Science.gov

Sample records for inducible stat1 binding

  1. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity.

    PubMed

    Schneider, Anne G; Abi Abdallah, Delbert S; Butcher, Barbara A; Denkers, Eric Y

    2013-01-01

    The protozoan Toxoplasma gondii actively modulates cytokine-induced JAK/STAT signaling pathways to facilitate survival within the host, including blocking IFNγ-mediated STAT1-dependent proinflammatory gene expression. We sought to further characterize inhibition of STAT1 signaling in infected murine dendritic cells (DC) because this cell type has not previously been examined, yet is known to serve as an early target of in vivo infection. Unexpectedly, we discovered that T. gondii infection alone induced sustained STAT1 phosphorylation and nuclear translocation in DC in a parasite strain-independent manner. Maintenance of STAT1 phosphorylation required active invasion but intracellular parasite replication was dispensable. The parasite rhoptry protein ROP16, recently shown to mediate STAT3 and STAT6 phosphorylation, was not required for STAT1 phosphorylation. In combination with IFNγ, T. gondii induced synergistic STAT1 phosphorylation and binding of aberrant STAT1-containing complexes to IFNγ consensus sequence oligonucleotides. Despite these findings, parasite infection blocked STAT1 binding to the native promoters of the IFNγ-inducible genes Irf-1 and Lrg47, along with subsequent gene expression. These results reinforce the importance of parasite-mediated blockade of IFNγ responses in dendritic cells, while simultaneously showing that T. gondii alone induces STAT1 phosphorylation.

  2. Toxoplasma gondii Inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA.

    PubMed

    Rosowski, Emily E; Nguyen, Quynh P; Camejo, Ana; Spooner, Eric; Saeij, Jeroen P J

    2014-02-01

    The gamma interferon (IFN-γ) response, mediated by the STAT1 transcription factor, is crucial for host defense against the intracellular pathogen Toxoplasma gondii, but prior infection with Toxoplasma can inhibit this response. Recently, it was reported that the Toxoplasma type II NTE strain prevents the recruitment of chromatin remodeling complexes containing Brahma-related gene 1 (BRG-1) to promoters of IFN-γ-induced secondary response genes such as Ciita and major histocompatibility complex class II genes in murine macrophages, thereby inhibiting their expression. We report here that a type I strain of Toxoplasma inhibits the expression of primary IFN-γ response genes such as IRF1 through a distinct mechanism not dependent on the activity of histone deacetylases. Instead, infection with a type I, II, or III strain of Toxoplasma inhibits the dissociation of STAT1 from DNA, preventing its recycling and further rounds of STAT1-mediated transcriptional activation. This leads to increased IFN-γ-induced binding of STAT1 at the IRF1 promoter in host cells and increased global IFN-γ-induced association of STAT1 with chromatin. Toxoplasma type I infection also inhibits IFN-β-induced interferon-stimulated gene factor 3-mediated gene expression, and this inhibition is also linked to increased association of STAT1 with chromatin. The secretion of proteins into the host cell by a type I strain of Toxoplasma without complete parasite invasion is not sufficient to block STAT1-mediated expression, suggesting that the effector protein responsible for this inhibition is not derived from the rhoptries.

  3. Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-γ-inducible gbp2 gene

    PubMed Central

    Ramsauer, Katrin; Farlik, Matthias; Zupkovitz, Gordin; Seiser, Christian; Kröger, Andrea; Hauser, Hansjörg; Decker, Thomas

    2007-01-01

    A subgroup of genes induced by IFN-γ requires both STAT1 and IRF1 for transcriptional activation. Using WT, stat1−/−, or irf1−/− cells, we analyzed the changes induced by IFN-γ in gbp2 promoter chromatin. STAT1 associated with the promoter independently of IRF1 and played an essential role in the ordered recruitment of the coactivator/histone acetyl transferase CREB-binding protein (CBP) and the histone deacetylase HDAC1. Hyperacetylation of histone 4 also required STAT1. Phosphorylation at S727 in the transactivating domain increased transcriptional activity of STAT1. In cells expressing a STAT1S727A-mutant CBP recruitment, histone 4 hyperacetylation and RNA polymerase II association with the gbp2 promoter were strongly reduced. IRF1 association with the gbp2 promoter followed that of STAT1, but STAT1 association with DNA or histone hyperacetylation were not necessary for IRF1 binding. RNA polymerase II association with the gbp2 promoter required both STAT1 and IRF1, suggesting that both proteins mediate essential steps in transcriptional activation. IRF1, but not STAT1, was found to coimmunoprecipitate with RNA polymerase II. Together, the data support the assumption that the main role of STAT1 in activating gbp2 transcription is to provide transcriptionally competent chromatin, whereas the function of IRF1 may lie in directly contacting RNA polymerase II-containing transcriptional complexes. PMID:17293456

  4. STAT1-deficient Mice are Resistant to CLP-induced Septic Shock

    PubMed Central

    Herzig, Daniela; Fang, Geping; Toliver-Kinsky, Tracy E.; Guo, Yin; Bohannon, Julia; Sherwood, Edward R.

    2012-01-01

    STAT1 is a member of the JAK-STAT signaling family and plays a key role in facilitating gene transcription in response to activation of the Type I and Type II interferon (IFN) receptors. TYK2 is essential for type I, but not type II, IFN-induced STAT1 activation. Previous studies show that STAT1-deficient mice are resistant to endotoxin-induced shock. The goal of the present study was to assess the response of STAT1-and TYK2-deficient mice to septic shock caused by cecal ligation and puncture (CLP). Endpoints included survival, core temperature, organ injury, systemic cytokine production and bacterial clearance. Results showed that survival rates were significantly higher in STAT1KO mice compared to wild type controls (80% vs 10%). The improved survival of STAT1KO mice was associated with less hypothermia, metabolic acidosis, hypoglycemia and hepatocellular injury. Plasma IL-6, MIP-2, CXCL10 and IFNα concentrations were significantly lower in STAT1KO mice than in wild type mice. In the absence of antibiotic treatment, blood and lung bacterial counts were significantly lower in STAT1KO mice than in controls. However, treatment with antibiotics ablated that difference. A survival advantage was not observed in TYK2-deficient mice compared to control. However, CLP-induced hypothermia and systemic IL-6 and CXCL10 production were significantly attenuated in TYK2-deficient mice. These results indicate that STAT1 activation is an important factor in the pathogenesis of CLP-induced septic shock and is associated with the development of systemic inflammation and organ injury. TYK2 activation also appears to contribute to CLP-induced inflammation, but to a lesser extent than STAT1. PMID:22777121

  5. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression.

    PubMed

    Lu, Xiaoming; Zoller, Erin E; Weirauch, Matthew T; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H; Ziegler, Julie T; Comeau, Mary E; Marion, Miranda C; Glenn, Stuart B; Adler, Adam; Shen, Nan; Nath, Swapan K; Stevens, Anne M; Freedman, Barry I; Tsao, Betty P; Jacob, Chaim O; Kamen, Diane L; Brown, Elizabeth E; Gilkeson, Gary S; Alarcón, Graciela S; Reveille, John D; Anaya, Juan-Manuel; James, Judith A; Sivils, Kathy L; Criswell, Lindsey A; Vilá, Luis M; Alarcón-Riquelme, Marta E; Petri, Michelle; Scofield, R Hal; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A; Graham, Deborah Cunninghame; Vyse, Timothy J; Guthridge, Joel M; Gaffney, Patrick M; Langefeld, Carl D; Kelly, Jennifer A; Greis, Kenneth D; Kaufman, Kenneth M; Harley, John B; Kottyan, Leah C

    2015-05-07

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression

    PubMed Central

    Lu, Xiaoming; Zoller, Erin E.; Weirauch, Matthew T.; Wu, Zhiguo; Namjou, Bahram; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Marion, Miranda C.; Glenn, Stuart B.; Adler, Adam; Shen, Nan; Nath, Swapan K.; Stevens, Anne M.; Freedman, Barry I.; Tsao, Betty P.; Jacob, Chaim O.; Kamen, Diane L.; Brown, Elizabeth E.; Gilkeson, Gary S.; Alarcón, Graciela S.; Reveille, John D.; Anaya, Juan-Manuel; James, Judith A.; Sivils, Kathy L.; Criswell, Lindsey A.; Vilá, Luis M.; Alarcón-Riquelme, Marta E.; Petri, Michelle; Scofield, R. Hal; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Joo, Young Bin; Choi, Jeongim; Bae, Sang-Cheol; Boackle, Susan A.; Graham, Deborah Cunninghame; Vyse, Timothy J.; Guthridge, Joel M.; Gaffney, Patrick M.; Langefeld, Carl D.; Kelly, Jennifer A.; Greis, Kenneth D.; Kaufman, Kenneth M.; Harley, John B.; Kottyan, Leah C.

    2015-01-01

    Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1. PMID:25865496

  7. IL-27 induces Th17 differentiation in the absence of STAT1 signaling1

    PubMed Central

    Peters, Anneli; Fowler, Kevin D.; Chalmin, Fanny; Merkler, Doron; Kuchroo, Vijay K.; Pot, Caroline

    2015-01-01

    It is known that differentiation of Th17 cells is promoted by activation of STAT3 and inhibited by activation of STAT1. Although both transcription factors are activated by several cytokines including IL-6, IL-21 and IL-27, each of these cytokines has very different effects on Th17 differentiation ranging from strong induction (IL-6) to strong inhibition (IL-27). To determine the molecular basis for these differences, we measured STAT3 and STAT1 activation profiles for IL-6, IL-21, and IL-27, as well as for cytokine pairs over time. We found that the ratio of activated STAT3 to activated STAT1, is crucial in determining whether cytokines promote or inhibit Th17 differentiation. Thus, IL-6 and IL-21 induced pSTAT3:pSTAT1 ratios greater than one leading to promotion of Th17 differentiation, whereas IL-27 or IL-6+IL27 induced pSTAT3:pSTAT1 ratios below one resulting in inhibition of Th17 differentiation. Consistent with these findings, we show that IL-27 induces sufficient pSTAT3 to promote Th17 differentiation in the absence of STAT1. Furthermore, IL-27-induced STAT1-deficient T cells were indistinguishable from bona fide highly pro-inflammatory Th17 cells, as they induced severe experimental autoimmune encephalomyelitis (EAE) upon adoptive transfer. Our results suggest, that the ratio of pSTAT3:pSTAT1 induced by a cytokine or cytokine pairs can be used to predict whether or not they induce a competent Th17 differentiation program. PMID:26408664

  8. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells

    PubMed Central

    Hosey, Kristen Lynette; Hu, Sishun

    2015-01-01

    We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription. PMID:26262558

  9. Tim-3 promotes tumor-promoting M2 macrophage polarization by binding to STAT1 and suppressing the STAT1-miR-155 signaling axis.

    PubMed

    Jiang, Xingwei; Zhou, Tingting; Xiao, Yan; Yu, Jiahui; Dou, Shuaijie; Chen, Guojiang; Wang, Renxi; Xiao, He; Hou, Chunmei; Wang, Wei; Shi, Qingzhu; Feng, Jiannan; Ma, Yuanfang; Shen, Beifen; Li, Yan; Han, Gencheng

    2016-01-01

    T cell Ig mucin-3 (Tim-3), an immune checkpoint inhibitor, shows therapeutic potential. However, the molecular mechanism by which Tim-3 regulates immune responses remains to be determined. In particular, very little is known about how Tim-3 works in innate immune cells. Here, we demonstrated that Tim-3 is involved in the development of tumor-promoting M2 macrophages in colon cancer. Manipulation of the Tim-3 pathway significantly affected the polarization status of intestinal macrophages and the progression of colon cancer. The Tim-3 signaling pathway in macrophages was explored using microarray, co-immunoprecipitation, gene mutation, and high-content analysis. For the first time, we demonstrated that Tim-3 polarizes macrophages by directly binding to STAT1 via residue Y256 and Y263 in its intracellular tail and inhibiting the STAT1-miR-155-SOCS1 signaling axis. We also identified a new signaling adaptor of Tim-3 in macrophages, and, by modulating the Tim-3 pathway, demonstrated the feasibility of altering macrophage polarization as a potential tool for treating this kind of disease.

  10. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    PubMed

    Hüntelmann, Bettina; Staab, Julia; Herrmann-Lingen, Christoph; Meyer, Thomas

    2014-01-01

    Binding to specific palindromic sequences termed gamma-activated sites (GAS) is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription) family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ), while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563) on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  11. Signal Transducer and Activator of Transcription 1 (STAT1) Knock-down Induces Apoptosis in Malignant Pleural Mesothelioma.

    PubMed

    Arzt, Lisa; Halbwedl, Iris; Gogg-Kamerer, Margit; Popper, Helmut H

    2017-07-01

    Malignant pleural mesothelioma (MPM) is the most common primary tumor of the pleura. Its incidence is still increasing in Europe and the prognosis remains poor. We investigated the oncogenic function of signal transducer and activator of transcription 1 (STAT1) in MPM in more detail. A miRNA profiling was performed on 52 MPM tissue samples. Upregulated miRNAs (targeting SOCS1/3) were knocked-down using miRNA inhibitors. mRNA expression levels of STAT1/3, SOCS1/3 were detected in MPM cell lines. STAT1 has been knocked-down using siRNA and qPCR was used to detect mRNA expression levels of all JAK/STAT family members and genes that regulate them. An immunohistochemical staining was performed to detect the expression of caspases. STAT1 was upregulated and STAT3 was downregulated, SOCS1/3 protein was not detected but it was possible to detect SOCS1/3 mRNA in MPM cell lines. The upregulated miRNAs were successfully knocked-down, however the expected effect on SOCS1 expression was not detected. STAT1 knock-down had different effects on STAT3/5 expression. Caspase 3a and 8 expression was found to be increased after STAT1 knock-down. The physiologic regulation of STAT1 via SOCS1 is completely lost in MPM and it does not seem that the miRNAs identified by now, do inhibit the expression of SOCS1. MPM cell lines compensate STAT1 knock-down by increasing the expression of STAT3 or STAT5a, two genes which are generally considered to be oncogenes. And much more important, STAT1 knock-down induces apoptosis in MPM cell lines and STAT1 might therefore be a target for therapeutic intervention.

  12. Upregulation of human angiotensinogen (AGT) gene transcription by interferon-gamma: involvement of the STAT1-binding motif in the AGT promoter.

    PubMed

    Jain, Sudhir; Shah, Mehul; Li, Yanna; Vinukonda, Govindaiah; Sehgal, Pravin B; Kumar, Ashok

    2006-07-01

    Mechanisms to maintain blood pressure in the face of infection are critical to survival. The angiotensinogen (AGT) gene locus is an important component of this response. Thus the AGT gene, expressed predominantly by liver cells, is known to be a positive acute phase reactant. We have previously demonstrated activation of the AGT promoter in hepatocytes through the IL6/STAT3 signaling mechanism. We have now investigated whether IFN-gamma, a cytokine also induced in response to diverse infections, can regulate AGT gene expression, and have elucidated the molecular mechanism involved. IFN gamma treatment up-regulated AGT mRNA level and promoter activity in Hep3B hepatocytes. Sequential deletion of the promoter from the 5' side suggested the major IFN gamma responsive DNA element to be between -303 and -103. This region contained a candidate STAT1-binding site between -271 and -279. EMSA and chromatin immuno-precipitation (ChIP) assays confirmed that IFN-gamma treatment induced the binding of STAT1 to this element. Reporter constructs containing this AGT promoter derived element in a multimerized context but not a mutant version were responsive to IFN gamma. Moreover mutating this STAT1 element in the context of the wild-type AGT holo promoter reduced responsiveness to IFN gamma. In contrast to the clear synergism between dexamethasone and IL 6 in the upregulation of the AGT promoter (through interaction between GR and STAT3), the combination of IFN gamma with IL 6 or with dexamethasone did not further increase AGT promoter activity suggesting that the IFN gamma/STAT1 pathway represents a separate signaling mechanism. These data highlight the redundancy in cytokine-mediated host response pathways aimed at the maintenance of blood pressure during infection.

  13. Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion.

    PubMed

    Ludlow, Louise E; Lo, Michael K; Rodriguez, Jason J; Rota, Paul A; Horvath, Curt M

    2008-07-01

    Emerging viruses in the paramyxovirus genus Henipavirus evade host antiviral responses via protein interactions between the viral V and W proteins and cellular STAT1 and STAT2 and the cytosolic RNA sensor MDA5. Polo-like kinase (PLK1) is identified as being an additional cellular partner that can bind to Nipah virus P, V, and W proteins. For both Nipah virus and Hendra virus, contact between the V protein and the PLK1 polo box domain is required for V protein phosphorylation. Results indicate that PLK1 is engaged by Nipah virus V protein amino acids 100 to 160, previously identified as being the STAT1 binding domain responsible for host interferon (IFN) signaling evasion, via a Thr-Ser-Ser-Pro motif surrounding residue 130. A distinct Ser-Thr-Pro motif surrounding residue 199 mediates the PLK1 interaction with Hendra virus V protein. Select mutations in the motif surrounding residue 130 also influenced STAT1 binding and innate immune interference, and data indicate that the V:PLK1 and V:STAT complexes are V mediated yet independent of one another. The effects of STAT1/PLK1 binding motif mutations on the function the Nipah virus P protein in directing RNA synthesis were tested. Remarkably, mutations that selectively disrupt the STAT or PLK1 interaction site have no effects on Nipah virus P protein-mediated viral RNA synthesis. Therefore, mutations targeting V protein-mediated IFN evasion will not alter the RNA synthetic capacity of the virus, supporting an attenuation strategy based on disrupting host protein interactions.

  14. The Ebola Virus Interferon Antagonist VP24 Directly Binds STAT1 and Has a Novel, Pyramidal Fold

    PubMed Central

    Zhang, Adrianna P. P.; Bornholdt, Zachary A.; Liu, Tong; Abelson, Dafna M.; Lee, David E.; Li, Sheng; Woods, Virgil L.; Saphire, Erica Ollmann

    2012-01-01

    Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan) and nonpathogenic to humans (Reston). These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle. PMID:22383882

  15. Losartan inhibits STAT1 activation and protects human glomerular mesangial cells from angiotensin II induced premature senescence.

    PubMed

    Jiao, Sumin; Zheng, Xiaoyu; Yang, Xue; Zhang, Jin; Wang, Lining

    2012-01-01

    Human glomerular mesangial cells (HMCs) have a finite lifespan, and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders, such as chronic kidney disease. The signal transducer and activator of transcription 1 (STAT1) is a latent transcription factor involved in a variety of signal transduction pathways, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, the induction of angiotensin II (Ang II)-accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase (SA-β-gal)-positive staining cells, morphological changes, and G0/G1 cell cycle arrest. STAT1 activity and the expression of p53 and p21(Cip1) were increased after Ang II treatment. STAT1 knockdown using RNA interference significantly inhibited the progression of HMC senescence and decreased the elevated expression of p53 and p21(Cip1). Pretreating HMCs with Ang II receptor blocker losartan also inhibited the progression of HMC senescence and STAT1 activity. Our results indicate that STAT1 is implicated in the mediation of Ang II-induced HMC senescence through p53/ p21(Cip1) pathway, and that losartan could attenuate HMC senescence by regulating STAT1. The antioxidant N-acetyl-L-cysteine reduced ROS production and STAT1 activity induced by Ang II, indicating that Ang II uses ROS as a second messenger to regulate STAT1 activity.

  16. Ebola virus VP24 targets a unique NLS-binding site on karyopherin5 to selectively compete with nuclear import of phosphorylated STAT1

    PubMed Central

    Xu, Wei; Edwards, Megan R.; Borek, Dominika M.; Feagins, Alicia R.; Mittal, Anuradha; Alinger, Joshua B.; Berry, Kayla N.; Yen, Benjamin; Hamilton, Jennifer; Brett, Tom J.; Pappu, Rohit V.; Leung, Daisy W.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2014-01-01

    SUMMARY During anti-viral defense, interferon (IFN) signaling triggers nuclear transport of tyrosine phosphorylated STAT1 (PY-STAT1), which occurs via a subset of karyopherin alpha (KPNA) nuclear transporters. Many viruses, including Ebola virus, actively antagonize STAT1 signaling to counteract the antiviral effects of IFN. Ebola virus VP24 protein (eVP24) binds KPNA to inhibit PY-STAT1 nuclear transport and render cells refractory to IFNs. We describe the structure of human KPNA5 C-terminus in complex with eVP24. In the complex, eVP24 recognizes a unique non-classical nuclear localization signal (NLS) binding site on KPNA5 that is necessary for efficient PY-STAT1 nuclear transport. eVP24 binds KPNA5 with very high affinity to effectively compete with and inhibit PY-STAT1 nuclear transport. In contrast, eVP24 binding does not affect the transport of classical NLS cargo. Thus, eVP24 counters cell-intrinsic innate immunity by selectively targeting PY-STAT1 nuclear import while leaving the transport of other cargo that maybe required for viral replication unaffected. PMID:25121748

  17. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis.

    PubMed

    Townsend, Paul A; Scarabelli, Tiziano M; Pasini, Evasio; Gitti, Gianluca; Menegazzi, Marta; Suzuki, Hisanori; Knight, Richard A; Latchman, David S; Stephanou, Anastasis

    2004-10-01

    We have previously demonstrated that STAT-1 plays a critical role in promoting apoptotic cell death in cardiac myocytes following ischemia/reperfusion (I/R) injury. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has recently been reported to inhibit STAT-1 activity in noncardiac cells. In the present study, we have assessed the protective effects of EGCG and green tea extract (GTE) infusion on both cultures of cardiac myocytes and the isolated rat heart. EGCG reduced STAT-1 phosphorylation and protected cardiac myocytes against I/R-induced apoptotic cell death. Moreover, EGCG reduced the expression of a known STAT-1 pro-apoptotic target gene, Fas receptor. More interestingly, oral administration of GTE as well as EGCG infusion limited the extent of infarct size and attenuated the magnitude of myocyte apoptosis in the isolated rat heart exposed to I/R injury. This reduction cell death was associated with improved hemodynamic recovery and ventricular function in the ischemic/reperfused rat heart. This is the first report to show that consumption of green tea is able to mediate cardioprotection and enhance cardiac function during I/R injury. Because GTE-mediated cardioprotection is achieved, at least in part, through inhibition of STAT-1 activity, we may postulate that a similar action can be implemented in the clinical setting to minimize STAT-1 activation levels in patients with acute coronary artery disease (CAD).

  18. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1.

    PubMed

    Neufert, Clemens; Becker, Christoph; Wirtz, Stefan; Fantini, Massimo C; Weigmann, Benno; Galle, Peter R; Neurath, Markus F

    2007-07-01

    IL-27 is an IL-12-related cytokine frequently present at sites of inflammation that can promote both anti- and pro-inflammatory immune responses. Here, we have analyzed the mechanisms how IL-27 may drive such divergent immune responses. While IL-27 suppressed the development of proinflammatory Th17 cells, a novel role for this cytokine in inhibiting the development of anti-inflammatory, inducible regulatory T cells (iTreg) was identified. In fact, IL-27 suppressed the development of adaptive, TGF-beta-induced Forkhead box transcription factor p3-positive (Foxp3(+)) Treg. Whereas the blockade of Th17 development was dependent on the transcription factor STAT1, the suppression of iTreg development was STAT1 independent, suggesting that IL-27 utilizes different signaling pathways to shape T cell-driven immune responses. Our data thus demonstrate that IL-27 controls the development of Th17 and iTreg cells via differential effects on STAT1.

  19. Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction.

    PubMed

    Parisien, Jean-Patrick; Lau, Joe F; Rodriguez, Jason J; Ulane, Christina M; Horvath, Curt M

    2002-05-01

    The alpha/beta interferon (IFN-alpha/beta)-induced STAT signal transduction pathway leading to activation of the ISGF3 transcription complex and subsequent antiviral responses is the target of viral pathogenesis strategies. Members of the Rubulavirus genus of the Paramyxovirus family of RNA viruses have acquired the ability to specifically target either STAT1 or STAT2 for proteolytic degradation as a countermeasure for evading IFN responses. While type II human parainfluenza virus induces STAT2 degradation, simian virus 5 induces STAT1 degradation. The components of the IFN signaling system that are required for STAT protein degradation by these paramyxoviruses have been investigated in a series of human somatic cell lines deficient in IFN signaling proteins. Results indicate that neither the IFN-alpha/beta receptor, the tyrosine kinases Jak1 or Tyk2, nor the ISGF3 DNA-binding subunit, IFN regulatory factor 9 (IRF9), is required for STAT protein degradation induced by either virus. Nonetheless, both STAT1 and STAT2 are strictly required in the host cell to establish a degradation-permissive environment enabling both viruses to target their respective STAT protein. Complementation studies reveal that STAT protein-activating tyrosine phosphorylation and functional src homology 2 (SH2) domains are dispensable for creating a permissive STAT degradation environment in degradation-incompetent cells, but the N terminus of the missing STAT protein is essential. Protein-protein interaction analysis indicates that V and STAT proteins interact physically in vitro and in vivo. These results constitute genetic and biochemical evidence supporting a virus-induced, IFN-independent STAT protein degradation complex that contains at least STAT1 and STAT2.

  20. Activation of JAK2/STAT1-alpha-dependent signaling events during Mycobacterium tuberculosis-induced macrophage apoptosis.

    PubMed

    Rojas, Mauricio; Olivier, Martin; García, Luis F

    2002-01-01

    Induction of apoptosis by Mycobacterium tuberculosis in murine macrophage involves TNF-alpha and nitric oxide (NO) production and caspase cascade activation; however, the intracellular signaling pathways implicated remain to be established. Our results indicate that infection of the B10R murine macrophage line with M. tuberculosis induces apoptosis independent of mycobacterial phagocytosis and that M. tuberculosis induces protein tyrosine kinase (PTK) activity, JAK2/STAT1-alpha phosphorylation, and STAT1-alpha nuclear translocation. Inhibitors of PTK (AG-126), or JAK2 (AG-490) inhibited TNF-alpha and NO production, caspase 1 activation and apoptosis, suggesting that M. tuberculosis-induction of these events depends on JAK2/STAT1-alpha activation. In addition, we have obtained evidence that ManLAM capacity to inhibit M. tuberculosis-induced apoptosis involves the activation of the PTP SHP-1. The finding that M. tuberculosis infection activate JAK2/STAT1-alpha pathway suggests that M. tuberculosis might mimic macrophage-activating stimuli.

  1. Glucocorticoid-induced S-adenosylmethionine enhances the interferon signaling pathway by restoring STAT1 protein methylation in hepatitis B virus-infected cells.

    PubMed

    Bing, Yuntao; Zhu, Siying; Yu, Guozheng; Li, Ting; Liu, Weijun; Li, Changsheng; Wang, Yitao; Qi, Haolong; Guo, Tao; Yuan, Yufeng; He, Yueming; Liu, Zhisu; Liu, Quanyan

    2014-11-21

    Patients with chronic hepatitis B usually exhibit a low response to treatment with interferon α (IFN-α). An alternative approach to increase the response rate of IFN-α might be to immunologically stimulate the host with glucocorticoids (GCs) before treatment with IFN-α, but the underlying mechanism remains unclear. We hypothesized that the GCs enhance IFN signaling by inducing S-adenosylmethionine (AdoMet) when hepatitis B virus (HBV) replication was effectively suppressed by IFN-α. Here, we investigated the effect of GCs and IFN-α on AdoMet production and methionine adenosyltransferase 1A (MAT1A) expression in vitro. Furthermore, we determined whether post-transcriptional regulation is involved in HBV-repressed MAT1A expression and AdoMet production induced by dexamethasone (Dex). We found that AdoMet homeostasis was disrupted by Dex and that Dex directly regulated MAT1A expression by enhancing the binding of the glucocorticoid receptor (GR) to the glucocorticoid-response element (GRE) of the MAT1A promoter. HBV reduced AdoMet production by increasing methylation at GRE sites within the MAT1A promoter. The X protein of hepatitis B virus led to hypermethylation in the MAT1A promoter by recruiting DNA methyltransferase 1, and it inhibited GR binding to the GRE in the MAT1A promoter. Dex could increase an antiviral effect by inducing AdoMet production via a positive feedback loop when HBV is effectively suppressed by IFN-α, and the mechanism that involves Dex-induced AdoMet could increase STAT1 methylation rather than STAT1 phosphorylation. These findings provide a possible mechanism by which GC-induced AdoMet enhances the antiviral activity of IFN-α by restoring STAT1 methylation in HBV-infected cells.

  2. HDAC Inhibitor-Mediated Beta-Cell Protection Against Cytokine-Induced Toxicity Is STAT1 Tyr701 Phosphorylation Independent

    PubMed Central

    Dahllöf, Mattias S.; Christensen, Dan P.; Harving, Mette; Wagner, Bridget K.; Mandrup-Poulsen, Thomas

    2015-01-01

    Histone deacetylase (HDAC) inhibition protects pancreatic beta-cells against apoptosis induced by the combination of the proinflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ. Decreased expression of cell damage-related genes is observed on the transcriptional level upon HDAC inhibition using either IL-1β or IFN-γ alone. Whereas HDAC inhibition has been shown to regulate NFκB-activity, related primarily to IL-1β signaling, it is unknown whether the inhibition of HDACs affect IFN-γ signaling in beta-cells. Further, in non-beta-cells, there is a dispute whether HDAC inhibition regulates IFN-γ signaling at the level of STAT1 Tyr701 phosphorylation. Using different small molecule HDAC inhibitors with varying class selectivity, INS-1E wild type and stable HDAC1-3 knockdown pancreatic INS-1 cell lines, we show that IFN-γ-induced Cxcl9 and iNos expression as well as Cxcl9 and GAS reporter activity were decreased by HDAC inhibition in a STAT1 Tyr701 phosphorylation-independent fashion. In fact, knockdown of HDAC1 increased IFN-γ-induced STAT1 phosphorylation. PMID:25062500

  3. Acetylation of Stat1 modulates NF-κB activity

    PubMed Central

    Krämer, Oliver H.; Baus, Daniela; Knauer, Shirley K.; Stein, Stefan; Jäger, Elke; Stauber, Roland H.; Grez, Manuel; Pfitzner, Edith; Heinzel, Thorsten

    2006-01-01

    Acetylation of signaling molecules can lead to apoptosis or differentiation of carcinoma cells. The molecular mechanisms underlying these processes and the biological role of enzymes mediating the transfer or removal of an acetyl-group are currently under intense investigation. Our study shows that Stat1 is an acetylated protein. Stat1 acetylation depends on the balance between Stat1-associated histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP. Remarkably both inhibitors of HDACs and the cytokine interferon α alter this equilibrium and induce Stat1 acetylation. The analysis of Stat1 mutants reveals Lys 410 and Lys 413 as acetylation sites. Experiments with Stat1 mutants mimicking either constitutively acetylated or nonacetylated states show that only acetylated Stat1 is able to interact with NF-κB p65. As a consequence, p65 DNA binding, nuclear localization, and expression of anti-apoptotic NF-κB target genes decrease. These findings show how the acetylation of Stat1 regulates NF-κB activity and thus ultimately apoptosis. PMID:16481475

  4. Liver X receptor and STAT1 cooperate downstream of Gas6/Mer to induce anti-inflammatory arginase 2 expression in macrophages

    PubMed Central

    Kim, Si-Yoon; Lim, Eun-Jin; Yoon, Young-So; Ahn, Young-Ho; Park, Eun-Mi; Kim, Hee-Sun; Kang, Jihee Lee

    2016-01-01

    Mer signaling increases the transcriptional activity of liver X receptor (LXR) to promote the resolution of acute sterile inflammation. Here, we aimed to understand the pathway downstream of Mer signaling after growth arrest-specific protein 6 (Gas6) treatment that leads to LXR expression and transcriptional activity in mouse bone-marrow derived macrophages (BMDM). Gas6-induced increases in LXRα and LXRβ and expression of their target genes were inhibited in BMDM from STAT1−/− mice or by the STAT1-specific inhibitor fludarabine. Gas6-induced STAT1 phosphorylation, LXR activation, and LXR target gene expression were inhibited in BMDM from Mer−/− mice or by inhibition of PI3K or Akt. Gas6-induced Akt phosphorylation was inhibited in BMDM from STAT1−/− mice or in the presence of fludarabine. Gas6-induced LXR activity was enhanced through an interaction between LXRα and STAT1 on the DNA promoter of Arg2. Additionally, we found that Gas6 inhibited lipopolysaccharide (LPS)-induced nitrite production in a STAT1 and LXR pathway-dependent manner in BMDM. Additionally, Mer-neutralizing antibody reduced LXR and Arg2 expression in lung tissue and enhanced NO production in bronchoalveolar lavage fluid in LPS-induced acute lung injury. Our data suggest the possibility that the Gas6-Mer-PI3K/Akt-STAT1-LXR-Arg2 pathway plays an essential role for resolving inflammatory response in acute lung injury. PMID:27406916

  5. Novel STAT1 Alleles in Otherwise Healthy Patients with Mycobacterial Disease

    PubMed Central

    Jouanguy, Emmanuelle; Vogt, Guillaume; Feinberg, Jacqueline; Prochnicka-Chalufour, Ada; Casrouge, Armanda; Yang, Kun; Soudais, Claire; Fieschi, Claire; Santos, Orchidée Filipe; Bustamante, Jacinta; Picard, Capucine; de Beaucoudrey, Ludovic; Emile, Jean-François; Arkwright, Peter D; Schreiber, Robert D; Rolinck-Werninghaus, Claudia; Rösen-Wolff, Angela; Magdorf, Klaus; Roesler, Joachim; Casanova, Jean-Laurent

    2006-01-01

    The transcription factor signal transducer and activator of transcription-1 (STAT1) plays a key role in immunity against mycobacterial and viral infections. Here, we characterize three human STAT1 germline alleles from otherwise healthy patients with mycobacterial disease. The previously reported L706S, like the novel Q463H and E320Q alleles, are intrinsically deleterious for both interferon gamma (IFNG)–induced gamma-activating factor–mediated immunity and interferon alpha (IFNA)–induced interferon-stimulated genes factor 3–mediated immunity, as shown in STAT1-deficient cells transfected with the corresponding alleles. Their phenotypic effects are however mediated by different molecular mechanisms, L706S affecting STAT1 phosphorylation and Q463H and E320Q affecting STAT1 DNA-binding activity. Heterozygous patients display specifically impaired IFNG-induced gamma-activating factor–mediated immunity, resulting in susceptibility to mycobacteria. Indeed, IFNA-induced interferon-stimulated genes factor 3–mediated immunity is not affected, and these patients are not particularly susceptible to viral disease, unlike patients homozygous for other, equally deleterious STAT1 mutations recessive for both phenotypes. The three STAT1 alleles are therefore dominant for IFNG-mediated antimycobacterial immunity but recessive for IFNA-mediated antiviral immunity at the cellular and clinical levels. These STAT1 alleles define two forms of dominant STAT1 deficiency, depending on whether the mutations impair STAT1 phosphorylation or DNA binding. PMID:16934001

  6. STAT1 negatively regulates spatial memory formation and mediates the memory-impairing effect of Aβ.

    PubMed

    Hsu, Wei-Lun; Ma, Yun-Li; Hsieh, Ding-You; Liu, Yen-Chen; Lee, Eminy Hy

    2014-02-01

    Signal transducer and activator of transcription-1 (STAT1) has an important role in inflammation and the innate immune response, but its role in the central nervous system is less well understood. Here, we examined the role of STAT1 in spatial learning and memory, and assessed the involvement of STAT1 in mediating the memory-impairing effect of amyloid-beta (Aβ). We found that water maze training downregulated STAT1 expression in the rat hippocampal CA1 area, and spatial learning and memory function was enhanced in Stat1-knockout mice. Conversely, overexpression of STAT1 impaired water maze performance. STAT1 strongly upregulated the expression of the extracellular matrix protein laminin β1 (LB1), which also impaired water maze performance in rats. Furthermore, Aβ impaired spatial learning and memory in association with a dose-dependent increase in STAT1 and LB1 expression, but knockdown of STAT1 and LB1 both reversed this effect of Aβ. This Aβ-induced increase in STAT1 and LB1 expression was also associated with a decrease in the expression of the N-methyl-D-aspartate receptor (NMDAR) subunits, NR1, and NR2B. Overexpression of NR1 or NR2B or exogenous application of NMDA reversed Aβ-induced learning and memory deficits as well as Aβ-induced STAT1 and LB1 expression. Our results demonstrate that STAT1 negatively regulates spatial learning and memory through transcriptional regulation of LB1 expression. We also identified a novel mechanism for Aβ pathogenesis through STAT1 induction. Notably, impairment of spatial learning and memory by this STAT1-mediated mechanism is independent of cAMP responsive element-binding protein signaling.

  7. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways.

    PubMed

    Gorina, Roser; Font-Nieves, Miriam; Márquez-Kisinousky, Leonardo; Santalucia, Tomàs; Planas, Anna M

    2011-02-01

    There is increasing evidence that astrocytes play important roles in immune regulation in the brain. Astrocytes express toll-like receptors (TLR) and build up responses to innate immune triggers by releasing proinflammatory molecules. We investigate signaling pathways and released molecules after astrocyte TLR4 activation. Purified rodent brain astrocyte cultures were treated with the TLR4 activator bacterial lipopolysaccharide (LPS). Tools used to interfere with this system include small interference RNA, inhibitory drugs, and MyD88 or Stat1 deficient mice. LPS induced early activation of the transcription factor NFκB, through the MyD88 adaptor, and expression of TNF-α, VCAM-1, IL-15, and IL-27. LPS also induced delayed Jak1/Stat1 activation, which was MyD88-independent but was not mediated by IFN-β. Jak1/Stat1 activation induced the expression of negative cytokine regulator SOCS-1 and CXCL10 chemokine (IP-10). Mitogen-activated protein kinases (MAPK) were also involved in TLR4 signaling in a MyD88-independent fashion. p38 exerted a strong influence on LPS-induced gene expression by regulating the phosphorylation of Stat1 and the transcriptional activity of NFκB, while JNK regulated the Jak1/Stat1 pathway, and ERK1/2 controlled the expression of Egr-1 and influenced MyD88-dependent MMP-9 expression. Interplay between these signals was evidenced by the increased induction of MMP-9 in Stat1-deficient cells challenged with LPS, suggesting that Stat1 negatively regulates the expression of MMP-9 induced by LPS. Therefore, astrocytes are responsive to TLR4 activation by inducing a complex set of cell-dependent molecular reactions mediated by NFκB, MAPK and Jak1/Stat1 signaling pathways. Here we identified cross-talking signals generating a proinflammatory environment that will modulate the response of surrounding cells. © 2010 Wiley-Liss, Inc.

  8. Structural and functional studies of STAT1 from Atlantic salmon (Salmo salar)

    PubMed Central

    2010-01-01

    Background Type I and type II interferons (IFNs) exert their effects mainly through the JAK/STAT pathway, which is presently best described in mammals. STAT1 is involved in signaling pathways induced by both types of IFNs. It has a domain-like structure including an amino-terminus that stabilizes interaction between STAT dimers in a promoter-binding situation, a coiled coil domain facilitating interactions to other proteins, a central DNA-binding domain, a SH2 domain responsible for dimerization of phosphorylated STATs and conserved phosphorylation sites within the carboxy terminus. The latter is also the transcriptional activation domain. Results A salmon (Salmo salar) STAT1 homologue, named ssSTAT1a, has been identified and was shown to be ubiquitously expressed in various cells and tissues. The ssSTAT1a had a domain-like structure with functional motifs that are similar to higher vertebrates. Endogenous STAT1 was shown to be phosphorylated at tyrosine residues both in salmon leukocytes and in TO cells treated with recombinant type I and type II IFNs. Also ectopically expressed ssSTAT1 was phosphorylated in salmon cells upon in vitro stimulation by the IFNs, confirming that the cloned gene was recognized by upstream tyrosine kinases. Treatment with IFNs led to nuclear translocation of STAT1 within one hour. The ability of salmon STAT1 to dimerize was also shown. Conclusions The structural and functional properties of salmon STAT1 resemble the properties of mammalian STAT1. PMID:20353564

  9. Regulation of signal transducers and activators of transcription (STATs) by effectors of adipogenesis: coordinate regulation of STATs 1, 5A, and 5B with peroxisome proliferator-activated receptor-gamma and C/AAAT enhancer binding protein-alpha.

    PubMed

    Stewart, W C; Morrison, R F; Young, S L; Stephens, J M

    1999-11-11

    We have recently demonstrated that three signal transducers and activators of transcription (STAT) family members are induced during adipocyte differentiation (Stephens et al., J. Biol. Chem. 271 (1996) 10441-10444). Since STATs 1, 5A, and 5B are induced during adipocyte differentiation, we have examined the ability of these proteins to be regulated by components of the differentiation cocktail. In addition, we have examined the effects of potent effectors of differentiation on STAT protein expression during adipogenesis. A negative effector, tumor necrosis factor-alpha (TNFalpha), and a positive effector, a thiazolidinedione, were used in these experiments. Our results demonstrate that the expression of STATs 1, 5A, and 5B is not dramatically influenced by individual components of the differentiation cocktail. However, the expression of these three STAT family members tightly correlates with lipid accumulation. Moreover, the expression of STATs 1, 5A, and 5B, but not STATs 3 and 6, are regulated in an identical fashion to both C/AAAT enhancer binding proteins alpha and peroxisome proliferator-activated receptor-gamma by TNFalpha and a thiazolidinedione. Furthermore, the expression of adipocyte-expressed JAK kinases are unaffected by effectors of differentiation. These findings suggest that three STAT family members may play a role in the regulation of adipocyte gene expression.

  10. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium.

    PubMed

    Vitorino Carvalho, A; Eozenou, C; Healey, G D; Forde, N; Reinaud, P; Chebrout, M; Gall, L; Rodde, N; Padilla, A Lesage; Delville, C Giraud; Leveugle, M; Richard, C; Sheldon, I M; Lonergan, P; Jolivet, G; Sandra, O

    2016-03-01

    Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.

  11. Sophocarpine Protects Mice from ConA-Induced Hepatitis via Inhibition of the IFN-Gamma/STAT1 Pathway

    PubMed Central

    Sang, Xiu-Xiu; Wang, Rui-Lin; Zhang, Cong-En; Liu, Shi-Jing; Shen, Hong-Hui; Guo, Yu-Ming; Zhang, Ya-Ming; Niu, Ming; Wang, Jia-Bo; Bai, Zhao-Fang; Xiao, Xiao-He

    2017-01-01

    Sophocarpine is the major pharmacologically active compound of the traditional Chinese herbal medicine Radix Sophorae Subprostratae which has been used in treating hepatitis for years in China. It has been demonstrated that Sophocarpine exerts an activity in immune modulation and significantly decreases the production of inflammatory cytokines. However, the protective effects of Sophocarpine in T cell-dependent immune hepatitis remained unknown. The aim of this study was to determine the protective effects and pharmacological mechanisms of Sophocarpine on Concanavalin A (ConA)-induced hepatitis, an experimental model of T cell-mediated liver injury. BALB/C mice were pretreated with Sophocarpine or Bicyclol for five consecutive days. Thirty minutes after the final administration, the mice were injected with 15 mg⋅kg-1 of ConA intravenously. The results indicated that pretreatment with Sophocarpine significantly ameliorated liver inflammation and injury as evidenced by both biochemical and histopathological observations. Moreover, in Sophocarpine-pretreated mice, liver messenger RNA expression levels of chemokines and adhesion molecules, such as macrophage inflammatory protein-1α, CXC chemokine ligand 10, and Intercellular adhesion molecule-1, were markedly reduced. Further studies revealed that Sophocarpine significantly downregulated the expression of T-bet via inhibition of signal transducers and activators of transcription1 (STAT1) activation and overexpression of suppressor of cytokine signaling1, inhibiting the activation of Th1 cells and the expression of Interferon-γ (IFN-γ). Altogether, these results suggest new opportunities to use Sophocarpine in the treatment of T cell-mediated liver disease. In summary, Sophocarpine could attenuate ConA-induced liver injury, and the protective effect of Sophocarpine was associated with its inhibition effect of pro-inflammatory cytokines, chemokines, and the IFN-γ/STAT1 signaling pathway. PMID:28377718

  12. Sophocarpine Protects Mice from ConA-Induced Hepatitis via Inhibition of the IFN-Gamma/STAT1 Pathway.

    PubMed

    Sang, Xiu-Xiu; Wang, Rui-Lin; Zhang, Cong-En; Liu, Shi-Jing; Shen, Hong-Hui; Guo, Yu-Ming; Zhang, Ya-Ming; Niu, Ming; Wang, Jia-Bo; Bai, Zhao-Fang; Xiao, Xiao-He

    2017-01-01

    Sophocarpine is the major pharmacologically active compound of the traditional Chinese herbal medicine Radix Sophorae Subprostratae which has been used in treating hepatitis for years in China. It has been demonstrated that Sophocarpine exerts an activity in immune modulation and significantly decreases the production of inflammatory cytokines. However, the protective effects of Sophocarpine in T cell-dependent immune hepatitis remained unknown. The aim of this study was to determine the protective effects and pharmacological mechanisms of Sophocarpine on Concanavalin A (ConA)-induced hepatitis, an experimental model of T cell-mediated liver injury. BALB/C mice were pretreated with Sophocarpine or Bicyclol for five consecutive days. Thirty minutes after the final administration, the mice were injected with 15 mg⋅kg(-1) of ConA intravenously. The results indicated that pretreatment with Sophocarpine significantly ameliorated liver inflammation and injury as evidenced by both biochemical and histopathological observations. Moreover, in Sophocarpine-pretreated mice, liver messenger RNA expression levels of chemokines and adhesion molecules, such as macrophage inflammatory protein-1α, CXC chemokine ligand 10, and Intercellular adhesion molecule-1, were markedly reduced. Further studies revealed that Sophocarpine significantly downregulated the expression of T-bet via inhibition of signal transducers and activators of transcription1 (STAT1) activation and overexpression of suppressor of cytokine signaling1, inhibiting the activation of Th1 cells and the expression of Interferon-γ (IFN-γ). Altogether, these results suggest new opportunities to use Sophocarpine in the treatment of T cell-mediated liver disease. In summary, Sophocarpine could attenuate ConA-induced liver injury, and the protective effect of Sophocarpine was associated with its inhibition effect of pro-inflammatory cytokines, chemokines, and the IFN-γ/STAT1 signaling pathway.

  13. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway

    PubMed Central

    Kovarik, Pavel; Stoiber, Dagmar; Eyers, Patrick A.; Menghini, Rossella; Neininger, Armin; Gaestel, Matthias; Cohen, Philip; Decker, Thomas

    1999-01-01

    STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK. PMID:10570180

  14. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5.

    PubMed

    Andrejeva, J; Poole, E; Young, D F; Goodbourn, S; Randall, R E

    2002-11-01

    The V protein of simian virus 5 (SV5) blocks interferon signaling by targeting STAT1 for proteasome-mediated degradation. Here we present three main pieces of evidence which demonstrate that the p127 subunit (DDB1) of the UV damage-specific DNA binding protein (DDB) plays a central role in this degradation process. First, the V protein of an SV5 mutant which fails to target STAT1 for degradation does not bind DDB1. Second, mutations in the N and C termini of V which abolish the binding of V to DDB1 also prevent V from blocking interferon (IFN) signaling. Third, treatment of HeLa/SV5-V cells, which constitutively express the V protein of SV5 and thus lack STAT1, with short interfering RNAs specific for DDB1 resulted in a reduction in DDB1 levels with a concomitant increase in STAT1 levels and a restoration of IFN signaling. Furthermore, STAT1 is degraded in GM02415 (2RO) cells, which have a mutation in DDB2 (the p48 subunit of DDB) which abolishes its ability to interact with DDB1, thereby demonstrating that the role of DDB1 in STAT1 degradation is independent of its association with DDB2. Evidence is also presented which demonstrates that STAT2 is required for the degradation of STAT1 by SV5. These results suggest that DDB1, STAT1, STAT2, and V may form part of a large multiprotein complex which leads to the targeted degradation of STAT1 by the proteasome.

