016-01-01

    In breast cancer (BC) patients, local recurrences often arise in proximity of the surgical scar, suggesting that response to surgery may have a causative role. Radiotherapy (RT) after lumpectomy significantly reduces the risk of recurrence. We investigated the direct effects of surgery and of RT delivered intraoperatively (IORT), by collecting irradiated and non-irradiated breast tissues from BC patients, after tumor removal. These breast tissue specimens have been profiled for their microRNA (miR) expression, in search of differentially expressed miR among patients treated or not with IORT. Our results demonstrate that IORT elicits effects that go beyond the direct killing of residual tumor cells. IORT altered the wound response, inducing the expression of miR-223 in the peri-tumoral breast tissue. miR-223 downregulated the local expression of epidermal growth factor (EGF), leading to decreased activation of EGF receptor (EGFR) on target cells and, eventually, dampening a positive EGF–EGFR autocrine/paracrine stimulation loop induced by the post-surgical wound-healing response. Accordingly, both RT-induced miR-223 and peri-operative inhibition of EGFR efficiently prevented BC cell growth and reduced recurrence formation in mouse models of BC. Our study uncovers unknown effects of RT delivered on a wounded tissue and prompts to the use of anti-EGFR treatments, in a peri-operative treatment schedule, aimed to timely treat BC patients and restrain recurrence formation. PMID:26876200

  12. Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide.

    PubMed

    Penkowa, Milena; Camats, Jordi; Hadberg, Hanne; Quintana, Albert; Rojas, Santiago; Giralt, Mercedes; Molinero, Amalia; Campbell, Iain L; Hidalgo, Juan

    2003-08-15

    6-aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes mainly in the brainstem. We have examined the role of interleukin-6 (IL-6) in this degenerative process by using transgenic mice with astrocyte-targeted IL-6 expression (GFAP-IL6 mice). This study demonstrates that transgenic IL-6 expression significantly increases the 6-AN-induced inflammatory response of reactive astrocytes, microglia/macrophages, and lymphocytes in the brainstem. Also, IL-6 induced significant increases in proinflammatory cytokines IL-1, IL-12, and tumor necrosis factor-alpha as well as growth factors basic fibroblast growth factor (bFGF), transforming growth factor-beta, neurotrophin-3, angiopoietin, vascular endothelial growth factor, and the receptor for bFGF. In accordance, angiogenesis was increased in GFAP-IL6 mice relative to controls after 6-AN. Moreover, oxidative stress and apoptotic cell death were significantly reduced by transgenic IL-6 expression. IL-6 is also a major inducer in the CNS of metallothionein I and II (MT-I+II), which were significantly increased in the GFAP-IL6 mice. MT-I+II are antioxidants and neuroregenerative factors in the CNS, so increased MT-I+II levels in GFAP-IL6 mice could contribute to the reduction of oxidative stress and cell death in these mice.