  15. Lead ions abrogate lipopolysaccharide-induced nitric monoxide toxicity by reducing the expression of STAT1 and iNOS.

    PubMed

    Dörpinghaus, Michael; Brieger, Anne; Panichkina, Olga; Rink, Lothar; Haase, Hajo

    2016-09-01

    Lead is a widespread environmental pollutant and the highly poisonous metal compromises multiple organs in the body. Among other tissues and cells, lead ions (Pb(2+)) can affect macrophages and microglia cells. The present study observed a concentration-dependent protection of BV-2 microglia and RAW 264.7 macrophages by Pb(2+) against lipopolysaccharide (LPS)-induced toxicity. Both cell lines are potent producers of two substances that have previously been shown to mediate cytotoxic effects of LPS. These are the pro-inflammatory cytokine tumor necrosis factor (TNF)-α and nitric monoxide (NO), which creates nitrosative stress, hampering the distribution of invading pathogens and tumor cells. While the expression of TNF-α was unaffected by Pb(2+), the production of NO was significantly inhibited. Moreover, blocking NO synthesis by low molecular weight inhibitors prevented LPS-mediated toxicity, confirming the role of NO in these events. Pb(2+) exposure led to a downregulation of LPS-induced expression of the transcription factor STAT1, which is involved in iNOS transcription. Moreover, iNOS mRNA and protein levels were reduced in the presence of Pb(2+), explaining the reduced formation of NO and a subsequent increase of cellular viability in vitro. In vivo, the effect might limit collateral damage caused by excessive NO production, but also impair the efficiency of NO as a central mediator of the defense against various pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-κB and STAT1 activity.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Lee, Ju-Youn; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2011-03-01

    Although a range of biological and pharmacological activities of melatonin have been reported, little is known about its potential anti-inflammatory efficacy in periodontal disease. In this study, we investigated the effects of melatonin on the production of inflammatory mediators by murine macrophages stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory reactions in the periodontium, and sought to determine the underlying mechanisms of action. Melatonin suppressed the production of nitric oxide (NO) and interleukin-6 (IL-6) at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. P. intermedia LPS-induced NF-κB-dependent luciferase activity was significantly inhibited by melatonin. Melatonin did not reduce NF-κB transcriptional activity at the level of IκB-α degradation. Melatonin blocked NF-κB signaling through the inhibition of nuclear translocation and DNA-binding activity of NF-κB p50 subunit and suppressed STAT1 signaling. Although further research is required to clarify the detailed mechanism of action, we conclude that melatonin may contribute to blockade of the host-destructive processes mediated by these two proinflammatory mediators and could be a highly efficient modulator of host response in the treatment of inflammatory periodontal disease.

  17. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice.

    PubMed

    Kortekaas, Jeroen; Vloet, Rianka P M; McAuley, Alexander J; Shen, Xiaoli; Bosch, Berend Jan; de Vries, Laura; Moormann, Rob J M; Bente, Dennis A

    2015-12-01

    Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.

  18. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    SciTech Connect

    Blank, Viviana C.; Pena, Clara; Roguin, Leonor P.

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  19. STAT1-Induced HLA class I Upregulation Enhances Immunogenicity and Clinical Response to anti-EGFR mAb Cetuximab Therapy in HNC Patients

    PubMed Central

    Srivastava, Raghvendra M.; Trivedi, Sumita; Concha-Benavente, Fernando; Hyun-bae, Jie; Wang, Lin; Seethala, Raja R.; Branstetter, Barton F.; Ferrone, Soldano; Ferris, Robert L.

    2015-01-01

    The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was utilized to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1−/− cells. Cetuximab enhanced HNC cell recognition by EGFR853–861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271–279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity. PMID:25972070

  20. STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients.

    PubMed

    Srivastava, Raghvendra M; Trivedi, Sumita; Concha-Benavente, Fernando; Hyun-Bae, Jie; Wang, Lin; Seethala, Raja R; Branstetter, Barton F; Ferrone, Soldano; Ferris, Robert L

    2015-08-01

    The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies, and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was used to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1(-/-) cells. Cetuximab enhanced HNC cell recognition by EGFR853-861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271-279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity. ©2015 American Association for Cancer Research.

  1. Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein

    PubMed Central

    Oda, Kosuke; Matoba, Yasuyuki; Irie, Takashi; Kawabata, Ryoko; Fukushi, Masaya; Sugiyama, Masanori

    2015-01-01

    inert. Here, we determined the crystal structure of the N-terminal domain of STAT1 associated with the C-terminal half of the C protein. Molecular modeling and experiments suggested that the two C proteins bind to and stabilize the parallel form of the STAT1 dimer, which are likely to be phosphorylated at Tyr701, further inducing high-molecular-weight complex formation and inhibition of transcription by IFN-γ. We also discuss the possible mechanism of inhibition of the IFN-α/β pathways by the C protein. This is the first structural report of the C protein, suggesting a mechanism of evasion of the paramyxovirus from innate immunity. PMID:26339056

  2. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation.

    PubMed

    Stancato, L F; David, M; Carter-Su, C; Larner, A C; Pratt, W B

    1996-02-23

    A variety of cytokines and growth factors act through an induction of gene expression mediated by a family of latent transcription factors called STAT (signal transducers and activators of transcription) proteins. Ligand-induced tyrosine phosphorylation of the STATs promotes their homodimer and heterodimer formation and subsequent nuclear translocation. We demonstrate here that STAT protein heterocomplexes exist prior to cytokine treatment. When unstimulated HeLa cells are ruptured in hypotonic buffer without salt or detergent, immunoadsorption of either STAT1 or STAT2 from the resulting cytosol yields coimmunoadsorption of the other STAT protein. Similarly, STAT1-STAT3 heterocomplexes are coimmunoadsorbed from hypotonic cytosol. STAT1 and STAT2 or STAT1 and STAT3 translated in reticulocyte lysate spontaneously form heterocomplexes when the translation lysates are mixed at 0 degrees C. Our data suggest that interferon-alpha /beta-induced tyrosine phosphorylation increases the stability of a preexisting, latent, STAT1-STAT2 signaling complex. Newly translated STAT1 binds in equilibrium fashion to STAT2 and STAT3, but we show that STAT2 and STAT3 exist in separate heterocomplexes with STAT1, consistent with a model in which STAT1 contains a common binding site for other STAT proteins.

  3. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.

  4. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    SciTech Connect

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-05-30

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway.

  5. STAT1 acts as a tumor promoter for leukemia development.

    PubMed

    Kovacic, Boris; Stoiber, Dagmar; Moriggl, Richard; Weisz, Eva; Ott, René G; Kreibich, Rita; Levy, David E; Beug, Hartmut; Freissmuth, Michael; Sexl, Veronika

    2006-07-01

    The tumor suppressor STAT1 is considered a key regulator of the surveillance of developing tumors. Here, we describe an unexpected tumor-promoting role for STAT1 in leukemia. STAT1(-/-) mice are partially protected from leukemia development, and STAT1(-/-) tumor cells induce leukemia in RAG2(-/-) and immunocompetent mice with increased latency. The low MHC class I protein levels of STAT1(-/-) tumor cells enable efficient NK cell lysis and account for the enhanced tumor clearance. Strikingly, STAT1(-/-) tumor cells acquire increased MHC class I expression upon leukemia progression. These findings define STAT1 as a tumor promoter in leukemia development. Furthermore, we describe the upregulation of MHC class I expression as a general mechanism that allows for the escape of hematopoietic malignancies from immune surveillance.

  6. Elevated level of Interleukin-35 in colorectal cancer induces conversion of T cells into iTr35 by activating STAT1/STAT3

    PubMed Central

    Xie, Guohua; Zhou, Yunlan; Yue, Chaoyan; Yuan, Xiangliang; Zheng, Yingxia; Wang, Weiwei; Deng, Lin; Shen, Lisong

    2016-01-01

    IL-35 is a novel heterodimeric and inhibitory cytokine, composed of interleukin-12 subunit alpha (P35) and Epstein-Barr virus -induced gene 3 (EBI3). IL-35 has been reported to be produced by a range of cell types, especially regulatory T cells, and to exert immunosuppressive effects via the STATx signaling pathway. In this study, we demonstrated that IL-35 expression was elevated in both serum and tumors in patients with colorectal cancer. IL-35 mainly expressed in CD4+ T cells in human colorectal cancer tumors and adjacent tissues. Increased IL-35 expression in tumor-adjacent tissues was significantly associated with tumor metastasis. IL-35 inhibited the proliferation of CD4+CD25− T effector cells in vitro in a dose-dependent manner, and its suppression was partially reversed by applying IL-35-neutralizing antibodies. IL-35 treatment activated the phosphorylation of both STAT1 and STAT3 in human CD4+ T cells. Meanwhile, IL-35 induced a positive feedback loop to promote its own production. We observed that Tregs obtained from colorectal cancer patients were capable of inducing more IL-35 production. In addition, EBI3 promoter-driven luciferase activity was higher than that of the mock plasmid after IL-35stimulation. Thus, our study indicates that the high level of IL-35 in colorectal cancer promotes the production of IL-35 via STAT1 and STAT3, which suppresses T cell proliferation and may participate in tumor immunotolerance. PMID:27682874

  7. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway.

    PubMed

    Wang, Saisai; Zheng, Gang; Zhao, Lifang; Xu, Feng; Qian, Jing

    2015-10-01

    Src homology phosphotyrosyl phosphatase 2 (Shp-2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp-2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp-2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp-2 does not affect viral replication or virus-induced interferon-alpha (IFN-α) production. Interestingly, whereas A549 cells were activated by IFN-α, the blocking of Shp-2 resulted in increased viral replication that was associated with the reduced expression of the IFN-stimulated genes of 2',5'-oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp-2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN-α-induced Jak/Stat1 pathway activation rather than by affecting the production of IFN-α itself. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. STAT1 mediates differentiation of chronic lymphocytic leukemia cells in response to Bryostatin 1.

    PubMed

    Battle, Traci E; Frank, David A

    2003-10-15

    Bryostatin 1 is known to exhibit in vitro and in vivo activity against chronic lymphocytic leukemia (CLL) cells by inducing their further maturation into plasma-like cells. Signal transducer and activator of transcription (STAT) proteins play a central role in B-lymphocyte growth and function and are aberrantly phosphorylated on serine residues in CLL cells. To determine whether STAT transcription factors are important in Bryostatin 1-induced differentiation of CLL cells, primary CLL cells were examined for signaling events following exposure to Bryostatin 1 in vitro. Western analysis and electrophoretic mobility shift assays revealed that Bryostatin 1 induced tyrosine phosphorylation and DNA binding of STAT1, yet there was no effect on constitutive serine phosphorylation of STAT1. Bryostatin 1-induced STAT1 activation occurred in a manner that was dependent on protein kinase C (PKC), mitogen-activated protein kinase (MAPK), and Janus tyrosine kinase (JAK) activation. Evidence indicates that Bryostatin 1 induces STAT1 activation through an interferon gamma (IFN gamma) autocrine loop. However, STAT1 activation by IFN gamma stimulation alone was not sufficient to induce differentiation. This insufficiency is due to the broader effect on gene expression caused by Bryostatin 1 compared with IFN gamma, as demonstrated by microarray analysis. Both up-regulation of CD22 expression and immunoglobulin M (IgM) production, markers of CLL differentiation, were inhibited by a decoy oligonucleotide for STAT1, indicating that STAT1 is necessary for Bryostatin 1-induced differentiation of CLL cells. This study implicates STAT transcription factors as important mediators of Bryostatin 1-induced differentiation of CLL cells and could possibly lead to improved therapeutic approaches for the treatment of CLL.

  9. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells.

    PubMed

    Darvin, Pramod; Joung, Youn Hee; Kang, Dong Young; Sp, Nipin; Byun, Hyo Joo; Hwang, Tae Sook; Sasidharakurup, Hema; Lee, Chi Ho; Cho, Kwang Hyun; Park, Kyung Do; Lee, Hak Kyo; Yang, Young Mok

    2017-04-01

    Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21(Waf1/Cip1) . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21(Waf1/Cip1) pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.

  10. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis

    PubMed Central

    Sampaio, Elizabeth P.; Hsu, Amy P.; Pechacek, Joseph; Bax, Hannelore I.; Dias, Dalton L.; Paulson, Michelle L.; Chandrasekaran, Prabha; Rosen, Lindsey B.; Carvalho, Daniel S.; Ding, Li; Vinh, Donald C.; Browne, Sarah K.; Datta, Shrimati; Milner, Joshua D.; Kuhns, Douglas B.; Long Priel, Debra A.; Sadat, Mohammed A.; Shiloh, Michael; De Marco, Brendan; Alvares, Michael; Gillman, Jason W.; Ramarathnam, Vivek; de la Morena, Maite; Bezrodnik, Liliana; Moreira, Ileana; Uzel, Gulbu; Johnson, Daniel; Spalding, Christine; Zerbe, Christa S.; Wiley, Henry; Greenberg, David E.; Hoover, Susan E.; Rosenzweig, Sergio D.; Galgiani, John N.; Holland, Steven M.

    2013-01-01

    Background Impaired signaling in the IFN-γ/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis. Objective We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections. Methods PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-γ/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated. Results We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-γ–induced gene expression, but we found impaired responses to IFN-γ restimulation. Conclusion Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-γ–mediated inflammation. PMID:23541320

  11. STAT1 regulates MD-2 expression in monocytes of sepsis via miR-30a.

    PubMed

    Wang, Yanhong; Li, Tiehua; Wu, Benquan; Liu, Hui; Luo, Jinmei; Feng, Dingyun; Shi, Yunfeng

    2014-12-01

    Sepsis is a major cause of morbidity and mortality in critically ill patients. MD-2 is a 25-kDa lipopolysaccharide (LPS)-binding protein that forms a heterodimer with TLR42, but its regulation in sepsis is not clear. This study aims to investigate the molecular mechanism of regulation of MD-2. Inflammation cytokines in monocytes were analyzed by real-time RT-PCR and ELISA, and it was found that IL-10 was elevated significantly in the monocytes with LPS treatment. And then, when the cells were treated with IL-10, STAT1 was activated in the monocytes using Western blotting. It was also found that STAT1 could enhance MD-2 expression on transcriptional and posttranscriptional levels. Finally, miR-30a was predicted to the molecule that may regulate STAT1 expression. It was verified that STAT1 was a new target gene of miR-30a. miR-30a could inhibit IL-10-induced cytokine release by targeting STAT1-MD-2 in monocytes. In conclusion, this study for the first time demonstrated that miR-30a inhibits MD-2 expression by targeting of STAT1 in human monocytes.

  12. Molecular structural and functional characterization of STAT1 gene regulatory region in teleost Channa argus.

    PubMed

    Jia, Weizhang; Zhou, Xiuxia

    2010-05-15

    The transcription factor STAT1 is involved in signal transduction of type I and II interferons (IFNs). However, the molecular characteristics of the STAT1 regulatory region still remain to be elucidated in teleosts. In the present study, the complete cDNA and the regulatory region of the STAT1 gene were isolated from snakehead (Channa argus). More than 2.4kb 5'-flanking region of STAT1 shares the regulatory elements of IFN-stimulated response element (ISRE) and IFN-gamma activation site (GAS). Consensus ISRE and GAS were located from -373 to -361 and -716 to -724 in the promoter region, respectively. Moreover, it is noticeable that the crucial elements of ISRE (+698 to +710) and GAS (+294 and +301) are present in the first intron of snakehead STAT1. Comparisons of six vertebrate STAT1 5'-flanking regions all present the common sequence characteristics of IFN-induced gene promoter, which include ISRE, GAS and Sp1 sites. In order to further characterize the snakehead STAT1 regulatory region, six reporter constructs of snakehead STAT1 promoter and first intron were generated to examine the specificity to human interferon-gamma (hIFN-gamma). Only those constructs containing the ISRE element showed notable reporter activity after stimulation of Hela cells with hIFN-gamma. However, sequential deletions of putative transcription factor binding sites indicated that GAS elements have little effect on the promoter and intronic activity in response to hIFN-gamma. Taken together, these results suggest that the regulatory mechanisms of IFN-signalling appear to be mediated in a similar manner in fish and mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  13. STAT1 from the cell membrane to the DNA

    PubMed Central

    Lillemeier, Björn F.; Köster, Mario; Kerr, Ian M.

    2001-01-01

    The binding of interferons (IFNs) to their receptors leads to the phosphorylation and activation of signal transducers and activators of transcription (STATs), and their translocation from the cytoplasm to the nucleus. The mechanisms by which the STATs move to the nuclear pore are not, however, known. Here it is shown that IFN-α and -γ signalling and STAT1 translocation are independent of the actin cytoskeleton or microtubules. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) experiments, the mobility of a fusion protein of STAT1 with green fluorescent protein (STAT1–GFP) was compared with that of GFP and protein kinase C–GFP. In IFN-γ-treated and control cells, cytoplasmic STAT1–GFP shows high, energy-independent, mobility comparable to that of freely diffusible GFP. A random walk model for movement of STAT1 from the plasma membrane to the nuclear pore is, therefore, indicated. Nuclear STAT1–GFP showed similar high mobility, with exclusion from nucleoli, consistent with high rates of association and dissociation of STAT1–DNA and/or STAT1–protein complexes in the nucleoplasm of the cell. PMID:11350940

  14. IL-7 Promotes CD95-Induced Apoptosis in B Cells via the IFN-γ/STAT1 Pathway

    PubMed Central

    Sammicheli, Stefano; Dang Vu Phuong, Linh; Ruffin, Nicolas; Pham Hong, Thang; Lantto, Rebecka; Vivar, Nancy; Chiodi, Francesca; Rethi, Bence

    2011-01-01

    Interleukin-7 (IL-7) concentrations are increased in the blood of CD4+ T cell depleted individuals, including HIV-1 infected patients. High IL-7 levels might stimulate T cell activation and, as we have shown earlier, IL-7 can prime resting T cell to CD95 induced apoptosis as well. HIV-1 infection leads to B cell abnormalities including increased apoptosis via the CD95 (Fas) death receptor pathway and loss of memory B cells. Peripheral B cells are not sensitive for IL-7, due to the lack of IL-7Ra expression on their surface; however, here we demonstrate that high IL-7 concentration can prime resting B cells to CD95-mediated apoptosis via an indirect mechanism. T cells cultured with IL-7 induced high CD95 expression on resting B cells together with an increased sensitivity to CD95 mediated apoptosis. As the mediator molecule responsible for B cell priming to CD95 mediated apoptosis we identified the cytokine IFN-γ that T cells secreted in high amounts in response to IL-7. These results suggest that the lymphopenia induced cytokine IL-7 can contribute to the increased B cell apoptosis observed in HIV-1 infected individuals. PMID:22194871

  15. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations.

    PubMed

    Tabellini, Giovanna; Vairo, Donatella; Scomodon, Omar; Tamassia, Nicola; Ferraro, Rosalba Monica; Patrizi, Ornella; Gasperini, Sara; Soresina, Annarosa; Giardino, Giuliana; Pignata, Claudio; Lougaris, Vassilios; Plebani, Alessandro; Dotta, Laura; Cassatella, Marco A; Parolini, Silvia; Badolato, Raffaele

    2017-08-01

    Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Radiosensitization by Inhibiting STAT1 in Renal Cell Carcinoma

    SciTech Connect

    Hui Zhouguang; Tretiakova, Maria; Zhang Zhongfa; Li Yan; Wang Xiaozhen; Zhu, Julie Xiaohong; Gao Yuanhong; Mai Weiyuan; Furge, Kyle; Qian Chaonan; Amato, Robert; Butler, E. Brian

    2009-01-01

    Purpose: Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. Methods and Materials: The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. Results: STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10{sup -8} for clear cell; and p = 3.6 x 10{sup -4} for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. Conclusion: This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  17. Inhibition of Stat1-mediated gene activation by PIAS1

    PubMed Central

    Liu, Bin; Liao, Jiayu; Rao, Xiaoping; Kushner, Steven A.; Chung, Chan D.; Chang, David D.; Shuai, Ke

    1998-01-01

    STAT (signal transducer and activator of transcription) proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation. Tyrosine phosphorylated STATs dimerize and translocate into the nucleus to activate specific genes. Different members of the STAT protein family have distinct functions in cytokine signaling. Biochemical and genetic analysis has demonstrated that Stat1 is essential for gene activation in response to interferon stimulation. Although progress has been made toward understanding STAT activation, little is known about how STAT signals are down-regulated. We report here the isolation of a family of PIAS (protein inhibitor of activated STAT) proteins. PIAS1, but not other PIAS proteins, blocked the DNA binding activity of Stat1 and inhibited Stat1-mediated gene activation in response to interferon. Coimmunoprecipitation analysis showed that PIAS1 was associated with Stat1 but not Stat2 or Stat3 after ligand stimulation. The in vivo PIAS1–Stat1 interaction requires phosphorylation of Stat1 on Tyr-701. These results identify PIAS1 as a specific inhibitor of Stat1-mediated gene activation and suggest that there may exist a specific PIAS inhibitor in every STAT signaling pathway. PMID:9724754

  18. Protein Inhibitor of Activated STAT 1 (PIAS1) Protects Against Obesity-Induced Insulin Resistance by Inhibiting Inflammation Cascade in Adipose Tissue.

    PubMed

    Liu, Yang; Ge, Xin; Dou, Xin; Guo, Liang; Liu, Yuan; Zhou, Shui-Rong; Wei, Xiang-Bo; Qian, Shu-Wen; Huang, Hai-Yan; Xu, Cong-Jian; Jia, Wei-Ping; Dang, Yong-Jun; Li, Xi; Tang, Qi-Qun

    2015-12-01

    Obesity is associated with chronic low-level inflammation, especially in fat tissues, which contributes to insulin resistance and type 2 diabetes mellitus (T2DM). Protein inhibitor of activated STAT 1 (PIAS1) modulates a variety of cellular processes such as cell proliferation and DNA damage responses. Particularly, PIAS1 functions in the innate immune system and is a key regulator of the inflammation cascade. However, whether PIAS1 is involved in the regulation of insulin sensitivity remains unknown. Here, we demonstrated that PIAS1 expression in white adipose tissue (WAT) was downregulated by c-Jun N-terminal kinase in prediabetic mice models. Overexpression of PIAS1 in inguinal WAT of prediabetic mice significantly improved systemic insulin sensitivity, whereas knockdown of PIAS1 in wild-type mice led to insulin resistance. Mechanistically, PIAS1 inhibited the activation of stress-induced kinases and the expression of nuclear factor-κB target genes in adipocytes, mainly including proinflammatory and chemotactic factors. In doing so, PIAS1 inhibited macrophage infiltration in adipose tissue, thus suppressing amplification of the inflammation cascade, which in turn improved insulin sensitivity. These results were further verified in a fat transplantation model. Our findings shed light on the critical role of PIAS1 in controlling insulin sensitivity and suggest a therapeutic potential of PIAS1 in T2DM. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. STAT1 drives tumor progression in serous papillary endometrial cancer.

    PubMed

    Kharma, Budiman; Baba, Tsukasa; Matsumura, Noriomi; Kang, Hyun Sook; Hamanishi, Junzo; Murakami, Ryusuke; McConechy, Melissa M; Leung, Samuel; Yamaguchi, Ken; Hosoe, Yuko; Yoshioka, Yumiko; Murphy, Susan K; Mandai, Masaki; Hunstman, David G; Konishi, Ikuo

    2014-11-15

    Recent studies of the interferon-induced transcription factor STAT1 have associated its dysregulation with poor prognosis in some cancers, but its mechanistic contributions are not well defined. In this study, we report that the STAT1 pathway is constitutively upregulated in type II endometrial cancers. STAT1 pathway alteration was especially prominent in serous papillary endometrial cancers (SPEC) that are refractive to therapy. Our results defined a "SPEC signature" as a molecular definition of its malignant features and poor prognosis. Specifically, we found that STAT1 regulated MYC as well as ICAM1, PD-L1, and SMAD7, as well as the capacity for proliferation, adhesion, migration, invasion, and in vivo tumorigenecity in cells with a high SPEC signature. Together, our results define STAT1 as a driver oncogene in SPEC that modulates disease progression. We propose that STAT1 functions as a prosurvival gene in SPEC, in a manner important to tumor progression, and that STAT1 may be a novel target for molecular therapy in this disease.

  20. Complex roles of Stat1 in regulating gene expression.

    PubMed

    Ramana, C V; Chatterjee-Kishore, M; Nguyen, H; Stark, G R

    2000-05-15

    Stat1 is a fascinating and complex protein with multiple, yet contrasting transcriptional functions. Upon activation, it drives the expression of many genes but also suppresses the transcription of others. These opposing characteristics also apply to its role in facilitating crosstalk between signal transduction pathways, as it participates in both synergistic activation and inhibition of gene expression. Stat1 is a functional transcription factor even in the absence of inducer-mediated activation, participating in the constitutive expression of some genes. This review summarizes the well studied involvement of Stat1 in IFN-dependent and growth factor-dependent signaling and then describes the roles of Stat1 in positive, negative and constitutive regulation of gene expression as well as its participation in crosstalk between signal transduction pathways. Oncogene (2000).

  1. HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble factors.

    PubMed

    Federico, M; Percario, Z; Olivetta, E; Fiorucci, G; Muratori, C; Micheli, A; Romeo, G; Affabris, E

    2001-11-01

    Monocytes/macrophages play a predominant role in the immunologic network by secreting and reacting to a wide range of soluble factors. Human immunodeficiency virus (HIV) infection leads to deep immunologic dysfunctions, also as a consequence of alterations in the pattern of cytokine release. Recent studies on in vivo models demonstrated that the expression of HIV Nef alone mimics many pathogenetic effects of HIV infection. In particular, Nef expression in monocytes/macrophages has been correlated with remarkable modifications in the pattern of secreted soluble factors, suggesting that the interaction of Nef with monocytes/macrophages plays a role in the pathogenesis of acquired immunodeficiency syndrome (AIDS). This study sought to define possible alterations in intracellular signaling induced by Nef in monocytes/macrophages. Results demonstrate that HIV-1 Nef specifically activates both alpha and beta isoforms of the signal transducer and activator of transcription 1 (STAT1). This was observed both by infecting human monocyte-derived macrophages (MDMs) with HIV-1 deletion mutants, and by exploiting the ability of MDMs to internalize soluble, recombinant Nef protein (rNef). STAT1-alpha activation occurs on phosphorylation of both C-terminal Tyr701 and Ser727 and leads to a strong binding activity. Nef-dependent STAT1 activation is followed by increased expression of both STAT1 and interferon regulatory factor-1, a transcription factor transcriptionally regulated by STAT1 activation. It was also established that Nef-induced STAT1- alpha/beta activation occurs through the secretion of soluble factors. Taken together, the results indicate that HIV-1 Nef could interfere with STAT1-governed intracellular signaling in human monocytes/macrophages.

  2. STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α

    PubMed Central

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2016-01-01

    Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway. PMID:27929099

  3. Unphosphorylated STAT1 promotes sarcoma development through repressing expression of Fas and Bad and conferring apoptotic resistance

    PubMed Central

    Zimmerman, Mary A.; Rahman, Nur-Taz; Yang, Dafeng; Lahat, Guy; Lazar, Alexander J.; Pollock, Raphael; Lev, Dina; Liu, Kebin

    2012-01-01

    STAT1 exists in phosphorylated (pSTAT1) and unphosphorylated (uSTAT1) forms each regulated by IFN-γ. Although STAT1 is a key mediator of the IFN-γ signaling pathway, an essential component of the host cancer immunosurveillance system, STAT1 is also overexpressed in certain human cancers where the functions of pSTAT1 and uSTAT1 are ill-defined. Using a murine model of soft tissue sarcoma (STS), we demonstrate that disruption of the IFN effector molecule IRF8 decreases pSTAT1 and increases uSTAT1 in STS cells, thereby increasing their metastatic potential. We determined that the IRF8 gene promoter was hypermethylated frequently in human STS. An analysis of 123 human STS specimens revealed that high uSTAT1 levels in tumor cells was correlated with a reduction in disease-specific survival, whereas high pSTAT1 levels in tumor cells was correlated with an increase in disease-specific survival. In addition, uSTAT1 levels were negatively correlated with pSTAT1 levels in these STS specimens. Mechanistic investigations revealed that IRF8 suppressed STAT1 transcription by binding the STAT1 promoter. RNAi-mediated silencing of STAT1 in STS cells was sufficient to increase expression of the apoptotic mediators Fas and Bad and to elevate the sensitivity of STS cells to Fas-mediated apoptosis. Together, our findings show how the phosphorylation status of pSTAT1 determines its function as a tumor suppressor, with uSTAT1 acting as a tumor promoter that acts by elevating resistance to Fas-mediated apoptosis to promote immune escape. PMID:22805310

  4. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  5. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells.

    PubMed

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2015-07-01

    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells.

  6. Structural analysis of the STAT1-STAT2 heterodimer revealed the mechanism of Sendai virus C protein-mediated blockade of type 1 interferon signaling.

    PubMed

    Oda, Kosuke; Oda, Takashi; Matoba, Yasuyuki; Sato, Mamoru; Irie, Takashi; Sakaguchi, Takemasa

    2017-10-04

    Sendai virus (SeV), which causes respiratory diseases in rodents, possesses the C protein that blocks the signal transduction of interferon (IFN), thereby escaping from host innate immunity. We previously demonstrated by using protein crystallography that two molecules of Y3 (C-terminal half of C protein) can bind to the homodimer of the N-terminal domain of STAT1 (STAT1ND), elucidating the mechanism of inhibition of IFN-γ signal transduction. SeV C protein also blocks the signal transduction of IFN-α/β by inhibiting the phosphorylation of STAT1 and STAT2, although the mechanism for the inhibition is unclear. Therefore, we sought to elucidate the mechanism of inhibition of IFN-signal transduction via STAT1 and STAT2. Small angle X-ray scattering (SAXS) analysis indicated that STAT1ND associates with the N-terminal domain of STAT2 (STAT2ND) with the help of a Gly-rich linker. We generated a linker-less recombinant protein possessing a STAT1ND:STAT2ND heterodimeric structure via an artificial disulfide bond. Analytical size-exclusion chromatography and surface plasmon resonance revealed that one molecule of Y3 can associate with a linker-less recombinant protein. We propose that one molecule of C protein associates with the STAT1:STAT2 heterodimer, inducing a conformational change to an antiparallel form, which is easily dephosphorylated. This suggests that association of C protein with the STAT1ND-STAT2ND heterodimer is an important factor to block the IFN-α/β signal transduction. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  7. The HER2 inhibitor TAK165 Sensitizes Human Acute Myeloid Leukemia Cells to Retinoic Acid-Induced Myeloid Differentiation by activating MEK/ERK mediated RARα/STAT1 axis

    PubMed Central

    Shao, Xuejing; Liu, Yujia; Li, Yangling; Xian, Miao; Zhou, Qian; Yang, Bo; Ying, Meidan; He, Qiaojun

    2016-01-01

    The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply this therapy to other types of acute myeloid leukemia (AML). However, AML, with the exception of APL, fails to respond to differentiation therapy. Therefore, research strategies to further sensitize cells to retinoids and to extend the range of AMLs that respond to retinoids beyond APLs are urgently needed. In this study, we showed that TAK165, a HER2 inhibitor, exhibited a strong synergy with ATRA to promote AML cell differentiation. We observed that TAK165 sensitized the AML cells to ATRA-induced cell growth inhibition, G0/G1 phase arrest, CD11b expression, mature morphologic changes, NBT reduction and myeloid regulator expression. Unexpectedly, HER2 pathway might not be essential for TAK165-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of the RARα/STAT1 axis. Furthermore, the MEK/ERK cascade regulated the activation of STAT1. Taken together, our study is the first to evaluate the synergy of TAK165 and ATRA in AML cell differentiation and to assess new opportunities for the combination of TAK165 and ATRA as a promising approach for future differentiation therapy. PMID:27074819

  8. Sulforaphane inhibits the interferon-γ-induced expression of MIG, IP-10 and I-TAC in INS‑1 pancreatic β-cells through the downregulation of IRF-1, STAT-1 and PKB.

    PubMed

    Park, Yu-Kyoung; Ramalingam, Mahesh; Kim, Shin; Jang, Byeong-Churl; Park, Jong Wook

    2017-09-01

    Sulforaphane (SFN) is a dietary isothiocyanate abundantly available in cruciferous vegetables and has been shown to possess anti-inflammatory and immunomodulatory activities. Chemokines are important mediators of inflammation and immune responses due to their ability to recruit and activate macrophages and leukocytes. To date, little is known about the SFN-mediated regulation of chemokine expression in pancreatic β-cells. In this study, we investigated the inhibitory effects and mechanisms of SFN on the interferon-γ (IFN-γ)-induced expression of a subset of chemokines, including monokine induced by IFN-γ (MIG), IFN-inducible protein of 10 kDa (IP-10) and IFN-inducible T‑cell alpha chemoattractant (I-TAC), in INS‑1 cells, a rat pancreatic β-cell line. Notably, IFN-γ treatment led to an increase in the mRNA expression levels of MIG, IP-10 and I-TAC in the INS‑1 cells. However, SFN strongly blocked the mRNA expressions of MIG, IP-10 and I-TAC induced by IFN-γ in INS‑1 cells. On the mechanistic level, SFN significanlty decreased not only the mRNA expression levels of interferon regulatory factor-1 (IRF-1), but also the phosphorylation levels of signal transducer and activator of transcription-1 (STAT-1) and protein kinase B (PKB) which were induced by IFN-γ in the INS‑1 cells. Pharmacological inhibition experiments further revealed that treatment with JAK inhibitor I weakly inhibited the IFN-γ-induced expression of IP-10, whereas it strongly suppressed the IFN-γ-induced expression of MIG and I-TAC in the INS‑1 cells. Moreover, treatment with LY294002, a PI3K/PKB inhibitor, was able to slightly repress IFN‑γ‑induced expressions of MIG and I-TAC, but not IP-10, in INS‑1 cells. Importantly, the IFN-γ-induced increase in the expression levels of MIG, IP-10 and I-TAC in the INS-1 cells was strongly inhibited by SFN, but not by other natural substances, such as curcumin, sanguinarine, resveratrol, triptolide and epigallocatechin

  9. Signal Transducer and Activator of Transcription 1 (STAT1) is Essential for Chromium Silencing of Gene Induction in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Barchowsky, Aaron

    2009-01-01

    Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)–dependent pathway to silence nickel (Ni)–induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase–activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1α (HIF-1α) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1α activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells. PMID:19403854

  10. Porcine Epidemic Diarrhea Virus Infection Inhibits Interferon Signaling by Targeted Degradation of STAT1.

    PubMed

    Guo, Longjun; Luo, Xiaolei; Li, Ren; Xu, Yunfei; Zhang, Jian; Ge, Jinying; Bu, Zhigao; Feng, Li; Wang, Yue

    2016-09-15

    Porcine epidemic diarrhea virus (PEDV) is a worldwide-distributed alphacoronavirus, but the pathogenesis of PEDV infection is not fully characterized. During virus infection, type I interferon (IFN) is a key mediator of innate antiviral responses. Most coronaviruses develop some strategy for at least partially circumventing the IFN response by limiting the production of IFN and by delaying the activation of the IFN response. However, the molecular mechanisms by which PEDV antagonizes the antiviral effects of interferon have not been fully characterized. Especially, how PEDV impacts IFN signaling components has yet to be elucidated. In this study, we observed that PEDV was relatively resistant to treatment with type I IFN. Western blot analysis showed that STAT1 expression was markedly reduced in PEDV-infected cells and that this reduction was not due to inhibition of STAT1 transcription. STAT1 downregulation was blocked by a proteasome inhibitor but not by an autophagy inhibitor, strongly implicating the ubiquitin-proteasome targeting degradation system. Since PEDV infection-induced STAT1 degradation was evident in cells pretreated with the general tyrosine kinase inhibitor, we conclude that STAT1 degradation is independent of the IFN signaling pathway. Furthermore, we report that PEDV-induced STAT1 degradation inhibits IFN-α signal transduction pathways. Pharmacological inhibition of STAT1 degradation rescued the ability of the host to suppress virus replication. Collectively, these data show that PEDV is capable of subverting the type I interferon response by inducing STAT1 degradation. In this study, we show that PEDV is resistant to the antiviral effect of IFN. The molecular mechanism is the degradation of STAT1 by PEDV infection in a proteasome-dependent manner. This PEDV infection-induced STAT1 degradation contributes to PEDV replication. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response. Copyright © 2016

  11. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation.

    PubMed

    Han, Eun Hee; Hwang, Yong Pil; Choi, Jae Ho; Yang, Ji Hye; Seo, Jong Kwon; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Psidium guajava (P. guajava) is a food and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities that support its traditional uses. The aim of this study was to determine the effects of P. guajava ethyl acetate extract (PGEA) on atopic dermatitis and to investigate the possible mechanisms by which PGEA inhibits cytokine-induced Th2 chemokine expression in HaCaT human keratinocyte cells. We found that PGEA suppressed the IFN-γ/TNF-α-co-induced production of thymus and activation-regulated chemokine (TARC) protein and mRNA in HaCaT cells. Additionally, PGEA inhibited the TNF-α/IFN-γ-co-induced activation of NF-κB and STAT1 and increased the expression of heme oxygenase-1 (HO-1) protein and mRNA. HO-1 inhibitor enhanced the suppressive effects of PGEA on TNF-α/IFN-γ-co-induced TARC production and gene expression. Collectively, these data demonstrate that PGEA inhibits chemokine expression in keratinocytes by inducing HO-1 expression and it suggests a possible therapeutic application in atopic dermatitis and other inflammatory skin diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. STAT1 and STAT3 in tumorigenesis

    PubMed Central

    Avalle, Lidia; Pensa, Sara; Regis, Gabriella; Novelli, Francesco; Poli, Valeria

    2012-01-01

    The transcription factors STAT1 and STAT3 appear to play opposite roles in tumorigenesis. While STAT3 promotes cell survival/proliferation, motility and immune tolerance and is considered as an oncogene, STAT1 mostly triggers anti-proliferative and pro-apoptotic responses while enhancing anti-tumor immunity. Despite being activated downstream of common cytokine and growth factor receptors, their activation is reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1 and STAT3 activation in tumorigenesis and their potential cross-regulation mechanisms. PMID:24058752

  13. Wedelolactone, a Naturally Occurring Coumestan, Enhances Interferon-γ Signaling through Inhibiting STAT1 Protein Dephosphorylation*

    PubMed Central

    Chen, Zhimin; Sun, Xiaoxiao; Shen, Shensi; Zhang, Haohao; Ma, Xiuquan; Liu, Jingli; Kuang, Shan; Yu, Qiang

    2013-01-01

    Signal transducers and activators of transcription 1 (STAT1) transduces signals from cytokines and growth factors, particularly IFN-γ, and regulates expression of genes involved in cell survival/death, proliferation, and migration. STAT1 is activated through phosphorylation on its tyrosine 701 by JAKs and is inactivated through dephosphorylation by tyrosine phosphatases. We discovered a natural compound, wedelolactone, that increased IFN-γ signaling by inhibiting STAT1 dephosphorylation and prolonging STAT1 activation through specific inhibition of T-cell protein tyrosine phosphatase (TCPTP), an important tyrosine phosphatase for STAT1 dephosphorylation. More interestingly, wedelolactone inhibited TCPTP through interaction with the C-terminal autoinhibition domain of TCPTP. We also found that wedelolactone synergized with IFN-γ to induce apoptosis of tumor cells. Our data suggest a new target for anticancer or antiproliferation drugs, a new mechanism to regulate PTPs specifically, and a new drug candidate for treating cancer or other proliferation disorders. PMID:23580655

  14. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation.

    PubMed

    Wen, Z; Zhong, Z; Darnell, J E

    1995-07-28

    Stat1 and Stat3 are latent transcriptional factors activated initially through phosphorylation on single tyrosine residues induced by cytokine and growth factor occupation of cell surface receptors. Here we show that phosphorylation on a single serine (residue 727) in each protein is also required for maximal transcriptional activity. Both cytokines and growth factors are capable of inducing the serine phosphorylation of Stat1 and Stat3. These experiments show that gene activation by Stat1 and Stat3, which obligatorily require tyrosine phosphorylation to become active, also depends for maximal activation on one or more of the many serine kinases.

  15. The Effects of Aerosolized STAT1 Antisense Oligodeoxynucleotides on Rat Pulmonary Fibrosis

    PubMed Central

    Wang, Wenjun; Liao, Bin; Zeng, Ming; Zhu, Chen; Fan, Xianming

    2009-01-01

    Previous study showed that aerosolized signal transducer and activator of transcription-1 (STAT1) antisense oligodeoxynucleotide (ASON) inhibited the expression of STAT1 and ICAM-1 mRNA and protein in alveolar macrophages (AMs) and decreased the concentrations of TGF-β, PDGF and TNF-α in bronchioalveolar lavage fluid (BALF) in bleomycin (BLM)-induced rat pulmonary fibrosis. Administration of STAT1 ASON ameliorated alveolitis in rat pulmonary fibrosis. However, further investigations are needed to determine whether there is an effect from administration of STAT1 ASON on fibrosis. This study investigated the effect of aerosolized STAT1 ASON on the expressions of inflammatory mediators, hydroxyproline and type I and type III collagen mRNA in BLM-induced rat pulmonary fibrosis. The results showed that STAT1 ASON applied by aerosolization could ameliorate alveolitis and fibrosis, inhibit the expressions of inflammatory mediators, decrease the content of hydroxyproline, and suppress the expressions of type I and type III collagen mRNA in lung tissue in BLM-induced rat pulmonary fibrosis. These results suggest that aerosolized STAT1 ASON might be considered as a promising new strategy in the treatment of pulmonary fibrosis. PMID:19254480

  16. Phosphorylation of IRF8 in a Pre-associated Complex with Spi-1/PU.1 and Non-phosphorylated Stat1 is Critical for LPS Induction of the IL1B Gene

    PubMed Central

    Unlu, Sebnem; Kumar, Arvind; Waterman, Wayne R.; Tsukada, Junichi; Wang, Kent Z.Q.; Galson, Deborah L.; Auron, Philip E

    2009-01-01

    Rapid induction of transcription is known to be mediated by factors which bind DNA following post-translational modification. We report here that non-tyrosine phosphorylated (NTP)-Stat1 is involved in a cooperative interaction with Spi-1/PU.1 and IRF8 to form a pre-associated, poised complex is for IL1B gene induction. A double point mutation at a putative STAT binding site, which overlaps this composite Spi-1•IRF8 site located in the LPS and IL-1 response element (LILRE), inhibited human IL1B LPS-dependent reporter activity to about 10 percent of the control wild type vector. Chromatin immunoprecipitation revealed stimulation-independent constitutive binding of IRF8, Spi-1 and NTP-Stat1 at the LILRE, while binding of C/EBPβ was induced to an adjacent C/EBPβ site after LPS stimulation. In contrast to Stat1, IRF8 was tyrosine phosphorylated following LPS treatment. Supporting the involvement of NTP-Stat1, LPS-induced IL1B reporter activity in monocytes was enhanced by ectopic expression of NTP-Stat1Y701F. In contrast, co-expression of a Y211F IRF8 mutein functioned as a dominant-negative inhibitor of LPS-induced IL1B reporter activity. In vitro DNA binding using extracts from LPS-treated monocytes confirmed that the LILRE enhancer constitutively binds a trimolecular complex containing IRF8, Spi-1 and NTP-Stat1. Binding studies using in vitro-expressed proteins revealed that NTP-Stat1 enhanced the binding of Spi-1 and IRF8 to the LILRE. Co-expression of TRAF6, an LPS surrogate, with Spi-1 and IRF8 enhanced IL1B reporter activity in HEK293R cells, which was dramatically reduced when Y211F IRF8 was co-expressed. These results suggest that the rapid transcriptional induction of an important inflammatory gene is dependent upon constitutive cooperative binding of a Spi-1•IRF8•NTP-Stat1 complex to the LILRE, which primes the gene for immediate induction following IRF8 phosphorylation. Phosphorylation of chromatin pre-associated factors like IRF8 may be an important

  17. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe

    PubMed Central

    Soltész, Beáta; Tóth, Beáta; Shabashova, Nadejda; Bondarenko, Anastasia; Okada, Satoshi; Cypowyj, Sophie; Abhyankar, Avinash; Csorba, Gabriella; Taskó, Szilvia; Sarkadi, Adrien Katalin; Méhes, Leonóra; Rozsíval, Pavel; Neumann, David; Chernyshova, Liudmyla; Tulassay, Zsolt; Puel, Anne; Casanova, Jean-Laurent; Sediva, Anna; Litzman, Jiri; Maródi, László

    2013-01-01

    Background Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. Objective To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. Results The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. Conclusions The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms. PMID:23709754

  18. Non-Canonical Role of IKKα in the Regulation of STAT1 Phosphorylation in Antiviral Signaling

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Shiba, Yuko; Hayakari, Ryo; Yoshida, Hidemi; Imaizumi, Tadaatsu

    2016-01-01

    Non-self RNA is recognized by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), inducing type I interferons (IFNs). Type I IFN promotes the expression of IFN-stimulated genes (ISGs), which requires the activation of signal transducer and activator of transcription-1 (STAT1). We previously reported that dsRNA induced STAT1 phosphorylation via a type I IFN-independent pathway in addition to the well-known type I IFN-dependent pathway. IκB kinase α (IKKα) is involved in antiviral signaling induced by dsRNA; however, its role is incompletely understood. Here, we explored the function of IKKα in RLR-mediated STAT1 phosphorylation. Silencing of IKKα markedly decreased the level of IFN-β and STAT1 phosphorylation inHeH response to dsRNA. However, the inhibition of IKKα did not alter the RLR signaling-mediated dimerization of interferon responsive factor 3 (IRF3) or the nuclear translocation of nuclear factor-κB (NFκB). These results suggest a non-canonical role of IKKα in RLR signaling. Furthermore, phosphorylation of STAT1 was suppressed by IKKα knockdown in cells treated with a specific neutralizing antibody for the type I IFN receptor (IFNAR) and in IFNAR-deficient cells. Collectively, the dual regulation of STAT1 by IKKα in antiviral signaling suggests a role for IKKα in the fine-tuning of antiviral signaling in response to non-self RNA. PMID:27992555

  19. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

    PubMed Central

    Liu, Luyan; Okada, Satoshi; Kong, Xiao-Fei; Kreins, Alexandra Y.; Cypowyj, Sophie; Abhyankar, Avinash; Toubiana, Julie; Itan, Yuval; Audry, Magali; Nitschke, Patrick; Masson, Cécile; Toth, Beata; Flatot, Jérome; Migaud, Mélanie; Chrabieh, Maya; Kochetkov, Tatiana; Bolze, Alexandre; Borghesi, Alessandro; Toulon, Antoine; Hiller, Julia; Eyerich, Stefanie; Eyerich, Kilian; Gulácsy, Vera; Chernyshova, Ludmyla; Chernyshov, Viktor; Bondarenko, Anastasia; María Cortés Grimaldo, Rosa; Blancas-Galicia, Lizbeth; Madrigal Beas, Ileana Maria; Roesler, Joachim; Magdorf, Klaus; Engelhard, Dan; Thumerelle, Caroline; Burgel, Pierre-Régis; Hoernes, Miriam; Drexel, Barbara; Seger, Reinhard; Kusuma, Theresia; Jansson, Annette F.; Sawalle-Belohradsky, Julie; Belohradsky, Bernd; Jouanguy, Emmanuelle; Bustamante, Jacinta; Bué, Mélanie; Karin, Nathan; Wildbaum, Gizi; Bodemer, Christine; Lortholary, Olivier; Fischer, Alain; Blanche, Stéphane; Al-Muhsen, Saleh; Reichenbach, Janine; Kobayashi, Masao; Rosales, Francisco Espinosa; Lozano, Carlos Torres; Kilic, Sara Sebnem; Oleastro, Matias; Etzioni, Amos; Traidl-Hoffmann, Claudia; Renner, Ellen D.; Abel, Laurent; Picard, Capucine; Maródi, László; Boisson-Dupuis, Stéphanie

    2011-01-01

    Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity. PMID:21727188

  20. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2014-10-15

    Nonprotective immune responses to highly virulent Cryptococcus neoformans strains, such as H99, are associated with Th2-type cytokine production, alternatively activated macrophages, and inability of the host to clear the fungus. In contrast, experimental studies show that protective immune responses against cryptococcosis are associated with Th1-type cytokine production and classical macrophage activation. The protective response induced during C. neoformans strain H99γ (C. neoformans strain H99 engineered to produce murine IFN-γ) infection correlates with enhanced phosphorylation of the transcription factor STAT1 in macrophages; however, the role of STAT1 in protective immunity to C. neoformans is unknown. The current studies examined the effect of STAT1 deletion in murine models of protective immunity to C. neoformans. Survival and fungal burden were evaluated in wild-type and STAT1 knockout (KO) mice infected with either strain H99γ or C. neoformans strain 52D (unmodified clinical isolate). Both strains H99γ and 52D were rapidly cleared from the lungs, did not disseminate to the CNS, or cause mortality in the wild-type mice. Conversely, STAT1 KO mice infected with H99γ or 52D had significantly increased pulmonary fungal burden, CNS dissemination, and 90-100% mortality. STAT1 deletion resulted in a shift from Th1 to Th2 cytokine bias, pronounced lung inflammation, and defective classical macrophage activation. Pulmonary macrophages from STAT1 KO mice exhibited defects in NO production correlating with inefficient inhibition of fungal proliferation. These studies demonstrate that STAT1 signaling is essential not only for regulation of immune polarization but also for the classical activation of macrophages that occurs during protective anticryptococcal immune responses.

  1. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer

    PubMed Central

    Stronach, Euan A; Alfraidi, Albandri; Rama, Nona; Datler, Christoph; Studd, Jamie; Agarwal, Roshan; Guney, Tankut G; Gourley, Charlie; Hennessy, Bryan T; Mills, Gordon B; Mai, Antonello; Brown, Robert; Dina, Roberto; Gabra, Hani

    2011-01-01

    Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests resistant clones exist within a larger drug sensitive cell-population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically-derived, intra-patient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell-line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 down-regulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of HDAC4, FOLR2, PIK3R1 or STAT1 (p<0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum sensitive but not HDAC4 over-expressing platinum resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum induced STAT1 activation and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors (n=7/16[44%]; p=0.04). Therefore, clinical selection of HDAC4 overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer. PMID:21571862

  2. The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes.

    PubMed

    Sisler, Jennifer D; Morgan, Magdalena; Raje, Vidisha; Grande, Rebecca C; Derecka, Marta; Meier, Jeremy; Cantwell, Marc; Szczepanek, Karol; Korzun, William J; Lesnefsky, Edward J; Harris, Thurl E; Croniger, Colleen M; Larner, Andrew C

    2015-01-01

    The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT). Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC) and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/- mice utilized more lipids we examined white adipose tissue (WAT) stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA) re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice.

  3. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling

    PubMed Central

    Qiu, Xusheng; Fu, Qiang; Meng, Chunchun; Yu, Shengqing; Zhan, Yuan; Dong, Luna; Song, Cuiping; Sun, Yingjie; Tan, Lei; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Peng, Daxin; Liu, Xiufan; Ding, Chan

    2016-01-01

    Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN. PMID:26859759

  4. MiRNA203 suppresses the expression of protumorigenic STAT1 in glioblastoma to inhibit tumorigenesis

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Susan R.; Pfeffer, Lawrence M.

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in regulating cancer cell proliferation, migration, survival and sensitivity to chemotherapy. The potential application of using miRNAs for cancer prognosis holds great promise but miRNAs with predictive value remain to be identified and underlying mechanisms of how they promote or suppress tumorigenesis are not completely understood. Here, we show a strong correlation between miR203 expression and brain cancer patient survival. Low miR203 expression is found in subsets of brain cancer patients, especially glioblastoma. Ectopic miR203 expression in glioblastoma cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon or temozolomide in vitro, and inhibited tumorigenesis in vivo. We further show that STAT1 is a direct functional target of miR203, and miR203 level is negatively correlated with STAT1 expression in brain cancer patients. Knockdown of STAT1 expression mimicked the effect of overexpression of miR203 in glioblastoma cell lines, and inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by IFN or temozolomide in vitro, and inhibited glioblastoma tumorigenesis in vivo. High STAT1 expression significantly correlated with poor survival in brain cancer patients. Mechanistically, we found that enforced miR203 expression in glioblastoma suppressed STAT1 expression directly, as well as that of a number of STAT1 regulated genes. Taken together, our data suggest that miR203 acts as a tumor suppressor in glioblastoma by suppressing the pro-tumorigenic action of STAT1. MiR203 may serve as a predictive biomarker and potential therapeutic target in subsets of cancer patients with low miR203 expression. PMID:27705947

  5. Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation.

    PubMed

    Rodriguez, Jason J; Wang, Lin-Fa; Horvath, Curt M

    2003-11-01

    The V protein of the recently emerged paramyxovirus, Nipah virus, has been shown to inhibit interferon (IFN) signal transduction through cytoplasmic sequestration of cellular STAT1 and STAT2 in high-molecular-weight complexes. Here we demonstrate that the closely related Hendra virus V protein also inhibits cellular responses to IFN through binding and cytoplasmic sequestration of both STAT1 and STAT2, but not STAT3. These findings demonstrate a V protein-mediated IFN signal evasion mechanism that is a general property of the known Henipavirus species.

  6. Distal regulatory element of the STAT1 gene potentially mediates positive feedback control of STAT1 expression.

    PubMed

    Yuasa, Katsutoshi; Hijikata, Takao

    2016-01-01

    We previously identified a distal regulatory element located approximately 5.5-kb upstream of the signal transducer and activator of transcription 1 (STAT1) gene, thereafter designating it as 5.5-kb upstream regulatory region (5.5URR). In this study, we investigated the functional roles of 5.5URR in the transcriptional regulation of STAT1 gene. A chromosome conformation capture assay indicated physical interaction of 5.5URR with the STAT1 core promoter. In luciferase reporter assays, 5.5URR-combined STAT1 core promoter exhibited significant increase in reporter activity enhanced by forced STAT1 expression or interferon (IFN) treatment, but STAT1 core promoter alone did not. The 5.5URR contained IFN-stimulated response element and GAS sites, which bound STAT1 complexes in electrophoretic mobility shift assays. Consistently, chromatin immunoprecipitation (ChIP) assays of HEK293 cells with Halo-tagged STAT1 expression indicated the association of Halo-tagged STAT1 with 5.5URR. ChIP assays with IFN treatment demonstrated that IFNs promoted the recruitment of Halo-tagged STAT1 to 5.5URR. Forced STAT1 expression or IFN treatment increased the expression of endogenous STAT1 and other IFN signaling pathway components, such as STAT2, IRF9 and IRF1, besides IFN-responsive genes. Collectively, the results suggest that 5.5URR may provide a regulatory platform for positive feedback control of STAT1 expression possibly to amplify or sustain the intracellular IFN signals.

  7. Pleiotrophin (PTN) is expressed in vascularized human atherosclerotic plaques: IFN-γ/JAK/STAT1 signaling is critical for the expression of PTN in macrophages

    PubMed Central

    Li, Fuqiang; Tian, Fang; Wang, Lai; Williamson, Ian K.; Sharifi, Behrooz G.; Shah, Prediman K.

    2010-01-01

    Neovascularization is critical to destabilization of atheroma. We previously reported that the angiogenic growth factor pleiotrophin (PTN) coaxes monocytes to assume the phenotype of functional endothelial cells in vitro and in vivo. In this study we show that PTN expression is colocalized with capillaries of human atherosclerotic plaques. Among the various reagents that are critical to the pathogenesis of atherosclerosis, interferon (IFN)-γ was found to markedly induce PTN mRNA expression in a dose-dependent manner in macrophages. Mechanistic studies revealed that the Janus kinase inhibitors, WHI-P154 and ATA, efficiently blocked STAT1 phosphorylation in a concentration- and time-dependent manner. Notably, the level of phosphorylated STAT1 was found to correlate directly with the PTN mRNA levels. In addition, STAT1/STAT3/p44/42 signaling molecules were found to be phosphorylated by IFN-γ in macrophages, and they were translocated into the nucleus. Further, PTN promoter analysis showed that a gamma-activated sequence (GAS) located at −2086 to −2078 bp is essential for IFN-γ-regulated promoter activity. Moreover, electrophoretic mobility shift, supershift, and chromatin immunoprecipitation analyses revealed that both STAT1 and STAT3 bind to the GAS at the chromatin level in the IFN-γ stimulated cells. Finally, to test whether the combined effect of STAT1/STAT3/p44/42 signaling is required for the expression of PTN in macrophages, gene knockdowns of these transcription factors were performed using siRNA. Cells lacking STAT1, but not STAT3 or p42, have markedly reduced PTN mRNA levels. These data suggest that PTN expression in the human plaques may be in part regulated by IFN-γ and that PTN is involved in the adaptive immunity.—Li, F., Tian, F., Wang, L., Williamson, I. K., Sharifi, B. G., Shah, P. K. Pleiotrophin (PTN) is expressed in vascularized human atherosclerotic plaques: IFN-γ/JAK/STAT1 signaling is critical for the expression of PTN in macrophages

  8. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response

    PubMed Central

    Lukas, Simone; Zenger, Marion; Reitberger, Tobias; Danzer, Daniela; Übner, Theresa; Munday, Diane C.; Paulus, Christina

    2016-01-01

    The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. PMID:27387064

  9. Induction of STAT1 Phosphorylation at Serine 727 and Expression of Proinflammatory Cytokines by Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Yu, Ying; Wang, Rong; Nan, Yuchen; Zhang, Linsheng; Zhang, Yanjin

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen that causes acute respiratory illnesses in young pigs. Since 1987, PRRSV has contributed substantial economic losses to the swine industry. Elevation of proinflammatory cytokines in PRRSV-infected pigs is thought to contribute to PRRSV pathogenesis. In this study, PRRSV VR-2385, a Type 2 strain with moderate virulence, was found to induce phosphorylation of signal transducer and activator of transcription 1 (STAT1) at serine 727 (pSTAT1-S727) in MARC-145 cells. No phosphorylated STAT1 at tyrosine 701 was detected, which indicates that the pSTAT1-S727 elevation was interferon-independent. The PRRSV-induced pSTAT1-S727, however, was dose-dependent and its levels increased with infection time. IngelVac PRRS MLV strain had a minimal effect on pSTAT1-S727. Compared to MLV-infected cells, VR-2385 infection caused significantly higher level of expression of proinflammatory cytokines, including interleukin 1 beta (IL-1beta) and IL-8. The VR-2385-induced pSTAT1-S727 and cytokine expression were reduced after SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), or methylthioadenosine (MTA), a methyl transferase inhibitor, was added to the cells. The SB203580 and MTA-mediated inhibition suggested that the virus-induced pSTAT1-S727 was dependent on p38 MAPK pathway. In primary porcine alveolar macrophages (PAMs), VR-2385 also induced pSTAT1-S727 and expression of proinflammatory cytokines and chemokines, including IL-1beta, IL-8, chemokine ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 10 (CXCL10). Similarly, SB203580 treatment of PAM cells blocked the elevation of pSTAT1-S727 and cytokine expression. Overexpression of individual viral proteins showed that non-structural protein 12 (nsp12) was able to induce elevation of pSTAT1-S727 and the expression of IL-1β and IL-8. These results indicated that PRRSV VR-2385 induces pSTAT1-S727 and the expression of proinflammatory

  10. Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages.

    PubMed

    Rivera, L E; Kraiselburd, E; Meléndez, L M

    2016-10-01

    Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.

  11. STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways

    PubMed Central

    Ho, Johnathan; Pelzel, Christin; Begitt, Andreas; Mee, Maureen; Elsheikha, Hany M.; Scott, David J.; Vinkemeier, Uwe

    2016-01-01

    STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein. PMID:27780205

  12. Two Domains of the V Protein of Virulent Canine Distemper Virus Selectively Inhibit STAT1 and STAT2 Nuclear Import▿

    PubMed Central

    Röthlisberger, Anne; Wiener, Dominique; Schweizer, Matthias; Peterhans, Ernst; Zurbriggen, Andreas; Plattet, Philippe

    2010-01-01

    Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-α/β)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-α/β-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-α/β-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-α/β-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-α/β-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-α/β-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-α/β evasion among the morbilliviruses. PMID:20427537

  13. Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import.

    PubMed

    Röthlisberger, Anne; Wiener, Dominique; Schweizer, Matthias; Peterhans, Ernst; Zurbriggen, Andreas; Plattet, Philippe

    2010-07-01

    Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.

  14. Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria

    PubMed Central

    Dominici, Sabrina; Rinaldi, Laura; Cangiano, Alfonsina Mariarosaria; Brandi, Giorgio; Magnani, Mauro

    2016-01-01

    The infection of human macrophages by pathogenic bacteria induces different signaling pathways depending on the type of cellular receptors involved in the microorganism entry and on their mechanism(s) of survival and replication in the host cell. It was reported that Stat proteins play an important role in this process. In the present study, we investigate the changes in Stat-1 activation (phosphorylation in p-tyr701) after uptake of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative bacteria (Salmonella typhimurium and Legionella pneumophila) characterized by their varying abilities to enter, survive, and replicate in human macrophages. Comparing the results obtained with Gram-negative and Gram-positive bacteria, Stat-1 activation in macrophages does not seem to be related to LPS content. The p-tyr701Stat-1 expression levels were found to be independent of the internalized bacterial number and IFN-γ release. On the contrary, Jak/Stat-1 pathway activation only occurs when an active infection has been established in the host macrophage, and it is plausible that the differences in the expression levels of p-tyr701Stat-1 could be due to different survival mechanisms or to differences in bacteria life cycles within macrophages. PMID:27437406

  15. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO.

  16. STAT1 Inhibits miR-181a Expression to Suppress Colorectal Cancer Cell Proliferation through PTEN/Akt.

    PubMed

    Zhang, Xingwen; Li, Xiang; Tan, Fengbo; Yu, Nanhui; Pei, Haiping

    2017-03-21

    Signal transducers and activators of transcription 1 (STAT1) exhibits tumor-suppressor properties by inhibiting oncogenic pathways and promoting tumor immunosurveillance. MicroRNAs, a group of non-coding endogenous ones, may regulate gene expression and plays specific roles in tumorigenesis. Recently, miR-181a has been reported to be associated with poor prognosis of colorectal cancer (CRC). Using human colorectal cancer cell lines, we demonstrated that STAT1 suppresses both LoVo and SW480 cell growth by down-regulating miR-181a. STAT1 regulates the expression of miR-181a through binding to the elements in the miR-181a's promoter region. Further, we revealed that miR-181a accelerates CRC cell proliferation through phosphatase and tensin homolog on chromosome ten (PTEN). In addition, PTEN protein was upregulated in response to STAT1 overexpression or miR-181a inhibition, downregulated in response to STAT1 knockdown or miR-181a overexpression. Without changes on the AKT protein level, p-AKT was downregulated by STAT1 overexpression or miR-181a inhibition while upregulated by STAT1 knockdown or miR-181a overexpression, indicating PTEN/Akt pathway activated in STAT1/miR-181a regulation of CRC cell proliferation. Taken together, our findings shed new light on the STAT1/miR-181a/PTEN pathway in colorectal cancer and add new insight regarding the carcinogenesis of colorectal cancer. This article is protected by copyright. All rights reserved.

  17. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation.

    PubMed

    Gerhartz, C; Heesel, B; Sasse, J; Hemmann, U; Landgraf, C; Schneider-Mergener, J; Horn, F; Heinrich, P C; Graeve, L

    1996-05-31

    Interleukin-6 (IL-6) and gamma-interferon (IFNgamma) activate an overlapping set of genes via the Jak/STAT pathway. However, at least in human cells, a differential activation of STAT transcription factors was observed: IL-6 activates both acute phase response factor (APRF)/STAT3 and STAT1, whereas IFNgamma leads only to STAT1 activation. All STATs cloned so far contain SH2 domains. Since all cytokine receptors using the Jak/STAT pathway were found to be tyrosine-phosphorylated after ligand binding, it has been proposed that specific phosphotyrosine modules within the cytoplasmic domain of the receptor chains recruit different STAT factors. We have analyzed by mutational studies and by phosphopeptide competition assays which of the tyrosine modules of the IL-6 signal transducer gp130 are capable of recruiting either APRF or STAT1. We found that two of the four tyrosine modules that are important for APRF activation also activate STAT1. For these modules, we propose the new consensus sequence YXPQ. We further present evidence that STAT1 is activated independently from APRF suggesting that gp130 contains multiple independent STAT binding sites. We compare the APRF and STAT1 activation motifs of gp130 with the STAT1 activation motif of the IFNgamma receptor and demonstrate that the specificity of activation can be changed from APRF to STAT1 and vice versa by only two point mutations within a tyrosine module. These data strongly support the concept that the activation of a specific STAT is determined mainly by the phosphotyrosine module. The significance of these findings for other receptor systems is discussed.

  18. Molecular mechanism and structural basis of gain-of-function of STAT1 caused by pathogenic R274Q mutation.

    PubMed

    Fujiki, Ryoji; Hijikata, Atsushi; Shirai, Tsuyoshi; Okada, Satoshi; Kobayashi, Masao; Ohara, Osamu

    2017-04-14

    Gain-of-function (GOF) mutations in the STAT1 gene are critical for the onset of chronic mucocutaneous candidiasis (CMC) disease. However, the molecular basis for the gain of STAT1 function remains largely unclear. Here, we investigated the structural features of STAT1 GOF residues to better understand the impact of these pathogenic mutations. We constructed STAT1 alanine mutants of the α3 helix residues of the coiled-coil domain, which are frequently found in CMC pathogenic mutations, and measured their transcriptional activities. Most of the identified GOF residues were located inside the coiled-coil domain stem structure or at the protein surface of the anti-parallel dimer interface. Unlike those, Arg-274 was adjacent to the DNA-binding domain. In addition, Arg-274 was found to functionally interact with Gln-441 in the DNA-binding domain. Because Gln-441 is located at the anti-parallel dimer contact site, Gln-441 reorientation by Arg-274 mutation probably impedes formation of the dimer. Further, the statistical analysis of RNA-seq data with STAT1-deficient epithelial cells and primary T cells from a CMC patient revealed that the R274Q mutation affected gene expression levels of 66 and 76 non-overlapping RefSeq genes, respectively. Because their transcription levels were only slightly modulated by wild-type STAT1, we concluded that the R274Q mutation increased transcriptional activity but did not change dramatically the repertoire of STAT1 targets. Hence, we provide a novel mechanism of STAT1 GOF triggered by a CMC pathogenic mutation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A partial form of recessive STAT1 deficiency in humans.

    PubMed

    Chapgier, Ariane; Kong, Xiao-Fei; Boisson-Dupuis, Stéphanie; Jouanguy, Emmanuelle; Averbuch, Diana; Feinberg, Jacqueline; Zhang, Shen-Ying; Bustamante, Jacinta; Vogt, Guillaume; Lejeune, Julien; Mayola, Eleonore; de Beaucoudrey, Ludovic; Abel, Laurent; Engelhard, Dan; Casanova, Jean-Laurent

    2009-06-01

    Complete STAT1 deficiency is an autosomal recessive primary immunodeficiency caused by null mutations that abolish STAT1-dependent cellular responses to both IFN-alpha/beta and IFN-gamma. Affected children suffer from lethal intracellular bacterial and viral diseases. Here we report a recessive form of partial STAT1 deficiency, characterized by impaired but not abolished IFN-alpha/beta and IFN-gamma signaling. Two affected siblings suffered from severe but curable intracellular bacterial and viral diseases. Both were homozygous for a missense STAT1 mutation: g.C2086T (P696S). This STAT1 allele impaired the splicing of STAT1 mRNA, probably by disrupting an exonic splice enhancer. The misspliced forms were not translated into a mature protein. The allele was hypofunctional, because residual full-length mRNA production resulted in low but detectable levels of normally functional STAT1 proteins. The P696S amino acid substitution was not detrimental. The patients' cells, therefore, displayed impaired but not abolished responses to both IFN-alpha and IFN-gamma. We also show that recessive STAT1 deficiencies impaired the IL-27 and IFN-lambda1 signaling pathways, possibly contributing to the predisposition to bacterial and viral infections, respectively. Partial recessive STAT1 deficiency is what we believe to be a novel primary immunodeficiency, resulting in impairment of the response to at least 4 cytokines (IFN-alpha/beta, IFN-gamma, IFN-lambda1, and IL-27). It should be considered in patients with unexplained, severe, but curable intracellular bacterial and viral infections.

  20. A partial form of recessive STAT1 deficiency in humans

    PubMed Central

    Chapgier, Ariane; Kong, Xiao-Fei; Boisson-Dupuis, Stéphanie; Jouanguy, Emmanuelle; Averbuch, Diana; Feinberg, Jacqueline; Zhang, Shen-Ying; Bustamante, Jacinta; Vogt, Guillaume; Lejeune, Julien; Mayola, Eleonore; de Beaucoudrey, Ludovic; Abel, Laurent; Engelhard, Dan; Casanova, Jean-Laurent

    2009-01-01

    Complete STAT1 deficiency is an autosomal recessive primary immunodeficiency caused by null mutations that abolish STAT1-dependent cellular responses to both IFN-α/β and IFN-γ. Affected children suffer from lethal intracellular bacterial and viral diseases. Here we report a recessive form of partial STAT1 deficiency, characterized by impaired but not abolished IFN-α/β and IFN-γ signaling. Two affected siblings suffered from severe but curable intracellular bacterial and viral diseases. Both were homozygous for a missense STAT1 mutation: g.C2086T (P696S). This STAT1 allele impaired the splicing of STAT1 mRNA, probably by disrupting an exonic splice enhancer. The misspliced forms were not translated into a mature protein. The allele was hypofunctional, because residual full-length mRNA production resulted in low but detectable levels of normally functional STAT1 proteins. The P696S amino acid substitution was not detrimental. The patients’ cells, therefore, displayed impaired but not abolished responses to both IFN-α and IFN-γ. We also show that recessive STAT1 deficiencies impaired the IL-27 and IFN-λ1 signaling pathways, possibly contributing to the predisposition to bacterial and viral infections, respectively. Partial recessive STAT1 deficiency is what we believe to be a novel primary immunodeficiency, resulting in impairment of the response to at least 4 cytokines (IFN-α/β, IFN-γ, IFN-λ1, and IL-27). It should be considered in patients with unexplained, severe, but curable intracellular bacterial and viral infections. PMID:19436109

  1. PI3Kα and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization

    PubMed Central

    Mounayar, Marwan; Kefaloyianni, Eirini; Smith, Brian; Solhjou, Zhabiz; Maarouf, Omar H.; Azzi, Jamil; Chabtini, Lola; Fiorina, Paolo; Kraus, Morey; Briddell, Robert; Fodor, William; Herrlich, Andreas; Abdi, Reza

    2016-01-01

    The immunomodulatory capacity of mesenchymal stem cells (MSCs) is critical for their use in therapeutic applications. MSC response to specific inflammatory cues allows them to switch between a proinflammatory (MSC1) or anti-inflammatory (MSC2) phenotype. Regulatory mechanisms controlling this switch remain to be defined. One characteristic feature of MSC2 is their ability to respond to IFNγ with induction of indoleamine 2,3-dioxygenase (IDO), representing the key immunoregulatory molecule released by human MSC. Here, we show that STAT1 and PI3Kα pathways interplay regulates IFNγ-induced IDO production in MSC. Chemical phosphoinositide 3-kinase (PI3K) pan-inhibition, PI3Kα-specific inhibition or shRNA knockdown diminished IFNγ-induced IDO production. This effect involved PI3Kα-mediated upregulation of STAT1 protein levels and phosphorylation at Ser727. Overexpression of STAT1 or of a constitutively active PI3Kα mutant failed to induce basal IDO production, but shifted MSC into an MSC2-like phenotype by strongly enhancing IDO production in response to IFNγ as compared to controls. STAT1 overexpression strongly enhanced MSC-mediated T-cell suppression. The same effect could be induced using short-term pretreatment of MSC with a chemical inhibitor of the counter player of PI3K, phosphatase and tensin homolog. Finally, downregulation of STAT1 abrogated the immunosuppressive capacity of MSC. Our results for the first time identify critical upstream signals for the induced production of IDO in MSCs that could be manipulated therapeutically to enhance their immunosuppressive phenotype. PMID:25753288

  2. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum.

    PubMed

    Qiu, Lingling; Ma, Teng; Chang, Guobin; Liu, Xiangping; Guo, Xiaomin; Xu, Lu; Zhang, Yang; Zhao, Wenming; Xu, Qi; Chen, Guohong

    2017-01-15

    NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.

  3. A Novel Mechanism of Skin Tumor Promotion Involving Interferon-gamma (IFNγ)/Signal Transducer and Activator of Transcription-1 (Stat1) Signaling

    PubMed Central

    Bozeman, Ronald; Abel, Erika L.; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2014-01-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1-/-) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1-/- mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. PMID:24464587

  4. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation.

    PubMed

    Ram, P A; Park, S H; Choi, H K; Waxman, D J

    1996-03-08

    Intermittent plasma growth hormone (GH) pulses, which occur in male but not female rats, activate liver Stat 5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation of this latent cytoplasmic transcription factor (Waxman, D. J., Ram, P. A., Park, S. H., and Choi, H. K. (1995) J. Biol. Chem. 270, 13262-13270). We demonstrate that physiological levels of GH can also activate Stat 1 and Stat 3 in liver tissue, but with a dependence on the dose of GH and its temporal plasma profile that is distinct from Stat 5 and with a striking desensitization following a single hormone pulse that is not observed with liver Stat 5. GH activation of the two groups of Stats leads to their selective binding to DNA response elements upstream of the c-fos gene (c-sis-inducible enhancer element; Stat 1 and Stat 3 binding) and the beta-casein gene (mammary gland factor element; liver Stat 5 binding). In addition to tyrosine phosphorylation, GH is shown to stimulate phosphorylation of these Stats on serine or threonine in a manner that either enhances (Stat 1 and Stat 3) or substantially alters (liver Stat 5) the binding of each Stat to its cognate DNA response element. These findings establish the occurrence of multiple, Stat-dependent GH signaling pathways in liver cells that can target distinct genes and thereby contribute to the diverse effects that GH and its sexually dimorphic plasma profile have on liver gene expression.

  5. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells

    PubMed Central

    Khodarev, Nikolai N.; Beckett, Michael; Labay, Edwardine; Darga, Thomas; Roizman, Bernard; Weichselbaum, Ralph R.

    2004-01-01

    Nu61, a radiation-resistant human tumor xenograft, was selected from a parental radiosensitive tumor SCC-61 by eight serial cycles of passage in athymic nude mice and in vivo irradiation. Replicate DNA array experiments identified 52 genes differentially expressed in nu61 tumors compared with SCC-61 tumors. Of these, 19 genes were in the IFN-signaling pathway and moreover, 25 of the 52 genes were inducible by IFN in the nu61 cell line. Among the genes involved in IFN signaling, STAT1α and STAT1β were the most highly overexpressed in nu61 compared to SCC-61. STAT1α and STAT1β cDNAs were cloned and stably transfected into SCC-61 tumor cells. Clones of SCC-61 tumor cells transfected with vectors expressing STAT1α and STAT1β demonstrated radioprotection after exposure to 3 Gy (P < 0.038). The results indicate that radioresistance acquired during radiotherapy treatment may account for some treatment failures and demonstrate an association of acquired tumor radioresistance with up-regulation of components of the IFN-related signaling pathway. PMID:14755057

  6. STAT1‐associated intratumoural TH1 immunity predicts chemotherapy resistance in high‐grade serous ovarian cancer

    PubMed Central

    Au, Katrina K; Le Page, Cécile; Ren, Runhan; Meunier, Liliane; Clément, Isabelle; Tyrishkin, Kathrin; Peterson, Nichole; Kendall‐Dupont, Jennifer; Childs, Timothy; Francis, Julie‐Ann; Graham, Charles H; Craig, Andrew W; Squire, Jeremy A; Mes‐Masson, Anne‐Marie

    2016-01-01

    Abstract High‐grade serous ovarian carcinoma (HGSC) accounts for 70% of all epithelial ovarian cancers but clinical management is challenged by a lack of accurate prognostic and predictive biomarkers of chemotherapy response. This study evaluated the role of Signal Transducer and Activator of Transcription 1 (STAT1) as an independent prognostic and predictive biomarker and its correlation with intratumoural CD8+ T cells in a second independent biomarker validation study. Tumour STAT1 expression and intratumoural CD8+ T cell infiltration were assessed by immunohistochemistry as a multicentre validation study conducted on 734 chemotherapy‐naïve HGSCs. NanoString‐based profiling was performed to correlate expression of STAT1 target genes CXCL9, CXCL10 and CXCL11 with CD8A transcript expression in 143 primary tumours. Multiplexed cytokine analysis of pre‐treatment plasma from resistant and sensitive patients was performed to assess systemic levels of STAT1induced cytokines. STAT1 was validated as a prognostic and predictive biomarker in both univariate and multivariate models and its expression correlated significantly with intra‐epithelial CD8+ T cell infiltration in HGSC. STAT1 levels increased the prognostic and predictive value of intratumoural CD8+ T cells, confirming their synergistic role as biomarkers in HGSC. In addition, expression of STAT1 target genes (CXCL9, CXCL10 and CXCL11) correlated significantly with levels of, and CD8A transcripts from intratumoural CD8+ T cells within the resistant and sensitive tumours. Our findings provide compelling evidence that high levels of STAT1, STAT1induced chemokines and CD8+ T cells correlate with improved chemotherapy response in HGSC. These results identify STAT1 and its target genes as novel biomarkers of chemosensitivity in HGSC. These findings provide new translational opportunities for patient stratification for immunotherapies based on emerging biomarkers of inflammation in HGSC. An improved

  7. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    PubMed Central

    2011-01-01

    Background Machupo virus (MACV), a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1) were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection. PMID:21672221

  8. Bcl6 promotes osteoblastogenesis through Stat1 inhibition

    SciTech Connect

    Fujie, Atsuhiro; Funayama, Atsushi; Miyauchi, Yoshiteru; Sato, Yuiko; Kobayashi, Tami; Kanagawa, Hiroya; Katsuyama, Eri; Hao, Wu; Tando, Toshimi; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Kanaji, Arihiko; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-02-13

    Bone mass is tightly controlled by a balance between osteoclast and osteoblast activities. Although these cell types mature via different pathways, some factors reportedly regulate differentiation of both. Here, in a search for factors governing osteoblastogenesis but also expressed in osteoclasts to control both cell types by one molecule, we identified B cell lymphoma 6 (Bcl6) as one of those factors and show that it promotes osteoblast differentiation. Bcl6 was previously shown to negatively regulate osteoclastogenesis. We report that lack of Bcl6 results in significant inhibition of osteoblastogensis in vivo and in vitro and in defects in secondary ossification center formation in vivo. Signal transducer and activator of transcription 1 (Stat1) reportedly attenuates osteoblast differentiation by inhibiting nuclear translocation of runt-related transcription factor 2 (Runx2), which is essential for osteoblast differentiation. We found that lack of Bcl6 resulted in significant elevation of Stat1 mRNA and protein expression in osteoblasts and showed that Stat1 is a direct target of Bcl6 using a chromatin immune-precipitation assay. Mice lacking both Bcl6 and Stat1 (DKO) exhibited significant rescue of bone mass and osteoblastic parameters as well as partial rescue of secondary ossification center formation compared with Bcl6-deficient mice in vivo. Altered osteoblastogenesis in Bcl6-deficient cells was also restored in DKO in vitro. Thus, Bcl6 plays crucial roles in regulating both osteoblast activation and osteoclast inhibition. - Highlights: • Bcl6 is required for osteoblast differentiation. • Bcl6{sup −/−} mice exhibited altered osteoblastogenesis and reduced bone mass in vivo and in vitro. • We identified Stat1 as a direct target of Bcl6 in osteoblasts. • Bcl6 and Stat1 doubly deficient mice exhibited rescued bone phenotypes compared with Bcl6{sup −/−} mice.

  9. Early STAT1 activation after systemic delivery of HSV amplicon vectors suppresses transcription of the vector-encoded transgene.

    PubMed

    Suzuki, Masataka; Chiocca, E Antonio; Saeki, Yoshinaga

    2007-11-01

    The herpes simplex virus (HSV) amplicon vector is a powerful gene delivery vehicle that can accommodate up to 150 kilobase of exogenous DNA. However, amplicon-mediated transgene expression is often transient outside the nervous system. In order to define the role of host immune responses in silencing amplicon-encoded transgenes, we evaluated the kinetics of cytokine-/chemokine-expression after tail-vein injection of a luciferase-encoding amplicon into mice. Type I interferons (IFNs) were induced earliest, within an hour after injection, and several other cytokines/chemokines were subsequently upregulated in the livers of wild-type (WT) mice. When the same experiment was performed in signal transducers and activators of transcription 1 (STAT1)-knockout (KO) mice, the levels of type I IFN expression were significantly lower and chemokine induction was almost non-existent. Importantly, STAT1-KO mice exhibited significantly higher and more sustained luciferase activity than did the WT mice, which is attributable to increased transcriptional activity rather than increased copy numbers of luciferase-encoding vector DNA. Further studies using primary cultured fibroblasts derived from WT and STAT1-KO mice revealed the significance of STAT1 signaling in transcriptional silencing of the amplicon-encoded transgene in vitro. Our results indicate that type I IFNs induced by systemic delivery of HSV amplicon vectors initiate a cascade of immune responses and suppress transgene expression at the transcriptional level by activation of STAT1.

  10. Exploring dual inhibitors for STAT1 and STAT5 receptors utilizing virtual screening and dynamics simulation validation.

    PubMed

    Raj, Utkarsh; Kumar, Himansu; Gupta, Saurabh; Varadwaj, Pritish Kumar

    2016-10-01

    Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors that transduce signals from cytokines and growth factors to the nucleus and thereby regulate the expression of a variety of target genes. Although mutations of STATs have not been reported in human tumors but the activity of several members of the family, such as STAT1 and STAT5, is deregulated in a variety of human carcinoma. STAT1 and STAT5 share a structural similarity with a highly conserved SH2 domain which is responsible for the activation of STAT proteins on interaction with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The purpose of this study is to identify domain-specific dual inhibitors for both STAT1 and STAT5 proteins from a database of natural products and natural product-like compounds comprising of over 90,000 compounds. Virtual screening-based molecular docking was performed in order to find novel natural dual inhibitors. Further, the study was supported by the 50-ns molecular dynamics simulation for receptor-ligand complexes (STAT1-STOCK-1N-69677 and STAT5-STOCK-1N-69677). Analysis of molecular interactions in the SH2 domains of both STAT1 and STAT5 proteins with the ligand revealed few conserved amino acid residues which are responsible to stabilize the ligands within the binding pocket through bonded and non-bonded interactions. This study suggested that compound STOCK-1N-69677 might putatively act as a dual inhibitor of STAT1 and STAT5 receptors, through its binding to the SH2 domain.

  11. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment.

    PubMed

    Mori, Kazumasa; Haraguchi, Shigeki; Hiori, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2015-08-05

    Tumor-associated macrophages (TAMs) are implicated in the growth, invasion and metastasis of various solid tumors. However, the phenotype of TAMs in premalignant lesions of solid tumors has not been clarified. In the present study, we identify the phenotype of TAMs in leukoplakia, an oral premalignant lesion, by immunohistochemical analysis and investigate the involvement of infiltrated T cells that participate in the polarization of TAMs. The subjects included 30 patients with oral leukoplakia and 10 individuals with normal mucosa. Hematoxylin and eosin slides were examined for the histological grades, and immunohistochemical analysis was carried out using antibodies against CD68 (pan-MΦ), CD80 (M1 MΦ), CD163 (M2 MΦ), CD4 (helper T cells: Th), CD8 (cytotoxic T cells), CXCR3, CCR5 (Th1), CCR4 (Th2), signal transducer and activator of transcription (STAT1), phosphorylated STAT1 (pSTAT1) and chemokine CXCL9. The differences in the numbers of positively stained cells among the different histological grades were tested for statistical significance using the Kruskal-Wallis test. Correlations between different types of immune cells were determined using Spearman's rank analysis. An increase in the rate of CD163(+) TAM infiltration was observed in mild and moderate epithelial dysplasia, which positively correlated with the rate of intraepithelial CD4(+) Th cell infiltration. Although CCR4(+) cells rarely infiltrated, CXCR3(+) and CCR5(+) cells were observed in these lesions. Cells positive for STAT1 and chemokine CXCL9, interferon- (IFN)-induced gene products, and pSTAT1 were also observed in the same lesions. Double immunofluorescence staining demonstrated that the cells that were positive for CD163 were also positive for STAT1. CD163(+) TAMs in oral premalignant lesions coexpress CD163 and STAT1, suggesting that the TAMs in oral premalignant lesions possess an M1 phenotype in a Th1-dominated micromilieu.

  12. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation

    PubMed Central

    Iwata, Hiroshi; Goettsch, Claudia; Sharma, Amitabh; Ricchiuto, Piero; Goh, Wilson Wen Bin; Halu, Arda; Yamada, Iwao; Yoshida, Hideo; Hara, Takuya; Wei, Mei; Inoue, Noriyuki; Fukuda, Daiju; Mojcher, Alexander; Mattson, Peter C.; Barabási, Albert-László; Boothby, Mark; Aikawa, Elena; Singh, Sasha A.; Aikawa, Masanori

    2016-01-01

    Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation. PMID:27796300

  13. Prostacyclin inhibits IFN-γ-stimulated cytokine expression by reduced recruitment of p300/CBP to STAT1 in a SOCS-1 independent manner

    PubMed Central

    Strassheim, Derek; Riddle, Suzzette R.; Burke, Danielle L.; Geraci, Mark W; Stenmark, Kurt R.

    2009-01-01

    Increasing evidence indicates that Pulmonary Arterial Hypertension (PAH) is a vascular inflammatory disease. Prostacyclin (PGI2) is widely used to treat PAH and is believed to benefit patients largely through vasodilatory effects. PGI2 is also increasingly believed to have anti-inflammatory effects; including decreasing leukocyte cytokine production, yet few mechanistic details exist to explain how these effects are mediated at the transcriptional level. Since activated monocytes are critical sources of MCP-1 and other cytokines in cardiovascular inflammation, we examined the effects of iloprost on IFN-γ and IL-6 stimulated cytokine production in human monocytes. We found iloprost inhibited IFN-γ and IL-6-induced MCP-1, IL-8, RANTES, and TNF-α production in monocytes indicating wide-ranging anti-inflammatory action. We found that activation of STAT1 was critical for IFN-γ-induced MCP-1 production and demonstrated that iloprost inhibited STAT1 activation by several actions: 1) iloprost inhibited the phosphorylation of STAT1-S727 in the transactivation domain (TAD), thereby reducing recruitment of the histone acetylase and co-activator CBP/p300 to STAT1; 2) iloprost selectively inhibited activation of janus kinase 2 (JAK2), but not JAK1, both responsible for activation STAT1 via phosphorylation of STAT1-Y701, resulting in reduced nuclear recruitment and activation of STAT1; 3) SOCS-1, which normally terminates IFN-γ-signaling, was not involved in iloprost-mediated inhibition of STAT1, indicating divergence from the classical pathway for terminating IFN-γ-signaling. We conclude that PGI2 exerts anti-inflammatory action by inhibiting STAT1 induced cytokine production, in part by targeting the transactivation domain induced recruitment of the histone acetylase CBP/p300. PMID:19915063

  14. Response to interferons and antibacterial innate immunity in the absence of tyrosine-phosphorylated STAT1.

    PubMed

    Majoros, Andrea; Platanitis, Ekaterini; Szappanos, Daniel; Cheon, HyeonJoo; Vogl, Claus; Shukla, Priyank; Stark, George R; Sexl, Veronika; Schreiber, Robert; Schindler, Christian; Müller, Mathias; Decker, Thomas

    2016-03-01

    Signal transducer and activator of transcription 1 (STAT1) plays a pivotal role in the innate immune system by directing the transcriptional response to interferons (IFNs). STAT1 is activated by Janus kinase (JAK)-mediated phosphorylation of Y701. To determine whether STAT1 contributes to cellular responses without this phosphorylation event, we generated mice with Y701 mutated to a phenylalanine (Stat1(Y701F)). We show that heterozygous mice do not exhibit a dominant-negative phenotype. Homozygous Stat1(Y701F) mice show a profound reduction in Stat1 expression, highlighting an important role for basal IFN-dependent signaling. The rapid transcriptional response to type I IFN (IFN-I) and type II IFN (IFNγ) was absent in Stat1(Y701F) cells. Intriguingly, STAT1Y701F suppresses the delayed expression of IFN-I-stimulated genes (ISG) observed in Stat1(-/-) cells, mediated by the STAT2/IRF9 complex. Thus, Stat1(Y701F) macrophages are more susceptible to Legionella pneumophila infection than Stat1(-/-) macrophages. Listeria monocytogenes grew less robustly in Stat1(Y701F) macrophages and mice compared to Stat1(-/-) counterparts, but STAT1Y701F is not sufficient to rescue the animals. Our studies are consistent with a potential contribution of Y701-unphosphorylated STAT1 to innate antibacterial immunity. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Molecular characterization of RIG-I, STAT-1 and IFN-beta in the horseshoe bat.

    PubMed

    Li, Jinju; Zhang, Guangxu; Cheng, Dalong; Ren, Hua; Qian, Min; Du, Bing

    2015-04-25

    Wild Chinese horseshoe bats have been proven to be natural reservoirs of SARS-like coronaviruses. However, the molecular characterization of key proteins in bats still needs to be explored further. In this study, we used cloning and bioinformatics to analyze the sequence of RIG-I, STAT-1 and IFN-β in the immortalized cell lines from Rhinolophus affinis and Rhinolophus sinicus. Then, we treated different bat cells, mouse embryonic fibroblasts (MEF) and splenocytes with polyinosinic-polycytidylic acid (polyI:C) and vesicular stomatitis virus (VSV) to assess and compare antiviral immune responses between bats and mice. Our results demonstrated that bat RIG-I, STAT-1 and IFN-β showed close homology with human, mouse, pig and rhesus monkey. RIG-I and STAT-1 were both highly expressed in bat spleen. Furthermore, IFN-β was induced by polyI:C and VSV in both bat and mouse cells. These findings have provided new insight into the potential characteristics of the bat innate immune system against viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Impaired Chromatin Remodelling at STAT1-Regulated Promoters Leads to Global Unresponsiveness of Toxoplasma gondii-Infected Macrophages to IFN-γ

    PubMed Central

    Lang, Christine; Hildebrandt, Anke; Brand, Franziska; Opitz, Lennart; Dihazi, Hassan; Lüder, Carsten G. K.

    2012-01-01

    Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites' replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are

  17. Impaired response to interferon-γ in activated macrophages due to tyrosine nitration of STAT1 by endogenous nitric oxide

    PubMed Central

    Llovera, Marta; Pearson, Jeremy D; Moreno, Carlos; Riveros-Moreno, Valentina

    2001-01-01

    Inducible NO synthase (iNOS) expression and activity were measured in the mouse macrophage cell line J774 after exposure to bacterial lipopolysaccharide (LPS) with or without interferon-γ (IFN-γ). Inhibition of NOS activity by concomitant NG-monomethyl-L-arginine (L-NMMA) treatment further increased iNOS protein levels, with a substantial increase in iNOS half-life. Western blotting and ELISA demonstrated that several cell proteins were tyrosine-nitrated when iNOS activity was high. Rapid IFN-γ-induced phosphorylation of STAT1 was reduced by about 40% when cells were pretreated to induce iNOS, unless L-NMMA was present during the pretreatment period. 2D gel electrophoresis demonstrated the presence of nitrotyrosine in STAT1 after iNOS induction, and confirmed the reduction in phospho-STAT1 on subsequent stimulation with IFN-γ for 15 min and its partial restoration when L-NMMA was present during the pretreatment period. We did not detect tyrosine nitration of the upstream kinase JAK2 in LPS+IFN-γ pretreated cells, but JAK2 activity was also impaired, and was partially restored by concomitant L-NMMA pretreatment. We conclude that endogenous production of NO induces feedback inhibition of signalling pathways activated by IFN-γ, at least in part by nitrating tyrosine residues in STAT1 which prevents phosphorylation. PMID:11159690

  18. A STAT-1 Knockout Mouse Model for Machupo Virus Pathogenesis

    DTIC Science & Technology

    2011-06-14

    animals. The lesions were most prominent in and around pancreatic lobes but the inflammation did not appear to involve the pancreas in day 5 animals...however all animals from day 7 termination had mild to marked pancreatitis . We also investigated the suitability of the MACV STAT-1 knockout model...lymph nodes, spleen and thymus, and pancreatitis (Figure 4). These findings have also been reported to varying degrees in other MACV models. Lymphoid

  19. SAHA down-regulates the expression of indoleamine 2,3-dioxygenase via inhibition of the JAK/STAT1 signaling pathway in gallbladder carcinoma cells.

    PubMed

    Zhang, Peng; Jiang, Guanmin; Gao, Jiao; Li, Lingling; Du, Jun; Jiao, Xingyuan

    2013-01-01

    The aim of the present study was to investigate the role of the JAK/STAT1 signaling pathway in suberoylanilide hydroxamic acid (SAHA)-mediated down-regulation of indoleamine 2,3-dioxygenase (IDO) in gallbladder carcinoma cells. We treated SGC-996 gallbladder carcinoma cells with IFN-γ and SAHA. Western blotting was used to detect the expression of IDO, signal transducer and activator of transcription 1 (STAT1) phosphorylation and interferon regulatory factor genes-1 (IRF-1). Confocal microscopy analysis was used to detect STAT1 translocation. Transient transfection and reporter gene assay was used for detecting the activation of γ-activated sites (GAS) and interferon-stimulated response elements (ISRE). The results revealed that IDO was expressed in SGC-996 cells in a dose- and time-dependent manner when stimulated with IFN-γ and SAHA down-regulated the expression of IDO induced by IFN-γ in a dose-dependent manner. SAHA blocked the expression of IRF-1 induced by IFN-γ and SAHA inhibited IFN-γ-induced STAT1 phosphorylation and nuclear translocation. In addition, SAHA down-regulated IFN-γ-induced activation of GAS and ISRE. In conclusion, SAHA down-regulated IDO expression via inhibition of the activation of members of the JAK/STAT1 signaling pathway. Therefore, regulation of the JAK/STAT1 signaling pathway may provide a new gallbladder carcinoma immunotherapeutic strategy to break tumor immune tolerance.

  20. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea

    PubMed Central

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P.

    2016-01-01

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser727 (but not Tyr701) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways. R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  1. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea.

    PubMed

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P; Ramkumar, Vickram

    2016-04-06

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  2. Interaction of mumps virus V protein variants with STAT1-STAT2 heterodimer: experimental and theoretical studies

    PubMed Central

    2010-01-01

    Background Mumps virus V protein has the ability to inhibit the interferon-mediated antiviral response by inducing degradation of STAT proteins. Two virus variants purified from Urabe AM9 mumps virus vaccine differ in their replication and transcription efficiency in cells primed with interferon. Virus susceptibility to IFN was associated with insertion of a non-coded glycine at position 156 in the V protein (VGly) of one virus variant, whereas resistance to IFN was associated with preservation of wild-type phenotype in the V protein (VWT) of the other variant. Results VWT and VGly variants of mumps virus were cloned and sequenced from Urabe AM9 vaccine strain. VGly differs from VWT protein because it possesses an amino acid change Gln103Pro (Pro103) and the Gly156 insertion. The effect of V protein variants on components of the interferon-stimulated gene factor 3 (ISGF3), STAT1 and STAT2 proteins were experimentally tested in cervical carcinoma cell lines. Expression of VWT protein decreased STAT1 phosphorylation, whereas VGly had no inhibitory effect on either STAT1 or STAT2 phosphorylation. For theoretical analysis of the interaction between V proteins and STAT proteins, 3D structural models of VWT and VGly were predicted by comparing with simian virus 5 (SV5) V protein structure in complex with STAT1-STAT2 heterodimer. In silico analysis showed that VWT-STAT1-STAT2 complex occurs through the V protein Trp-motif (W174, W178, W189) and Glu95 residue close to the Arg409 and Lys415 of the nuclear localization signal (NLS) of STAT2, leaving exposed STAT1 Lys residues (K85, K87, K296, K413, K525, K679, K685), which are susceptible to proteasome degradation. In contrast, the interaction between VGly and STAT1-STAT2 heterodimer occurs in a region far from the NLS of STAT2 without blocking of Lys residues in both STAT1 and STAT2. Conclusions Our results suggest that VWT protein of Urabe AM9 strain of mumps virus may be more efficient than VGly to inactivate both the IFN

  3. STAT1 Pathway Mediates Amplification of Metastatic Potential and Resistance to Therapy

    PubMed Central

    Pitroda, Sean P.; Golden, Daniel W.; Bhayani, Mihir; Shao, Michael Y.; Darga, Thomas E.; Beveridge, Mara G.; Sood, Ravi F.; Sutton, Harold G.; Beckett, Michael A.; Mauceri, Helena J.; Posner, Mitchell C.; Weichselbaum, Ralph R.

    2009-01-01

    Background Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. Methodology/Principal Findings Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1H genotype) are selected by the lung microenvironment. STAT1H tumor cells also demonstrate resistance to IFN-gamma (IFNγ), ionizing radiation (IR), and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1L genotype). Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. Conclusions Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization. PMID:19503789

  4. Small-molecule inhibitors of cytokine-mediated STAT1 signal transduction in β-cells with improved aqueous solubility.

    PubMed

    Scully, Stephen S; Tang, Alicia J; Lundh, Morten; Mosher, Carrie M; Perkins, Kedar M; Wagner, Bridget K

    2013-05-23

    We previously reported the discovery of BRD0476 (1), a small molecule generated by diversity-oriented synthesis that suppresses cytokine-induced β-cell apoptosis. Herein, we report the synthesis and biological evaluation of 1 and analogues with improved aqueous solubility. By replacing naphthyl with quinoline moieties, we prepared active analogues with up to a 1400-fold increase in solubility from 1. In addition, we demonstrated that 1 and analogues inhibit STAT1 signal transduction induced by IFN-γ.

  5. STAT-1 expression is regulated by IGFBP-3 in malignant glioma cells and is a strong predictor of poor survival in patients with glioblastoma.

    PubMed

    Thota, Balaram; Arimappamagan, Arivazhagan; Kandavel, Thennarasu; Shastry, Arun H; Pandey, Paritosh; Chandramouli, Bangalore Ashwathnarayanarao; Hegde, Alangar Sathyaranjandas; Kondaiah, Paturu; Santosh, Vani

    2014-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with

  6. VP8, the Major Tegument Protein of Bovine Herpesvirus 1, Interacts with Cellular STAT1 and Inhibits Interferon Beta Signaling

    PubMed Central

    Afroz, Sharmin; Brownlie, Robert; Fodje, Michel

    2016-01-01

    ABSTRACT The UL47 gene product, VP8, is the most abundant tegument protein of bovine herpesvirus 1 (BoHV-1). Previously, we demonstrated that a UL47-deleted BoHV-1 mutant (BoHV1-ΔUL47) exhibits 100-fold-reduced virulence in vitro and is avirulent in vivo. In this study, we demonstrated that VP8 expression or BoHV-1 infection inhibits interferon beta (IFN-β) signaling by using an IFN-α/β-responsive plasmid in a luciferase assay. As transducer and activator of transcription (STAT) is an essential component in the IFN-signaling pathways, the effect of VP8 on STAT was investigated. An interaction between VP8 and STAT1 was established by coimmunoprecipitation assays in both VP8-transfected and BoHV-1-infected cells. Two domains of VP8, amino acids 259 to 482 and 632 to 686, were found to be responsible for its interaction with STAT1. The expression of VP8 did not induce STAT1 ubiquitination or degradation. Moreover, VP8 did not reduce STAT1 tyrosine phosphorylation to downregulate IFN-β signaling. However, the expression of VP8 or a version of VP8 (amino acids 219 to 741) that contains the STAT1-interacting domains but not the nuclear localization signal prevented nuclear accumulation of STAT1. Inhibition of nuclear accumulation of STAT1 also occurred during BoHV-1 infection, while nuclear translocation of STAT1 was observed in BoHV1-ΔUL47-infected cells. During BoHV-1 infection, VP8 was detected in the cytoplasm at 2 h postinfection without any de novo protein synthesis, at which time STAT1 was already retained in the cytoplasm. These results suggest that viral VP8 downregulates IFN-β signaling early during infection, thus playing a role in overcoming the antiviral response of BoHV-1-infected cells. IMPORTANCE Since VP8 is the most abundant protein in BoHV-1 virions and thus may be released in large amounts into the host cell immediately upon infection, we proposed that it might have a function in the establishment of conditions suitable for viral replication

  7. STAT1 is Critical for Apoptosis in Macrophages Subjected to Endoplasmic Reticulum Stress in Vitro and in Advanced Atherosclerotic Lesions in Vivo

    PubMed Central

    Lim, Wah-Seng; Timmins, Jenelle M.; Seimon, Tracie A.; Sadler, Anthony; Kolodgie, Frank D.; Virmani, Renu; Tabas, Ira

    2008-01-01

    Background Macrophage apoptosis is a critical process in the formation of necrotic cores in vulnerable atherosclerotic plaques. In-vitro and in-vivo data suggest that macrophage apoptosis in advanced atheromata may be triggered by a combination of endoplasmic reticulum (ER) stress and engagement of the type A scavenger receptor (SRA), which together induce death through a rise in cytosolic calcium and activation of toll-like receptor-4 (TLR4). Methods and Results Using both primary peritoneal macrophages and studies in advanced atheromata in vivo, we introduce Signal Transducer and Activator of Transcription-1 (STAT1) as a critical and necessary component of ER stress/SRA-induced macrophage apoptosis. We show that STAT1 is serine-phosphorylated in macrophages subjected to SRA ligands and ER stress in a manner requiring cytosolic calcium, calcium/calmodulin-dependent protein kinase II (CaMKII), and TLR4. Remarkably, apoptosis was inhibited by ~80–90% (p < 0.05) by STAT1 deficiency or CaMKII inhibition. In vivo, nuclear Ser-P-STAT1 was found in macrophage-rich regions of advanced murine and human atheromata. Most importantly, macrophage apoptosis was decreased by 61% (p = 0.034) and plaque necrosis by 34% (p = 0.02) in the plaques of fat-fed Ldlr−/− mice transplanted with Stat1−/− bone marrow. Conclusions STAT1 is critical for ER stress/SRA-induced apoptosis in primary tissue macrophages and in macrophage apoptosis in advanced atheromata. These findings suggest a potentially important role for STAT1-mediated macrophage apoptosis in atherosclerotic plaque progression. PMID:18227389

  8. Salinomycin Abolished STAT3 and STAT1 Interactions and Reduced Telomerase Activity in Colorectal Cancer Cells.

    PubMed

    Chung, Seyung S; Adekoya, Debbie; Enenmoh, Ikechukwu; Clarke, Orette; Wang, Piwen; Sarkyssian, Marianna; Wu, Yong; Vadgama, Jaydutt V

    2017-02-01

    Colorectal cancer is the third leading cause of cancer-related mortality in most developed countries. This mortality is mainly due to the metastatic progression to the liver with frequent recurrence. Colorectal cancer remains a therapeutic challenge and this has intensified the search for new drug targets. In an effort to establish a novel targeted-therapy, we studied the molecular mechanisms of cancer stem cell inhibitor salinomycin. Co-immunoprecipitation was performed to examine STAT3-STAT1 protein interactions. Telomerase activity was measured by polymerase chain reaction (PCR) and ELISA assays. Apoptosis and cell stress arrays were analyzed to identify key proteins responding to salinomycin treatments. IL-6 and TNF-α induced STAT3 and STAT1 interactions, however the interactions were abolished by salinomycin challenge. Salinomycin reduced cancer stem cell phenotype and decreased telomerase activity of colorectal cancer cells. Our work uncovers a new mechanism through which salinomycin inhibits cancer stemness suggesting a novel targeted-therapy for metastatic colorectal cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. STING Negatively Regulates Double-Stranded DNA-Activated JAK1-STAT1 Signaling via SHP-1/2 in B Cells.

    PubMed

    Dong, Guanjun; You, Ming; Ding, Liang; Fan, Hongye; Liu, Fei; Ren, Deshan; Hou, Yayi

    2015-05-01

    Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders.

  10. IL-4 confers resistance to IL-27-mediated suppression on CD4+ T cells by impairing STAT1 signaling

    PubMed Central

    Chen, Zhihong; Wang, Shanze; Erekosima, Nkiruka; Li, Yapeng; Hong, Jessie; Qi, Xiaopeng; Merkel, Patricia; Nagabhushanam, Vijaya; Choo, Eugene; Katial, Rohit; Alam, Rafeul; Trikha, Anita; Chu, HongWei; Zhuang, Yonghua; Jin, Meiling; Bai, Chunxue; Huang, Hua

    2013-01-01

    Background Th2 cells play a critical role in the pathogenesis of allergic asthma. Established Th2 cells have been shown to resist reprogramming into Th1 cells. The inherent stability of Th2 cells poses a significant barrier to treating allergic diseases. Objective We sought to understand the mechanisms by which CD4+ T cells from asthmatic patients resist the IL-27-mediated inhibition. Methods We isolated and cultured CD4+ T cells from both healthy individuals and allergic asthmatic patients in order to test whether IL-27 can inhibit IL-4 production by the cultured CD4+ T cells using ELISA. Culturing conditions that resulted in resistance to IL-27 were determined using both murine and human CD4+ T cell culture systems. STAT1 phosphorylation was analyzed by Western blot and flow cytometry. Suppressor of cytokine signaling (Socs) mRNA expression was measured by quantitative PCR. The small interfering RNA method was used to knockdown the expression of Socs3 mRNA. Main Results We demonstrated that CD4+ T cells from asthmatic patients resisted the suppression of IL-4 production mediated by IL-27. We observed that repeated exposure to Th2-inducing conditions rendered healthy human CD4+ T cells resistant to IL-27-mediated inhibition. Using an in vitro murine culture system, we further demonstrated that repeated or higher doses of IL-4 stimulation, but not IL-2 stimulation, upregulated Socs3 mRNA expression and impaired IL-27-induced STAT1 phosphorylation. The Knockdown of Socs3 mRNA expression restored IL-27-induced STAT1 phosphorylation and IL-27-mediated inhibition of IL-4-production. Conclusions Our findings demonstrate that differentiated Th2 cells can resist IL-27-induced reprogramming toward Th1 cells by downregulating STAT1 phosphorylation and likely explain why the CD4+ T cells of asthmatic patients are resistant to IL-27-mediated inhibition. PMID:23958647

  11. Involvement of the transcription factor STAT1 in the regulation of porcine ovarian granulosa cell functions treated and not treated with ghrelin.

    PubMed

    Benco, A; Sirotkin, A V; Vasícek, D; Pavlová, S; Zemanová, J; Kotwica, J; Darlak, K; Valenzuela, F

    2009-09-01

    The aim of our in vitro experiments was to study the role of the transcription factor STAT1 and the hormone ghrelin in controlling porcine ovarian function. The effects of treatment with ghrelin (0, 1, 10, 100 ng/ml), transfection-induced overexpression of transcription factor STAT1, and their combination on apoptosis (expression of apoptosis-related peptides caspase-3, BAX and anti-apoptotic peptide BCL2), proliferation (expression of proliferating cell nuclear antigene PCNA, proliferation-associated protein kinase MAPK/ERK1,2) and release of the hormones progesterone (P(4)), prostaglandin F (PGF) and oxytocin (OXT) in cultured porcine ovarian granulosa cells was evaluated using RIA, immunocytochemistry and SDS-PAGE-western immunoblotting. It was found that ghrelin, when given alone, increased the expression of proliferation-associated PCNA and MAPK/ERK1,2, decreased the accumulation of apoptosis-related substances caspase-3, BAX, BCL2, decreased P(4), and increased PGF and OXT release. Ghrelin tended to promote accumulation of STAT1 in both control and transfected cells, although in transfected cells ghrelin at 1 ng/ml decreased STAT1 accumulation. Transfection of porcine granulosa cells by a gene construct encoding STAT1 promoted the expression of STAT1 and apoptosis-related-BAX but the expression of BCL2 did not, and decreased the accumulation of proliferation-associated MAPK/ERK1,2 but not that of PCNA. It also promoted PGF and OXT but not P(4) release. Overexpression of STAT1 reversed the effect of ghrelin on STAT1, PCNA, PGF, OXT (from stimulatory to inhibitory), BCL2, P(4) (from inhibitory to stimulatory), prevented ghrelin effect on caspase-3 and BAX, but did not affect ghrelin's effect on MAPK/ERK1,2 expression. These results suggest that ghrelin directly affects porcine ovarian cells function - stimulates proliferation, inhibits apoptosis and affects secretory activity. Furthermore, they demonstrated the involvement of the transcription factor STAT1 in

  12. A Novel Heterozygous Mutation in the STAT1 SH2 Domain Causes Chronic Mucocutaneous Candidiasis, Atypically Diverse Infections, Autoimmunity, and Impaired Cytokine Regulation

    PubMed Central

    Meesilpavikkai, Kornvalee; Dik, Willem A.; Schrijver, Benjamin; Nagtzaam, Nicole M. A.; van Rijswijk, Angelique; Driessen, Gertjan J.; van der Spek, Peter J.; van Hagen, P. Martin; Dalm, Virgil A. S. H.

    2017-01-01

    Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency characterized by persistent or recurrent skin and mucosal surface infections with Candida species. Different gene mutations leading to CMC have been identified. These include various heterozygous gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) that are not only associated with infections but also with autoimmune manifestations. Recently, two STAT1 GOF mutations involving the Src homology 2 (SH2) domain have been reported, while so far, over 50 mutations have been described mainly in the coiled coil and the DNA-binding domains. Here, we present two members of a Dutch family with a novel STAT1 mutation located in the SH2 domain. T lymphocytes of these patients revealed STAT1 hyperphosphorylation and higher expression of STAT1 target genes. The clinical picture of CMC in our patients could be explained by diminished production of interleukin (IL)-17 and IL-22, cytokines important in the protection against fungal infections. PMID:28348565

  13. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent.

    PubMed

    Chen, Jane Q; Mori, Hidetoshi; Cardiff, Robert D; Trott, Josephine F; Hovey, Russell C; Hubbard, Neil E; Engelberg, Jesse A; Tepper, Clifford G; Willis, Brandon J; Khan, Imran H; Ravindran, Resmi K; Chan, Szeman R; Schreiber, Robert D; Borowsky, Alexander D

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1(tm1Rds) homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.

  14. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  15. Molecular cloning and expression analysis of the STAT1 gene in the water buffalo (Bubalus bubalis).

    PubMed

    Deng, Tingxian; Pang, Chunying; Zhu, Peng; Liao, Biyun; Zhang, Ming; Yang, Bingzhuang; Liang, Xianwei

    2015-01-01

    Signal transducer and activator of transcription 1 (STAT1) is a critical component of the transcription factor complex in the interferon (IFN) signaling pathways. Of the seven STAT isoforms, STAT1 is a key mediator of type I and type III IFN signaling, but limited information is available for the STAT genes in the water buffalo. Here, we amplified and identified the complete coding sequence (CDS) of the buffalo STAT1 gene by using reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis indicated that the buffalo STAT1 gene length size was 3437 bp, containing an open reading frame (ORF) of 2244 bp that encoded 747 amino acids for the first time. The buffalo STAT1 CDS showed 99, 98, 89, 93, 86, 85, and 87% identity with that of Bos taurus, Ovis aries, Homo sapiens, Sus scrofa, Rattus norvegicus, Mus musculus, and Capra hircus. The phylogenetic analyses revealed that the nearest relationship existed between the water buffalo and B. taurus. The STAT1 gene was ubiquitously expressed in 11 buffalo tissues by real-time PCR, whereas STAT1 was expressed at higher levels in the lymph. The STAT1 gene contained five targeted microRNA sequences compared with the B. taurus by the miRBase software that provide a fundamental for identifying the STAT1 gene function.

  16. Acetylcholine leads to signal transducer and activator of transcription 1 (STAT-1) mediated oxidative/nitrosative stress in human bronchial epithelial cell line.

    PubMed

    Profita, Mirella; Albano, Giusy Daniela; Montalbano, Angela Marina; Di Sano, Caterina; Anzalone, Giulia; Gagliardo, Rosalia; Riccobono, Loredana; Bonanno, Anna; Siena, Liboria; Pieper, Michael Paul; Gjomarkaj, Mark

    2013-12-01

    The induction of nitric oxide synthase (iNOS) expression via the signal transducer and activator of transcription 1 (STAT-1) is involved in the mechanism of oxidative/nitrosative stress. We investigated whether acetylcholine (ACh) generates oxidative/nitrosative stress in bronchial epithelial cells during airway inflammation of COPD and evaluated the effects of Tiotropium, a once-daily antimuscarinic drug, and Olodaterol, a long-acting β2-agonist on these mechanisms. Human bronchial epithelial cells (16-HBE) were stimulated (4h, 37°C) with induced sputum supernatants (ISSs) from healthy controls (HC) (n=10), healthy smokers (HS) (n=10) or COPD patients (n=10), as well as with ACh (from 1μM to 100μM). The activation of STAT-1 pathway (STAT-1Ser727 and STAT-1Tyr701) and iNOS was evaluated in the cell lysates by Western blot analysis as well as nitrotyrosine levels by ELISA, while reactive oxygen species (ROS) were evaluated by flow cytometry. Finally, the effect of Tiotropium (Spiriva®) (100nM), alone or in combination with Olodaterol (1nM), was tested in this model. ISSs from COPD patients significantly increased the phosphorylation of STAT-1Ser727 and STAT-1Tyr701, iNOS and ROS/Nitrotyrosine when compared with ISSs from HC or HS subjects in 16-HBE cells. Furthermore, synthetic ACh increased all these parameters in stimulated 16HBE when compared with untreated cells. Tiotropium and Olodaterol reduced the oxidative/nitrosative stress generated by ACh and ISSs. We concluded that ACh mediated the oxidative/nitrosative stress involving the STAT-1 pathway activation in human bronchial epithelial cells during COPD. β2-Long acting and antimuscarinic drugs, normally used in the treatment of COPD as bronchodilator, might be able to control these cellular events. © 2013 Elsevier B.V. All rights reserved.

  17. Defective control of vitamin D receptor-mediated epithelial STAT1 signalling predisposes to severe respiratory syncytial virus bronchiolitis.

    PubMed

    Stoppelenburg, Arie Jan; von Hegedus, Johannes Hendrick; Huis in't Veld, Ron; Bont, Louis; Boes, Marianne

    2014-01-01

    Respiratory syncytial virus (RSV) infection causes bronchiolitis in infants with seasonal frequency, for which vitamin D deficiency and a well-described polymorphism in the vitamin D receptor (VDR) FokI are important risk factors. Recent studies suggest that vitamin D regulates immune pathways in airway epithelial cells during RSV infection. It is not understood why the VDR FokI polymorphism predisposes to severe RSV bronchiolitis. We investigated how the VDR FokI polymorphism regulates the epithelial response to RSV infection. To this end, we over-expressed the normal and FokI VDR variants in A549 airway epithelial cells. Vitamin D restrained the expression of both NFκB- and STAT1-induced antiviral genes. However, while NFκB control by vitamin D remained intact, both RSV-induced phosphorylation of STAT1 and expression of its downstream targets, IRF1 and IRF7, escaped vitamin D control in FokI epithelial cells. The poor capacity of vitamin D to regulate IRF1 in FokI VDR-expressing cells was recapitulated using blood samples from normal and FokI VDR-genotyped healthy donors. Hence, we provide mechanistic insight that the FokI VDR polymorphism renders STAT1-mediated antiviral immune reactions to RSV infection non-responsive to vitamin D control, resulting in enhanced immunopathology and exacerbated RSV bronchiolitis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation.

    PubMed

    Rodriguez, Jason J; Parisien, Jean-Patrick; Horvath, Curt M

    2002-11-01

    Characterization of recent outbreaks of fatal encephalitis in southeast Asia identified the causative agent to be a previously unrecognized enveloped negative-strand RNA virus of the Paramyxoviridae family, Nipah virus. One feature linking Nipah virus to this family is a conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. The V proteins of other paramyxovirus species have been linked with evasion of host cell interferon (IFN) signal transduction and subsequent antiviral responses by inducing proteasomal degradation of the IFN-responsive transcription factors, STAT1 or STAT2. Here we demonstrate that Nipah virus V protein escapes IFN by a distinct mechanism involving direct inhibition of STAT protein function. Nipah virus V protein differs from other paramyxovirus V proteins in its subcellular distribution but not in its ability to inhibit cellular IFN responses. Nipah virus V protein does not induce STAT degradation but instead inhibits IFN responses by forming high-molecular-weight complexes with both STAT1 and STAT2. We demonstrate that Nipah virus V protein accumulates in the cytoplasm by a Crm1-dependent mechanism, alters the STAT protein subcellular distribution in the steady state, and prevents IFN-stimulated STAT redistribution. Consistent with the formation of complexes, STAT protein tyrosine phosphorylation is inhibited in cells expressing the Nipah virus V protein. As a result, Nipah virus V protein efficiently prevents STAT1 and STAT2 nuclear translocation in response to IFN, inhibiting cellular responses to both IFN-alpha and IFN-gamma.

  19. Tau Induces Cooperative Taxol Binding to Microtubules

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Santangelo, Christian; Victoria, Makrides; Fygenson, Deborah

    2004-03-01

    Taxol and tau are two ligands which stabilize the microtubule (MT) lattice. Taxol is an anti-mitotic drug that binds β tubulin in the MT interior. Tau is a MT-associated protein that binds both α and β tubulin on the MT exterior. Both taxol and tau reduce MT dynamics and promote tubulin polymerization. Tau alone also acts as a buttress to bundle, stiffen, and space MTs. A structural study recently suggested that taxol and tau may interact by binding to the same site. Using fluorescence recovery after photobleaching, we find that tau induces taxol to bind MTs cooperatively depending on the tau concentration. We develop a model that correctly fits the data in the absence of tau and yields a measure of taxol cooperativity when tau is present.

  20. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Stat1.

    PubMed

    Kunigal, Sateesh; Kusch, Angelika; Tkachuk, Natalia; Tkachuk, Sergey; Jerke, Uwe; Haller, Hermann; Dumler, Inna

    2003-12-15

    After vascular injury, a remodeling process occurs that features leukocyte migration and infiltration. Loss of endothelial integrity allows the leukocytes to interact with vascular smooth muscle cells (VSMCs) and to elicit "marching orders"; however, the signaling processes are poorly understood. We found that human monocytes inhibit VSMC proliferation and induce a migratory potential. The monocytes signal the VSMCs through the urokinase-type plasminogen activator (uPA). The VSMC uPA receptor (uPAR) receives the signal and activates the transcription factor Stat1 that, in turn, mediates the antiproliferative effects. These results provide the first evidence that monocytes signal VSMCs by mechanisms involving the fibrinolytic system, and they imply an important link between the uPA/uPAR-related signaling machinery and human vascular disease.

  1. Characterization of phosphopeptide motifs specific for the Src homology 2 domains of signal transducer and activator of transcription 1 (STAT1) and STAT3.

    PubMed

    Wiederkehr-Adam, Michèle; Ernst, Philipp; Müller, Kurt; Bieck, Elke; Gombert, Frank O; Ottl, Johannes; Graff, Patrick; Grossmüller, Fred; Heim, Markus H

    2003-05-02

    Signal transducers and activators of transcription (STAT) 1 and STAT3 are activated by overlapping but distinct sets of cytokines. STATs are recruited to the different cytokine receptors through their Src homology (SH) 2 domains that make highly specific interactions with phosphotyrosine-docking sites on the receptors. We used a degenerate phosphopeptide library synthesized on 35-microm TentaGel beads and fluorescence-activated bead sorting to determine the sequence specificity of the peptide-binding sites of the SH2 domains of STAT1 and STAT3. The large bead library allowed not only peptide sequencing of pools of beads but also of single beads. The method was validated through surface plasmon resonance measurements of the affinities of different peptides to the STAT SH2 domains. Furthermore, when selected peptides were attached to a truncated erythropoietin receptor and stably expressed in DA3 cells, activation of STAT1 or STAT3 could be achieved by stimulation with erythropoietin. The combined analysis of pool sequencing, the individual peptide sequences, and plasmon resonance measurements allowed the definition of SH2 domain binding motifs. STAT1 preferentially binds peptides with the motif phosphotyrosine-(aspartic acid/glutamic acid)-(proline/arginine)-(arginine/proline/glutamine), whereby a negatively charged amino acid at +1 excludes a proline at +2 and vice versa. STAT3 preferentially binds peptides with the motif phosphotyrosine-(basic or hydrophobic)-(proline or basic)-glutamine. For both STAT1 and STAT3, specific high affinity phosphopeptides were identified that can be used for the design of inhibitory molecules.

  2. Glucolipotoxicity initiates pancreatic β-cell death through TNFR5/CD40-mediated STAT1 and NF-κB activation

    PubMed Central

    Bagnati, Marta; Ogunkolade, Babatunji W; Marshall, Catriona; Tucci, Carmen; Hanna, Katie; Jones, Tania A; Bugliani, Marco; Nedjai, Belinda; Caton, Paul W; Kieswich, Julius; Yaqoob, Muhammed M; Ball, Graham R; Marchetti, Piero; Hitman, Graham A; Turner, Mark D

    2016-01-01

    Type 2 diabetes is a chronic metabolic disorder, where failure to maintain normal glucose homoeostasis is associated with, and exacerbated by, obesity and the concomitant-elevated free fatty acid concentrations typically found in these patients. Hyperglycaemia and hyperlipidaemia together contribute to a decline in insulin-producing β-cell mass through activation of the transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-1. There are however a large number of molecules potentially able to modulate NF-κB and STAT1 activity, and the mechanism(s) by which glucolipotoxicity initially induces NF-κB and STAT1 activation is currently poorly defined. Using high-density microarray analysis of the β-cell transcritptome, we have identified those genes and proteins most sensitive to glucose and fatty acid environment. Our data show that of those potentially able to activate STAT1 or NF-κB pathways, tumour necrosis factor receptor (TNFR)-5 is the most highly upregulated by glucolipotoxicity. Importantly, our data also show that the physiological ligand for TNFR5, CD40L, elicits NF-κB activity in β-cells, whereas selective knockdown of TNFR5 ameliorates glucolipotoxic induction of STAT1 expression and NF-κB activity. This data indicate for the first time that TNFR5 signalling has a major role in triggering glucolipotoxic islet cell death. PMID:27512950

  3. The measles virus phosphoprotein interacts with the linker domain of STAT1

    SciTech Connect

    Devaux, Patricia Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  4. The non-pathogenic Henipavirus Cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2.

    PubMed

    Lieu, Kim G; Marsh, Glenn A; Wang, Lin-Fa; Netter, Hans J

    2015-12-01

    Immune evasion by the lethal henipaviruses, Hendra (HeV) and Nipah virus, is mediated by its interferon (IFN) antagonist P gene products, phosphoprotein (P), and the related V and W proteins, which can target the signal transducer and activator of transcription 1 (STAT1) and STAT2 proteins to inhibit IFN/STAT signaling. However, it is not clear if the recently identified non-pathogenic Henipavirus, Cedar paramyxovirus (CedPV), is also able to antagonize the STAT proteins. We performed comparative studies between the HeV P gene products (P/V/W) and CedPV-P (CedPV does not encode V or W) and demonstrate that differences exist in their ability to engage the STAT proteins using immunoprecipitation and quantitative confocal microscopic analysis. In contrast to HeV-P gene encoded proteins, the ability of CedPV-P to interact with and relocalize STAT1 or STAT2 is compromised, correlating with a reduced capacity to inhibit the mRNA synthesis of IFN-inducible gene MxA. Furthermore, infection studies with HeV and CedPV demonstrate that HeV is more potent than CedPV in inhibiting the IFN-α-mediated nuclear accumulation of STAT1. These results strongly suggest that the ability of CedPV to counteract the IFN/STAT response is compromised compared to HeV.

  5. Taenia crassiceps infection and its excreted/secreted products inhibit STAT1 activation in response to IFN-γ.

    PubMed

    Becerra-Díaz, Mireya; Terrazas, Luis I

    2014-08-01

    It is well understood that helminth infections modulate the immune responses of their hosts but the mechanisms involved in this modulation are not fully known. Macrophages and dendritic cells appear to be consistently affected during this type of infection and are common target cells for helminth-derived molecules. In this report, we show that macrophages obtained from chronically Taenia crassiceps-infected mice displayed an impaired response to recombinant murine IFN-γ, but not to recombinant murine IL-4, as measured based on the phosphorylation of STAT1 and STAT6, respectively. These macrophages expressed high levels of SOCS3. However, the inhibition of phosphatase activity by orthovanadate restored the IFN-γ response of these macrophages by increasing STAT1 phosphorylation without affecting SOCS3 expression. Therefore, we aimed to identify the phosphatases associated with IFN-γ signaling inhibition and found that macrophages from T. crassiceps-infected mice displayed enhanced SHP-1 expression. Interestingly, the exposure of naïve macrophages to T. crassiceps excreted/secreted products similarly interfered with IFN-γ-induced STAT1 phosphorylation. Moreover, macrophages exposed to T. crassiceps excreted/secreted products expressed high levels of SOCS3 as well as SHP-1. Strikingly, human peripheral blood mononuclear cells that were exposed to T. crassiceps excreted/secreted products in vitro also displayed impaired STAT1 phosphorylation in response to IFN-γ; again, phosphatase inhibition abrogated the T. crassiceps excreted/secreted product-altered IFN-γ signaling. These data demonstrate a new mechanism by which helminth infection and the products derived during this infection target intracellular pathways to block the response to inflammatory cytokines such as IFN-γ in both murine and human cells.

  6. Small-Molecule Inhibitors of Cytokine-Mediated STAT1 Signal Transduction In β-Cells With Improved Aqueous Solubility

    PubMed Central

    Scully, Stephen S.; Tang, Alicia J.; Lundh, Morten; Mosher, Carrie M.; Perkins, Kedar M.; Wagner, Bridget K.

    2013-01-01

    We previously reported the discovery of BRD0476 (1), a small molecule generated by diversity-oriented synthesis that suppresses cytokine-induced β-cell apoptosis. Herein, we report the synthesis and biological evaluation of 1 and analogs with improved aqueous solubility. By replacing naphthyl with quinoline moieties, we prepared active analogs with up to a 1400-fold increase in solubility from 1. In addition, we demonstrated that compound 1 and analogs inhibit STAT1 signal transduction induced by IFN-γ. PMID:23617753

  7. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation.

    PubMed

    You, Wei; Tang, Qiyun; Zhang, Chuanyong; Wu, Jindao; Gu, Chunrong; Wu, Zhengshan; Li, Xiangcheng

    2013-01-01

    Interleukin-26 (IL-26) is one of the cytokines secreted by Th17 cells whose role in human tumors remains unknown. Here, we investigated the expression and potential role of IL-26 in human gastric cancer (GC). The expression of IL-26 and related molecules such as IL-20R1, STAT1 and STAT3 was examined by real-time PCR and immunohistochemisty. The effects of IL-26 on cell proliferation and cisplatin-induced apoptosis were analyzed by BrdU cooperation assay and PI-Annexin V co-staining, respectively. Lentiviral mediated siRNA was used to explore its mechanism of action, and IL-26 related signaling was analyzed by western blotting. Human GC tissues showed increased levels of IL-26 and its related molecules and activation of STAT3 signaling, whereas STAT1 activation did not differ significantly between GC and normal gastric tissues. Moreover, IL-26 was primarily produced by Th17 and NK cells. IL-26 promoted the proliferation and survival of MKN45 and SGC-7901 gastric cancer cells in a dose-dependent manner. Furthermore, IL-20R2 and IL-10R1, which are two essential receptors for IL-26 signaling, were expressed in both cell lines. IL-26 activated STAT1 and STAT3 signaling; however, the upregulation of the expression of Bcl-2, Bcl-xl and c-myc indicated that the effect of IL-26 is mediated by STAT3 activation. Knockdown of STAT1 and STAT3 expression suggested that the proliferative and anti-apoptotic effects of IL-26 are mediated by the modulation of STAT1/STAT3 activation. In summary, elevated levels of IL-26 in human GC promote proliferation and survival by modulating STAT1/STAT3 signaling.

  8. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-03-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction.

  9. STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential.

    PubMed

    Chmielewski, Stefan; Piaszyk-Borychowska, Anna; Wesoly, Joanna; Bluyssen, Hans A R

    2016-09-02

    Inflammation importantly contributes to the pathophysiology of Cardiovascular Disease (CVD). Signal Transducer and Activator of Transcription (STAT)1 operates at the frontier of innate and adaptive immunity and its involvement in CVD has been widely appreciated. A unique role of STAT1 in cross-talk between the pro-inflammatory cytokine IFNγ and TLR4 activators (TLR4-A) has been uncovered in immune as well as vascular cells increasing inflammation. Interferon Regulatory Factor (IRF)8 whose expression was initially identified in immune cells, controls development and differentiation in close connection with PU.1. In addition, as a STAT1-target, IRF8 accounts for "immune cell-specific" STAT1-dependent functions of IFNγ and LPS. Novel studies prove that also in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), STAT1 and IRF8 orchestrate a transcriptional platform for cross-talk between IFNγ and TLR4-A, which leads to amplified pro-atherogenic responses in the vasculature. In addition to its known immune cell functions, this points to a novel "inflammation-dependent" role of IRF8 in vascular cells. In this review we present a summary of these findings and postulate STAT1- and IRF8-target genes as promising markers of vascular inflammation, and STAT1 and IRF8 as potential targets for the development of new immunosuppressive and anti-inflammatory agents for the treatment of CVD.

  10. ERK expression and its correlation with STAT1 in esophageal squamous cell carcinoma

    PubMed Central

    Yun, Hailong; Chen, Shubiao; Chen, Yelong; Liu, Zhaoyong

    2017-01-01

    Background Esophageal squamous cell carcinoma is one of leading causes of cancer-related deaths in Chaoshan region a high-risk region for esophageal cancer. Extracellular regulated protein kinases (ERK) usually play an important role in cell proliferation and differentiation. However, accumulating evidence has shown that the ERK was aberrantly expressed in cancers and correlated with STAT1 depression. Results The activated ERK downregulates STAT1 expression in ESCC cell lines and U0126 increases expression of STAT1. Our immunohistochemistry result also confirms that the expression of ERK inversely correlated with that of STAT1 in ESCC tumors. In addition, a significantly higher expression of ERK/p-ERK was found in ESCC tissues in comparison with case-matched normal esophageal tissues (p < 0.05). Moreover, the immunohistochemical analysis demonstrated that ERK expression was paralleled with the differentiation and clinical stage. In 74 patients with follow-up data, those with ERKlow tumors survived significantly longer than those with ERKhigh tumors (p = 0.04); patients with ERKlow/STAT1high tumors had the longest survival (p = 0.001). Materials and Methods To investigate whether ERK can mediated STAT1 expression in ESCC, we used the MEK plasmid and U0126, a MEK inhibitor, to treat the cell. To further confirm our in-vitro study, we detected the ERK, p-ERK and STAT1 expression in 131 ESCC cases and 22 case-matched normal esophageal tissues adjacent to the tumors specimens. Conclusions These findings provide pathological evidence that ERK/p-ERK is negatively correlated with STAT1 in ESCC. Our data suggests that inhibition of ERK and/or restoration of STAT1 expression maybe useful therapeutic strategies for ESCC. PMID:28431406

  11. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases.

    PubMed

    Ueki, Masahiro; Yamada, Masafumi; Ito, Kenta; Tozawa, Yusuke; Morino, Saeko; Horikoshi, Yuho; Takada, Hidetoshi; Abdrabou, Shimaa Said Mohamed Ali; Takezaki, Shunichiro; Kobayashi, Ichiro; Ariga, Tadashi

    2017-01-01

    Heterozygous dominant-negative mutations of STAT1 are responsible for autosomal-dominant Mendelian susceptibility to mycobacterial diseases (AD-MSMD). So far, only 7 mutations have been previously described and are localized to 3 domains: the DNA-binding domain, the SH2 domain, and the tail segment. In this study, we demonstrated the first coiled-coil domain (CCD) mutation of c.749G>C, p.G250A (G250A) in STAT1 as a genetic cause of AD-MSMD in a patient with mycobacterial multiple osteomyelitis. This de novo heterozygous mutation was shown to have a dominant-negative effect on the gamma-activated sequence (GAS) transcriptional activity following IFN-γ stimulation, which could be attributable to the abolished phosphorylation of STAT1 from the wild-type (WT) allele. The three-dimensional structure of STAT1 revealed the G250 residue was located distant from a cluster of residues affected by gain-of-function mutations responsible for chronic mucocutaneous candidiasis.

  12. Defective STAT1 activation associated with impaired IFN-γ production in NK and T lymphocytes from metastatic melanoma patients treated with IL-2.

    PubMed

    Sim, Geok Choo; Wu, Sheng; Jin, Lei; Hwu, Patrick; Radvanyi, Laszlo G

    2016-06-14

    High dose (HD) IL-2 therapy has been used for almost two decades as an immunotherapy for metastatic melanoma. IL-2 promotes the proliferation and effector function of T and NK cells through the tyrosine phosphorylation and activation of signal transducer and activator of transcription factors (STAT), especially STAT5. However, whether any defects in STAT activation exist in T and NK lymphocytes from melanoma patients are under debate. Here, we measured the extent of HD IL-2-induced phosphorylation of STAT5 and STAT1 in lymphocyte subsets from metastatic melanoma patients and healthy controls at a single cell level using flow cytometry. We found no defects in IL-2-induced STAT5 phosphorylation and induction of proliferation in T and NK cell subsets in vitro. This was confirmed by measuring ex vivo STAT5 activation in whole blood collected from patients during their first bolus HD IL-2 infusion. IL-2 also induced STAT1 phosphorylation via IFN-γ receptors in T and NK cell subsets through the release of IFN-γ by CD56hi and CD56lo NK cells. Further analysis revealed that melanoma patients had a sub-optimal STAT1 activation response linked to lower IL-2-induced IFN-γ secretion in both CD56hi and CD56low NK cell subsets. STAT1 activation in response to IL-2 also showed an age-related decline in melanoma patients not linked to tumor burden indicating a premature loss of NK cell function. Taken together, these findings indicate that, although STAT5 activation is normal in metastatic melanoma patients in response to IL-2, indirect STAT1 activation is defective owing to deficiencies in the NK cell response to IL-2.

  13. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation.

    PubMed

    Hemmann, U; Gerhartz, C; Heesel, B; Sasse, J; Kurapkat, G; Grötzinger, J; Wollmer, A; Zhong, Z; Darnell, J E; Graeve, L; Heinrich, P C; Horn, F

    1996-05-31

    Distinct yet overlapping sets of STAT transcription factors are activated by different cytokines. One example is the differential activation of acute phase response factor (APRF, also called Stat3) and Stat1 by interleukin 6 and interferon-gamma. Interleukin 6 activates both factors while, at least in human cells, interferon-gamma recruits only Stat1. Stat1 activation by interferon-gamma is mediated through a cytosolic tyrosine motif, Y440, of the interferon-gamma receptor. In an accompanying paper (Gerhartz, C., Heesel, B., Sasse, J., Hemmann, U., Landgraf, C., Schneider-Mergener, J., Horn, F., Heinrich, P. C., and Graeve, L. (1996) J. Biol. Chem. 271, 12991-12998), we demonstrated that two tyrosine motifs within the cytoplasmic part of the interleukin 6 signal transducer gp130 specifically mediate APRF activation while two others can recruit both APRF and Stat1. By expressing a series of Stat1/APRF domain swap mutants in COS-7 cells, we now determined which domains of Stat1 and APRF are involved in the specific recognition of phosphotyrosine motifs. Our data demonstrate that the SH2 domain is the sole determinant of specific STAT factor recruitment. Furthermore, the SH2 domain of Stat1 is able to recognize two unrelated types of phosphotyrosine motifs, one represented by the interferon-gamma receptor Y440DKPH peptide, and the other by two gp130 YXPQ motifs. By molecular modeling, we propose three-dimensional model structures of the Stat1 and APRF SH2 domains which allow us to explain the different binding preferences of these factors and to predict amino acids crucial for specific peptide recognition.

  14. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    PubMed Central

    Putz, Eva Maria; Gotthardt, Dagmar; Hoermann, Gregor; Csiszar, Agnes; Wirth, Silvia; Berger, Angelika; Straka, Elisabeth; Rigler, Doris; Wallner, Barbara; Jamieson, Amanda M.; Pickl, Winfried F.; Zebedin-Brandl, Eva Maria; Müller, Mathias; Decker, Thomas; Sexl, Veronika

    2013-01-01

    Summary The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance. PMID:23933255

  15. Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer

    PubMed Central

    Legrier, Marie-Emmanuelle; Bièche, Ivan; Gaston, Julie; Beurdeley, Arnaud; Yvonnet, Vanessa; Déas, Olivier; Thuleau, Aurélie; Château-Joubert, Sophie; Servely, Jean-Luc; Vacher, Sophie; Lassalle, Myriam; Depil, Stéphane; C Tucker, Gordon; Fontaine, Jean-Jacques; Poupon, Marie-France; Roman-Roman, Sergio; Judde, Jean-Gabriel; Decaudin, Didier; Cairo, Stefano; Marangoni, Elisabetta

    2016-01-01

    Background: Oestrogen receptor-negative (ER−) breast cancer is intrinsically sensitive to chemotherapy. However, tumour response is often incomplete, and relapse occurs with high frequency. The aim of this work was to analyse the molecular characteristics of residual tumours and early response to chemotherapy in patient-derived xenografts (PDXs) of breast cancer. Methods: Gene and protein expression profiles were analysed in a panel of ER− breast cancer PDXs before and after chemotherapy treatment. Tumour and stromal interferon-gamma expression was measured in xenografts lysates by human and mouse cytokine arrays, respectively. Results: The analysis of residual tumour cells in chemo-responder PDX revealed a strong overexpression of IFN-inducible genes, induced early after AC treatment and associated with increased STAT1 phosphorylation, DNA-damage and apoptosis. No increase in IFN-inducible gene expression was observed in chemo-resistant PDXs upon chemotherapy. Overexpression of IFN-related genes was associated with human IFN-γ secretion by tumour cells. Conclusions: Treatment-induced activation of the IFN/STAT1 pathway in tumour cells is associated with chemotherapy response in ER− breast cancer. Further validations in prospective clinical trials will aim to evaluate the usefulness of this signature to assist therapeutic strategies in the clinical setting. PMID:26695443

  16. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1

    SciTech Connect

    Li, Jun; He, Xijing; Wei, Wenzhi; Zhou, Xiaobo

    2015-05-01

    Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a direct interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.

  17. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus.

    PubMed

    Speil, Jasmin; Baumgart, Eugen; Siebrasse, Jan-Peter; Veith, Roman; Vinkemeier, Uwe; Kubitscheck, Ulrich

    2011-12-07

    The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/β complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.

  18. Glatiramer acetate attenuates the activation of CD4+ T cells by modulating STAT1 and −3 signaling in glia

    PubMed Central

    Ahn, Ye-Hyeon; Jeon, Sae-Bom; Chang, Chi Young; Goh, Eun-Ah; Kim, Sang Soo; Kim, Ho Jin; Song, Jaewhan; Park, Eun Jung

    2017-01-01

    Interactions between immune effector cells of the central nervous system appear to directly or indirectly influence the progress/regression of multiple sclerosis (MS). Here, we report that glial STAT1 and −3 are distinctively phosphorylated following the interaction of activated lymphocytes and glia, and this effect is significantly inhibited by glatiramer acetate (GA), a disease-modifying drug for MS. GA also reduces the activations of STAT1 and −3 by MS-associated stimuli such as IFNγ or LPS in primary glia, but not neurons. Experiments in IFNγ- and IFNγ receptor-deficient mice revealed that GA-induced inhibitions of STAT signaling are independent of IFNγ and its receptor. Interestingly, GA induces the expression levels of suppressor of cytokine signaling-1 and −3, representative negative regulators of STAT signaling in glia. We further found that GA attenuates the LPS-triggered enhancement of IL-2, a highly produced cytokine in patients with active MS, in CD4+ T cells co-cultured with glia, but not in CD4+ T cells alone. Collectively, these results provide that activation of glial STATs is an essential event in the interaction between glia and T cells, which is a possible underlying mechanism of GA action in MS. These findings provide an insight for the development of targeted therapies against MS. PMID:28094337

  19. Lactation-induced cadmium-binding proteins

    SciTech Connect

    Bhattacharyya, M.H.; Solaiman, D.; Garvey, J.S.; Miyazaki, W.Y.

    1987-01-01

    Previously we have demonstrated an increase during midlactation in /sup 109/Cd adsorption and increased retention by the duodenum, kidney, and mammary tissue of mouse dams receiving environmental levels of cadmium//sup 109/Cd via drinking water, with little change in /sup 109/Cd retention in liver and jejunum compared to nonpregnant controls. Results are reported here of a study of cadmium deposition during midlactation as associated with induction of metallothionein (MT). A cadmium/hemoglobin (Cd/Hb) assay and radioimmunoassay for MT which measures heat-stable cadmium binding capacity in tissues was used to determine MT concentrations in fractions of kidney, liver, duodenum, and jejunum from female mice. Both assays demonstrated clear lactation-induced increases in MT concentrations in liver, kidney, and duodenum, with MT concentrations falling rapidly to control levels after weaning. 4 refs., 1 tab.

  20. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay

    PubMed Central

    Fiorentino, Loredana; Cavalera, Michele; Menini, Stefano; Marchetti, Valentina; Mavilio, Maria; Fabrizi, Marta; Conserva, Francesca; Casagrande, Viviana; Menghini, Rossella; Pontrelli, Paola; Arisi, Ivan; D'Onofrio, Mara; Lauro, Davide; Khokha, Rama; Accili, Domenico; Pugliese, Giuseppe; Gesualdo, Loreto; Lauro, Renato; Federici, Massimo

    2013-01-01

    ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3−/− mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3−/− mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3−/− mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy. PMID:23401241

  1. Cross-regulation of Signaling and Immune Responses by IFN-γ and STAT1

    PubMed Central

    Hu, Xiaoyu; Ivashkiv, Lionel B.

    2009-01-01

    Summary IFN-γ is an important mediator of immunity and inflammation that utilizes the Jak-STAT pathway to activate STAT1. Many functions of IFN-γ have been ascribed to direct STAT1-mediated induction of immune effector genes, but recently it has become clear that key IFN-γ functions are mediated by crossregulation of cellular responses to other cytokines and inflammatory factors. Here we review mechanisms by which IFN-γ and STAT1 regulate signaling by TLRs, inflammatory factors, tissue destructive cytokines, anti-inflammatory cytokines, and cytokines that activate opposing STATs. These signaling mechanisms reveal insights about how IFN-γ regulates macrophage activation, inflammation, tissue remodeling, and Th and Treg differentiation, and how Th1 and Th17 responses are integrated in autoimmune diseases. PMID:19833085

  2. STAT1 and STAT3 in tumorigenesis: A matter of balance.

    PubMed

    Avalle, Lidia; Pensa, Sara; Regis, Gabriella; Novelli, Francesco; Poli, Valeria

    2012-04-01

    The transcription factors STAT1 and STAT3 appear to play opposite roles in tumorigenesis. While STAT3 promotes cell survival/proliferation, motility and immune tolerance and is considered as an oncogene, STAT1 mostly triggers anti-proliferative and pro-apoptotic responses while enhancing anti-tumor immunity. Despite being activated downstream of common cytokine and growth factor receptors, their activation is reciprocally regulated and perturbation in their balanced expression or phosphorylation levels may re-direct cytokine/growth factor signals from proliferative to apoptotic, or from inflammatory to anti-inflammatory. Here we review the functional canonical and non-canonical effects of STAT1 and STAT3 activation in tumorigenesis and their potential cross-regulation mechanisms.

  3. Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection.

    PubMed

    Larena, Maximilian; Lobigs, Mario

    2017-03-07

    The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/β signalling is sufficient to overcome the ability of the host to control the infection.

  4. Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses▿

    PubMed Central

    Mumphrey, Shannon M.; Changotra, Harish; Moore, Tara N.; Heimann-Nichols, Ellen R.; Wobus, Christiane E.; Reilly, Michael J.; Moghadamfalahi, Mana; Shukla, Deepti; Karst, Stephanie M.

    2007-01-01

    Human noroviruses are the major cause of nonbacterial epidemic gastroenteritis worldwide. However, little is known regarding their pathogenesis or the immune responses that control them because until recently there has been no small animal model or cell culture system of norovirus infection. We recently reported the discovery of the first murine norovirus, murine norovirus 1 (MNV-1), and its cultivation in macrophages and dendritic cells in vitro. We further defined interferon receptors and the STAT-1 molecule as critical in both resistance to MNV-1-induced disease in vivo and control of virus growth in vitro. To date, neither histopathological changes upon infection nor viral replication in wild-type mice has been shown. Here we extend our studies to demonstrate that MNV-1 replicates and rapidly disseminates to various tissues in immunocompetent mice and that infection is restricted by STAT1-dependent interferon responses at the levels of viral replication and virus dissemination. Infection of wild-type mice is associated with histopathological alterations in the intestine (mild inflammation) and the spleen (red pulp hypertrophy and white pulp activation); viral dissemination to the spleen, liver, lung, and lymph nodes; and low-level persistent infection in the spleen. STAT-1 inhibits viral replication in the intestine, prevents virus-induced apoptosis of intestinal cells and splenocytes, and limits viral dissemination to peripheral tissues. These findings demonstrate that murine norovirus infection of wild-type mice is associated with initial enteric seeding and subsequent extraintestinal spread, and they provide mechanistic evidence of the role of STAT-1 in controlling clinical norovirus-induced disease. PMID:17229692

  5. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  6. Selective inhibition of JAK2/STAT1 signaling and iNOS expression mediates the anti-inflammatory effects of coniferyl aldehyde.

    PubMed

    Akram, Muhammad; Kim, Kyeong-A; Kim, Eun-Sun; Shin, Young-Jun; Noh, Dabi; Kim, Eunji; Kim, Jeong-Hyeon; Majid, Arshad; Chang, Sun-Young; Kim, Jin-Ki; Bae, Ok-Nam

    2016-08-25

    Urgent needs still exist for selective control of excessive inflammation. Despite the therapeutic potential of natural compounds against inflammation-associated chronic conditions, lack of specific molecular targets renders these bioactive compounds difficult for further development. Here we examined the bioactivity of coniferyl aldehyde (CA), a natural phenolic compound found in several dietary substances and medicinal plants, elucidating its efficacy both in vivo and in vitro with underlying molecular mechanisms. IFN-γ/TNF-α-stimulated human keratinocytes and lipopolysaccharide (LPS)-stimulated murine macrophages were used to examine the effect of CA in vitro and to elucidate the underlying mechanisms. In vivo models of phorbol 12-myristate 13-acetate (TPA)-induced ear edema and carrageenan (CRG)-induced paw edema were employed to investigate the topical and systemic anti-inflammatory effects of CA, respectively. CA significantly reduced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages. While nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) pathways, the representative cellular pathways for iNOS induction, were not affected by CA, phosphorylation of Janus kinase 2 (JAK2) and signal Transducers and Activators of Transcription 1 (STAT1) and subsequent nuclear translocation of p-STAT1 were significantly decreased by CA. The effect of CA on JAK2-STAT1-iNOS axis was also observed in human keratinocytes stimulated with IFN-γ/TNF-α. Topical application of CA to mice produced significant protection against TPA-induced ear edema along with suppressed epidermal hyperproliferation and leucocyte infiltration. Systemic administration of CA significantly reduced CRG-induced paw edema in rats, where CRG-induced iNOS expression and STAT1 phosphorylation were decreased by CA. In summary, CA has significant anti-inflammatory properties both in vitro and in vivo, mediated by

  7. Alleviation of spinal cord injury by Ginkgolide B via the inhibition of STAT1 expression.

    PubMed

    Zheng, J L; Li, B S; Cao, X C; Zhuo, W K; Zhang, G

    2016-06-16

    Ginkgolide B has been known to inhibit cell apoptosis by modulating multiple cytokines and plays an important role in neuroprotection. Signal transducer and activator of transcription 1 (STAT1) has been studied in a spinal cord injury (SCI) model. However, the role of Ginkgolide B in SCI treatment remains unclear. This study investigated the potential mechanism of Ginkgolide B using an SCI rat model. SD rats were used to generate an SCI model followed by Ginkgolide B injection (4 mg/kg) for 14 days. Spinal cord tissue samples were examined using hematoxylin and eosin (H&E) staining. The expression of STAT1 was determined by western blot. Using a dyskinesia scale, intervention with Ginkgolide B significantly decreased the severity of SCI. H&E staining revealed less nuclear condensation and cell necrosis in SCI rats after treatment with Ginkgolide B. STAT1 expression was significantly increased in SCI model rats, but was lower after Ginkgolide B treatment. Therefore, Ginkgolide B can effectively inhibit STAT1 expression and alleviate SCI.

  8. Long-Term Survival After Hematopoietic Stem Cell Transplantation for Complete STAT1 Deficiency.

    PubMed

    Naviglio, Samuele; Soncini, Elena; Vairo, Donatella; Lanfranchi, Arnalda; Badolato, Raffaele; Porta, Fulvio

    2017-08-16

    Complete signal transducer and activator of transcription 1 (STAT1) deficiency is a rare autosomal recessive condition characterized by impairment of intracellular signaling from both type I and type II interferons (IFN). Affected patients are prone to early severe mycobacterial and viral infections, which usually result in death before 18 months of age. We previously reported a patient affected by complete STAT1 deficiency who underwent hematopoietic stem cell transplantation (HSCT). Here, we describe the transplantation procedures and long-term outcomes. The patient, who had suffered multiple life-threatening mycobacterial and viral infections in the first years of life, underwent HSCT at 4 years of age from a partially matched (HLA compatibility 8/10) unrelated donor after a myeloablative conditioning regimen consisting of busulfan, cyclophosphamide, and anti-thymocyte globulin. Hematological reconstitution was detected at d+15, with full donor engraftment demonstrated by molecular analysis of leukocytes. Several complications occurred in the post-transplantation phase, including acute graft versus host disease, posterior reversible encephalopathy, thrombotic thrombocytopenic purpura, bilateral keratoconjunctivitis with complete loss of vision, and chronic lower limb lymphedema. Analysis of STAT1 in CD3(+) cells at 90 and 120 days after HSCT by flow cytometry showed normal STAT1 phosphorylation levels in response to IFN-α. Notably, no severe infections occurred after discharge (day + 90) during a 9-year follow-up, suggesting that normal response to IFNs in hematopoietic cells is sufficient to provide protection in humans.

  9. Identification of the Nuclear Export Signal and STAT-Binding Domains of the Nipah Virus V Protein Reveals Mechanisms Underlying Interferon Evasion

    PubMed Central

    Rodriguez, Jason J.; Cruz, Cristian D.; Horvath, Curt M.

    2004-01-01

    The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention. PMID:15113915

  10. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion.

    PubMed

    Rodriguez, Jason J; Cruz, Cristian D; Horvath, Curt M

    2004-05-01

    The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention.

  11. Cell-to-cell binding induced by different lectins.

    PubMed

    Rutishauser, U; Sachs, L

    1975-05-01

    The cell-to-cell binding induced by concanavalin A (Con A) and the lectins from wheatgerm, soybean, and waxbean has been analyzed by measuring the ability of single cells to bind to lectin-coated cells immobilized on nylon fibers. The cells used were lymphoma, myeloid leukemia, and normal fibroblast cells. With all lectins, cell-to-cell binding was inhibited if both cells were prefixed with glutaraldehyde. However, in most cases cell-to-cell binding was enhanced when only the lectin-coated cell was prefixed. With normal fibroblasts, treatment of either one or both cells with trypsin enhanced the cell-to-cell binding induced by Con A and the wheatgerm lectin. Neuraminidase, which increases the number of receptors for soybean agglutinin, increased cell-to-cell binding only if both cells were treated. Although cell-to-cell binding induced by the lectins from soybean and wheatgerm could be partially reversed by the appropriate competitive saccharide inhibitor, binding induced by Con A could not be reversed. The experiments indicate that cell-to-cell binding induced by a lectin can be prevented by an insufficient density of receptors for the lectin, insufficient receptor mobility, or induced clustering of receptors. These effects can explain the differences in cell-to-cell binding and agglutination observed with different cell types and lectins. They also suggest that cell-to-cell binding induced by different lectins with a variety of cell types is initiated by a mechanism involving the alignment of complementary receptors on the colliding cells for the formation of multiple cell-to-lectin-to-cell bridges.

  12. Signal transducer and activator of transcription 1 (STAT1) acts like an oncogene in malignant pleural mesothelioma.

    PubMed

    Arzt, Lisa; Kothmaier, Hannelore; Halbwedl, Iris; Quehenberger, Franz; Popper, Helmut H

    2014-07-01

    Malignant pleural mesothelioma (MPM) is the most common primary tumor of the pleura. Its incidence is increasing in Europe and the prognosis remains poor. We compared epithelioid MPM in short and long survivors, and identified signal transducer and activator of transcription 1 (STAT1) as probably being responsible for antiapoptotic signaling and chemoresistance. Six mesothelioma cell lines were evaluated by Western Blot. We also analyzed 16 epithelioid MPM tissue samples for the phosphorylation status of STAT1 and the expression of its negative regulator, the suppressor of cytokine signaling 1 (SOCS1). Formalin-fixed and paraffin-embedded tissue specimens were evaluated by protein-lysate microarray and immunohistochemistry. We found STAT1 to be highly expressed and STAT3 downregulated in MPM cell lines. The expression of STAT1 phosphorylated on tyrosine 701 (Y701) was increased by interferon-gamma (IFN-γ) treatment, whereas SOCS1 was not expressed. The expression of STAT1 phosphorylated on serine 727 (S727) was not detected in mesothelioma cell lines and was not stimulated by IFN-γ. STAT1 was phosphorylated on tyrosine 701 and serine 727 in MPM tissue samples. The expression of pSTAT1-Y701 was increased compared to pSTAT1-S727. SOCS1 was again not detectable. STAT1 is upregulated in MPM, and its action may be prolonged by a loss of the negative regulator SOCS1. STAT1 might, therefore, be a target for therapeutic intervention, with the intention to restore apoptotic mechanisms and sensitivity to chemotherapy. However, other regulatory mechanisms need to be investigated to clarify if lack of expression of SOCS1 is the only reason for sustained STAT1 expression in MPM.

  13. Quantitative Proteomic analysis on Activated Hepatic Stellate Cells reversion Reveal STAT1 as a key regulator between Liver Fibrosis and recovery

    PubMed Central

    Zhang, Hongyu; Chen, Fangyan; Fan, Xu; Lin, Cong; Hao, Yunwei; Wei, Handong; Lin, Weiran; Jiang, Ying; He, Fuchu

    2017-01-01

    Understanding the changes of activated HSCs reversion is an essential step toward clarifying the potential roles of HSCs in the treatment of liver fibrosis. In this study, we chose adipocyte differentiation mixture to induce LX-2 cells for 2 days in vitro as reversion phase, comparing with normal cultured LX-2 cells as activation phase. Mass spectrometric-based SILAC technology was adopted to study differentially expressed proteome of LX-2 cells between reversion and activation. Compared with activated HSCs, 273 proteins showed significant differences in reverted HSCs. The main pathway of up-regulated proteins associated with reversion of HSCs mainly related to oxidation-reduction and lipid metabolism, while the top pathway of down-regulated proteins was found in regulated cytoskeleton formation. Changes in the expression levels of selected proteins were verified by Western blotting analysis, especially STAT1, FLNA, LASP1, and NAMPT proteins. The distinct roles of STAT1 were further analyzed between activated and reverted of HSCs, it was found that STAT1 could affect cell proliferation of HSCs and could be viewed as a key regulator in the reversion of HSCs. Thus, the proteomic analysis could accelerate our understanding of the mechanisms of HSC reversion on cessation of fibrogenic stimuli and provide new targets for antifibrotic liver therapy. PMID:28322315

  14. STAT2/IRF9 directs a prolonged ISGF3-like transcriptional response and antiviral activity in the absence of STAT1

    PubMed Central

    Blaszczyk, Katarzyna; Olejnik, Adam; Nowicka, Hanna; Ozgyin, Lilla; Chen, Yi-Ling; Chmielewski, Stefan; Kostyrko, Kaja; Wesoly, Joanna; Balint, Balint Laszlo; Lee, Chien-Kuo; Bluyssen, Hans A.R.

    2015-01-01

    Evidence is accumulating for the existence of a signal transducer and activator of transcription 2 (STAT2)/interferon regulatory factor 9 (IRF9)-dependent, STAT1-independent interferon alpha (IFNα) signalling pathway. However, no detailed insight exists into the genome-wide transcriptional regulation and the biological implications of STAT2/IRF9-dependent IFNα signalling as compared with interferon-stimulated gene factor 3 (ISGF3). In STAT1-defeicient U3C cells stably overexpressing human STAT2 (hST2-U3C) and STAT1-deficient murine embryonic fibroblast cells stably overexpressing mouse STAT2 (mST2-MS1KO) we observed that the IFNα-induced expression of 2′-5′-oligoadenylate synthase 2 (OAS2) and interferon-induced protein with tetratricopeptide repeats 1 (Ifit1) correlated with the kinetics of STAT2 phosphorylation, and the presence of a STAT2/IRF9 complex requiring STAT2 phosphorylation and the STAT2 transactivation domain. Subsequent microarray analysis of IFNα-treated wild-type (WT) and STAT1 KO cells overexpressing STAT2 extended our observations and identified ∼120 known antiviral ISRE-containing interferon-stimulated genes (ISGs) commonly up-regulated by STAT2/IRF9 and ISGF3. The STAT2/IRF9-directed expression profile of these IFN-stimulated genes (ISGs) was prolonged as compared with the early and transient response mediated by ISGF3. In addition, we identified a group of ‘STAT2/IRF9-specific’ ISGs, whose response to IFNα was ISGF3-independent. Finally, STAT2/IRF9 was able to trigger an antiviral response upon encephalomyocarditis virus (EMCV) and vesicular stomatitis Indiana virus (VSV). Our results further prove that IFNα-activated STAT2/IRF9 induces a prolonged ISGF3-like transcriptome and generates an antiviral response in the absence of STAT1. Moreover, the existence of ‘STAT2/IRF9-specific’ target genes predicts a novel role of STAT2 in IFNα signalling. PMID:25564224

  15. EphrinB2 controls vessel pruning through STAT1-JNK3 signaling

    PubMed Central

    Salvucci, Ombretta; Ohnuki, Hidetaka; Maric, Dragan; Hou, Xu; Li, Xuri; Yoon, Sung Ok; Segarra, Marta; Eberhart, Charles G.; Acker-Palmer, Amparo; Tosato, Giovanna

    2015-01-01

    Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signaling repressing JNK3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessels, defective retinal vasculature and microphthalmia. This syndrome closely resembles human persistent hyperplastic primary vitreus (PHPV), attributed to failed involution of hyaloid vessels. Our results provide evidence that EphrinB2/STAT1/JNK3 signaling is essential for vessel pruning, and that defects in this pathway may contribute to PHPV. PMID:25807892

  16. STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System

    PubMed Central

    Hidano, Shinya; Randall, Louise M.; Dawson, Lucas; Dietrich, Hans K.; Konradt, Christoph; Klover, Peter J.; John, Beena; Harris, Tajie H.; Fang, Qun; Turek, Bradley; Kobayashi, Takashi; Hennighausen, Lothar; Beiting, Daniel P.; Koshy, Anita A.

    2016-01-01

    ABSTRACT The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen. PMID:27834206

  17. Mice lacking functional STAT1 are highly susceptible to lethal infection with Lassa virus.

    PubMed

    Yun, Nadezhda E; Seregin, Alexey V; Walker, David H; Popov, Vsevolod L; Walker, Aida G; Smith, Jeanon N; Miller, Milagros; de la Torre, Juan C; Smith, Jennifer K; Borisevich, Viktoriya; Fair, Joseph N; Wauquier, Nadia; Grant, Donald S; Bockarie, Bayon; Bente, Dennis; Paessler, Slobodan

    2013-10-01

    Lassa fever (LF) is a potentially lethal human disease that is caused by the arenavirus Lassa virus (LASV). Annually, around 300,000 infections with up to 10,000 deaths occur in regions of Lassa fever endemicity in West Africa. Here we demonstrate that mice lacking a functional STAT1 pathway are highly susceptible to infection with LASV and develop lethal disease with pathology similar to that reported in humans.

  18. Venezuelan Equine Encephalitis Virus Disrupts STAT1 Signaling by Distinct Mechanisms Independent of Host Shutoff▿

    PubMed Central

    Simmons, Jason D.; White, Laura J.; Morrison, Thomas E.; Montgomery, Stephanie A.; Whitmore, Alan C.; Johnston, Robert E.; Heise, Mark T.

    2009-01-01

    Venezuelan equine encephalitis virus (VEEV) is an important human and veterinary pathogen causing sporadic epizootic outbreaks of potentially fatal encephalitis. The type I interferon (IFN) system plays a central role in controlling VEEV and other alphavirus infections, and IFN evasion is likely an important determinant of whether these viruses disseminate and cause disease within their hosts. Alphaviruses are thought to limit the induction of type I IFNs and IFN-stimulated genes by shutting off host cell macromolecular synthesis, which in the case of VEEV is partially mediated by the viral capsid protein. However, more specific strategies by which alphaviruses inhibit type I IFN signaling have not been characterized. Analyses of cells infected with VEEV and VEEV replicon particles (VRP) demonstrate that viral infection rapidly disrupts tyrosine phosphorylation and nuclear translocation of the transcription factor STAT1 in response to both IFN-β and IFN-γ. This effect was independent of host shutoff and expression of viral capsid, suggesting that VEEV uses novel mechanisms to interfere with type I and type II IFN signaling. Furthermore, at times when STAT1 activation was efficiently inhibited, VRP infection did not limit tyrosine phosphorylation of Jak1, Tyk2, or STAT2 after IFN-β treatment but did inhibit Jak1 and Jak2 activation in response to IFN-γ, suggesting that VEEV interferes with STAT1 activation by the type I and II receptor complexes through distinct mechanisms. Identification of the viral requirements for this novel STAT1 inhibition will further our understanding of alphavirus molecular pathogenesis and may provide insights into effective alphavirus-based vaccine design. PMID:19656875

  19. STAT3 and STAT1 mediate IL-11–dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice

    PubMed Central

    Ernst, Matthias; Najdovska, Meri; Grail, Dianne; Lundgren-May, Therese; Buchert, Michael; Tye, Hazel; Matthews, Vance B.; Armes, Jane; Bhathal, Prithi S.; Hughes, Norman R.; Marcusson, Eric G.; Karras, James G.; Na, Songqing; Sedgwick, Jonathon D.; Hertzog, Paul J.; Jenkins, Brendan J.

    2008-01-01

    Deregulated activation of STAT3 is frequently associated with many human hematological and epithelial malignancies, including gastric cancer. While exaggerated STAT3 signaling facilitates an antiapoptotic, proangiogenic, and proproliferative environment for neoplastic cells, the molecular mechanisms leading to STAT3 hyperactivation remain poorly understood. Using the gp130Y757F/Y757F mouse model of gastric cancer, which carries a mutated gp130 cytokine receptor signaling subunit that cannot bind the negative regulator of cytokine signaling SOCS3 and is characterized by hyperactivation of the signaling molecules STAT1 and STAT3, we have provided genetic evidence that IL-11 promotes chronic gastric inflammation and associated tumorigenesis. Expression of IL-11 was increased in gastric tumors in gp130Y757F/Y757F mice, when compared with unaffected gastric tissue in wild-type mice, while gp130Y757F/Y757F mice lacking the IL-11 ligand–binding receptor subunit (IL-11Rα) showed normal gastric STAT3 activation and IL-11 expression and failed to develop gastric tumors. Furthermore, reducing STAT3 activity in gp130Y757F/Y757F mice, either genetically or by therapeutic administration of STAT3 antisense oligonucleotides, normalized gastric IL-11 expression and alleviated gastric tumor burden. Surprisingly, the genetic reduction of STAT1 expression also reduced gastric tumorigenesis in gp130Y757F/Y757F mice and coincided with reduced gastric inflammation and IL-11 expression. Collectively, our data have identified IL-11 as a crucial cytokine promoting chronic gastric inflammation and associated tumorigenesis mediated by excessive activation of STAT3 and STAT1. PMID:18431520

  20. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes.

    PubMed

    Brizzi, M F; Aronica, M G; Rosso, A; Bagnara, G P; Yarden, Y; Pegoraro, L

    1996-02-16

    Granulocyte-macrophage colony-stimulating factor (GM-CSF), supports proliferation, differentiation, and functional activation of hemopoietic cells by its interaction with a heterodimeric receptor. Although GM-CSF receptor is devoid of tyrosine kinase enzymatic activity, GM-CSF-induced peripheral blood polymorphonuclear leukocytes (PMN) functional activation is mediated by the phosphorylation of a large number of intracellular signaling molecules. We have previously shown that JAK2 becomes tyrosine-phosphorylated in response to GM-CSF in PMN. In the present study we demonstrate that also the signal transducers and activators of transcription (STAT) family members STAT1 p91 and STAT3 p92 and the product of the c-fps/fes protooncogene become tyrosine-phosphorylated upon GM-CSF stimulation and physically associated with both GM-CSF receptor beta common subunit and JAK2. Moreover GM-CSF was able to induce JAK2 and p93fes catalytic activity. We also demonstrate that the association of the GM-CSF receptor beta common subunit with JAK2 is ligand-dependent. Finally we demonstrate that GM-CSF induces a DNA-binding complex that contains both p91 and p92. These results identify a new signal transduction pathway activated by GM-CSF and provide a mechanism for rapid activation of gene expression in GM-CSF-stimulated PMN.

  1. STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and independent mechanisms1

    PubMed Central

    Villarino, Alejandro V.; Gallo, Eugenio; Abbas, Abul K.

    2010-01-01

    Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. These studies demonstrate that, during systemic inflammation, STAT1- and T-bet-deficient T cells each exhibit a hyper-Th17 phenotype relative to WT controls. However, IL-17 production was higher in the absence of T-bet and, when both STAT1 and T-bet were deleted, there was no further increase, with the double-deficient cells instead behaving more like STAT1-deficient counterparts. Similar trends were observed during in vitro priming, with production of Th17-type cytokines higher in T-bet−/− T cells than in either STAT1−/− or STAT1−/− T-bet−/− counterparts. The ability of IFN-γ and IL-27 to suppress Th17 responses was reduced in T-bet-deficient cells and, most importantly, ectopic T-bet could suppress signature Th17 gene products, including IL-17A, IL-17F, IL-22 and RORγT, even in STAT1-deficient T cells. Taken together, these studies formally establish that, downstream of IFN-γ, IL-27 and likely all STAT1-activating cytokines, there are both STAT1 and T-bet-dependent pathways capable of suppressing Th17 responses. PMID:20974984

  2. Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways.

    PubMed

    Masullo, Milena; Menegazzi, Marta; Di Micco, Simone; Beffy, Pascale; Bifulco, Giuseppe; Dal Bosco, Martina; Novelli, Michela; Pizza, Cosimo; Masiello, Pellegrino; Piacente, Sonia

    2014-03-28

    Garcinol (1), a polyisoprenylated benzophenone occurring in Garcinia species, has been reported to exert anti-inflammatory activity in LPS-stimulated macrophages, through inhibition of NF-κB and/or JAK/STAT-1 activation. In order to provide deeper insight into its effects on the cytokine signaling pathway and to clarify the underlying molecular mechanisms, 1 was isolated from the fruits of Garcinia cambogia along with two other polyisoprenylated benzophenones, guttiferones K (2) and guttiferone M (3), differing from each other in their isoprenyl moieties and their positions on the benzophenone core. The affinities of 1-3 for the STAT-1 protein have been evaluated by surface plasmon resonance and molecular docking studies and resulted in KD values in the micromolar range. Consistent with the observed high affinity toward the STAT-1 protein, garcinol and guttiferones K and M were able to modulate cytokine signaling in different cultured cell lines, mainly by inhibiting STAT-1 nuclear transfer and DNA binding, as assessed by an electrophorectic mobility shift assay.

  3. The Ets-1 transcription factor is required for Stat1-mediated T-bet expression and IgG2a class switching in mouse B cells.

    PubMed

    Nguyen, Hai Vu; Mouly, Enguerran; Chemin, Karine; Luinaud, Romain; Despres, Raymonde; Fermand, Jean-Paul; Arnulf, Bertrand; Bories, Jean-Christophe

    2012-05-03

    In response to antigens and cytokines, mouse B cells undergo class-switch recombination (CSR) and differentiate into Ig-secreting cells. T-bet, a T-box transcription factor that is up-regulated in lymphocytes by IFN-γ or IL-27, was shown to regulate CSR to IgG2a after T cell-independent B-cell stimulations. However, the molecular mechanisms controlling this process remain unclear. In the present study, we show that inactivation of the Ets-1 transcription factor results in a severe decrease in IgG2a secretion in vivo and in vitro. No T-bet expression was observed in Ets-1-deficient (Ets-1(-/-)) B cells stimulated with IFN-γ and lipopolysaccharide, and forced expression of T-bet in these cells rescued IgG2a secretion. Furthermore, we identified a transcriptional enhancer in the T-bet locus with an activity in B cells that relies on ETS-binding sites. After IFN-γ stimulation of Ets-1(-/-) B cells, activated Stat1, which forms a complex with Ets-1 in wild-type cells, no longer binds to the T-bet enhancer or promotes histone modifications at this site. These results demonstrate that Ets-1 is critical for IgG2a CSR and acts as an essential cofactor for Stat1 in the regulation of T-bet expression in B cells.

  4. Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes

    PubMed Central

    An, Soo Yeon; Youn, Gi Soo; Kim, Hyejin; Choi, Soo Young; Park, Jinseu

    2017-01-01

    In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the NF-κB signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/NF-κB in astrocytes. PMID:28027722

  5. Posttranscriptional Interaction between miR-450a-5p and miR-28-5p and STAT1 mRNA Triggers Osteoblastic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Dernowsek, Janaína A; Pereira, Milena C; Fornari, Thaís A; Macedo, Claudia; Assis, Amanda F; Donate, Paula B; Bombonato-Prado, Karina F; Passos-Bueno, Maria Rita; Passos, Geraldo A

    2017-04-13

    We demonstrate that the interaction between miR-450a-5p and miR-28-5p and signal transducer and activator of transcription 1 (STAT1) mRNA correlates with the osteoblastic differentiation of mesenchymal stem cells from human exfoliated deciduous teeth (shed cells). STAT1 negatively regulates runx-related transcription factor 2 (RUNX2), which is an essential transcription factor in this process. However, the elements that trigger osteoblastic differentiation and therefore pause the inhibitory effect of STAT1 need investigation. Usually, STAT1 can be posttranscriptionally regulated by miRNAs. To test this, we used an in vitro model system in which shed cells were chemically induced toward osteoblastic differentiation and temporally analyzed, comparing undifferentiated cells with their counterparts in the early (2 days) or late (7 or 21 days) periods of induction. The definition of the entire functional genome expression signature demonstrated that the transcriptional activity of a large set of mRNAs and miRNAs changes during this process. Interestingly, STAT1 and RUNX2 mRNAs feature contrasting expression levels during the course of differentiation. While undifferentiated or early differentiating cells express high levels of STAT1 mRNA, which was gradually down-regulated, RUNX2 mRNA was up-regulated toward differentiation. The reconstruction of miRNA-mRNA interaction networks allowed the identification of six miRNAs (miR-17-3p, miR-28-5p, miR-29b, miR-29c-5p, miR-145-3p and miR-450a-5p), and we predicted their respective targets, from which we focused on miR-450a-5p and miR-28-5p STAT1 mRNA interactions, whose intracellular occurrence was validated through the luciferase assay. Transfections of undifferentiated shed cells with miR-450a-5p or miR-28-5p mimics or with miR-450a-5p or miR-28-5p antagonists demonstrated that these miRNAs might play a role as posttranscriptional controllers of STAT1 mRNA during osteoblastic differentiation. This article is protected by

  6. Camptothecin-binding site in human serum albumin and protein transformations induced by drug binding.

    PubMed

    Fleury, F; Ianoul, A; Berjot, M; Feofanov, A; Alix, A J; Nabiev, I

    1997-07-14

    Circular dichroism (CD) and Raman spectroscopy were employed in order to locate a camptothecin (CPT)-binding site within human serum albumin (HSA) and to identify protein structural transformations induced by CPT binding. A competitive binding of CPT and 3'-azido-3'-deoxythymidine (a ligand occupying IIIA structural sub-domain of the protein) to HSA does not show any competition and demonstrates that the ligands are located in the different binding sites, whereas a HSA-bound CPT may be replaced by warfarin, occupying IIA structural sub-domain of the protein. Raman and CD spectra of HSA and HSA/CPT complexes show that the CPT-binding does not induce changes of the global protein secondary structure. On the other hand, Raman spectra reveal pronounced CPT-induced local structural modifications of the HSA molecule, involving changes in configuration of the two disulfide bonds and transfer of a single Trp-residue to hydrophilic environment. These data suggest that CPT is bound in the region of interdomain connections within the IIA structural domain of HSA and it induces relative movement of the protein structural domains.

  7. Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ

    PubMed Central

    Knoblach, Theresa; Grandel, Benedikt; Seiler, Jana

    2011-01-01

    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity. PMID:21533215

  8. ARF and p53 coordinate tumor suppression of an oncogenic IFN-β-STAT1-ISG15 signaling axis

    PubMed Central

    Forys, Jason T.; Kuzmicki, Catherine E.; Saporita, Anthony J.; Winkeler, Crystal L.; Maggi, Leonard B.; Weber, Jason D.

    2014-01-01

    SUMMARY The ARF and p53 tumor suppressors are thought to act in a linear pathway to prevent cellular transformation in response to various oncogenic signals. Here we show that loss of p53 function leads to an increase in ARF protein levels which function to limit the proliferation and tumorigenicity of p53-deficient cells by inhibiting an IFN-β-STAT1-ISG15 signaling axis. Human triple-negative breast cancer (TNBC) tumor samples with co-inactivation of p53 and ARF exhibit high expression of both STAT1 and ISG15, and TNBC cell lines are sensitive to STAT1 depletion. We propose that loss of p53 function and subsequent ARF induction creates a selective pressure to inactivate ARF, and propose that tumors harboring co-inactivation of ARF and p53 would benefit from therapies targeted against STAT1 and ISG15 activation. PMID:24726362

  9. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  10. Blockage of Glyoxalase I Inhibits Colorectal Tumorigenesis and Tumor Growth via Upregulation of STAT1, p53, and Bax and Downregulation of c-Myc and Bcl-2

    PubMed Central

    Chen, Yuan; Fang, Lei; Zhang, Jiali; Li, Gefei; Ma, Mengni; Li, Changxi; Lyu, Jianxin; Meng, Qing H.

    2017-01-01

    GlyoxalaseI (GLOI) is an enzyme that catalyzes methylglyoxal metabolism. Overexpression of GLOI has been documented in numerous tumor tissues, including colorectal cancer (CRC). The antitumor effects of GLOI depletion have been demonstrated in some types of cancer, but its role in CRC and the mechanisms underlying this activity remain largely unknown. Our purpose was to investigate the antitumor effects of depleted GLOI on CRC in vitro and in vivo. RNA interference was used to deplete GLOI activity in four CRC cell lines. The cells’ proliferation, apoptosis, migration, and invasion were assessed by using the Cell Counting Kit-8, plate colony formation assay, flow cytometry, and transwell assays. Protein and mRNA levels were analyzed by western blot and quantitative real-time PCR (qRT-PCR), respectively. The antitumor effect of GLOI depletion in vivo was investigated in a SW620 xenograft tumor model in BALB/c nude mice. Our results show that GLOI is over-expressed in the CRC cell lines. GLOI depletion inhibited the proliferation, colony formation, migration, and invasion and induced apoptosis of all CRC cells compared with the controls. The levels of signal transducer and activator of transcription 1 (STAT1), p53, and Bcl-2 assaciated X protein (Bax) were upregulated by GLOI depletion, while cellular homologue of avian myelocytomatosis virus oncogene (c-Myc) and B cell lymphoma/lewkmia-2 (Bcl-2) were downregulated. Moreover, the growth of SW620-induced CRC tumors in BALB/c nude mice was significantly attenuated by GLOI depletion. The expression levels of STAT1, p53, and Bax were increased and those of c-Myc and Bcl-2 were decreased in the GLOI-depleted tumors. Our findings demonstrate that GLOI depletion has an antitumor effect through the STAT1 or p53 signaling pathways in CRC, suggesting that GLOI is a potential therapeutic target. PMID:28282916

  11. Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization

    PubMed Central

    Zhou, Jun; Pérès, Laurent; Honoré, Nicole; Nasr, Rihab; Zhu, Jun; de Thé, Hugues

    2006-01-01

    The pathogenesis of acute promyelocytic leukemia involves the transcriptional repression of master genes of myeloid differentiation by the promyelocytic leukemia–retinoic acid receptor α (PML/RARA) oncogene. PML-enforced RARA homodimerization allows the tighter binding of corepressors, silencing RARA target genes. In addition, homodimerization dramatically extends the spectrum of DNA-binding sites of the fusion protein compared with those of normal RARA. Yet, any contribution of these two properties of PML/RARA to differentiation arrest and immortalization of primary mouse hematopoietic progenitors was unknown. We demonstrate that dimerization-induced silencing mediator of retinoid and thyroid receptors (SMRT)-enhanced binding and relaxed DNA-binding site specificity are both required for efficient immortalization. Thus, enforced RARA dimerization is critical not only for triggering transcriptional repression but also for extending the repertoire of target genes. Our studies exemplify how dimerization-induced gain of functions converts an unessential transcription factor into a dominant oncogenic protein. PMID:16757557

  12. Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization.

    PubMed

    Zhou, Jun; Pérès, Laurent; Honoré, Nicole; Nasr, Rihab; Zhu, Jun; de Thé, Hugues

    2006-06-13

    The pathogenesis of acute promyelocytic leukemia involves the transcriptional repression of master genes of myeloid differentiation by the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARA) oncogene. PML-enforced RARA homodimerization allows the tighter binding of corepressors, silencing RARA target genes. In addition, homodimerization dramatically extends the spectrum of DNA-binding sites of the fusion protein compared with those of normal RARA. Yet, any contribution of these two properties of PML/RARA to differentiation arrest and immortalization of primary mouse hematopoietic progenitors was unknown. We demonstrate that dimerization-induced silencing mediator of retinoid and thyroid receptors (SMRT)-enhanced binding and relaxed DNA-binding site specificity are both required for efficient immortalization. Thus, enforced RARA dimerization is critical not only for triggering transcriptional repression but also for extending the repertoire of target genes. Our studies exemplify how dimerization-induced gain of functions converts an unessential transcription factor into a dominant oncogenic protein.

  13. The effect of miR-146a on STAT1 expression and apoptosis in acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Yan, Weihong; Guo, Hua; Suo, Feng; Han, Chunling; Zheng, Hua; Chen, Tong

    2017-01-01

    The effect of miR-146a-dependent regulation of STAT1 on apoptosis in acute lymphoblastic leukemia (ALL) Jurkat cells was investigated. The miR-146a mimic and miR-146a inhibitor vectors were constructed in vitro, and experimental grouping was as follows: Control group (untreated Jurkat cells), empty vector group (Jurkat cells transfected with empty vector), agonist group (Jurkat cells transfected with miR-146a mimic) and the inhibitor group (Jurkat cells transfected with miR-146a inhibitor). Western blot analysis was used to observe the expression, respectively, of STAT1, p-STAT1 and Bcl-xL, and flow cytometry was used to test apoptosis in Jurkat cells. STAT1 and p-STAT1 expression in the agonist group was higher than that in the control and empty vector groups, but lower in the inhibitor group, and differences were statistically significant (P<0.05). The rate of apoptosis in the agonist group was significantly higher than that of the control group and blank vector group, and it was significantly lower in the inhibitor group (P<0.05). As a tumor suppressor, miR-146a can regulate expression of apoptosis-promoting factor STAT1, and anti-apoptosis factor Bcl-xL, and is able to promote apoptosis of ALL Jurkat cells. PMID:28123535

  14. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha.

    PubMed

    Hung, W C; Chuang, L Y

    1999-05-01

    Although interferon-alpha (IFN-alpha) has shown great promise in the treatment of chronic viral hepatitis, the anti-tumour effect of this agent in the therapy of liver cancer is unclear. Recent studies have demonstrated that differentiation-inducing agents could modulate the responsiveness of cancer cells to IFN-alpha by regulating the expression of signal transducers and activators of transcription (STAT) proteins, a group of transcription factors which play important roles in the IFN signalling pathway. We have reported that sodium butyrate is a potent differentiation inducer for human hepatoma cells. In this study, we investigated whether this drug could regulate the expression of STAT proteins and enhance the anti-tumour effect of IFN-alpha in hepatoma cells. We found that sodium butyrate specifically activated STAT1 gene expression and enhanced IFN-alpha-induced phosphorylation and activation of STAT1 proteins. Co-treatment with these two drugs led to G1 growth arrest, accompanied by down-regulation of cyclin D1 and up-regulation of p21WAF-1, and accumulation of hypophosphorylated retinoblastoma protein in hepatoma cells. Additionally, internucleosomal DNA fragmentation, a biological hallmark of apoptosis, was detected in hepatoma cells after continuous incubation with a combination of these two drugs for 72 h. Our results show that sodium butyrate potently enhances the anti-tumour effect of IFN-alpha in vitro and suggest that a rational combination of these two drugs may be useful for the treatment of liver cancer.

  15. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways.

    PubMed

    Wood, V H J; O'Neil, J D; Wei, W; Stewart, S E; Dawson, C W; Young, L S

    2007-06-14

    The Epstein-Barr virus (EBV)-encoded EBNA1 protein is expressed in all virus-associated tumors where it plays an essential role in the maintenance, replication and transcription of the EBV genome. Transcriptional profiling of EBNA1-expressing carcinoma cells demonstrated that EBNA1 also influences the expression of a range of cellular genes including those involved in translation, transcription and cell signaling. Of particular interest was the ability of EBNA1 to enhance expression of STAT1 and sensitize cells to interferon-induced STAT1 activation with resultant enhancement of major histocompatibility complex expression. A negative effect of EBNA1 on the expression of TGFbeta1-responsive betaig-h3 and PAI-1 genes was confirmed at the protein level in EBV-infected carcinoma cells. This effect resulted from the ability of EBNA1 to repress TGFbeta1-induced transcription via a reduction in the interaction of SMAD2 with SMAD4. More detailed analysis revealed that EBNA1 induces a lower steady-state level of SMAD2 protein as a consequence of increased protein turnover. These data show that EBNA1 can influence cellular gene transcription resulting in effects that may contribute to the development of EBV-associated tumors.

  16. High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer

    PubMed Central

    2014-01-01

    Background STAT1 has been attributed a function as tumor suppressor. However, in breast cancer data from microarray analysis indicated a predictive value of high mRNA expression levels of STAT1 and STAT1 target genes belonging to the interferon-related signature for a poor response to therapy. To clarify this issue we have determined STAT1 expression levels and activation by different methods, and investigated their association with tumor infiltration by immune cells. Additionally, we evaluated the interrelationship of these parameters and their significance for predicting disease outcome. Methods Expression of STAT1, its target genes SOCS1, IRF1, CXCL9, CXCL10, CXCL11, IFIT1, IFITM1, MX1 and genes characteristic for immune cell infiltration (CD68, CD163, PD-L1, PD-L2, PD-1, CD45, IFN-γ, FOXP3) was determined by RT-PCR in two independent cohorts comprising 132 breast cancer patients. For a subset of patients, protein levels of total as well as serine and tyrosine-phosphorylated STAT1 were ascertained by immunohistochemistry or immunoblotting and protein levels of CXCL10 by ELISA. Results mRNA expression levels of STAT1 and STAT1 target genes, as well as protein levels of total and serine-phosphorylated STAT1 correlated with each other in neoplastic tissue. However, there was no association between tumor levels of STAT1 mRNA and tyrosine-phosphorylated STAT1 and between CXCL10 serum levels and CXCL10 expression in the tumor. Tumors with increased STAT1 mRNA amounts exhibited elevated expression of genes characteristic for tumor-associated macrophages and immunosuppressive T lymphocytes. Survival analysis revealed an association of high STAT1 mRNA levels and bad prognosis in both cohorts. A similar prognostically relevant correlation with unfavorable outcome was evident for CXCL10, MX1, CD68, CD163, IFN-γ, and PD-L2 expression in at least one collective. By contrast, activation of STAT1 as assessed by the level of STAT1-Y701 phosphorylation was linked to positive

  17. Testosterone suppresses uropathogenic Escherichia coli invasion and colonization within prostate cells and inhibits inflammatory responses through JAK/STAT-1 signaling pathway.

    PubMed

    Ho, Chen-Hsun; Fan, Chia-Kwung; Yu, Hong-Jeng; Wu, Chia-Chang; Chen, Kuan-Chou; Liu, Shih-Ping; Cheng, Po-Ching

    2017-01-01

    Prostatitis is a common condition in adult men of all ages. Uropathogenic Escherichia coli (UPEC) are most frequent pathogen involved in bacterial prostatitis by refluxing the infected urine into prostatic ducts and resulting in an ascending urethral infection. However, the study about the mechanisms of UPEC to invade, replicate and persist in normal prostate epithelial cell is only few. Given the fact that UPEC is pathogen most frequently involved in prostatitis and that testosterone has been demonstrated to attenuate prostate inflammation caused by other etiologies. In this study we investigated whether the testosterone reduces the prostatitis and related mechanism by regulating IFN-γ/STAT1 signaling pathway. In the current study aimed to clarify whether testosterone influences the process of UPEC-induced prostate inflammation and invasion into the prostate epithelial cells. In addition, we set up a normal prostate cell model for UPEC infection to evaluate the ability to invade the urothelial cells as well as the colonization of intercellular bacterial communities in vitro. By using the model, we examine the effects of testosterone to suppress effectively the invasion and survival of UPEC in the prostate cells, and inhibit LPS-induced inflammatory responses through the JAK/STAT1 pathway have also been indicated. Our results demonstrated testosterone not only suppressed the invasion and colonization of UPEC, but also inhibited the expression of pro-inflammatory IL-1β, IL-6 and IL-8 cytokines expression induced by UPEC in a dose-dependent manner. We found the effective dose of testosterone to suppress UPEC infect prostate cells may be appropriate under 40μg/ml. Our data also revealed 20μg/ml testosterone treated PZ-HPV-7 cells significantly suppressed the LPS-induced JAK/STAT1 pathway and inflammatory responses, and reached to maximal effects at 40μg/ml treatment. These results indicate that testosterone plays an anti-inflammatory role in LPS-induced prostate

  18. Synergistic inhibition of colon cancer growth by the combination of methylglyoxal and silencing of glyoxalase I mediated by the STAT1 pathway

    PubMed Central

    Li, Gefei; Zhang, Jiali; Li, Changxi; Ma, Mengni; Guan, Chen; Bai, Fumao; Lyu, Jianxin; Meng, Qing H.

    2017-01-01

    Methylglyoxal (MG), an extremely reactive glucose metabolite, exhibits antitumor activity. Glyoxalase I (GLOI), which catalyzes MG metabolism, is associated with the progression of human malignancies. While the roles of MG or GLOI have been demonstrated in some types of cancer, their effects in colon cancer and the mechanisms underlying these effects remain largely unknown. For this study, MG and GLOI levels were manipulated in colon cancer cells and the effects on their viability, proliferation, apoptosis, migration, and invasion in vitro were quantified by Cell Counting Kit-8, colony formation assay, flow cytometry, and transwell assays. The expression levels of STAT1 pathway–associated proteins and mRNAs in these cells were quantified by western blot and qRT-PCR, respectively. The antitumor effects of MG and silencing of GLOI were investigated in vivo in a SW620 colon cancer xenograft model in BALB/c nude mice. Our findings demonstrate that MG in combination with silencing of GLOI synergistically inhibited the cancer cells’ proliferation, colony formation, migration, and invasion and induced apoptosis in vitro compared with the controls. Furthermore, these treatments up-regulated STAT1 and Bax while down-regulating Bcl-2 in vitro. MG treatment alone or in combination with silencing of GLOI also reduced the growth of the SW620 tumors in mice by up-regulation of STAT1 and Bax and down-regulation of Bcl-2. Taken together, our findings suggest that MG in combination with silencing of GLOI merits further evaluation as a targeted therapeutic strategy for colon cancer.

  19. Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors

    PubMed Central

    Levano, S; Bodmer, D

    2015-01-01

    Hair cell damage is a side effect of cisplatin and aminoglycoside use. The inhibition or attenuation of this process is a target of many investigations. There is growing evidence that STAT1 deficiency decreases cisplatin-mediated ototoxicity; however, the role of STAT function and the molecules that act in gentamicin-mediated toxicity have not been fully elucidated. We used mice lacking STAT1 to investigate the effect of STAT1 ablation in cultured organs treated with cisplatin and gentamicin. Here we show that ablation of STAT1 decreased cisplatin toxicity and attenuated gentamicin-mediated hair cell damage. More TUNEL-positive hair cells were observed in explants of wild-type mice than that of STAT1−/− mice. Although cisplatin increased serine phosphorylation of STAT1 in wild-type mice and diminished STAT3 expression in wild-type and STAT1−/− mice, gentamicin increased tyrosine phosphorylation of STAT3 in STAT1−/− mice. The early inflammatory response was manifested in the upregulation of TNF-α and IL-6 in cisplatin-treated explants of wild-type and STAT1−/− mice. Expression of the anti-inflammatory cytokine IL-10 was altered in cisplatin-treated explants, upregulated in wild-type explants, and downregulated in STAT1−/− explants. Cisplatin and gentamicin triggered the activation of c-Jun. Activation of Akt was observed in gentamicin-treated explants from STAT1−/− mice. Increased levels of the autophagy proteins Beclin-1 and LC3-II were observed in STAT1−/− explants. These data suggest that STAT1 is a central player in mediating ototoxicity. Gentamicin and cisplatin activate different downstream factors to trigger ototoxicity. Although cisplatin and gentamicin triggered inflammation and activated apoptotic factors, the absence of STAT1 allowed the cells to overcome the effects of these drugs. PMID:26673664

  20. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription.

    PubMed

    Huang, Chao; Tong, Lijuan; Lu, Xu; Wang, Jia; Yao, Wenjuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to the development of endotoxin-mediated inflammation. It can be induced by cytokines or endotoxins via distinct signaling pathways. Lipopolysaccharide (LPS) triggers iNOS expression through activation of the inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) cascade, whereas interferon-γ (IFN-γ) acts primarily through Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1). Methylene blue (MB), an agent used clinically to treat numerous ailments, has been shown to reduce NO accumulation through suppression of iNOS activity. But it remains unclear whether MB affects iNOS induction. This knowledge gap is addressed in the present study using cultured cells and endotoxemic mice. With mouse macrophages, MB treatment prevented the LPS- and/or IFN-γ-stimulated iNOS protein expression. Real-time PCR experiments showed that iNOS mRNA transcription was robustly blocked by MB treatment. The inhibitory effect of MB on iNOS expression was confirmed in vivo in endotoxemic mice. Further analysis showed that MB had no significant effect on IκB-α degradation and NF-κB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-κB or STAT1 was also not affected by MB treatment. But MB treatment markedly reduced the binding of NF-κB and STAT1 to their DNA elements. Chromatin immunoprecipitation assays confirmed that MB reduced NF-κB and STAT1 bindings to iNOS promoter inside the cell. These studies show that MB attenuates transcriptional factor binding amid iNOS mRNA transcription, providing further insight into the molecular mechanism of MB in disease therapy.

  1. Zinc rapidly induces a metal response element-binding factor.

    PubMed Central

    Czupryn, M; Brown, W E; Vallee, B L

    1992-01-01

    Metal activation of metallothionein gene transcription is mediated by specific promoter sequences, termed metal regulatory elements (MREs). Nuclear extracts prepared from various human cell lines were assayed for their capacity to bind to a synthetic human MREa (hMREa) oligomer. Electrophoretic mobility-shift assays with extracts from control cells detected a single hMREa-containing complex. Addition to the growth medium of zinc, cadmium, or copper--metals known to induce MT biosynthesis in vivo--resulted in the rapid but reversible appearance of a second distinct hMREa-protein complex in all cell lines studied. This result was not seen when the metals were added directly to the extracts from control cells. DNA-binding protein blotting, UV crosslinking, and electroelution experiments were used to characterize the two hMREa-binding factors, termed BF1 and BF2. MRE-BF1 has an apparent molecular mass of approximately 86 kDa and binds to the hMREa in control cells, whereas MRE-BF2 consists of two molecules of approximately 28 kDa and binds to the hMREa in metal-treated cells. EDTA and o-phenanthroline inhibited binding of both factors to hMREa in a dose-dependent manner, indicating that a metal atom or atoms are essential for interaction of the factors with DNA. Images PMID:1332048

  2. Loss of STAT1 is Associated with Increased Aortic Rupture in an Experimental Model of Aortic Dissection and Aneurysm Formation

    PubMed Central

    Eagleton, Matthew J.; Xu, Jun; Liao, Mingfang; Parine, Brittney; Chisolm, Guy M.; Graham, Linda M.

    2009-01-01

    Background Transcription factor signal transducer and activator of transcription (STAT) 1 has been linked to a variety of pathologic states involved with matrix remodeling, but its role in aortic pathology has not been previously described. The current study hypothesizes that STAT1 regulates aneurysmal degeneration and its role will be evaluated in human aortic aneurysms and in a mouse model of aortic dissection. Methods Apolipoprotein E knockout mice (ApoE−/−) or ApoE/STAT1 double knockout mice (ApoE/STAT1−/−) were infused with 1000 ng/kg/min of angiotensin II (Ang II). Systolic blood pressure (SBP) was measured in the rodent tail. At sacrifice, aortic diameters and extent of aneurysm formation were measured by digital microscopy. STAT1 and phosphorylated-STAT1 protein levels were assessed in ApoE−/− mice at 0, 7, 14, and 28 days (n=8/time point) by ELISA. Histology was performed using H&E and Movat stains. Statistical analyses included chi-square test, T-test, and ANOVA. Results STAT1 mRNA and total protein were greater in human AAA compared to non-aneurysmal controls. In addition, aneurysms occurred in 8%, 50%, and 80% of apoE−/− mice at 7, 14, and 28 days respectively. Total STAT1 levels were not altered during the course of Ang II infusion, but phosphorylated STAT1 levels peaked at 7 days with a 1.4-fold increase over baseline (P<0.05). Aneurysms occurred in 0%, 100%, and 100% of apoE/STAT1−/− mice at 3, 5, and 28 days. In mice infused with Ang II for more than 3 days, aortic rupture occurred more frequently in apoE/STAT−/− mice (53% v. 19%, P<0.05) and at earlier time points (4.0±0.5 v. 9.2±0.77 days, P<0.05) compared with apoE−/− mice. SBP did not differ between the groups during Ang II infusion. By 28 days, aneurysms were larger in apoE/STAT1−/− mice compared to apoE−/− mice (2.7±0.4 v. 1.9±0.1 mm, P<0.05), and were more extensive arising at the level of the left subclavian artery and extending to the infrarenal aorta

  3. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation

    SciTech Connect

    Devaux, Patricia; Messling, Veronika von; Songsungthong, Warangkhana; Springfeld, Christoph; Cattaneo, Roberto . E-mail: cattaneo.roberto@mayo.edu

    2007-03-30

    The measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation. This is shown not only by transient expression but also by reverse genetic analyses based on a new functional infectious cDNA derived from a MV vaccine vial (Moraten strain). Our study also identifies a conserved sequence around P protein tyrosine 110 as a candidate interaction site with a cellular protein.

  4. Light-induced binding of metal nanoparticles via surface plasmons

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Zheng, M. J.; Yu, K. W.

    2010-03-01

    Recently, nanomachines based on the interaction of nanosize objects with nanostructrued surfaces have attracted much attention. In this work, we study theoretically the light-induced binding forces between a metallic nanosphere and a planar structure, and also between nanoparticles in a diatomic plamonic chain of shelled and unshelled metallic nanoparticles placed alternatively. These forces are calculated by Bergman-Milton spectral representation and multiple image methods within the long wavelength limit. When we tune the incident frequency to the surface plasmon resonant frequency, a stable local minimum in the potential energy is found. It signifies a binding between nanoparticles (nanostructures), which indicates a possible stable structure of the metallic clusters. Such binding is caused by the excitation of collective plasmon modes, which depends on the interparticle distances. This study has potential applications in plasmonic waveguides and colloidal metallic clusters on the nanoscales.

  5. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    PubMed Central

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; Van Montfrans, Joris; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D.; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L.; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D.; Holland, Steven; Casanova, Jean-Laurent

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A–producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis. PMID:27114460

  6. Interleukin-27 Inhibits Herpes Simplex Virus Type 1 Infection by Activating STAT1 and 3, Interleukin-6, and Chemokines IP-10 and MIG.

    PubMed

    Heikkilä, Outi; Nygårdas, Michaela; Paavilainen, Henrik; Ryödi, Elina; Hukkanen, Veijo

    2016-11-01

    Interleukin-27 (IL-27) inhibits the replication of many viruses, but the mechanism differs according to virus and cell type. In this study, we observed that IL-27 expression was upregulated in herpes simplex virus type 1 (HSV-1)-infected SJL/J mice, which led us to further investigate the role of IL-27 in HSV-1 infection using epithelial, glioma, and immunological cells as cell models. We showed that in all studied cell lines, the IL-27 messenger RNA (mRNA) level was upregulated due to the HSV-1 infection. When the cells were primed with IL-27 before the virus infection, the virus release was prevented, indicating an antiviral role of IL-27 in HSV-1 infection. Furthermore, we observed that IL-27 secretion to the culture medium was reduced in infected epithelial and immunological cells, but not in glioma cells. Not surprisingly, HSV-1 induced type I, II, and III interferons regardless of cell line, but IL-27 itself caused varying interferon responses dependent on cell type. However, common to all cell types was the IL-27-stimulated secretion of IL-6 and chemokines IP-10 and MIG. In addition, IL-27 stimulation activated STAT1 and STAT3 in HeLa and T98G cells, suggesting that IL-27 engages the STAT1/3 pathway, which then leads to the upregulation of IL-6, IP-10, and MIG.

  7. High Glucose and Interferon Gamma Synergistically Stimulate MMP-1 Expression in U937 Macrophages by Increasing Transcription Factor STAT1 Activity

    PubMed Central

    Nareika, Alena; Sundararaj, Kamala P; Im, Yeong-Bin; Game, Bryan A.; Lopes-Virella, Maria F.; Huang, Yan

    2009-01-01

    Recent Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) and other clinical studies have reported that glucose control in patients with diabetes leads to a significant reduction of cardiovascular events and atherosclerosis, indicating that hyperglycemia plays an essential role in cardiovascular disease in diabetic patients. Although several mechanisms by which hyperglycemia promotes atherosclerosis have been proposed, it remains unclear how hyperglycemia promotes atherosclerosis by interaction with inflammatory cytokines. To test our hypothesis that hyperglycemia interplays with interferon gamma (IFNγ), a key factor involved in atherosclerosis, to up-regulate the expression of genes such as matrix metalloproteinases (MMPs) and cytokines that are involved in plaque destabilization, U937 macrophages cultured in medium containing either normal or high glucose were challenged with IFNγ and the expression of MMPs and cytokines were then quantified by real-time PCR and ELISA. Results showed that high glucose and IFNγ had a synergistic effect on the expression of MMP-1, MMP-9 and IL-1β. High glucose also enhanced IFNγ-induced priming effect on LPS-stimulated MMP-1 secretion. Furthermore, high glucose and IFNγ exert the synergistic effect on MMP-1 expression by enhancing STAT1 phosphorylation and STAT1 transcriptional activity. In summary, this study revealed a novel mechanism potentially involved in diabetes-promoted cardiovascular disease. PMID:18586252

  8. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia.

    PubMed

    Poe, S L; Arora, M; Oriss, T B; Yarlagadda, M; Isse, K; Khare, A; Levy, D E; Lee, J S; Mallampalli, R K; Chan, Y R; Ray, A; Ray, P

    2013-01-01

    Bacterial pneumonia remains a significant burden worldwide. Although an inflammatory response in the lung is required to fight the causative agent, persistent tissue-resident neutrophils in non-resolving pneumonia can induce collateral tissue damage and precipitate acute lung injury. However, little is known about mechanisms orchestrated in the lung tissue that remove apoptotic neutrophils to restore tissue homeostasis. In mice infected with Klebsiella pneumoniae, a bacterium commonly associated with hospital-acquired pneumonia, we show that interleukin (IL)-10 is essential for resolution of lung inflammation and recovery of mice after infection. Although IL-10(-/-) mice cleared bacteria, they displayed increased morbidity with progressive weight loss and persistent lung inflammation in the later phase after infection. A source of tissue IL-10 was found to be resident CD11b(+)Gr1(int)F4/80(+) cells resembling myeloid-derived suppressor cells (MDSCs) that appeared with a delayed kinetics after infection. These cells efficiently efferocytosed apoptotic neutrophils, which was aided by IL-10. The lung neutrophil burden was attenuated in infected signal transducer and activator of transcription 1 (STAT1)(-/-) mice with concomitant increase in the frequency of the MDSC-like cells and lung IL-10 levels. Thus, inhibiting STAT1 in combination with antibiotics may be a novel therapeutic strategy to address inefficient resolution of bacterial pneumonia.

  9. AG490 and PF431396 Sensitive Tyrosine Kinase Control the Population Heterogeneity of Basal STAT1 Activity in Ube1l Deficient Cells

    PubMed Central

    Now, Hesung; Yoo, Joo-Yeon

    2016-01-01

    A population often contains distinct sub-populations, thereby increasing the complexity of the overall heterogeneity. However, the cellular origin and biological relevance of sub-populations in cell population have not been clearly identified. Here we demonstrated the novel roles of ISGylation, which is an IFN-induced post-translational modification, controlling heterogeneity at the population level in cultured adherent cells. Without UBE1L, an E1 enzyme of ISGylation, mouse embryonic fibroblasts (MEF) exhibited low viral resistance despite high STAT1 and ISG expression compared with the wild-type MEF. We observe that Ube1l−/− MEF populations consist of two behaviorally distinguishable sub-populations with distinct basal STAT1 activity, while wild-type MEF populations are unimodal. This population heterogeneity in Ube1l knock-out cells was perturbed by tyrosine kinase inhibitors, AG490 and PF431396. In contrast, the neutralization of type I IFN did not affect population heterogeneity. Based on these results, we concluded that UBE1L functions to adjust basal immunological states with the regulation of population heterogeneity. PMID:27427993

  10. Ribavirin inhibits Zika virus (ZIKV) replication in vitro and suppresses viremia in ZIKV-infected STAT1-deficient mice.

    PubMed

    Kamiyama, Naganori; Soma, Ryusuke; Hidano, Shinya; Watanabe, Kei; Umekita, Hiroshi; Fukuda, Chiaki; Noguchi, Kaori; Gendo, Yoshiko; Ozaki, Takashi; Sonoda, Akira; Sachi, Nozomi; Runtuwene, Lucky Ronald; Miura, Yumako; Matsubara, Etsuro; Tajima, Shigeru; Takasaki, Tomohiko; Eshita, Yuki; Kobayashi, Takashi

    2017-08-14

    Zika fever, a mosquito-borne infectious disease caused by Zika virus (ZIKV), is an epidemic disease for which no effective therapy has been established. The recent outbreaks of ZIKV in Brazil and French Polynesia have been linked to a considerable increase in the incidence of fetal microcephaly and other diseases such as Guillain-Barre syndrome. Because there is currently no specific therapy or vaccine, the early exploitation of a method to prevent expansion of ZIKV is a high priority. To validate commonly used antiviral drugs, we evaluated the effect of ribavirin, a drug used to treat hepatitis C with interferon-β (IFN-β), on ZIKV replication. In mammalian cells, we observed an inhibitory effect of ribavirin on ZIKV replication and ZIKV-induced cell death without cytotoxic effect. Furthermore, we found that STAT1-deficient mice, which lack type I IFN signaling, were highly sensitive to ZIKV infection and exhibited lethal outcome. Ribavirin abrogated viremia in ZIKV-infected STAT-1-deficient mice. These data suggest that the inhibition of viral RNA-dependent RNA polymerases may be effective for treatment of ZIKV infection. Our data provide a new insight into the mechanisms for inhibition of ZIKV replication and prevention of Zika fever. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity

    PubMed Central

    Kint, Joeri; Dickhout, Annemiek; Kutter, Jasmin; Maier, Helena J.; Britton, Paul; Koumans, Joseph; Pijlman, Gorben P.; Fros, Jelke J.; Wiegertjes, Geert F.

    2015-01-01

    ABSTRACT The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system. PMID:26401035

  12. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  13. Binding.

    ERIC Educational Resources Information Center

    Rebsamen, Werner

    1981-01-01

    Categorizes contemporary methods of binding printed materials in terms of physical preservation--hand binding (archival restoration), edition binding (paperback, hardcover), publication binding (magazines), textbook binding (sidesewn), single-sheet binding (loose-leaf, mechanical), and library binding (oversewn, sidesewn). Seven references are…

  14. Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-{alpha}/{beta} signaling

    SciTech Connect

    Caignard, Gregory; Guerbois, Mathilde; Labernardiere, Jean-Louis; Jacob, Yves; Jones, Louis M.; Wild, Fabian; Tangy, Frederic Vidalain, Pierre-Olivier

    2007-11-25

    Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-{alpha}/{beta}). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-{alpha}/{beta} pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-{alpha}/{beta} signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate that MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-{alpha}/{beta} receptor complex to block downstream signaling.

  15. STAT1 Regulates the Homeostatic Component of Visual Cortical Plasticity via an AMPA Receptor-Mediated Mechanism

    PubMed Central

    Van Wart, Audra; Petravicz, Jeremy; Tropea, Daniela

    2014-01-01

    Accumulating evidence points to a role for Janus kinase/signal transducers and activators of transcription (STAT) immune signaling in neuronal function; however, its role in experience-dependent plasticity is unknown. Here we show that one of its components, STAT1, negatively regulates the homeostatic component of ocular dominance plasticity in visual cortex. After brief monocular deprivation (MD), STAT1 knock-out (KO) mice show an accelerated increase of open-eye responses, to a level comparable with open-eye responses after a longer duration of MD in wild-type (WT) mice. Therefore, this component of plasticity is abnormally enhanced in KO mice. Conversely, increasing STAT1 signaling by IFNγ treatment in WT mice reduces the homeostatic component of plasticity by impairing open-eye responses. Enhanced plasticity in KO mice is accompanied by sustained surface levels of GluA1 AMPA receptors and increased amplitude and frequency of AMPA receptor-mediated mEPSCs, which resemble changes in WT mice after a longer duration of MD. These results demonstrate a unique role for STAT1 during visual cortical plasticity in vivo through a mechanism that includes AMPA receptors. PMID:25080587

  16. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members.

    PubMed

    Ilaria, R L; Van Etten, R A

    1996-12-06

    The products of the Philadelphia chromosome translocation, P210 and P190(BCR/ABL), are cytoplasmic protein tyrosine kinases that share the ability to transform hematopoietic cytokine-dependent cell lines to cytokine independence but differ in the spectrum of leukemia induced in vivo. We have analyzed the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways in hematopoietic cells transformed by Bcr/Abl. STAT5 and, to a lesser extent, STATs 1 and 3 were constitutively activated by tyrosine phosphorylation and induction of DNA binding activity in both P210 and P190(BCR/ABL)-transformed cells, but P190 differed in that it also prominently activated STAT6. There was low level tyrosine phosphorylation of JAKs 1, 2, and 3 in Bcr/Abl-transformed cells, but no detectable complex formation with Bcr/Abl, and activation of STAT5 by P210 was not blocked by two different dominant-negative JAK mutants. These results suggest that P210 and P190(BCR/ABL) directly activate specific STAT family members and may help explain their overlapping yet distinct roles in leukemogenesis.

  17. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2005-04-15

    It is well established that tumor progression is associated with the accumulation of myeloid suppressive cells, which in mice include Gr-1+ immature myeloid cells and F4/80+ macrophages. The paradox is that with the exception of terminal stages of the disease or chemotherapy treatment, tumor-bearing mice or cancer patients do not display a profound systemic immune suppression. We therefore raised the question as to whether myeloid cell-mediated T cell suppression is controlled at a local level at the site of the tumor. We have demonstrated that after adoptive transfer to tumor-bearing recipients, Gr-1+ (immature myeloid cells) freshly isolated from spleens of tumor-bearing mice become F4/80+ tumor-associated macrophages (TAM). These TAM, but not F4/80+ macrophages or Gr-1+ cells freshly isolated from spleens of tumor-bearing or naive mice were able to inhibit T cell-mediated immune response in vitro via induction of T cell apoptosis. Arginase and NO were both responsible for the apoptotic mechanism, and were seen only in TAM, but not in freshly isolated Gr1+ cells. Using the analysis of STAT activity in combination with STAT knockout mice, we have determined that STAT1, but not STAT3 or STAT6, was responsible for TAM-suppressive activity.

  18. Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation.

    PubMed

    Laavola, Mirka; Nieminen, Riina; Yam, Mun Fei; Sadikun, Amirin; Asmawi, Mohd Zaini; Basir, Rusliza; Welling, Jukka; Vapaatalo, Heikki; Korhonen, Riku; Moilanen, Eeva

    2012-05-01

    Cytokines and other inflammatory mediators, such as prostaglandin E₂ (PGE₂) and nitric oxide (NO) produced by cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), respectively, activate and drive inflammation and therefore serve as targets for anti-inflammatory drug development. Orthosiphon stamineus is an indigenous medicinal plant of Southeast Asia that has been traditionally used in the treatment of rheumatoid arthritis, gout, and other inflammatory disorders. The present study investigated the anti-inflammatory properties of Orthosiphon stamineus leaf chloroform extract (CE), its flavonoid-containing CE fraction 2 (CF2), and the flavonoids eupatorin, eupatorin-5-methyl ether (TMF), and sinensetin, identified from the CF2. It was found that CE (20 and 50 µg/mL) and CF2 (20 and 50 µg/mL) inhibited iNOS expression and NO production, as well as PGE₂ production. Eupatorin and sinensetin inhibited iNOS and COX-2 expression and the production of NO (IC₅₀ 5.2 µM and 9.2 µM for eupatorin and sinensetin, respectively) and PGE₂ (IC₅₀ 5.0 µM and 2.7 µM for eupatorin and sinensetin, respectively) in a dose-dependent manner. The extracts and the compounds also inhibited tumor necrosis factor α (TNF-α) production (IC₅₀ 5.0 µM and 2.7 µM for eupatorin and sinensetin, respectively). Eupatorin and sinensetin inhibited lipopolysaccharide (LPS)-induced activation of transcription factor signal transducers and activators of transcription 1α (STAT1α). Furthermore, eupatorin (50 mg/kg i. p.) and sinensetin (50 mg/kg i. p.) inhibited carrageenan-induced paw inflammation in mice. The results suggest that CE and CF2, as well as the known constituents of CF2, i.e., eupatorin and sinensetin, have meaningful anti-inflammatory properties which may be utilized in the development of novel anti-inflammatory treatments.

  19. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo.

    PubMed

    Chapgier, Ariane; Wynn, Robert F; Jouanguy, Emmanuelle; Filipe-Santos, Orchidée; Zhang, Shenying; Feinberg, Jacqueline; Hawkins, Kay; Casanova, Jean-Laurent; Arkwright, Peter D

    2006-04-15

    The autosomal recessive form of human complete Stat-1 deficiency is a rare disorder, thus far reported in two unrelated patients, both of whom developed disseminated bacillus Calmette-Guérin (BCG) and subsequently died of viral illnesses before detailed studies of the condition could be performed. It is associated with impaired cellular responses to both IFN-gamma and IFN-alphabeta via Stat-1-containing complexes. We describe a third patient with complete Stat-1 deficiency and disseminated BCG infection, who died 3 mo after bone marrow transplantation. The patient's EBV-transformed B cells did not express Stat-1 protein and did not activate Stat-1-containing transcription factors. We also report the ex vivo responses of a Stat-1-deficient patient's fresh blood cells to IFN-gamma and the in vitro responses of a SV40-transformed fibroblastic cell line to IFN-gamma and IFN-alphabeta. There was no response to IFN-gamma in terms of IL-12 production and HLA class II induction, accounting for vulnerability to BCG. Moreover, IFN-alphabeta did not suppress HSV and vesicular stomatitis virus replication in fibroblasts, although in vivo the patient was able to successfully clear at least some viruses. This study broadens our understanding of complete Stat-1 deficiency, a severe form of innate immunodeficiency. Stat-1 deficiency should be suspected in children with severe infections, notably but not exclusively patients with mycobacterial or viral diseases.

  20. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    PubMed

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American

  1. Oesophageal candidiasis and squamous cell cancer in patients with gain-of-function STAT1 gene mutation.

    PubMed

    Koo, Sara; Kejariwal, Deepak; Al-Shehri, Tariq; Dhar, Anjan; Lilic, Desa

    2017-08-01

    Oesophageal candidiasis is a common, usually self-limiting opportunistic infection, but long-term infection with Candida is known to predispose to oral and oesophageal squamous cell cancer (SCC). Permissive factors that lead to immune deficiencies can underlie persistent or recurring candidiasis, called chronic mucocutaneous candidiasis (CMC). Secondary immune deficiencies are most often due to human immunodeficiency virus (HIV) infection, antibiotic use and immunosuppressive treatment (steroids, chemotherapy). Inborn errors of the immune system (primary immune deficiencies) can present with isolated CMC known as CMC disease (CMCD), which is most often found in patients with autoimmune polyendocrinopathy syndrome type 1 (APS1)/APECED or in patients with an underlying gain-of-function STAT1 mutation (GOF-STAT1). To describe a new form of inherited/familial CMC with a high risk for developing squamous cell carcinoma of the oesophagus, due to a gain-of-function mutation in the STAT1 gene. This report describes a family of patients with CMC with confirmed GOF-STAT1 mutation. These patients usually present with CMCD in childhood, have severe oral and oesophageal candidiasis accompanied by severe difficulty swallowing, chest pain, heartburn, and are at risk of developing oral and/or oesophageal SCC. This case series describes six patients in three generations of the same family, two of whom developed and died of SCC. We recommend regular endoscopic surveillance to detect early oesophageal neoplasia in patients with CMCD as well as urgent endoscopy in symptomatic patients. CMC is not a well-recognised condition in gastroenterology practice and clinicians need to be aware of the genetics of the condition as well as the risk for oesophageal cancer so that they can counsel their patients and arrange surveillance appropriately.

  2. Superlattices assembled through shape-induced directional binding

    SciTech Connect

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-04-23

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.

  3. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  4. Superlattices assembled through shape-induced directional binding

    PubMed Central

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; Xin, Huolin; Gang, Oleg

    2015-01-01

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined by the spatial symmetry of the block's facets, while structural order depends on DNA-tuned interactions and particle size ratio. The presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices. PMID:25903309

  5. Increased PD-1/STAT1 ratio may account for the survival benefit in decitabine therapy for lower risk myelodysplastic syndrome.

    PubMed

    Zhang, Zheng; Chang, Chun-Kang; He, Qi; Guo, Juan; Tao, Ying; Wu, Ling-Yun; Xu, Feng; Wu, Dong; Zhou, Li-Yu; Su, Ji-Ying; Song, Lu-Xi; Xiao, Chao; Li, Xiao

    2017-04-01

    Decitabine is an effective therapy for patients with lower risk myelodysplastic syndrome (MDS). However, the mechanisms of decitabine's therapeutic effect are not well established. Forty-four lower risk MDS patients received decitabine therapy. 59.1% patients achieved treatment response, and 53.8% patients who were RBC/platelet-dependent cast off the transfusion burden. The median overall survival (OS) was 19.0 months after decitabine treatment. Moreover, polarization toward type 1 in the CD8 + subset was enhanced, and a significantly increased expression of the PD-1, PD-L1, and PD-1/STAT1 ratio was observed in these lower risk MDS. The patients with amplification of PD-1/STAT1 ratio (2-4) achieved longer OS. Thus, our results suggest that the effect mechanism of decitabine toward lower risk MDS may be the moderate increase of PD-1/STAT1, which contributes to hematopoietic improvement. These findings suggest that a different PD-1-related strategy from those used to treat higher risk patients could be used for lower risk MDS patients.

  6. The relationship between total and phosphorylated STAT1 and STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer

    PubMed Central

    Gujam, Fadia J.A.; McMillan, Donald C.; Edwards, Joanne

    2016-01-01

    The aim of the present study was to examine the relationship between tumour cell expression of total and phosphorylated STAT1 (ph-STAT1) and STAT3 (ph-STAT-3), components of tumour microenvironment and survival in patients with invasive ductal breast cancer. Immunohistochemical analysis of total and ph-STAT1, and STAT3 were performed on tissue microarray of 384 breast cancer specimens. Tumour cell expression of STAT1 and STAT3 at both cytoplasmic and nuclear locations were combined and identified as STAT1/STAT3 tumour cell expression. These results were related to cancer specific survival (CSS) and phenotypic features of the tumour and the host. High ph-STAT1 and ph-STAT3 tumour cell expression were associated with increased ER (both P≤0.001) and PR (both P <0.05), reduced tumour grade (P=0.015 and P<0.001 respectively) and necrosis (both P=0.001). Ph-STAT1 was associated with increased general inflammatory infiltrate (P=0.007) and ph-STAT3 was associated with lower CD4+ infiltration (P=0.024). In multivariate survival analysis, only high ph-STAT3 tumour cell expression was a predictor of improved CSS (P=0.010) independent of other tumour and host-based factors. STAT1 and STAT3 tumour cell expression appeared to be an important determinant of favourable outcome in patients with invasive ductal breast cancer. The present results suggest that STAT1 and STAT3 may affect disease outcome through direct impact on tumour cells, counteracting aggressive tumour features, as well as interaction with the surrounding microenvironment. PMID:27769057

  7. Melamine binding with arachidonic acid binding sites of albumin is a potential mechanism for melamine-induced inflammation.

    PubMed

    Rajpoot, Meenakshi; Bhattacharyya, Rajasri; Banerjee, Dibyajyoti; Sharma, Anil

    2017-07-01

    Melamine adulteration of food is a public health concern. It has been seen that melamine causes disease in many organs. Melamine-induced kidney disease is a well-recognized clinicopathological entity. Inflammation is thought to be important in melamine-induced pathology. Melamine is expected to bind with albumin because it has a positive charge. Albumin binds arachidonic acid. So if binding of melamine with albumin takes place, it has the potential to displace arachidonic acid from the albumin bound state. This phenomenon may be the source of mediators of inflammation in the melamine exposure state. This aspect is investigated in the present study by docking and molecular dynamics simulation. It is observed that melamine binds with some known arachidonic acid binding sites of albumin. This can lead to formation of more free arachidonic acid. It is also observed that melamine does not bind with extracellular signal regulated kinase 2 (ERK2). Therefore, the signal transduction mediated process involving ERK2 is not a likely mechanism of melamine-induced inflammation. Therefore, we think that an increased free arachidonic acid level may contribute more to inflammation in the melamine exposure state. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1.

    PubMed

    Shi, Shuangping; Blumenthal, Antje; Hickey, Christopher M; Gandotra, Sheetal; Levy, David; Ehrt, Sabine

    2005-09-01

    Macrophages respond to several subcellular products of Mycobacterium tuberculosis (Mtb) through TLR2 or TLR4. However, primary mouse macrophages respond to viable, virulent Mtb by pathways largely independent of MyD88, the common adaptor molecule for TLRs. Using microarrays, quantitative PCR, and ELISA with gene-disrupted macrophages and mice, we now show that viable Mtb elicits the expression of inducible NO synthase, RANTES, IFN-inducible protein 10, immune-responsive gene 1, and many other key genes in macrophages substantially independently of TLR2, TLR4, their combination, or the TLR adaptors Toll-IL-1R domain-containing adapter protein and Toll-IL-1R domain-containing adapter inducing IFN-beta. Mice deficient in both TLR2 and TLR4 handle aerosol infection with viable Mtb as well as congenic controls. Viable Mtb also up-regulates inducible NO synthase, RANTES, IFN-inducible protein 10, and IRG1 in macrophages that lack mannose receptor, complement receptors 3 and 4, type A scavenger receptor, or CD40. These MyD88, TLR2/4-independent transcriptional responses require IFN-alphabetaR and STAT1, but not IFN-gamma. Conversely, those genes whose expression is MyD88 dependent do not depend on IFN-alphabetaR or STAT1. Transcriptional induction of TNF is TLR2/4, MyD88, STAT1, and IFN-alphabetaR independent, but TNF protein release requires the TLR2/4-MyD88 pathway. Thus, macrophages respond transcriptionally to viable Mtb through at least three pathways. TLR2 mediates the responses of a numerically minor set of genes that collectively do not appear to affect the course of infection in mice; regulation of TNF requires TLR2/4 for post-transcriptional control, but not for transcriptional induction; and many responding genes are regulated through an unknown, TLR2/4-independent pathway that may involve IFN-alphabetaR and STAT1.

  9. Inducible cadmium binding complexes of cabbage and tobacco

    SciTech Connect

    Wagner, G.J.; Trotter, M.M.

    1982-01-01

    Cadmium complexes with apparent molecular weights of 10,000 were observed in aqueous extracts of Cd-treated cabbage (Brassica capitata L., cv. red danish) and tobacco (hybrid of Nicotiana glauca and N. langsdorffii) plants. The amount of complex (as Cd) recovered was found to be dependent on the concentration of the metal in the growth medium and the total time of exposure of plants to the metal. Induction of the complex at moderate levels of /sup 112/Cd exposure was monitored after labeling the complex with /sup 109/Cd in vitro. The constitutive nature of the ligand of the complex in cabbage and tobacco leaves was suggested when control plant extracts were exposed to /sup 109/Cd. Such extracts contained /sup 109/Cd, which eluted froom Sephadex G-50 in the region of Cd complex. Simultaneous labeling with /sup 112/Cd and /sup 35/S or /sup 32/P indicated that the complex contained sulfur but probably not phosphorus. The amount of /sup 35/S which eluted coincident with /sup 112/Cd complex increased during complex induction. No evidence was found for the presence of 10,000 molecular weight Cd complex in stem exudates (vascular sap) of Cd-treated plants. The results obtained are consistent with the presence in these tissues of a ligand which is both inducible and consitutive and binds Cd in mercaptide bonds. All of these properties and oters reported earlier, are characteristic of Cd-metallothionein formed in animals.

  10. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis

    PubMed Central

    Benoit, Joshua B; Vigneron, Aurélien; Broderick, Nichole A; Wu, Yineng; Sun, Jennifer S; Carlson, John R; Aksoy, Serap; Weiss, Brian L

    2017-01-01

    Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host’s immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila’s indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems. DOI: http://dx.doi.org/10.7554/eLife.19535.001 PMID:28079523

  11. Superlattices assembled through shape-induced directional binding

    DOE PAGES

    Lu, Fang; Yager, Kevin G.; Zhang, Yugang; ...

    2015-04-23

    Organization of spherical particles into lattices is typically driven by packing considerations. Although the addition of directional binding can significantly broaden structural diversity, nanoscale implementation remains challenging. Here we investigate the assembly of clusters and lattices in which anisotropic polyhedral blocks coordinate isotropic spherical nanoparticles via shape-induced directional interactions facilitated by DNA recognition. We show that these polyhedral blocks—cubes and octahedrons—when mixed with spheres, promote the assembly of clusters with architecture determined by polyhedron symmetry. Moreover, three-dimensional binary superlattices are formed when DNA shells accommodate the shape disparity between nanoparticle interfaces. The crystallographic symmetry of assembled lattices is determined bymore » the spatial symmetry of the block’s facets, while structural order depends on DNA-tuned interactions and particle size ratio. Lastly, the presented lattice assembly strategy, exploiting shape for defining the global structure and DNA-mediation locally, opens novel possibilities for by-design fabrication of binary lattices.« less

  12. Palmitoylation of Interferon-α (IFN-α) Receptor Subunit IFNAR1 Is Required for the Activation of Stat1 and Stat2 by IFN-α*

    PubMed Central

    Claudinon, Julie; Gonnord, Pauline; Beslard, Emilie; Marchetti, Marta; Mitchell, Keith; Boularan, Cédric; Johannes, Ludger; Eid, Pierre; Lamaze, Christophe

    2009-01-01

    Type I interferons (IFNs) bind IFNAR receptors and activate Jak kinases and Stat transcription factors to stimulate the transcription of genes downstream from IFN-stimulated response elements. In this study, we analyze the role of protein palmitoylation, a reversible post-translational lipid modification, in the functional properties of IFNAR. We report that pharmacological inhibition of protein palmitoylation results in severe defects of IFN receptor endocytosis and signaling. We generated mutants of the IFNAR1 subunit of the type I IFN receptor, in which each or both of the two cysteines present in the cytoplasmic domain are replaced by alanines. We show that cysteine 463 of IFNAR1, the more proximal of the two cytoplasmic cysteines, is palmitoylated. A thorough microscopic and biochemical analysis of the palmitoylation-deficient IFNAR1 mutant revealed that IFNAR1 palmitoylation is not required for receptor endocytosis, intracellular distribution, or stability at the cell surface. However, the lack of IFNAR1 palmitoylation affects selectively the activation of Stat2, which results in a lack of efficient Stat1 activation and nuclear translocation and IFN-α-activated gene transcription. Thus, receptor palmitoylation is a previously undescribed mechanism of regulating signaling activity by type I IFNs in the Jak/Stat pathway. PMID:19561067

  13. Elevated interleukin-27 levels in human neonatal macrophages regulate indoleamine dioxygenase in a STAT-1 and STAT-3-dependent manner.

    PubMed

    Jung, Joo-Yong; Gleave Parson, Madeline; Kraft, Jennifer D; Lyda, Logan; Kobe, Brianna; Davis, Celestia; Robinson, Jembber; Peña, Maria Marjorette O; Robinson, Cory M

    2016-09-01

    Microbial infections are a major cause of infant mortality as a result of limitations in immune defences. Interleukin-27 (IL-27) is a heterodimeric cytokine produced primarily by leucocytes and is immunosuppressive toward lymphocytes and leucocytes. Our laboratory demonstrated that human neonatal macrophages express IL-27 more abundantly than adult macrophages. Similarly in mice, IL-27 expression is elevated early in life and maintained through infancy. To determine IL-27-regulated mechanisms that may limit immunity, we evaluated the expression of a number of genes in response to this cytokine in primary human neonatal macrophages. Indoleamine 2,3-dioxygenase (IDO) gene expression was increased dose-responsively by IL-27. We have previously demonstrated inhibition of T-cell proliferation and cytokine production by neonatal macrophage-generated IL-27, and IDO is often implicated in this negative regulation. An increase in IDO protein was demonstrated by immunofluorescence microscopy and was consistent with increased enzyme activity following treatment with IL-27. Inclusion of a soluble receptor to neutralize endogenous IL-27, decreased IDO expression and activity compared with untreated macrophages. In response to IL-27, neonatal macrophages phosphorylate signal transdcuer and activator of transcription 1 (STAT-1) and STAT-3. Both transcription factors are recruited to the IDO regulatory region. STAT-3 dominates during steady-state regulation by lower levels of endogenous IL-27 production. A shift to enhanced STAT-1 recruitment occurs during increased levels of exogenously supplied IL-27. These data suggest an interesting interplay of STAT-1 and STAT-3 to regulate IDO activity and immunosuppression in response to different levels of IL-27 in the microenvironment of the immune response that may further our understanding of this interesting cytokine.

  14. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  15. A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang; Li, Guohui

    2013-11-01

    Molecular dynamics (MD) simulations followed by principal component analysis were performed to study the conformational change of MDM2 induced by p53 and two inhibitor (P4 and MI63a) bindings. The results show that the hydrophobic cleft of MDM2 is very flexible and adaptive to different structural binding partners. The cleft tends to become wider and more stable as MDM2 binds to the three binding partners, while unbound MDM2 shows a narrower and pretty flexible cleft, which agrees with recent experimental data and theoretical studies. It was also found that the binding of P4 and p53 stabilizes the motion of the loop L2 linking the helix α2 and β strand (β3), but the presence of MI63a makes the motion of L2 disordered. In addition, the binding free energies of the three partners to MDM2 were calculated using molecular mechanics generalized Born surface area to explain the binding modes of these three partners to MDM2. This study will be helpful not only for better understanding the functional, concerted motion of MDM2, but also for the rational design of potent anticancer drugs targeting the p53-MDM2 interaction.

  16. Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch.

    PubMed

    Kulshina, Nadia; Edwards, Thomas E; Ferré-D'Amaré, Adrian R

    2010-01-01

    The thi-box riboswitch regulates gene expression in response to the intracellular concentration of thiamine pyrophosphate (TPP) in archaea, bacteria, and eukarya. To complement previous biochemical, genetic, and structural studies of this phylogenetically widespread RNA domain, we have characterized its interaction with TPP by isothermal titration calorimetry. This shows that TPP binding is highly dependent on Mg(2+) concentration. The dissociation constant decreases from approximately 200 nM at 0.5 mM Mg(2+) concentration to approximately 9 nM at 2.5 mM Mg(2+) concentration. Binding is enthalpically driven, but the unfavorable entropy of binding decreases as Mg(2+) concentration rises, suggesting that divalent cations serve to pre-organize the RNA. Mutagenesis, biochemical analysis, and a new crystal structure of the riboswitch suggest that a critical element that participates in organizing the riboswitch structure is the tertiary interaction formed between the P3 and L5 regions. This tertiary contact is distant from the TPP binding site, but calorimetric analysis reveals that even subtle mutations in L5 can have readily detectable effects on TPP binding. The thermodynamic signatures of these mutations, namely decreased favorable enthalpy of binding and small effects on entropy of binding, are consistent with the P3-L5 association contributing allosterically to TPP-induced compaction of the RNA.

  17. The Shc1 adaptor simultaneously balances Stat1 and Stat3 activity to promote breast cancer immune suppression

    PubMed Central

    Ahn, Ryuhjin; Sabourin, Valérie; Bolt, Alicia M.; Hébert, Steven; Totten, Stephanie; De Jay, Nicolas; Festa, Maria Carolina; Young, Yoon Kow; Im, Young Kyuen; Pawson, Tony; Koromilas, Antonis E.; Muller, William J.; Mann, Koren K.; Kleinman, Claudia L.; Ursini-Siegel, Josie

    2017-01-01

    Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies. PMID:28276425

  18. STAT1 Interaction with E3-14.7K in Monocytes Affects the Efficacy of Oncolytic Adenovirus

    PubMed Central

    Spurrell, Emma; Gangeswaran, Rathi; Wang, Pengju; Cao, Fengyu; Gao, Dongling; Feng, Baisui; Wold, William; Tollefson, Ann

    2014-01-01

    Oncolytic viruses based on adenovirus type 5 (Ad5) have been developed as a new class of therapeutic agents for cancers that are resistant to conventional therapies. Clinical experience shows that these agents are safe, but virotherapy alone has not achieved long-term cure in cancer patients. The vast majority of oncolytic adenoviruses used in clinical trials to date have deletion of the E3B genes. It has been demonstrated that the antitumor potency of the E3B-deleted mutant (dl309) is inferior to adenovirus with E3B genes intact. Tumors treated with dl309 show markedly greater macrophage infiltration than E3B-intact adenovirus. However, the functional mechanisms for this were not previously known. Here, we demonstrate that deletion of E3B genes increases production of chemokines by monocytes after adenovirus infection and increases monocyte migration. The E3B 14,700-Da protein (E3B-14.7K) inhibits STAT1 function by preventing its phosphorylation and nuclear translocation. The STAT1 inhibitor, fludarabine, rescues the effect of E3B-14.7K deletion by downregulating target chemokine expression in human and murine monocytes and results in an enhanced antitumor efficacy with dl309 in vivo. These findings have important implications for clinical use of E3B-deleted oncolytic adenovirus and other E3B-deleted adenovirus vector-based therapy. PMID:24335311

  19. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71.

    PubMed

    Liou, An-Ting; Wu, Szu-Yao; Liao, Chun-Che; Chang, Ya-Shu; Chang, Chih-Shin; Shih, Chiaho

    2016-08-08

    Enterovirus 71 (EV71) is a major threat to children worldwide. Children infected with EV71 could develop subclinical infection and hand-foot-and -mouth disease (HFMD). In severe cases, patients could develop encephalitis, paralysis, pulmonary edema, and death. A more user-friendly and robust animal model is essential to investigating EV71 pathogenesis. Here, we established a hybrid (hSCARB2(+/+)/stat-1(-/-)) mouse strain from crossbreeding SCARB2 transgenic and stat-1 KO mice, and compared the susceptibilities to EV71 infection and pathogenesis between parental and hybrid mice. Virus-encoded VP1 protein can be detected in the streaking nerve fibers in brain and spinal cord. This hybrid mouse strain at 2-week-old age can still be infected with different genotypes of EV71 at 1000-fold lower titer via an ip route. Infected hybrid mice developed earlier onset of CNS disease, paralysis, and death at a higher incidence. These advantages of this novel model meet the urgent need from the scientific community in basic and preclinical research in therapeutics and pathogenesis.

  20. A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71

    PubMed Central

    Liou, An-Ting; Wu, Szu-Yao; Liao, Chun-Che; Chang, Ya-Shu; Chang, Chih-Shin; Shih, Chiaho

    2016-01-01

    Enterovirus 71 (EV71) is a major threat to children worldwide. Children infected with EV71 could develop subclinical infection and hand-foot-and -mouth disease (HFMD). In severe cases, patients could develop encephalitis, paralysis, pulmonary edema, and death. A more user-friendly and robust animal model is essential to investigating EV71 pathogenesis. Here, we established a hybrid (hSCARB2+/+/stat-1−/−) mouse strain from crossbreeding SCARB2 transgenic and stat-1 KO mice, and compared the susceptibilities to EV71 infection and pathogenesis between parental and hybrid mice. Virus-encoded VP1 protein can be detected in the streaking nerve fibers in brain and spinal cord. This hybrid mouse strain at 2-week-old age can still be infected with different genotypes of EV71 at 1000-fold lower titer via an ip route. Infected hybrid mice developed earlier onset of CNS disease, paralysis, and death at a higher incidence. These advantages of this novel model meet the urgent need from the scientific community in basic and preclinical research in therapeutics and pathogenesis. PMID:27499235

  1. The Shc1 adaptor simultaneously balances Stat1 and Stat3 activity to promote breast cancer immune suppression.

    PubMed

    Ahn, Ryuhjin; Sabourin, Valérie; Bolt, Alicia M; Hébert, Steven; Totten, Stephanie; De Jay, Nicolas; Festa, Maria Carolina; Young, Yoon Kow; Im, Young Kyuen; Pawson, Tony; Koromilas, Antonis E; Muller, William J; Mann, Koren K; Kleinman, Claudia L; Ursini-Siegel, Josie

    2017-03-09

    Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies.

  2. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis.

    PubMed

    Follis, Ariele Viacava; Chipuk, Jerry E; Fisher, John C; Yun, Mi-Kyung; Grace, Christy R; Nourse, Amanda; Baran, Katherine; Ou, Li; Min, Lie; White, Stephen W; Green, Douglas R; Kriwacki, Richard W

    2013-03-01

    Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.

  3. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1

    PubMed Central

    Rahman, M. Jubayer; Rahir, Gwendoline; Dong, Matthew B.; Zhao, Yongge; Rodrigues, Kameron B.; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V.

    2016-01-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1−/− mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1−/−, indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti–IFN-α/β receptor Ab is added. IFN-α–induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c+ cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response. PMID:26826238

  4. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  5. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  6. Arginine 197 of lac repressor contributes significant energy to inducer binding. Confirmation of homology to periplasmic sugar binding proteins.

    PubMed

    Spotts, R O; Chakerian, A E; Matthews, K S

    1991-12-05

    Based on primary sequence homology between the lactose repressor protein and periplasmic sugar-binding proteins (Müller-Hill, B. (1983) Nature 302, 163-164), a hypothetical sugar-binding site for the lac repressor was proposed using the solved x-ray crystallographic structure of the arabinose-binding protein (ABP) (Sams, C. F., Vyas, N. K., Quiocho, F. A., and Matthews, K. S. (1984) Nature 310, 429-430). By analogy to Arg151 in the ABP sugar site, Arg197 is predicted to play an important role in lac repressor binding to inducer sugars. Hydrogen bonding occurs between Arg151 and the ring oxygen and 4-hydroxyl of the sugar ligand, two backbone carbonyls, and a side chain in ABP, and similar interactions in the lac repressor would be anticipated. To test this hypothesis, Arg197 in the lac repressor protein was altered by oligonucleotide-directed site-specific mutagenesis to substitute Gly, Leu, or Lys. Introduction of these substitutions at position 197 had no effect on operator binding parameters of the isolated mutant proteins, whereas the affinity for inducer was dramatically decreased, consistent with in vivo phenotypic behavior obtained by suppression of nonsense mutations at this site (Kleina, L. G., and Miller, J. H. (1990) J. Mol. Biol. 212, 295-318). Inducer binding affinity was reduced approximately 3 orders of magnitude for Leu, Gly, or Lys substitutions, corresponding to a loss of 50% of the free energy of binding. The pH shift characteristic of wild-type repressor is conserved in these mutants. Circular dichroic spectra demonstrated no significant alterations in secondary structure for these mutants. Thus, the primary effect of substitution for Arg197 is a very significant decrease in the affinity for inducer sugars. Arginine is uniquely able to make the multiple contacts found in the ABP sugar site, and we conclude that this residue plays a similar role in sugar binding for lactose repressor protein. These results provide experimental validation for the

  7. [Expression profiles of PI3K, NF-κB, and STAT1 in peripheral blood mononuclear cells in children with bronchial asthma].

    PubMed

    Shi, Hui-Ling; Liu, Jie-Bo; Lu, Ai-Pin

    2016-07-01

    To study the expression profiles of PI3K, NF-κB, and STAT1 in peripheral blood mononuclear cells (PBMCs) in children with bronchial asthma, as well as their roles in the pathogenesis of asthma. Thirty children with acute exacerbation of bronchial asthma were enrolled as the asthma group, and 20 healthy children were enrolled as the control group. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of PI3K, NF-κB, and STAT1 in PBMCs. A spirometer was used to compare the pulmonary function between the two groups. The correlations between the mRNA expression of PI3K, NF-κB, and STAT1 and pulmonary function in children with bronchial asthma were analyzed. The asthma group had significantly higher mRNA and protein expression levels of PI3K, NF-κB, and STAT1 than the control group (P<0.05). Compared with the control group, the asthma group showed significant reductions in pulmonary function indices such as FEV1%, FEV1/FVC, and PEF% (P<0.05). In children with bronchial asthma, the mRNA expression levels of PI3K, NF-κB, and STAT1 were negatively correlated with FEV1%, FEV1/FVC, and PEF% (P<0.05). The expression levels of PI3K, NF-κB, and STAT1 increase in children with asthma, and are negatively correlated with pulmonary function indices, suggesting that PI3K, NF-κB and STAT1 are involved in the development and progression of bronchial asthma in children.

  8. Upregulation of the Suppressors of Cytokine Signaling 1 and 3 Is Associated with Arrest of Phosphorylated-STAT1 Nuclear Importation and Reduced Innate Response in Denguevirus-Infected Macrophages.

    PubMed

    Estrada-Jiménez, Tania; Millán-Pérez Peña, Lourdes; Flores-Mendoza, Lilian; Sedeño-Monge, Virginia; Santos-López, Gerardo; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Terán-Cabanillas, Eli; Hernández, Jesus; Herrera-Camacho, Irma; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio

    2016-03-01

    To clarify whether the suppressors of cytokine signaling (SOCS) are associated with denguevirus (DENV) evasion of the antiviral response, we analyzed the expression kinetics of SOCS1 and SOCS3 and of the antiviral genes MxA and OAS during DENV infection of U937 macrophages that were or not treated with interferon (IFN)-α. DENV infection produced a viral titer three times higher in untreated than in IFN-α-treated cells (p < 0.001 at 72 h postinfection [p.i.]). Partial inhibition of DENV replication was associated with reduced expression of MxA and OAS antiviral genes as well as higher SOCS1 and SOCS3 expression in DENV-infected cells than in cells treated only with IFN-α. Complete loss of phosphorylated-signal transducer and activator of transcription (p-STAT)2 and reduced nuclear importation of p-STAT1 were observed in DENV-infected cells compared to IFN-α treatment that induced p-STAT1 and p-STAT2. Our data thus suggest that overexpression of SOCS1 and SOCS3 induced by DENV infection leads to impairment of antiviral response through the inhibition of STAT functionality.

  9. High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling.

    PubMed

    van der Vorst, Emiel P C; Theodorou, Kosta; Wu, Yongzheng; Hoeksema, Marten A; Goossens, Pieter; Bursill, Christina A; Aliyev, Taghi; Huitema, Leonie F A; Tas, Sander W; Wolfs, Ine M J; Kuijpers, Marijke J E; Gijbels, Marion J; Schalkwijk, Casper G; Koonen, Debby P Y; Abdollahi-Roodsaz, Shahla; McDaniels, Kimberly; Wang, Chih-Chieh; Leitges, Michael; Lawrence, Toby; Plat, Jogchum; Van Eck, Miranda; Rye, Kerry-Anne; Touqui, Lhousseine; de Winther, Menno P J; Biessen, Erik A L; Donners, Marjo M P C

    2017-01-10

    Membrane cholesterol modulates a variety of cell signaling pathways and functions. While cholesterol depletion by high-density lipoproteins (HDLs) has potent anti-inflammatory effects in various cell types, its effects on inflammatory responses in macrophages remain elusive. Here we show overt pro-inflammatory effects of HDL-mediated passive cholesterol depletion and lipid raft disruption in murine and human primary macrophages in vitro. These pro-inflammatory effects were confirmed in vivo in peritoneal macrophages from apoA-I transgenic mice, which have elevated HDL levels. In line with these findings, the innate immune responses required for clearance of P. aeruginosa bacterial infection in lung were compromised in mice with low HDL levels. Expression analysis, ChIP-PCR, and combinatorial pharmacological and genetic intervention studies unveiled that both native and reconstituted HDL enhance Toll-like-receptor-induced signaling by activating a PKC-NF-κB/STAT1-IRF1 axis, leading to increased inflammatory cytokine expression. HDL's pro-inflammatory activity supports proper functioning of macrophage immune responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding

    SciTech Connect

    Krudy, G.A.; Brito, R.M.M.; Putkey, J.A.; Rosevear, P.R. )

    1992-02-18

    Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with {sup 15}N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca{sup 2+}-binding loops II, III, and IV, as well a tightly hydrogen-bonded amides within the short antiparallel {beta}-sheets between pairs of Ca{sup 2+}-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca{sup 2+}-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca{sup 2+}-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated the Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca{sup 2+}-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca{sup 2+}-binding sites. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain {beta}-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca{sup 2+}-binding loops in each domain of Ca{sup 2+}-saturated cTnC3. In the absence of Ca{sup 2+}, no strong hydrogen bonds were detected between the {beta}-strands in the N-terminal domain of cTnC3. Thus, Ca{sup 2+} binding at site II results in a tightening of the Ca{sup 2+}-binding loop and formation of one strong hydrogen bond between {beta}-strands in the N-terminal domain. These changes may initiate movement of helices in the N-terminal domain responsible for the interaction of TnC with troponin I.

  11. Rare-event induced binding transition of heteropolymers.

    PubMed

    Tang, L H; Chaté, H

    2001-01-29

    Sequence heterogeneity broadens the binding transition of a polymer onto a linear or planar substrate. This effect is analyzed in a real-space renormalization group scheme designed to capture the statistics of rare events. In the strongly disordered regime, binding initiates at an exponentially rare set of "good contacts." Renormalization of the contact potential yields a Kosterlitz--Thouless-type transition in any dimension. This and other predictions are confirmed by extensive numerical simulations of a directed polymer interacting with a columnar defect.

  12. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity

    PubMed Central

    Domeier, Phillip P.; Chodisetti, Sathi Babu; Soni, Chetna; Schell, Stephanie L.; Elias, Melinda J.; Wong, Eric B.; Cooper, Timothy K.; Kitamura, Daisuke

    2016-01-01

    Spontaneously developed germinal centers (GCs [Spt-GCs]) harbor autoreactive B cells that generate somatically mutated and class-switched pathogenic autoantibodies (auto-Abs) to promote autoimmunity. However, the mechanisms that regulate Spt-GC development are not clear. In this study, we report that B cell–intrinsic IFN-γ receptor (IFN-γR) and STAT1 signaling are required for Spt-GC and follicular T helper cell (Tfh cell) development. We further demonstrate that IFN-γR and STAT1 signaling control Spt-GC and Tfh cell formation by driving T-bet expression and IFN-γ production by B cells. Global or B cell–specific IFN-γR deficiency in autoimmune B6.Sle1b mice leads to significantly reduced Spt-GC and Tfh cell responses, resulting in diminished antinuclear Ab reactivity and IgG2c and IgG2b auto-Ab titers compared with B6.Sle1b mice. Additionally, we observed that the proliferation and differentiation of DNA-reactive B cells into a GC B cell phenotype require B cell–intrinsic IFN-γR signaling, suggesting that IFN-γR signaling regulates GC B cell tolerance to nuclear self-antigens. The IFN-γR deficiency, however, does not affect GC, Tfh cell, or Ab responses against T cell–dependent foreign antigens, indicating that IFN-γR signaling regulates autoimmune, but not the foreign antigen–driven, GC and Tfh cell responses. Together, our data define a novel B cell–intrinsic IFN-γR signaling pathway specific to Spt-GC development and autoimmunity. This novel pathway can be targeted for future pharmacological intervention to treat systemic lupus erythematosus. PMID:27069112

  13. Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Carr, Rachel; Puckrin, Robert; McMahon, Brian K.; Pal, Robert; Parker, David; Pålsson, Lars-Olof

    2014-06-01

    A circularly polarized luminescence (CPL) spectrometer has been built and used to study the binding interaction of lactate and four different proteins with racemic EuIII and TbIII complexes in aqueous solution. Lactate binding gives rise to strong induced CPL spectra, and the observed emission dissymmetry factors vary linearly with enantiomeric composition. Particularly strong induced TbIII CPL also characterizes the binding interaction of alpha-1-acid glycoprotein with a dissociation constant, Kd, of 2.5 μM.

  14. The Prognostic Significance of pSTAT1 and CD163 Expressions in Surgically Resected Stage 1 Pulmonary Squamous Cell Carcinomas.

    PubMed

    Lin, Mong-Wei; Yang, Ching-Yao; Kuo, Shuenn-Wen; Wu, Chen-Tu; Chang, Yih-Leong; Yang, Pan-Chyr

    2016-09-01

    Tumor-associated macrophages (TAMs) play an important role in the initiation, progression, and metastasis of various solid tumors, and can polarize into M1 and M2 phenotypes. This study aimed to investigate whether TAM polarization is associated with clinical outcomes for early-stage pulmonary squamous cell carcinoma (SqCC). This retrospective study included 97 consecutive patients with stage 1 pulmonary SqCC. Immunohistochemical stains for M1 macrophage marker (pSTAT1) and M2 macrophage marker (CD163) were performed on paraffin-embedded tumors. The correlations of M1 and M2 macrophage expression, clinicopathologic characteristics, and clinical outcomes were analyzed. The 5-year disease-free survival (DFS) rate was 63.2 %, and the 5-year overall survival (OS) rate was 74.8 %. Positive pSTAT1 expression was noted in 42 patients (43.3 %) and CD163 expression in 26 patients (26.8 %). A statistically significant negative correlation between pSTAT1 and CD163 expression was found (p = 0.015). Univariate analysis showed that extensive surgical resection, incomplete tumor excision, negative pSTAT1 expression, and positive CD163 expression were significantly correlated with both a poor DFS and a poor OS, whereas male gender was significantly correlated with a poor DFS only. Multivariate analysis showed that the pSTAT1/CD163 expression status was the only independent predictor for both DFS (p = 0.023) and OS and (p = 0.004). Markers identifying M1 and M2 macrophages, including pSTAT1 and CD163, can be used as prognostic indicators for patients with stage 1 pulmonary SqCC.

  15. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    PubMed Central

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  16. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  17. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  18. IFN-γ Directly Controls IL-33 Protein Level through a STAT1- and LMP2-dependent Mechanism*

    PubMed Central

    Kopach, Pavel; Lockatell, Virginia; Pickering, Edward M.; Haskell, Ronald E.; Anderson, Richard D.; Hasday, Jeffrey D.; Todd, Nevins W.; Luzina, Irina G.; Atamas, Sergei P.

    2014-01-01

    IL-33 contributes to disease processes in association with Th1 and Th2 phenotypes. IL-33 mRNA is rapidly regulated, but the fate of synthesized IL-33 protein is unknown. To understand the interplay among IL-33, IFN-γ, and IL-4 proteins, recombinant replication-deficient adenoviruses were produced and used for dual expression of IL-33 and IFN-γ or IL-33 and IL-4. The effects of such dual gene delivery were compared with the effects of similar expression of each of these cytokines alone. In lung fibroblast culture, co-expression of IL-33 and IFN-γ resulted in suppression of the levels of both proteins, whereas co-expression of IL-33 and IL-4 led to mutual elevation. In vivo, co-expression of IL-33 and IFN-γ in the lungs led to attenuation of IL-33 protein levels. Purified IFN-γ also attenuated IL-33 protein in fibroblast culture, suggesting that IFN-γ controls IL-33 protein degradation. Specific inhibition of caspase-1, -3, and -8 had minimal effect on IFN-γ-driven IL-33 protein down-regulation. Pharmacological inhibition, siRNA-mediated silencing, or gene deficiency of STAT1 potently up-regulated IL-33 protein expression levels and attenuated the down-regulating effect of IFN-γ on IL-33. Stimulation with IFN-γ strongly elevated the levels of the LMP2 proteasome subunit, known for its role in IFN-γ-regulated antigen processing. siRNA-mediated silencing of LMP2 expression abrogated the effect of IFN-γ on IL-33. Thus, IFN-γ, IL-4, and IL-33 are engaged in a complex interplay. The down-regulation of IL-33 protein levels by IFN-γ in pulmonary fibroblasts and in the lungs in vivo occurs through STAT1 and non-canonical use of the LMP2 proteasome subunit in a caspase-independent fashion. PMID:24619410

  19. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge

    PubMed Central

    Crump, Ryan W.; Doronin, Konstantin; Hembrador, Edguardo; Pompilio, Daniela; Tebaldi, Giulia; Estep, Ryan D.; Wong, Scott W.; Buller, Mark R.; Donofrio, Gaetano

    2015-01-01

    Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against

  20. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  1. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  2. Pathobiology of the 129:Stat1 (-/-) mouse model of human age-related ER-positive breast cancer with an immune infiltrate-excluded phenotype.

    PubMed

    Mori, Hidetoshi; Chen, Jane Q; Cardiff, Robert D; Pénzváltó, Zsófia; Hubbard, Neil E; Schuetter, Louis; Hovey, Russell C; Trott, Josephine F; Borowsky, Alexander D

    2017-09-02

    Stat1 gene-targeted knockout mice (129S6/SvEvTac-Stat1 (tm1Rds)) develop estrogen receptor-positive (ER(+)), luminal-type mammary carcinomas at an advanced age. There is evidence for both host environment as well as tumor cell-intrinsic mechanisms to initiate tumorigenesis in this model. In this report, we summarize details of the systemic and mammary pathology at preneoplastic and tumor-bearing time points. In addition, we investigate tumor progression in the 129:Stat1 (-/-) host compared with wild-type 129/SvEv, and we describe the immune cell reaction to the tumors. Mice housed and treated according to National Institutes of Health guidelines and Institutional Animal Care and Use Committee-approved methods were evaluated by histopathology, and their tissues were subjected to immunohistochemistry with computer-assisted quantitative image analysis. Tumor cell culture and conditioned media from cell culture were used to perform macrophage (RAW264.7) cell migration assays, including the 129:Stat1 (-/-)-derived SSM2 cells as well as control Met1 and NDL tumor cells and EpH4 normal cells. Tumorigenesis in 129:Stat1 (-/-) originates from a population of FoxA1(+) large oval pale cells that initially appear and accumulate along the mammary ducts in segments or regions of the gland prior to giving rise to mammary intraepithelial neoplasias. Progression to invasive carcinoma is accompanied by a marked local stromal and immune cell response composed predominantly of T cells and macrophages. In conditioned media experiments, cells derived from 129:Stat1 (-/-) tumors secrete both chemoattractant and chemoinhibitory factors, with greater attraction in the extracellular vesicular fraction and inhibition in the soluble fraction. The result appears to be recruitment of the immune reaction to the periphery of the tumor, with exclusion of immune cell infiltration into the tumor. 129:Stat1 (-/-) is a unique model for studying the critical origins and risk reduction strategies in age

  3. Vitronectin induces phosphorylation of ezrin/radixin/moesin actin-binding proteins through binding to its novel neuronal receptor telencephalin.

    PubMed

    Furutani, Yutaka; Kawasaki, Miwa; Matsuno, Hitomi; Mitsui, Sachiko; Mori, Kensaku; Yoshihara, Yoshihiro

    2012-11-09

    Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.

  4. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain.

    PubMed

    Weber-Nordt, R M; Riley, J K; Greenlund, A C; Moore, K W; Darnell, J E; Schreiber, R D

    1996-11-01

    Recent work has shown that IL-10 induces activation of the JAK-STAT signaling pathway. To define the mechanism underlying signal transducer and activator of transcription (STAT) protein recruitment to the interleukin 10 (IL-10) receptor, the STAT proteins activated by IL-10 in different cell populations were first defined using electrophoretic mobility shift assays. In all cells tested, IL-10 activated Stat1 and Stat3 and induced the formation of three distinct DNA binding complexes that contained different combinations of these two transcription factors. IL-10 also activated Stat5 in Ba/F3 cells that stably expressed the murine IL-10 receptor. Using a structure-function mutagenesis approach, two tyrosine residues (Tyr427 and Tyr477) in the intracellular domain of the murine IL-10 receptor were found to be redundantly required for receptor function and for activation of Stat3 but not for Stat1 or Stat5. Twelve amino acid peptides encompassing either of these two tyrosine residues in phosphorylated form coprecipitated Stat3 but not Stat1 and blocked IL-10-induced Stat3 phosphorylation in a cell-free system. In contrast, tyrosine-phosphorylated peptides containing Tyr374 or Tyr396 did not interact with Stat3 or block Stat3 activation. These data demonstrate that Stat3 but not Stat1 or Stat5 is directly recruited to the ligand-activated IL-10 receptor by binding to specific but redundant receptor intracellular domain sequences containing phosphotyrosine. This study thus supports the concept that utilization of distinct STAT proteins by different cytokine receptors is dependent on the expression of particular ligand-activatable, tyrosine-containing STAT docking sites in receptor intracellular domains.

  5. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  6. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination.

    PubMed

    Skinner, Michael K; Bhandari, Ramji K; Haque, M Muksitul; Nilsson, Eric E

    2015-12-01

    A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.

  7. Elevated levels of STAT1 in Fanconi anemia group A lymphoblasts correlate with the cells’ sensitivity to DNA interstrand crosslinking drugs

    PubMed Central

    Prieto-Remón, Inés; Sánchez-Carrera, Dámaso; López-Duarte, Mónica; Richard, Carlos; Pipaón, Carlos

    2013-01-01

    Progressive bone marrow failure starting in the first decade of life is one of the main characteristics of Fanconi anemia. Along with the bone marrow failure, this pathology is characterized by congenital malformations, endocrine dysfunction and an extraordinary predisposition to develop cancer. The fact that hematopoietic progenitor cells from subjects with Fanconi anemia are sensitive to both DNA-interstrand crosslinking agents and inflammatory cytokines, which are aberrantly overproduced in these patients, has led to different explanations for the causes of the bone marrow failure. We analyzed STAT1 expression in lymphoblastoid cell lines derived from patients with Fanconi anemia group A and correlated this with aspects of the Fanconi anemia phenotype such as sensitivity to genotoxic agents or to inhibitory cytokines. We provide evidence of overexpression of STAT1 in FANCA-deficient cells which has both transcriptional and post-translational components, and is related to the constitutive activation of ERK in Fanconi anemia group A cells, since it can be reverted by treatment with U0126. STAT1 phosphorylation was not defective in the lymphoblasts, so these cells accumulated higher levels of active STAT1 in response to interferon gamma, probably in relation to their greater sensitivity to this cytokine. On the other hand, inhibition of STAT1 by genetic or chemical means reverted the hypersensitivity of Fanconi anemia group A lymphoblasts to DNA interstrand crosslinking agents. Our data provide an explanation for the mixed sensitivity of Fanconi anemia group A cells to both genotoxic stress and inflammatory cytokines and indicate new targets for the treatment of bone marrow failure in these patients. PMID:23585528

  8. STAT1 and NF-κB Inhibitors Diminish Basal Interferon-Stimulated Gene Expression and Improve the Productive Infection of Oncolytic HSV in MPNST Cells.

    PubMed

    Jackson, Joshua D; Markert, James M; Li, Li; Carroll, Steven L; Cassady, Kevin A

    2016-05-01

    Interferon-stimulated genes (ISG) encode diverse proteins that mediate intrinsic antiviral resistance in infected cells. Here it was hypothesized that malignant peripheral nerve sheath tumor (MPNST) cells resist the productive infection of oncolytic herpes simplex virus (oHSV) through activation of the JAK/STAT1 pathway and resultant upregulation of ISGs. Multiple human and mouse MPNST cells were used to explore the relationship between STAT1 activation and the productive infection of Δγ134.5 oHSVs. STAT1 activation in response to oHSV infection was found to associate with diminished Δγ134.5 oHSVs replication and spread. Multiday pretreatment, but not cotreatment, with a JAK inhibitor significantly improved viral titer and spread. ISG expression was found to be elevated prior to infection and downregulated when treated with the inhibitor, suggesting that the JAK/STAT1 pathway is active prior to infection. Conversely, upregulation of ISG expression in normally permissive cells significantly decreased oHSV productivity. Finally, a possible link between NF-κB pathway activation and ISG expression was established through the expression of inhibitor of kB (IκB) which decreased basal STAT1 transcription and ISG expression. These results demonstrate that basal ISG expression prior to infection contributes to the resistance of Δγ134.5 oHSVs in MPNST cells. Although cancer-associated ISG expression has been previously reported to impart resistance to chemotherapy and radiotherapy, these data show that basal ISG expression also contributes to oncolytic HSV resistance. Mol Cancer Res; 14(5); 482-92. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. FAS rs2234767 and rs1800682 polymorphisms jointly contributed to risk of colorectal cancer by affecting SP1/STAT1 complex recruitment to chromatin

    PubMed Central

    Wang, Shizhi; Wu, Shenshen; Meng, Qingtao; Li, Xiaobo; Zhang, Jinchun; Chen, Rui; Wang, Meilin

    2016-01-01

    FAS rs2234767 (−1377 G>A), rs1800682 (−670 A>G) and FASLG rs763110 (−844 C>T) promoter polymorphisms can influence transcriptional activities of the genes and thus multiple tumors susceptibility. To investigate their association with risk of colorectal cancer (CRC), the three SNPs were genotyped in 878 cases and 884 controls and the results showed that the FAS rs2234767 and rs1800682 were in a high linkage disequilibrium (LD) with each other (D’ = 0.994) and jointly contributed to an increased risk of CRC (without vs. with rs2234767 GG/rs1800682 AA genotypes, adjusted OR = 1.30, 95% CI = 1.05 − 1.61). In vivo ChIP assays evaluated the effect of rs2234767 and rs1800682 on recruitment of SP1 and STAT1, respectively, to chromatin. The results showed SP1 interacting specifically with STAT1 recruited to their respective motifs for transcriptional activation. The mutant alleles rs2234767 A and rs1800682 G jointly affected coupled SP1 and STAT1 recruitment to chromatin. The interplay between SP1 and STAT1 was critical for the functional outcome of rs2234767 and rs1800682 in view of their high LD. In conclusion, the FAS rs2234767 and rs1800682 polymorphisms were in high LD with each other, and they jointly contributed to an increased risk of CRC by altering recruitment of SP1/STAT1 complex to the FAS promoter for transcriptional activation. PMID:26759270

  10. Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1

    PubMed Central

    Gan, Zhen-Shun; Wang, Qian-Qian; Li, Jia-Hui; Wang, Xu-Liang; Wang, Yi-Zhen

    2017-01-01

    Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin), a low level of iron export (ferroportin), and changes of iron regulators (hepcidin and transferrin receptors), which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1β, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization. PMID:28286378

  11. Pathogenesis and Immune Response of Crimean-Congo Hemorrhagic Fever Virus in a STAT-1 Knockout Mouse Model▿ †

    PubMed Central

    Bente, Dennis A.; Alimonti, Judie B.; Shieh, Wun-Ju; Camus, Gaëlle; Ströher, Ute; Zaki, Sherif; Jones, Steven M.

    2010-01-01

    Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) causes a severe hemorrhagic syndrome in humans but not in its vertebrate animal hosts. The pathogenesis of the disease is largely not understood due to the lack of an animal model. Laboratory animals typically show no overt signs of disease. Here, we describe a new small-animal model to study CCHFV pathogenesis that manifests clinical disease, similar to that seen in humans, without adaptation of the virus to the host. Our studies revealed that mice deficient in the STAT-1 signaling molecule were highly susceptible to infection, succumbing within 3 to 5 days. After CCHFV challenge, mice exhibited fever, leukopenia, thrombocytopenia, and highly elevated liver enzymes. Rapid viremic dissemination and extensive replication in visceral organs, mainly in liver and spleen, were associated with prominent histopathologic changes in these organs. Dramatically elevated proinflammatory cytokine levels were detected in the blood of the animals, suggestive of a cytokine storm. Immunologic analysis revealed delayed immune cell activation and intensive lymphocyte depletion. Furthermore, this study also demonstrated that ribavirin, a suggested treatment in human cases, protects mice from lethal CCHFV challenge. In conclusion, our data demonstrate that the interferon response is crucial in controlling CCHFV replication in this model, and this is the first study that offers an in-depth in vivo analysis of CCHFV pathophysiology. This new mouse model exhibits key features of fatal human CCHF, proves useful for the testing of therapeutic strategies, and can be used to study virus attenuation. PMID:20739514

  12. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP.

    PubMed

    Cheng, Y S; Patterson, C E; Staeheli, P

    1991-09-01

    The primary structures of interferon (IFN)-induced guanylate-binding proteins (GBPs) were deduced from cloned human and murine cDNAs. These proteins contained only two of the three sequence motifs typically found in GTP/GDP-binding proteins. The N(T)KXD motif, which is believed to confer guanine specificity in other nucleotide-binding proteins, was absent. Nevertheless, the IFN-induced GBPs exhibited a high degree of selectivity for binding to agarose-immobilized guanine nucleotides. An interesting feature of IFN-induced GBPs is that they strongly bound to GMP agarose in addition to GDP and GTP agaroses but failed to bind to ATP agarose and all other nucleotide agaroses tested. Both GTP and GMP, but not ATP, competed for binding of murine GBP-1 to agarose-immobilized GMP. The IFN-induced GBPs thus define a distinct novel family of proteins with GTP-binding activity. We further demonstrate that human and murine cells contain at least two genes encoding IFN-induced GBPs. The cloned murine cDNA codes for GBP-1, an IFN-induced protein previously shown to be absent from mice of Gbp-1b genotype.

  13. Prenylation of an interferon-gamma-induced GTP-binding protein: the human guanylate binding protein, huGBP1.

    PubMed

    Nantais, D E; Schwemmle, M; Stickney, J T; Vestal, D J; Buss, J E

    1996-09-01

    Interferons (IFN) and lipopolysaccharide (LPS) cause multiple changes in isoprenoid-modified proteins in murine macrophages, the most dramatic being the expression of a prenyl protein of 65 kDa. The guanylate binding proteins (GBPs) are IFN-inducible GTP-binding proteins of approximately 65 kDa that possess a CaaX motif at their C-terminus, indicating that they might be substrates for prenyltransferases. The human GBP1 protein, when expressed in transfected COS-1 cells, incorporates radioactivity from the isoprenoid precursor [3H]mevalonate. In addition, huGBPs expressed from the endogenous genes in IFN-gamma-treated human fibroblasts or monocytic cells were also found to be isoprenoid modified. IFN-gamma-induced huGBPs in HL-60 cells were not labeled by the specific C20 isoprenoid, [3H]geranylgeraniol, but did show decreased isoprenoid incorporation in cells treated with the farnesyl transferase inhibitor BZA-5B, indicating that huGBPs in HL-60 cells are probably modified by a C15 farnesyl rather than the more common C20 lipid. Differentiated HL-60 cells treated with IFN-gamma/LPS showed no change in the profile of constitutive isoprenylated proteins and the IFN-gamma/LPS-induced huGBPs remained prenylated. Despite being prenylated, huGBP1 in COS cells and endogenous huGBPs in HL-60 cells were primarily (approximately 85%) cytosolic. Human GBPs are thus among the select group of prenyl proteins whose synthesis is tightly regulated by a cytokine. HuGBP1 is an abundant protein whose prenylation may be vulnerable to farnesyl transferase inhibitors that are designed to prevent farnesylation of Ras proteins.

  14. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  15. Dual-Action Inhibitors of HIF Prolyl Hydroxylases That Induce Binding of a Second Iron Ion

    PubMed Central

    Thalhammer, Armin; Demetriades, Marina; Chowdhury, Rasheduzzaman; Tian, Ya-Min; Stolze, Ineke; McNeill, Luke A.; Lee, Myung Kyu; Woon, Esther C. Y.; Mackeen, Mukram M.; Kawamura, Akane; Ratcliffe, Peter J.; Mecinović, Jasmin; Schofield, Christopher J.

    2015-01-01

    Inhibition of the hypoxia-inducible factor (HIF) prolyl-hydroxylases (PHD or EGLN enzymes) is of interest for the treatment of anemia and ischemia-related diseases. Most PHD inhibitors work by binding to the single ferrous ion and competing with 2-oxoglutarate (2OG) co-substrate for binding at the PHD active site. Non-specific iron chelators also inhibit the PHDs, both in vitro and in cells. We report the identification of dual action PHD inhibitors, which bind to the active site iron and also induce the binding of a second iron ion at the active site. Following analysis of small-molecule iron complexes and application of non-denaturing protein mass spectrometry to assess PHD2·iron·inhibitor stoichimetry, selected diacylhydrazines were identified as PHD2 inhibitors that induce the binding of a second iron ion. Some compounds were shown to inhibit the HIF hydroxylases in human hepatoma and renal carcinoma cell lines. PMID:23151668

  16. Psoralens potentiate ultraviolet light-induced inhibition of epidermal growth factor binding.

    PubMed Central

    Laskin, J D; Lee, E; Laskin, D L; Gallo, M A

    1986-01-01

    The psoralens, when activated by ultraviolet light of 320-400 nm (UVA light), are potent modulators of epidermal cell growth and differentiation. Previously, we reported that, in mammalian cells, these compounds bind to specific saturable high-affinity cellular receptor sites. In the present studies, we demonstrate that binding of psoralens to their receptors followed by UVA light activation is associated with inhibition of epidermal growth factor (EGF) receptor binding. Inhibition of EGF binding, which required UVA light, was rapid and dependent on the dose of UVA light (0.5-2.0 J/cm2), as well as the concentration of psoralens (10 nM to 1 microM). Higher doses of UVA light (2.0-6.0 J/cm2) by themselves were also inhibitory, indicating that psoralens potentiate the UVA-induced inhibition of EGF binding. A number of biologically active analogs of psoralen, including 8-methoxypsoralen, 5-methoxypsoralen, and 4,5',8-trimethylpsoralen, when activated by UVA light, were found to be inhibitors of binding. Inhibition of EGF binding by psoralens was observed in a variety of human and mouse cell culture lines known to possess psoralen receptors. In the epidermal-derived line PAM 212, at least two populations of receptors with different affinities for EGF were found. Psoralens and UVA light selectively inhibited binding to the higher-affinity EGF receptors, an effect analogous to that of the phorbol ester tumor promoters. As observed with phorbol esters, photoactivated psoralens appeared to inhibit EGF binding by an indirect mechanism. These data demonstrate that the psoralens and UVA light have direct biological effects on cell-surface membranes. Since EGF is a growth-regulatory peptide, the ability of psoralens and UVA light to inhibit EGF binding may underlie the biologic effects of these agents in the skin. PMID:3490664

  17. Psoralens potentiate ultraviolet light-induced inhibition of epidermal growth factor binding

    SciTech Connect

    Laskin, J.D.; Lee, E.; Laskin, D.L.; Gallo, M.A.

    1986-11-01

    The psoralens, when activated by ultraviolet light of 320-400 nm (UVA light), are potent modulators of epidermal cell growth and differentiation. Previously, we reported that, in mammalian cells, these compounds bind to specific saturable high-affinity cellular receptor sites. In the present studies, we demonstrate that binding of psoralens to their receptors followed by UVA light activation is associated with inhibition of epidermal growth factor (EGF) receptor binding. Inhibition of EGF binding, which required UVA light, was rapid and dependent on the dose of UVA light (0.5-2.0 J/cm2), as well as the concentration of psoralens (10 nM to 1 microM). Higher doses of UVA light (2.0-6.0 J/cm2) by themselves were also inhibitory, indicating that psoralens potentiate the UVA-induced inhibition of EGF binding. A number of biologically active analogs of psoralen, including 8-methoxypsoralen, 5-methoxypsoralen, and 4,5',8-trimethylpsoralen, when activated by UVA light, were found to be inhibitors of binding. Inhibition of EGF binding by psoralens was observed in a variety of human and mouse cell culture lines known to possess psoralen receptors. In the epidermal-derived line PAM 212, at least two populations of receptors with different affinities for EGF were found. Psoralens and UVA light selectively inhibited binding to the higher-affinity EGF receptors, an effect analogous to that of the phorbol ester tumor promoters. As observed with phorbol esters, photoactivated psoralens appeared to inhibit EGF binding by an indirect mechanism. These data demonstrate that the psoralens and UVA light have direct biological effects on cell-surface membranes. Since EGF is a growth-regulatory peptide, the ability of psoralens and UVA light to inhibit EGF binding may underlie the biologic effects of these agents in the skin.

  18. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    PubMed

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  19. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1

    PubMed Central

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable ‘marital status’, we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences. PMID

  1. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1.

    PubMed

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable 'marital status', we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences.

  2. Breast Cancer Prevention by Fatty Acid Binding Protein MRG-Induced Pregnancy Like Mammary Gland Differentiation

    DTIC Science & Technology

    2005-08-01

    Annual Summary 3. DATES COVERED (From - To) 1 AUG 2004 - 31 JUL 2005 4. TITLE AND SUBTITLE Breast Cancer Prevention by Fatty Acid Binding Protein...differentiation. Overexpression of MRG in human breast cancer cells induced differentiation with changes in cellular morphology and a significant increase

  3. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.

    PubMed

    Forster, Michael; Chaikuad, Apirat; Bauer, Silke M; Holstein, Julia; Robers, Matthew B; Corona, Cesear R; Gehringer, Matthias; Pfaffenrot, Ellen; Ghoreschi, Kamran; Knapp, Stefan; Laufer, Stefan A

    2016-11-17

    Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions.

  4. Ligand-induced conformational changes in a thermophilic ribose-binding protein

    SciTech Connect

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    2009-05-21

    Members of the periplasmic binding protein (PBP) superfamily are involved in transport and signaling processes in both prokaryotes and eukaryotes. Biological responses are typically mediated by ligand-induced conformational changes in which the binding event is coupled to a hinge-bending motion that brings together two domains in a closed form. In all PBP-mediated biological processes, downstream partners recognize the closed form of the protein. This motion has also been exploited in protein engineering experiments to construct biosensors that transduce ligand binding to a variety of physical signals. Understanding the mechanistic details of PBP conformational changes, both global (hinge bending, twisting, shear movements) and local (rotamer changes, backbone motion), therefore is not only important for understanding their biological function but also for protein engineering experiments. Here we present biochemical characterization and crystal structure determination of the periplasmic ribose-binding protein (RBP) from the hyperthermophile Thermotoga maritima in its ribose-bound and unliganded state. The T. maritima RBP (tmRBP) has 39% sequence identity and is considerably more resistant to thermal denaturation (appTm value is 108 C) than the mesophilic Escherichia coli homolog (ecRBP) (appTm value is 56 C). Polar ligand interactions and ligand-induced global conformational changes are conserved among ecRBP and tmRBP; however local structural rearrangements involving side-chain motions in the ligand-binding site are not conserved. Although the large-scale ligand-induced changes are mediated through similar regions, and are produced by similar backbone movements in tmRBP and ecRBP, the small-scale ligand-induced structural rearrangements differentiate the mesophile and thermophile. This suggests there are mechanistic differences in the manner by which these two proteins bind their ligands and are an example of how two structurally similar proteins utilize different

  5. Structural changes in cytochrome c oxidase induced by binding of sodium and calcium ions: an ATR-FTIR study.

    PubMed

    Maréchal, Amandine; Iwaki, Masayo; Rich, Peter R

    2013-04-17

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate the binding of Na(+) and Ca(2+)cations to bovine cytochrome c oxidase in its fully oxidized and partially reduced, cyanide-ligated (a(2+)a3(3+)-CN) (mixed valence) forms. These ions induced distinctly different IR binding spectra, indicating that the induced structural changes are different. Despite this, their binding spectra were mutually exclusive, confirming their known competitive binding behavior. Dissociation constants for Na(+) and Ca(2+) with the oxidized enzyme were 1.2 mM and 11 μM, respectively and Na(+) binding appeared to involve cooperative binding of two Na(+). Ca(2+) binding induced a large IR spectrum, with prominent amide I/II polypeptide changes, bandshifts assigned to carboxylate and an arginine, and a number of bandshifts of heme a. The Na(+)-induced binding spectrum showed much weaker amide I/II and heme a changes but had similar shifts assignable to carboxylate and arginine residues. Yeast CcO also displayed a calcium-induced IR and UV/visible binding spectra, though of lower intensities. This was attributed to the difficulty in fully depleting Ca(2+) from its binding site, as has been found with bacterial CcOs. The implications of Ca(2+)/Na(+) ion binding are discussed in terms of structure and possible modulation of core catalytic function.

  6. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis.

    PubMed

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P; Sotgia, Federica

    2012-11-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with "stemness." These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) "cancer stem cells." These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies.

  7. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains.

    PubMed

    Kainrath, Stephanie; Stadler, Manuela; Reichhart, Eva; Distel, Martin; Janovjak, Harald

    2017-04-10

    Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.

  8. SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism

    PubMed Central

    Morrison, Thomas E.; Whitmore, Alan; Funkhouser, William; Ward, Jerrold M.; Lamirande, Elaine W.; Roberts, Anjeanette; Heise, Mark; Subbarao, Kanta; Baric, Ralph S.

    2010-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1−/− mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1−/− mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation. PMID:20386712

  9. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  10. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  11. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma.

    PubMed

    Arslan, A D; Sassano, A; Saleiro, D; Lisowski, P; Kosciuczuk, E M; Fischietti, M; Eckerdt, F; Fish, E N; Platanias, L C

    2017-07-03

    We provide evidence that the IFN-regulated member of the Schlafen (SLFN) family of proteins, SLFN5, promotes the malignant phenotype in glioblastoma multiforme (GBM). Our studies indicate that SLFN5 expression promotes motility and invasiveness of GBM cells, and that high levels of SLFN5 expression correlate with high-grade gliomas and shorter overall survival in patients suffering from GBM. In efforts to uncover the mechanism by which SLFN5 promotes GBM tumorigenesis, we found that this protein is a transcriptional co-repressor of STAT1. Type-I IFN treatment triggers the interaction of STAT1 with SLFN5, and the resulting complex negatively controls STAT1-mediated gene transcription via interferon stimulated response elements. Thus, SLFN5 is both an IFN-stimulated response gene and a repressor of IFN-gene transcription, suggesting the existence of a negative-feedback regulatory loop that may account for suppression of antitumor immune responses in glioblastoma.Oncogene advance online publication, 3 July 2017; doi:10.1038/onc.2017.205.

  12. Stat1-Deficient Mice Are Not an Appropriate Model for Efficacy Testing of Recombinant Vesicular Stomatitis Virus-Based Filovirus Vaccines.

    PubMed

    Marzi, Andrea; Kercher, Lisa; Marceau, Joshua; York, Anthony; Callsion, Julie; Gardner, Donald J; Geisbert, Thomas W; Feldmann, Heinz

    2015-10-01

    Stat1(-/-) mice lack a response to interferon α, β, and γ, allowing for replication of nonadapted wild-type (wt) Ebolavirus and Marburgvirus. We sought to establish a mouse model for efficacy testing of live attenuated recombinant vesicular stomatitis virus (rVSV)-based filovirus vaccine vectors using wt Ebolavirus and Marburgvirus challenge strains. While infection of immunocompetent mice with different rVSV-based filovirus vectors did not cause disease, infection of Stat1(-/-) mice with the same vectors resulted in systemic infection and lethal outcome for the majority of tested rVSVs. Despite differences in viral loads, organ tropism was remarkably similar between rVSV filovirus vaccine vectors and rVSVwt, with the exception of the brain. In conclusion, Stat1(-/-) mice are not an appropriate immunocompromised mouse model for efficacy testing of live attenuated, replication-competent rVSV vaccine vectors. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney.

    PubMed

    O'Brown, Zach K; Van Nostrand, Eric L; Higgins, John P; Kim, Stuart K

    2015-12-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney.

  14. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses.

    PubMed

    Gay, Gabrielle; Braun, Laurence; Brenier-Pinchart, Marie-Pierre; Vollaire, Julien; Josserand, Véronique; Bertini, Rose-Laurence; Varesano, Aurélie; Touquet, Bastien; De Bock, Pieter-Jan; Coute, Yohann; Tardieux, Isabelle; Bougdour, Alexandre; Hakimi, Mohamed-Ali

    2016-08-22

    An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii-targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ-stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1(+) inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ-mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism.

  15. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ–mediated host defenses

    PubMed Central

    Brenier-Pinchart, Marie-Pierre; Bertini, Rose-Laurence; Varesano, Aurélie; De Bock, Pieter-Jan

    2016-01-01

    An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii–targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ–stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ–mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism. PMID:27503074

  16. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney

    PubMed Central

    O’Brown, Zach K.; Van Nostrand, Eric L.; Higgins, John P.; Kim, Stuart K.

    2015-01-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. PMID:26678048

  17. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway.

    PubMed

    Zhang, Lei; Zou, Wen

    2015-12-01

    Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO‑8910 and HO‑8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin‑mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.

  18. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice.

    PubMed

    Hu, Changmin; Gong, Rui; Guo, Aizhen; Chen, Huanchun

    2010-05-28

    The immunoprotective effect of the ligand-binding domain of fibronectin-binding protein (lFnBP) from Staphylococcus aureus (S. aureus) was investigated in a mouse mastitis model. The recombinant lFnBP (rlFnBP) and inactivated S. aureus were emulsified in Freund's adjuvant, mineral oil adjuvant or Seppic adjuvant, respectively. Seven groups of mice (n=12 each) were immunized with these six vaccines or phosphate-buffered saline. The immunoglobulin G (IgG) titers of mice immunized with rlFnBP vaccine were higher than those in the inactivated vaccine group (P<0.01). Antiserum capacities to opsonize adhesion and phagocytosis were significantly greater in the rlFnBP immunization group than in the killed bacteria group (P<0.05). The immunized lactating mice were challenged with S. aureus. At 24h postinfection, the numbers of bacteria recovered in the rlFnBP group were significantly lower than those in the killed bacteria group (P<0.001). Levels of both interleukin-6 (IL-6) and interferon-gamma (IFN-gamma from the mammary glands in the rlFnBP group were higher than those in the inactivated group (P<0.05). Better protection of mammary gland tissue was shown in the rlFnBP group. Thus, the rlFnBP, emulsified in an oil adjuvant, provided strong immune protection against S. aureus mastitis in mice, and could therefore be a promising vaccine candidate against bovine mastitis induced by S. aureus. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Conformational change induced by ATP binding in the multidrug ATP-binding cassette transporter BmrA.

    PubMed

    Orelle, Cédric; Gubellini, Francesca; Durand, Anne; Marco, Sergio; Lévy, Daniel; Gros, Philippe; Di Pietro, Attilio; Jault, Jean-Michel

    2008-02-26

    ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.

  20. Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region.

    PubMed

    Kawasaki, Aya; Ito, Ikue; Hikami, Koki; Ohashi, Jun; Hayashi, Taichi; Goto, Daisuke; Matsumoto, Isao; Ito, Satoshi; Tsutsumi, Akito; Koga, Minori; Arinami, Tadao; Graham, Robert R; Hom, Geoffrey; Takasaki, Yoshinari; Hashimoto, Hiroshi; Behrens, Timothy W; Sumida, Takayuki; Tsuchiya, Naoyuki

    2008-01-01

    Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region. In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations. In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 x 10(-6), odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 x 10(-6)). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in

  1. Caerulomycin A Enhances Transforming Growth Factor-β (TGF-β)-Smad3 Protein Signaling by Suppressing Interferon-γ (IFN-γ)-Signal Transducer and Activator of Transcription 1 (STAT1) Protein Signaling to Expand Regulatory T Cells (Tregs)*

    PubMed Central

    Gurram, Rama Krishna; Kujur, Weshely; Maurya, Sudeep K.; Agrewala, Javed N.

    2014-01-01

    Cytokines play a very important role in the regulation of immune homeostasis. Regulatory T cells (Tregs) responsible for the generation of peripheral tolerance are under the tight regulation of the cytokine milieu. In this study, we report a novel role of a bipyridyl compound, Caerulomycin A (CaeA), in inducing the generation of Tregs. It was observed that CaeA substantially up-regulated the pool of Tregs, as evidenced by an increased frequency of CD4+ Foxp3+ cells. In addition, CaeA significantly suppressed the number of Th1 and Th17 cells, as supported by a decreased percentage of CD4+/IFN-γ+ and CD4+/IL-17+ cells, respectively. Furthermore, we established the mechanism and observed that CaeA interfered with IFN-γ-induced STAT1 signaling by augmenting SOCS1 expression. An increase in the TGF-β-mediated Smad3 activity was also noted. Furthermore, CaeA rescued Tregs from IFN-γ-induced inhibition. These results were corroborated by blocking Smad3 activity, which abolished the CaeA-facilitated generation of Tregs. In essence, our results indicate a novel role of CaeA in inducing the generation of Tregs. This finding suggests that CaeA has enough potential to be considered as a potent future drug for the treatment of autoimmunity. PMID:24811173

  2. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    PubMed

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  3. Adrenergic inducibility of AP-1 binding in the rat pineal gland depends on prior photoperiod.

    PubMed

    Guillaumond, F; Becquet, D; Bosler, O; François-Bellan, A M

    2002-10-01

    The main known function of the pineal gland in mammals is the temporal synchronization of physiological rhythms to seasonal changes of day length (photoperiod). In rat, the transcription factor activating protein-1 (AP-1) displays a circadian rhythm in its DNA binding in the pineal gland, which results from the rhythmic expression of Fra-2. We postulated that, if AP-1 is an important component of pineal gland functioning, then variations in photoperiodic conditions should lead to an adaptation of the AP-1 binding rhythm. Here we show that AP-1 binding patterns adapt to variations in lighting conditions, in the same way as the rhythm of arylalkylamine-N-acetyltransferase (AA-NAT) activity. This adaptation appeared to result from photoperiodic adaptation of the rhythmic fra-2 gene expression and was reflected by an adapted delay between the onset of night and the acrophase of the nocturnal peak. We further showed that photoperiodic adaptation of both the AP-1 binding and AA-NAT activity rhythms resulted from adapted changes in adrenergic inducibility of both variables at night onset. We finally provided evidence that AP-1 shared with the CREM gene encoding the transcriptional repressor protein inducible cAMP early repressor (ICER) the ability to be hypersensitive or subsensitive to adrenergic stimuli, depending on prior photoperiod.

  4. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  5. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  6. Carboxy-Terminus Recruitment Induced by Substrate Binding in Eukaryotic Fructose Bis-phosphate Aldolases

    SciTech Connect

    Lafrance-Vanasse,J.; Sygusch, J.

    2007-01-01

    The crystal structures of Leishmania mexicana fructose-1,6-bis(phosphate) aldolase in complex with substrate and competitive inhibitor, mannitol-1,6-bis(phosphate), were solved to 2.2 {angstrom} resolution. Crystallographic analysis revealed a Schiff base intermediate trapped in the native structure complexed with substrate while the inhibitor was trapped in a conformation mimicking the carbinolamine intermediate. Binding modes corroborated previous structures reported for rabbit muscle aldolase. Amino acid substitution of Gly-312 to Ala, adjacent to the P{sub 1}-phosphate binding site and unique to trypanosomatids, did not perturb ligand binding in the active site. Ligand attachment ordered amino acid residues 359-367 of the C-terminal region (353-373) that was disordered beyond Asp-358 in the unbound structure, revealing a novel recruitment mechanism of this region by aldolases. C-Terminal peptide ordering is triggered by P{sub 1}-phosphate binding that induces conformational changes whereby C-terminal Leu-364 contacts P{sub 1}-phosphate binding residue Arg-313. C-Terminal region capture synergizes additional interactions with subunit surface residues, not perturbed by P1-phosphate binding, and stabilizes C-terminal attachment. Amino acid residues that participate in the capturing interaction are conserved among class I aldolases, indicating a general recruitment mechanism whereby C-terminal capture facilitates active site interactions in subsequent catalytic steps. Recruitment accelerates the enzymatic reaction by using binding energy to reduce configurational entropy during catalysis thereby localizing the conserved C-terminus tyrosine, which mediates proton transfer, proximal to the active site enamine.

  7. Ligand Binding Sites of Inducible Costimulator and High Avidity Mutants with Improved Function

    PubMed Central

    Wang, Shengdian; Zhu, Gefeng; Tamada, Koji; Chen, Lieping; Bajorath, Jürgen

    2002-01-01

    Interaction between inducible costimulator (ICOS) and its ligand is implicated in the induction of cell-mediated and humoral immune responses. However, the molecular details of this interaction are unknown. We report here a mutagenesis analysis of residues in ICOS that are critical for ligand binding. A three-dimensional model of the extracellular immunoglobulin-like domain of ICOS was used to map the residues conserved within the CD28 family. This analysis identified a surface patch containing the characteristic “PPP” sequence and is conserved in human and mouse ICOS. Mutations in this region of human ICOS reduce or abolish ligand binding. Our results suggest that the ligand binding site in ICOS maps to a region overlapping yet distinct from the CD80/CD86 binding sites in CD28 and cytotoxic T lymphocyte antigen (CTLA)-4. Thus, the analysis suggests that differences in ligand binding specificity between these related costimulatory molecules have evolved by utilization of overlapping regions with different patterns of conserved and nonconserved residues. Two site-specific mutants generated in the course of our studies bound ICOS ligand with higher avidity than wild-type ICOS. An S76E mutant protein of ICOS blocked T cell costimulatory function of ICOS ligand and inhibited T cell response to allogeneic antigens superior to wild-type ICOS. Our studies thus identified critical residues involving in ICOS receptor–ligand interaction and provide new modulators for immune responses. PMID:11956294

  8. Identification of a unique binding protein specific for a novel retinoid inducing cellular apoptosis.

    PubMed

    Fontana, J A; Dawson, M I; Leid, M; Rishi, A K; Zhang, Y; Hsu, C A; Lu, J S; Peterson, V J; Jong, L; Hobbs, P; Chao, W R; Shroot, B; Reichert, U

    2000-05-15

    The retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN, CD437) induces apoptosis in a variety of cell types, many of which are cancer cells that resist the antiproliferative and/or differentiating effects of retinoids. While the retinoids exert their effects by binding to the retinoic acid nuclear receptors (RARs) or retinoid X receptors (RXRs), AHPN (CD437) binds to another protein with different ligand specificity. In nuclear extracts from HL-60R cells the binding of AHPN (CD437) was only minimally competed by either retinoic acid (tRA)or 9-cis-retinoic acid (9-cis-RA), the natural ligands for the RARs and RXRs, respectively. Moreover, AHPN (CD437) was unable to compete with either tRA or 9-cis-RA for binding to endogenous retinoid receptors in nuclear extracts from the MDA-MB-468 breast carcinoma cell line. Size exclusion chromatography revealed AHPN binding to a 95 kDa protein(s) which is neither an RAR or RXR. Our results suggest that apoptosis induction by AHPN (CD437) may occur through interaction with another protein and is independent of the RAR/RXR-signaling pathways.

  9. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity.

    PubMed

    Davidovich, Chen; Bashan, Anat; Auerbach-Nevo, Tamar; Yaggie, Rachel D; Gontarek, Richard R; Yonath, Ada

    2007-03-13

    New insights into functional flexibility at the peptidyl transferase center (PTC) and its vicinity were obtained by analysis of pleuromutilins binding modes to the ribosome. The crystal structures of Deinococcus radiodurans large ribosomal subunit complexed with each of three pleuromutilin derivatives: retapamulin (SB-275833), SB-280080, and SB-571519, show that all bind to the PTC with their core oriented similarly at the A-site and their C14 extensions pointing toward the P-site. Except for an H-bond network with a single nucleotide, G2061, which involves the essential keto group of all three compounds, only minor hydrophobic contacts are formed between the pleuromutilin C14 extensions and any ribosomal component, consistent with the PTC tolerance to amino acid diversity. Efficient drug binding mode is attained by a mechanism based on induced-fit motions exploiting the ribosomal intrinsic functional flexibility and resulting in conformational rearrangements that seal the pleuromutilin-binding pocket and tightens it up. Comparative studies identified a network of remote interactions around the PTC, indicating that pleuromutilins selectivity is acquired by nonconserved nucleotides residing in the PTC vicinity, in a fashion resembling allosterism. Likewise, pleuromutilin resistant mechanisms involve nucleotides residing in the environs of the binding pocket, consistent with their slow resistance-development rates.

  10. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity

    PubMed Central

    Davidovich, Chen; Bashan, Anat; Auerbach-Nevo, Tamar; Yaggie, Rachel D.; Gontarek, Richard R.; Yonath, Ada

    2007-01-01

    New insights into functional flexibility at the peptidyl transferase center (PTC) and its vicinity were obtained by analysis of pleuromutilins binding modes to the ribosome. The crystal structures of Deinococcus radiodurans large ribosomal subunit complexed with each of three pleuromutilin derivatives: retapamulin (SB-275833), SB-280080, and SB-571519, show that all bind to the PTC with their core oriented similarly at the A-site and their C14 extensions pointing toward the P-site. Except for an H-bond network with a single nucleotide, G2061, which involves the essential keto group of all three compounds, only minor hydrophobic contacts are formed between the pleuromutilin C14 extensions and any ribosomal component, consistent with the PTC tolerance to amino acid diversity. Efficient drug binding mode is attained by a mechanism based on induced-fit motions exploiting the ribosomal intrinsic functional flexibility and resulting in conformational rearrangements that seal the pleuromutilin-binding pocket and tightens it up. Comparative studies identified a network of remote interactions around the PTC, indicating that pleuromutilins selectivity is acquired by nonconserved nucleotides residing in the PTC vicinity, in a fashion resembling allosterism. Likewise, pleuromutilin resistant mechanisms involve nucleotides residing in the environs of the binding pocket, consistent with their slow resistance-development rates. PMID:17360517

  11. Laser-Induced Fluorescence Analysis of Protein-Based Binding Media

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Cather, S.; Anglos, D.; Fotakis, Costas

    Laser-induced fluorescence of intrinsic fluorophores of organic media found in paintings (casein, animal glue and egg proteins) provides a means of characterising general classes of media depending on the amino acid composition and presence of degradation cross-linkages. Wavelength dependence of spectra is investigated for non-destructive and non-invasive analyses of thin films of protein-based binding media.

  12. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  13. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.

    PubMed

    Iseni, Frédéric; Garcin, Dominique; Nishio, Machiko; Kedersha, Nancy; Anderson, Paul; Kolakofsky, Daniel

    2002-10-01

    Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recom binant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5' UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. More over, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.

  14. Mediation of Movement-Induced Breakthrough Cancer Pain by IB4-Binding Nociceptors in Rats.

    PubMed

    Havelin, Joshua; Imbert, Ian; Sukhtankar, Devki; Remeniuk, Bethany; Pelletier, Ian; Gentry, Jonathan; Okun, Alec; Tiutan, Timothy; Porreca, Frank; King, Tamara E

    2017-05-17

    Cancer-induced bone pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates. Even when ongoing pain is well controlled, patients can suffer breakthrough pain (BTP), episodic severe pain that "breaks through" the medication. We developed a novel model of cancer-induced BTP using female rats with mammary adenocarcinoma cells sealed within the tibia. We demonstrated previously that rats with bone cancer learn to prefer a context paired with saphenous nerve block to elicit pain relief (i.e., conditioned place preference, CPP), revealing the presence of ongoing pain. Treatment with systemic morphine abolished CPP to saphenous nerve block, demonstrating control of ongoing pain. Here, we show that pairing BTP induced by experimenter-induced movement of the tumor-bearing hindlimb with a context produces conditioned place avoidance (CPA) in rats treated with morphine to control ongoing pain, consistent with clinical observation of BTP. Preventing movement-induced afferent input by saphenous nerve block before, but not after, hindlimb movement blocked movement-induced BTP. Ablation of isolectin B4 (IB4)-binding, but not TRPV1(+), sensory afferents eliminated movement-induced BTP, suggesting that input from IB4-binding fibers mediates BTP. Identification of potential molecular targets specific to this population of fibers may allow for the development of peripherally restricted analgesics that control BTP and improve quality of life in patients with skeletal metastases.SIGNIFICANCE STATEMENT We present a novel preclinical measure of movement-induced breakthrough pain (BTP) that is observed in the presence of morphine controlling ongoing pain. Blockade of sensory input before movement prevented BTP, whereas nerve block after movement failed to reverse BTP. These observations indicate that blocking peripheral sensory input may prevent BTP and targeting central sites may be required for pain relief once BTP has been initiated

  15. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation*

    PubMed Central

    Shiba, Emiko; Izawa, Kumi; Kaitani, Ayako; Isobe, Masamichi; Maehara, Akie; Uchida, Koichiro; Maeda, Keiko; Nakano, Nobuhiro; Ogawa, Hideoki; Okumura, Ko; Kitamura, Toshio; Shimizu, Toshiaki; Kitaura, Jiro

    2017-01-01

    LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f−/− mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f−/− mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo. PMID:28073916

  16. CLIMP-63 is a gentamicin-binding protein that is involved in drug-induced cytotoxicity

    PubMed Central

    Karasawa, T; Wang, Q; David, L L; Steyger, P S

    2010-01-01

    Aminoglycoside-induced nephrotoxicity and ototoxicity is a major clinical problem. To understand how aminoglycosides, including gentamicin, induce cytotoxicity in the kidney proximal tubule and the inner ear, we identified gentamicin-binding proteins (GBPs) from mouse kidney cells by pulling down GBPs with gentamicin–agarose conjugates and mass spectrometric analysis. Among several GBPs specific to kidney proximal tubule cells, cytoskeleton-linking membrane protein of 63 kDa (CLIMP-63) was the only protein localized in the endoplasmic reticulum, and was co-localized with gentamicin-Texas Red (GTTR) conjugate after cells were treated with GTTR for 1 h. In western blots, kidney proximal tubule cells and cochlear cells, but not kidney distal tubule cells, exhibited a dithiothreitol (DTT)-resistant dimer band of CLIMP-63. Gentamicin treatment increased the presence of DTT-resistant CLIMP-63 dimers in both kidney proximal (KPT11) and distal (KDT3) tubule cells. Transfection of wild-type and mutant CLIMP-63 into 293T cells showed that the gentamicin-dependent dimerization requires CLIMP-63 palmitoylation. CLIMP-63 siRNA transfection enhanced cellular resistance to gentamicin-induced toxicity, which involves apoptosis, in KPT11 cells. Thus, the dimerization of CLIMP-63 is likely an early step in aminoglycoside-induced cytotoxicity in the kidney and cochlea. Gentamicin also enhanced the binding between CLIMP-63 and 14-3-3 proteins, and we also identified that 14-3-3 proteins are involved in gentamicin-induced cytotoxicity, likely by binding to CLIMP-63. PMID:21368867

  17. Ceramide-CD300f Binding Inhibits Lipopolysaccharide-induced Skin Inflammation.

    PubMed

    Shiba, Emiko; Izawa, Kumi; Kaitani, Ayako; Isobe, Masamichi; Maehara, Akie; Uchida, Koichiro; Maeda, Keiko; Nakano, Nobuhiro; Ogawa, Hideoki; Okumura, Ko; Kitamura, Toshio; Shimizu, Toshiaki; Kitaura, Jiro

    2017-02-17

    LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f(-/-) mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f(-/-) mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis

    PubMed Central

    Evans, Christopher M.; Janssen, William J.; Brummet, Mary E.; Hudson, Sherry A.; Zhu, Zhou

    2014-01-01

    Background Siglec-F is a glycan binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated, sulfated glycans in glycan binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown. Methods Lungs from normal and mucin-deficient mice, as well as mouse tracheal epithelial cells from mice, were interrogated in vitro and in vivo for the expression of Siglec-F ligands. Western blotting and immunocytochemistry used Siglec-F-Fc as a probe for directed purification, followed by liquid chromatography-tandem mass spectrometric analysis of recognized glycoproteins. Purified components were tested in mouse eosinophil binding assays and flow cytometry-based cell death assays. Results We detected mouse lung glycoproteins that bound to Siglec-F; binding was sialic-acid dependent. Proteomic analysis of Siglec-F binding material identified Muc5b and Muc4. Cross-affinity enrichment and histochemical analysis of lungs from mucin-deficient mice assigned and validated the identity of Muc5b as one glycoprotein ligand for Siglec-F. Purified mucin preparations carried sialylated and sulfated glycans, bound to eosinophils and induced their death in vitro. Mice conditionally deficient in Muc5b displayed exaggerated eosinophilic inflammation in response to intratracheal installation of IL-13. Conclusions These data identify a previously unrecognized endogenous anti-inflammatory property of airway mucins by which their glycans can control lung eosinophilia through engagement of Siglec-F. PMID:25497369

  19. [Conformational changes of actin induced by strong or weak myosin subfragment-1 binding].

    PubMed

    Dedova, I V; Avrova, S V; Vikhoreva, N N; Vikhorev, R G; Hazlett, T L; Van der Meer, W; Dos Remedios, C G; Borovikov, Iu S

    2004-01-01

    Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.

  20. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    PubMed Central

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labbé, Geneviève M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; Jørgensen, Thomas; Alanine, Daniel G.W.; de Cassan, Simone C.; Higgins, Matthew K.; Otto, Thomas D.; McCarthy, James S.; de Jongh, Willem A.; Nicosia, Alfredo; Moyle, Sarah; Hill, Adrian V.S.; Berrie, Eleanor; Chitnis, Chetan E.; Lawrie, Alison M.; Draper, Simon J.

    2017-01-01

    BACKGROUND. Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite’s Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS. Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS. Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII–specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION. We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION. Clinicaltrials.gov NCT01816113. FUNDING. Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust. PMID:28614791

  1. Binding characteristics of radioiodinated crystal - induced chemotactic factor to human neutrophils

    SciTech Connect

    Spilberg, I.; Mehta, J.

    1984-12-01

    The binding of radiolabeled crystal-induced chemotactic factor (CCF) to human neutrophils is characterized. Binding of /sup 125/I-CCF to the cells was higher at 4/sup 0/C than at 24/sup 0/ or 37/sup 0/C and was found to be independent of Ca/sup 2 +/ and Mg/sup 2 +/ ion concentration. The binding showed a pH optimum of 6.0. Tosylamido phenylethyl chloromethyl ketone at 100 ..mu..mol/L concentration inhibited 20% of /sup 125/I-CCF binding, but phenylmethylsulfonyl fluoride at 200 ..mu..mol/L had no effect. Approximately 50% of the cell-associated /sup 125/I-CCF was released after treatment with proteases. The nonspecific uptake by the cells, as measured by the uptake of /sup 3/H-sucrose and /sup 14/C-inulin in the presence of CCF, was negligible. After the steady-state binding of /sup 125/I-CCF to the cells, approx. 15% of the cell-associated radioactivity at 4/sup 0/C and 40% to 50% at 24/sup 0/ and 37/sup 0/C was released into the medium after 60 minutes of incubation in medium alone. Dissociation of the radioactive material was not affected by the presence of tosylamido phenylethyl chloromethyl ketone or phenanthroline in the media. The dissociated material was determined to be degraded /sup 125/I-CCF, suggesting that degradation of /sup 125/I-CCF occurs after binding to its specific receptor on the human neutrophil. 22 references, 3 figures, 2 tables.

  2. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site.

    PubMed

    Venghateri, Jubina B; Gupta, Tilak Kumar; Verma, Paul J; Kunwar, Ambarish; Panda, Dulal

    2013-01-01

    Maytansinoid conjugates are currently under different phases of clinical trials and have been showing promising activity for various types of cancers. In this study, we have elucidated the mechanism of action of ansamitocin P3, a structural analogue of maytansine for its anticancer activity. Ansamitocin P3 potently inhibited the proliferation of MCF-7, HeLa, EMT-6/AR1 and MDA-MB-231 cells in culture with a half-maximal inhibitory concentration of 20±3, 50±0.5, 140±17, and 150±1.1 pM, respectively. Ansamitocin P3 strongly depolymerized both interphase and mitotic microtubules and perturbed chromosome segregation at its proliferation inhibitory concentration range. Treatment of ansamitocin P3 activated spindle checkpoint surveillance proteins, Mad2 and BubR1 and blocked the cells in mitotic phase of the cell cycle. Subsequently, cells underwent apoptosis via p53 mediated apoptotic pathway. Further, ansamitocin P3 was found to bind to purified tubulin in vitro with a dissociation constant (Kd) of 1.3±0.7 µM. The binding of ansamitocin P3 induced conformational changes in tubulin. A docking analysis suggested that ansamitocin P3 may bind partially to vinblastine binding site on tubulin in two different positions. The analysis indicated that the binding of ansamitocin P3 to tubulin is stabilized by hydrogen bonds. In addition, weak interactions such as halogen-oxygen interactions may also contribute to the binding of ansamitocin P3 to tubulin. The study provided a significant insight in understanding the antiproliferative mechanism of action of ansamitocin P3.

  3. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus

    SciTech Connect

    Harwood-Sears, V.; Gordon, A.S. )

    1990-05-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuPB2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experiments in which chloramphenicol was added to cultures indicated that there was de novo synthesis of these proteins in response to copper. When supernatants were separated by gel permeation chromatography, CuBP1 and CuPB2 coeluted with a copper-induced peak in copper-binding activity. CuBP1 and CuBP2 from whole supernatants were concentrated and partially purified by using a copper-charged immobilized metal ion affinity chromatography column, confirming the affinity of these proteins for copper. A comparison of cell pellets and supernatants demonstrated that CuBP1 was more concentrated in supernatants than in cells. Our data are consistent with a model for a novel mechanism of copper detoxification in which excretion of copper-binding protein is induced by copper.

  4. JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.

    PubMed

    Shi, Jiahai; Yuan, Bingbing; Hu, Wenqian; Lodish, Harvey

    2016-11-01

    JAK2 V617F is a mutant-activated JAK2 kinase found in most polycythemia vera (PV) patients; it skews normal proliferation and differentiation of hematopoietic stem and progenitor cells and simulates aberrant expansion of erythroid progenitors. JAK2 V617F is known to activate some signaling pathways not normally activated in mature erythroblasts, but there has been no systematic study of signal transduction pathways or gene expression in erythroid cells expressing JAK2 V617F undergoing erythropoietin (Epo)-dependent terminal differentiation. Here we report that expression of JAK2 V617F in murine fetal liver Epo-dependent progenitors allows them to divide approximately six rather than the normal approximately four times in the presence of Epo, delaying their exit from the cell cycle. Over time, the number of red cells formed from each Epo-dependent progenitor increases fourfold, and these cells eventually differentiate into normal enucleated reticulocytes. We report that purified fetal liver Epo-dependent progenitors express many cytokine receptors additional to the EpoR. Expression of JAK2 V617F triggers activation of Stat5, the only STAT normally activated by Epo, as well as activation of Stat1 and Stat3. Expression of JAK2 V617F also leads to transient induction of many genes not normally activated in terminally differentiating erythroid cells and that are characteristic of other hematopoietic lineages. Inhibition of Stat1 activation blocks JAK2 V617F hyperproliferation of erythroid progenitors, and we conclude that Stat1-mediated activation of nonerythroid signaling pathways delays terminal erythroid differentiation and permits extended cell divisions.

  5. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    SciTech Connect

    Kuzuhara, T. Suganuma, M.; Oka, K.; Fujiki, H.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.

  6. Flap loop of GluD2 binds to Cbln1 and induces presynaptic differentiation.

    PubMed

    Kuroyanagi, Tomoaki; Hirano, Tomoo

    2010-07-30

    Glutamate receptor delta2 (GluD2) is selectively expressed on the postsynaptic spines at parallel-fiber (PF)-Purkinje neuron (PN) synapses. GluD2 knockout mice show a reduced number of PF-PN synapses, suggesting that GluD2 is involved in synapse formation. Recent studies revealed that GluD2 induces presynaptic differentiation in a manner dependent on its N-terminal domain (NTD) through binding of Cbln1 secreted from cerebellar granule neurons. However, the underlying mechanism of the specific binding of the NTD to Cbln1 remains elusive. Here, we have identified the flap loop (Arg321-Trp339) in the NTD of GluD2 (GluD2-NTD) as a crucial region for the binding to Cbln1 and the induction of presynaptic differentiation. Both induction of presynaptic differentiation and binding of Cbln1 were abolished in the HEK cells expressing not wild-type GluD2 but GluD2 with mutations in the flap loop. Especially, single amino acid substitution of either Arg321 or Trp323 to alanine was sufficient to disable the GluD2 function. Finally, a homology model of GluD2-NTD suggested that the flap loop is located at the distal end, which appears consistent with an interaction with Cbln1 and a presynaptic varicosity.

  7. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.

    PubMed

    Li, Jinbing; Wang, Xiaoyong

    2015-02-01

    Novel thermally-induced BSA/ι-carrageenan particles are used as a protective carrier for (-)-epigallocatechin-3-gallate (EGCG). The addition of EGCG to BSA/ι-carrageenan particles can highly quench the intrinsic fluorescence of BSA, which is explained in terms of the binding of EGCG to the hydrophobic pockets of BSA mainly through the hydrophobic force. According to the double logarithm equation, the binding constant is determined as 1.1×10(8)M(-1) for the binding of EGCG with BSA/ι-carrageenan particles. The high binding affinity is ascribed to both the molecular structure of EGCG and the partial unfolding state of BSA in BSA/ι-carrageenan particles. The circular dichroism spectra and calculated α-helix of BSA suggest that the bound EGCG leads to a more random secondary structure of BSA. Furthermore, BSA/ι-carrageenan particles are found to be superior to native BSA and pure BSA particles for improving the stability and radical scavenging activity of EGCG.

  8. Isolation of pigment-binding early light-inducible proteins from pea.

    PubMed

    Adamska, I; Roobol-Bóza, M; Lindahl, M; Andersson, B

    1999-03-01

    The early light-inducible proteins (ELIPs) in chloroplasts possess a high sequence homology with the chlorophyll a/b-binding proteins but differ from those proteins by their substoichiometric and transient appearance. In the present study ELIPs of pea were isolated by a two-step purification strategy: perfusion chromatography in combination with preparative isoelectric focussing. Two heterogeneous populations of ELIPs were obtained after chromatographic separation of solubilized thylakoid membranes using a weak anion exchange column. One of these populations contained ELIPs in a free form providing the first isolation of these proteins. To prove whether the isolated and pure forms of ELIP bind pigments, spectroscopic and chromatographic analysis were performed. Absorption spectra and TLC revealed the presence of chlorophyll a and lutein. Measurements of steady-state fluorescence emission spectra at 77 K exhibited a major peak at 674 nm typical for chlorophyll a bound to the protein matrix. The action spectrum of the fluorescence emission measured at 674 nm showed several peaks originating mainly from chlorophyll a. It is proposed that ELIPs are transient chlorophyll-binding proteins not involved in light-harvesting but functioning as scavengers for chlorophyll molecules during turnover of pigment-binding proteins.

  9. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids.

    PubMed

    Zhang, Hongquan; Lai, Maode; Zuehlke, Albert; Peng, Hanyong; Li, Xing-Fang; Le, X Chris

    2015-11-23

    We introduce the concept and operation of a binding-induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three-dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single-stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet-derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self-assembly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.

    PubMed

    Mao, Yinfei; Liu, Jinquan; He, Dinggen; He, Xiaoxiao; Wang, Kemin; Shi, Hui; Wen, Li

    2015-10-01

    Owing to its diversified structures, high affinity, and specificity for binding a wide range of non-nucleic acid targets, aptamer is a useful molecular recognition tool for the design of various biosensors. Herein, we report a new signal-on electrochemical biosensing platform which is based on an aptamer/target binding-induced strand displacement and triple-helix forming. The biosensing platform is composed of a signal transduction probe (STP) modified with a methylene blue (MB) and a sulfhydryl group, a triplex-forming oligonucleotides probe (TFO) and a target specific aptamer probe (Apt). Through hybridization with the TFO probe and the Apt probe, the self-assembled STP on Au electrode via Au-S bonding keeps its rigid structure. The MB on the STP is distal to the Au electrode surface. It is eT off state. Target binding releases the Apt probe and liberates the end of the MB tagged STP to fold back and form a triplex-helix structure with TFO (STP/TFO/STP), allowing MB to approach the Au electrode surface and generating measurable electrochemical signals (eT ON). As test for the feasibility and universality of this signal-on electrochemical biosensing platform, two aptamers which bind to adenosine triphosphate (ATP) and human α-thrombin (Tmb), respectively, are selected as models. The detection limit of ATP was 7.2 nM, whereas the detection limit of Tmb was 0.86 nM.

  11. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin

    PubMed Central

    Cun, Shujian; Sun, Hongzhe

    2010-01-01

    GroES is an indispensable chaperonin virtually found throughout all life forms. Consequently, mutations of this protein must be critically scrutinized by natural selection. Nevertheless, the homolog from a potentially virulent gastric pathogen, Helicobacter pylori, strikingly features a histidine/cysteine-rich C terminus that shares no significant homology with other family members. Additionally, three more (H45, C51, and C53) are uniquely present in its apical domain. The statistical analyses show that these residues may have originated from negative selection, presumably driven by either dependent or independent amino acid mutations. In the absence of the C-terminal metal-binding domain, the mutant protein still exhibits a substantial capacity for zinc binding in vivo. The biochemical properties of site-directed mutants indicate that H45, C51, and C53 make up an oxidation-sensitive zinc-binding site that may donate the bound metal to a zinc acceptor. Of interest, bismuth antiulcer drugs strongly bind at this site (Kd of approximately 7 × 10-26 M), replacing the bound zinc and consequently inducing the disruption of the quaternary structure. Because biological features by negative selection are usually inert to change during evolution, this study sheds light on a promising field whereby medicines can be designed or improved to specifically target the residues that uniquely evolved in pathogenic proteins so as to retard the emergence of drug resistance. PMID:20194796

  12. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  13. Molecular modelling study of changes induced by netropsin binding to nucleosome core particles.

    PubMed Central

    Pérez, J J; Portugal, J

    1990-01-01

    It is well known that certain sequence-dependent modulators in structure appear to determine the rotational positioning of DNA on the nucleosome core particle. That preference is rather weak and could be modified by some ligands as netropsin, a minor-groove binding antibiotic. We have undertaken a molecular modelling approach to calculate the relative energy of interaction between a DNA molecule and the protein core particle. The histones particle is considered as a distribution of positive charges on the protein surface that interacts with the DNA molecule. The molecular electrostatic potentials for the DNA, simulated as a discontinuous cylinder, were calculated using the values for all the base pairs. Computing these parameters, we calculated the relative energy of interaction and the more stable rotational setting of DNA. The binding of four molecules of netropsin to this model showed that a new minimum of energy is obtained when the DNA turns toward the protein surface by about 180 degrees, so a new energetically favoured structure appears where netropsin binding sites are located facing toward the histones surface. The effect of netropsin could be explained in terms of an induced change in the phasing of DNA on the core particle. The induced rotation is considered to optimize non-bonded contacts between the netropsin molecules and the DNA backbone. PMID:2165249

  14. A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution.

    PubMed

    Galfrè, Elena; Galeno, Lauretta; Moran, Oscar

    2012-11-01

    Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding sites for several candidate drugs in the disease treatment. We studied the effects of the application of 2-pyrimidin-7,8-benzoflavone (PBF), a strong potentiator of the CFTR, on the properties of recombinant and equimolar NBD1/NBD2 mixture in solution. The results indicate that the potentiator induces significant conformational changes of the NBD1/NBD2 dimer in solution. The potentiator does not modify the ATP binding constant, but reduces the ATP hydrolysis activity of the NBD1/NBD2 mixture. The intrinsic fluorescence and the guanidinium denaturation measurements indicate that the potentiator induces different conformational changes on the NBD1/NBD2 mixture in the presence and absence of ATP. It was confirmed from small-angle X-ray scattering experiments that, in absence of ATP, the NBD1/NBD2 dimer was disrupted by the potentiator, but in the presence of 2 mM ATP, the two NBDs kept dimerised, and a major change in the size and the shape of the structure was observed. We propose that these conformational changes could modify the NBDs-intracellular loop interaction in a way that would facilitate the open state of the channel.

  15. Identification of an Aptamer Binding to Human Osteogenic-Induced Progenitor Cells

    PubMed Central

    Niederlaender, Jan; Aicher, Wilhelm K.; Reinert, Siegmar; Schweizer, Ernst; Wendel, Hans-Peter; Alexander, Dorothea

    2013-01-01

    The aim of this study was to generate a specific aptamer against human jaw periosteal cells (JPCs) for tissue engineering applications in oral and maxillofacial surgery. This aptamer should serve as a capture molecule to enrich or even purify osteogenic progenitor cells from JPCs or from adult stem cells of other sources. Using systematic evolution of ligands by exponential enrichment (SELEX), we generated the first aptamer to specifically bind to human osteogenically induced JPCs. We did not detect any binding of the aptamer to undifferentiated JPCs, adipogenically and chondrogenically induced JPCs, or to any other cell line tested. However, similar binding patterns of the identified aptamer 74 were detected with mesenchymal stromal cells (MSCs) derived from placental tissue and bone marrow. After cell sorting, we analyzed the expression of osteogenic marker genes in the aptamer 74-positive and aptamer 74-negative fractions and detected no significant differences. Additionally, the analysis of the mineralization capacity revealed a slight tendency for the aptamer positive fraction to have a higher osteogenic potential. In terms of proliferation, JPCs growing in aptamer-coated wells showed increased proliferation rates compared with the controls. Herein, we report the development of an innovative approach for tissue engineering applications. Further studies should be conducted to modify and improve the specificity of the generated aptamer. PMID:23289534

  16. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  17. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin

    PubMed Central

    Theodosiou, Marina; Widmaier, Moritz; Böttcher, Ralph T; Rognoni, Emanuel; Veelders, Maik; Bharadwaj, Mitasha; Lambacher, Armin; Austen, Katharina; Müller, Daniel J; Zent, Roy; Fässler, Reinhard

    2016-01-01

    Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn2+. Despite compromised integrin activation and adhesion, Mn2+ enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner. DOI: http://dx.doi.org/10.7554/eLife.10130.001 PMID:26821125

  18. IFN-induced Guanylate Binding Proteins in Inflammasome Activation and Host Defense

    PubMed Central

    Kim, Bae-Hoon; Chee, Jonathan D.; Bradfield, Clinton J.; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D.

    2016-01-01

    Traditional views of the inflammasome highlight pre-existing core components being assembled under basal conditions shortly after infection or tissue damage. Recent work, however, suggests the inflammasome machinery is also subject to tunable or inducible signals that may accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these immune signals operate downstream of interferon (IFN) receptors to elicit inflammasome regulators, including a new family of IFN-induced GTPases termed guanylate binding proteins (GBPs). Here, we examine the critical roles for IFN-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity against a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential impact of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases. PMID:27092805

  19. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense.

    PubMed

    Kim, Bae-Hoon; Chee, Jonathan D; Bradfield, Clinton J; Park, Eui-Soon; Kumar, Pradeep; MacMicking, John D

    2016-05-01

    Traditional views of the inflammasome highlight the assembly of pre-existing core components shortly after infection or tissue damage. Emerging work, however, suggests that the inflammasome machinery is also subject to 'tunable' or inducible signals that might accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these signals operate downstream of interferon receptors to elicit inflammasome regulators, including a new family of interferon-induced GTPases called 'guanylate-binding proteins' (GBPs). Here we investigate the critical roles of interferon-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity to a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential effect of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases.

  20. GTPase properties of the interferon-induced human guanylate-binding protein 2.

    PubMed

    Neun, R; Richter, M F; Staeheli, P; Schwemmle, M

    1996-07-15

    Guanylate-binding proteins (GBPs) were originally described as proteins that are strongly induced by interferons and are capable of binding to agarose-immobilized guanine nucleotides. hGBP1, the first of two members of this protein family in humans, was recently shown to represent a novel type of GTPase that hydrolyzes GTP predominantly to GMP. We now report that purified recombinant hGBP2 also hydrolyzes GTP very efficiently, although GDP rather than GMP was the major reaction product. The biochemical parameters of this reaction were as follows: Km = 313 microM, turnover number = 22 min-1. Both hGBP1 and hGBP2 failed to hydrolyze GDP, however, GDP was an effective inhibitor of the hGBP2- but not the hGBP1-catalyzed GTP hydrolysis reaction. Thus, hGBP1 and hGBP2 have similar biochemical properties, but show pronounced differences in product specificity.

  1. Covalent binding of penicillamine to macrophages: implications for penicillamine-induced autoimmunity.

    PubMed

    Li, Jinze; Mannargudi, Baskar; Uetrecht, Jack P

    2009-07-01

    Idiosyncratic drug reactions (IDRs) represent a major clinical problem, and at present, the mechanisms involved are still poorly understood. One animal model that we have used for mechanistic studies of IDRs is penicillamine-induced autoimmunity in Brown Norway (BN) rats. Previous work in our lab found that macrophage activation preceded the clinical autoimmune syndrome. It is thought that one of the interactions between T cells and macrophages involves reversible Schiff base formation between an amine on T cells and an aldehyde on macrophages, but the identity of the molecules involved is unknown. It is also known that penicillamine reacts with aldehyde groups to form a thiazolidine ring, which unlike a Schiff base, is essentially irreversible. Such binding could lead to macrophage activation. Generalized macrophage activation could lead to the observed autoimmune reaction. Hydralazine and isoniazid also react with aldehydes to form stable hydrazones, and they also cause an autoimmune lupus-like syndrome. In this study, isolated spleen cells from male BN rats were incubated with biotin-aldehyde-reactive probe (ARP, a hydroxylamine), biotin-hydrazide, or D-penicillamine. At all concentrations, ARP, hydrazide, and penicillamine preferentially "stained" macrophages relative to other spleen cells. In addition, preincubation of cells with penicillamine or hydralazine decreased ARP staining of macrophages, which further indicates that most of the ARP binding to macrophages involves binding to aldehyde groups. This provides support for the hypothesis that the interaction between aldehyde-containing signaling molecules on macrophages and penicillamine could be the initial event of penicillamine-induced autoimmunity. Several of the proteins to which ARP binds were identified, and some such as myosin are attractive candidates to mediate macrophage activation.

  2. Induced circular dichroism as a tool to investigate the binding of drugs to carrier proteins: Classic approaches and new trends.

    PubMed

    Tedesco, Daniele; Bertucci, Carlo

    2015-09-10

    Induced circular dichroism (ICD) is a spectroscopic phenomenon that provides versatile and useful methods for characterizing the structural and dynamic properties of the binding of drugs to target proteins. The understanding of biorecognition processes at the molecular level is essential to discover and validate new pharmacological targets, and to design and develop new potent and selective drugs. The present article reviews the main applications of ICD to drug binding studies on serum carrier proteins, going from the classic approaches for the derivation of drug binding parameters and the identification of binding sites, to an overview of the emerging trends for the characterization of binding modes by means of quantum chemical (QC) techniques. The advantages and limits of the ICD methods for the determination of binding parameters are critically reviewed; the capability to investigate the binding interactions of drugs and metabolites to their target proteins is also underlined, as well as the possibility of characterizing the binding sites to obtain a complete picture of the binding mechanism and dynamics. The new applications of ICD methods to identify stereoselective binding modes of drug/protein complexes are then reviewed with relevant examples. The combined application of experimental ICD spectroscopy and QC calculations is shown to identify qualitatively the bound conformations of ligands to target proteins even in the absence of a detailed structure of the binding sites, either obtained from experimental X-ray crystallography and NMR measurements or from computational models of the complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation.

    PubMed

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2016-02-02

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β.

  4. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation

    PubMed Central

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2017-01-01

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of “blue eye disease”, causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β PMID:26546155

  5. Confinement induced binding in noble gas atoms within a BN-doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2015-02-01

    Confinement induced binding interaction patterns for noble gas atoms (Hen/m, Arn, Krn; n = 2, m = 3) atoms inside pristine and -BN doped (3, 3) single walled carbon nanotube (SWCNT) have been studied through density functional theory calculations. The kinetic stability for He dimer and trimer has been investigated at 100 K and 300 K through an ab initio molecular dynamics simulation. The positive role of doping in SWCNT in enhancing the nature of interaction as well as the kinetic stability of the said systems has been found.

  6. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  7. 4-Hydroxynonenal induces a DNA-binding protein similar to the heat-shock factor.

    PubMed Central

    Cajone, F; Salina, M; Benelli-Zazzera, A

    1989-01-01

    By using a gel mobility assay, we have shown that treatment of HeLa cells with 4-hydroxynonenal, a major product of the peroxidation of membrane lipids and an inducer of heat-shock proteins, has the same effect as heat shock in causing the appearance of a protein which binds to the sequence of DNA specific for the induction of heat-shock genes. Lipoperoxidation and heat exposure seem to share a common mechanism of specific gene activation. Images Fig. 1. Fig. 2. PMID:2590181

  8. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    PubMed Central

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  9. Ma Huang Tang Suppresses the Production and Expression of Inflammatory Chemokines via Downregulating STAT1 Phosphorylation in HaCaT Keratinocytes

    PubMed Central

    Jin, Seong-Eun; Lee, Mee-Young

    2016-01-01

    Ma huang tang (MHT) is a traditional herbal medicine comprising six medicinal herbs and is used to treat influenza-like illness. However, the effects of MHT on inflammatory skin diseases have not been verified scientifically. We investigated determining the inhibitory effects of MHT against inflammation responses in skin using HaCaT human keratinocyte cells. We found that MHT suppressed production of thymus and activation-regulated chemokine (TARC/CCL17), macrophage-derived chemokine (MDC/CCL22), regulated on activation of normal T-cell expressed and secreted (RANTES/CCL5), and interleukin-8 (IL-8) in tumor necrosis factor-α (TNF-α) and interferon-γ- (IFN-γ-) stimulated HaCaT cells. Consistently, MHT suppressed the mRNA expression of TARC, MDC, RANTES, and IL-8 in TNF-α and IFN-γ-stimulated cells. Additionally, MHT inhibited TNF-α and IFN-γ-stimulated signal transducer and activator of transcription 1 (STAT1) phosphorylation in a dose-dependent manner and nuclear translocation in HaCaT cells. Our finding indicates that MHT inhibits production and expression of inflammatory chemokines in the stimulated keratinocytes by downregulating STAT1 phosphorylation, suggesting that MHT may be a possible therapeutic agent for inflammatory skin diseases. PMID:27847527

  10. Infection with the Persistent Murine Norovirus Strain MNV-S99 Suppresses IFN-Beta Release and Activation of Stat1 In Vitro.

    PubMed

    Niendorf, Sandra; Klemm, Uwe; Mas Marques, Andreas; Bock, C-Thomas; Höhne, Marina

    2016-01-01

    Norovirus infection is the main cause of epidemic non-bacterial gastroenteritis in humans. Although human norovirus (HuNoV) infection is self-limiting, it can persist for extended periods of time in immune deficient patients. Due to the lack of robust cell culture and small animal systems, little is known about HuNoV pathogenicity. However, murine norovirus (MNV) can be propagated in cell culture and is used as a model to study norovirus infection. Several MNV are known to persist in mice. In this study, we show that the MNV strain MNV-S99 persists in wild type inbred (C57BL/6J) mice over a period of at least 5 weeks post infection. Viral RNA was detectable in the jejunum, ileum, cecum, and colon, with the highest titers in the colon and cecum. To characterize the effect of MNV-S99 on the innate immune response, Stat1 phosphorylation and IFN-β production were analyzed and compared to the non-persistent strain MNV-1.CW3. While MNV-S99 and MNV-1.CW3 showed comparable growth characteristics in vitro, Stat1 phosphorylation and IFN-β release is strongly decreased after infection with MNV-S99 compared to MNV-1.CW3. In conclusion, our results show that unlike MNV-1.CW3, MNV-S99 establishes a persistent infection in mice, possibly due to interfering with the innate immune response.

  11. Impaired T-bet-pSTAT1α and perforin-mediated immune responses in the tumoral region of lung adenocarcinoma

    PubMed Central

    Andreev, Katerina; Denis Iulian Trufa, I; Siegemund, Raphaela; Rieker, Ralf; Hartmann, Arndt; Schmidt, Joachim; Sirbu, Horia; Finotto, Susetta

    2015-01-01

    Background: In spite of modern therapies for non-small-cell lung cancer (NSCLC), prognosis for many patients is still poor and survival rates are low. Immunotherapy is the possibility to improve the lung immune response surrounding the tumour. However, this approach requires detailed understanding of the local immune-responses of NSCLC patients. Methods: We analysed samples from three different regions within the lungs of NSCLC patients, whereas we distinguished between patients suffering from adenocarcinoma and squamous cell carcinoma. Expression of type 1 T helper (Th1)/type 1 cytotoxic (Tc1) factors was assessed by quantitative real-time PCR, western blot analyses or immunohistochemistry. Cytotoxic cell activity of CD8+ T cells was determined via co-culture with autologous tumour cells and apoptosis assay. Results: We found decreased levels of the transcription factor T-box expressed in T cells (T-bet or Tbx21) and of the downstream activated IFN-γ-dependent pSTAT1α isoform in the lung tumour areas of patients with NSCLC as compared with tumour-free control regions. In these patients, reduced T-bet and pSTAT1α levels were found associated with increased immunosuppressive markers like cytotoxic T lymphocyte-associated protein 4, programmed cell death 1 and with a suppression of the Th1 cell cytokine production and Tc1 cell activity. Conclusions: These findings confirm a central role of T-bet in targeted immunotherapy for patients with NSCLC. PMID:26348446

  12. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    SciTech Connect

    Chen, Weizao; Feng, Yang; Wang, Yanping; Zhu, Zhongyu; Dimitrov, Dimiter S.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  13. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding.

    PubMed Central

    Beller, G A; Conroy, J; Smith, T W

    1976-01-01

    The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium

  14. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    NASA Astrophysics Data System (ADS)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  15. Urea-induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight.

    PubMed

    Dohare, Neeraj; Khan, Abbul Bashar; Athar, Fareeda; Thakur, Sonu Chand; Patel, Rajan

    2016-06-01

    We investigated the interaction of diclofenac sodium (Dic.Na) with bovine serum albumin (BSA) in the absence and presence of urea using different spectroscopic techniques. A fluorescence quenching study revealed that the Stern-Volmer quenching constant decreases in the presence of urea, decreasing further at higher urea concentrations. The binding constant and number of binding sites were also evaluated for the BSA-Dic.Na interaction system in the absence and presence of urea using a modified Stern-Volmer equation. The binding constant is greater at high urea concentrations, as shown by the fluorescence results. In addition, for the BSA-Dic.Na interaction system, a static quenching mechanism was observed, which was further confirmed using time-resolved fluorescence spectroscopy. UV-vis spectroscopy provided information about the formation of a complex between BSA and Dic.Na. Circular dichroism was carried out to explain the conformational changes in BSA induced by Dic.Na in the absence and presence of urea. The presence of urea reduced the α-helical content of BSA as the Dic.Na concentration varied. The distance r between the donor (BSA) and acceptor (Dic.Na) was also obtained in the absence and presence of urea, using fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.

    PubMed

    Lietzan, Adam D; St Maurice, Martin

    2013-07-05

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.

  17. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR

    PubMed Central

    Thomas, J. Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R.; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface. PMID:27101391

  18. Interferon-induced guanylate-binding proteins promote cytosolic lipopolysaccharide detection by caspase-11.

    PubMed

    Meunier, Etienne; Broz, Petr

    2015-01-01

    Lipopolysaccharide (LPS) from gram-negative bacteria is a classical pathogen-associated molecular pattern and a strong inducer of immune responses. While the detection of LPS on the cell surface and in the endosome by Toll-like receptor 4 (TLR4) has been studied for some time, it has only recently been discovered that LPS can also be sensed in the cytosol of cells by a noncanonical inflammasome pathway, resulting in the activation of the cysteine protease caspase-11. Intriguingly, activation of this pathway requires the production of interferons (IFNs) and the induction of a class of IFN-induced GTPases called guanylate-binding proteins (GBPs), which have previously been linked to cell-autonomous killing of intracellular microbes. In this study, we review the recent advances in our understanding of cytosolic LPS sensing and the function of mammalian GBPs.

  19. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Subchronic treatment with antiepileptic drugs modifies pentylenetetrazol-induced seizures in mice: Its correlation with benzodiazepine receptor binding

    PubMed Central

    Rocha, Luisa

    2008-01-01

    Experiments using male CD1 mice were carried out to investigate the effects of subchronic (daily administration for 8 days) pretreatments with drugs enhancing GABAergic transmission (diazepam, 10 mg/kg, ip; gabapentin, 100 mg/kg, po; or vigabatrin, 500 mg/kg, po) on pentylenetetrazol (PTZ)-induced seizures, 24 h after the last injection. Subchronic administration of diazepam reduced latencies to clonus, tonic extension and death induced by PTZ. Subchronic vigabatrin produced enhanced latency to the first clonus but faster occurrence of tonic extension and death induced by PTZ. Subchronic gabapentin did not modify PTZ-induced seizures. Autoradiography experiments revealed reduced benzodiazepine receptor binding in several brain areas after subchronic treatment with diazepam or gabapentin, whereas subchronic vigabatrin did not induce significant receptor changes. The present results indicate differential effects induced by the subchronic administration of diazepam, vigabatrin, and gabapentin on the susceptibility to PTZ-induced seizures, benzodiazepine receptor binding, or both. PMID:18830436

  1. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity.

    PubMed

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-08-02

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD.

  2. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  3. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT) 1 protein expression.

    PubMed

    Stone, Amy E L; Mitchell, Angela; Brownell, Jessica; Miklin, Daniel J; Golden-Mason, Lucy; Polyak, Stephen J; Gale, Michael J; Rosen, Hugo R

    2014-01-01

    Plasmacytoid Dendritic Cells (pDCs) represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs) through pattern recognition receptors (PRR). PRR/PAMP interactions trigger signaling events that induce interferon (IFN) production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL) IFNs in response to HCV RNA. Extracellular HCV core protein (Core) is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  4. Cold-inducible RNA binding protein in mouse mammary gland development.

    PubMed

    Lujan, Daniel A; Garcia, Selina; Vanderhoof, Jennifer; Sifuentes, Joshua; Brandt, Yekaterina; Wu, Yuehan; Guo, Xun; Mitchell, Therese; Howard, Tamara; Hathaway, Helen J; Hartley, Rebecca S

    2016-12-01

    RNA binding proteins (RBPs) regulate gene expression by controlling mRNA export, translation, and stability. When altered, some RBPs allow cancer cells to grow, survive, and metastasize. Cold-inducible RNA binding protein (CIRP) is overexpressed in a subset of breast cancers, induces proliferation in breast cancer cell lines, and inhibits apoptosis. Although studies have begun to examine the role of CIRP in breast and other cancers, its role in normal breast development has not been assessed. We generated a transgenic mouse model overexpressing human CIRP in the mammary epithelium to ask if it plays a role in mammary gland development. Effects of CIRP overexpression on mammary gland morphology, cell proliferation, and apoptosis were studied from puberty through pregnancy, lactation and weaning. There were no gross effects on mammary gland morphology as shown by whole mounts. Immunohistochemistry for the proliferation marker Ki67 showed decreased proliferation during the lactational switch (the transition from pregnancy to lactation) in mammary glands from CIRP transgenic mice. Two markers of apoptosis showed that the transgene did not affect apoptosis during mammary gland involution. These results suggest a potential in vivo function in suppressing proliferation during a specific developmental transition.

  5. Binding Induced RNA Conformational Changes Control Substrate Recognition and Catalysis by the Thiostrepton Resistance Methyltransferase (Tsr)*

    PubMed Central

    Kuiper, Emily G.; Conn, Graeme L.

    2014-01-01

    Ribosomal RNA (rRNA) post-transcriptional modifications are essential for ribosome maturation, translational fidelity, and are one mechanism used by both antibiotic-producing and pathogenic bacteria to resist the effects of antibiotics that target the ribosome. The thiostrepton producer Streptomyces azureus prevents self-intoxication by expressing the thiostrepton-resistance methyltransferase (Tsr), which methylates the 2′-hydroxyl of 23 S rRNA nucleotide adenosine 1067 within the thiostrepton binding site. Tsr is a homodimer with each protomer containing an L30e-like amino-terminal domain (NTD) and a SPOUT methyltransferase family catalytic carboxyl-terminal domain (CTD). We show that both enzyme domains are required for high affinity RNA substrate binding. The Tsr-CTD has intrinsic, weak RNA affinity that is necessary to direct the specific high-affinity Tsr-RNA interaction via NTDs, which have no detectable RNA affinity in isolation. RNA structure probing experiments identify the Tsr footprint on the RNA and structural changes in the substrate, induced specifically upon NTD binding, which are necessary for catalysis by the CTD. Additionally, we identify a key amino acid in each domain responsible for CTD-RNA binding and the observed NTD-dependent RNA structural changes. These studies allow us to develop a model for Tsr-RNA interaction in which the coordinated substrate recognition of each Tsr structural domain is an obligatory pre-catalytic recognition event. Our findings underscore the complexity of substrate recognition by RNA modification enzymes and the potential for direct involvement of the RNA substrate in controlling the process of its modification. PMID:25086036

  6. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors.

    PubMed

    Zafra Ruano, Ana; Cilia, Elisa; Couceiro, José R; Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic; Luque, Irene; Lenaerts, Tom

    2016-05-01

    Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis.

  7. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  8. Oviduct binding and elevated environmental ph induce protein tyrosine phosphorylation in stallion spermatozoa.

    PubMed

    Leemans, Bart; Gadella, Bart M; Sostaric, Edita; Nelis, Hilde; Stout, Tom A E; Hoogewijs, Maarten; Van Soom, Ann

    2014-07-01

    Sperm-oviduct binding is an essential step in the capacitation process preparing the sperm for fertilization in several mammalian species. In many species, capacitation can be induced in vitro by exposing spermatozoa to bicarbonate, Ca(2+), and albumin; however, these conditions are insufficient in the horse. We hypothesized that binding to the oviduct epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. Sperm-oviduct binding was established by coincubating equine oviduct explants for 2 h with stallion spermatozoa (2 × 10(6) spermatozoa/ml), during which it transpired that the highest density (per mm(2)) of oviduct-bound spermatozoa was achieved under noncapacitating conditions. In subsequent experiments, sperm-oviduct incubations were performed for 6 h under noncapacitating versus capacitating conditions. The oviduct-bound spermatozoa showed a time-dependent protein tyrosine phosphorylation response, which was not observed in unbound spermatozoa or spermatozoa incubated in oviduct explant conditioned medium. Both oviduct-bound and unbound sperm remained motile with intact plasma membrane and acrosome. Since protein tyrosine phosphorylation can be induced in equine spermatozoa by media with high pH, the intracellular pH (pHi) of oviduct explant cells and bound spermatozoa was monitored fluorometrically after staining with BCECF-AM dye. The epithelial secretory cells contained large, alkaline vesicles. Moreover, oviduct-bound spermatozoa showed a gradual increase in pHi, presumably due to an alkaline local microenvironment created by the secretory epithelial cells, given that unbound spermatozoa did not show pHi changes. Thus, sperm-oviduct interaction appears to facilitate equine sperm capacitation by creating an alkaline local environment that triggers intracellular protein tyrosine phosphorylation in bound sperm. © 2014 by the Society for the Study of Reproduction, Inc.

  9. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors

    PubMed Central

    Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic

    2016-01-01

    Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. PMID:27213566

  10. Decipher the Mechanisms of Protein Conformational Changes Induced by Nucleotide Binding through Free-Energy Landscape Analysis: ATP Binding to Hsp70

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins

  11. Envelope Conformational Changes Induced by Human Immunodeficiency Virus Type 1 Attachment Inhibitors Prevent CD4 Binding and Downstream Entry Events

    PubMed Central

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-01-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes. PMID:16571818

  12. Cold-inducible RNA-binding protein is an important mediator of alcohol-induced brain inflammation.

    PubMed

    Rajayer, Salil R; Jacob, Asha; Yang, Weng-Lang; Zhou, Mian; Chaung, Wayne; Wang, Ping

    2013-01-01

    Binge drinking has been associated with cerebral dysfunction. Ethanol induced microglial activation initiates an inflammatory process that causes upregulation of proinflammatory cytokines which in turn creates neuronal inflammation and damage. However, the molecular mechanism is not fully understood. We postulate that cold-inducible RNA-binding protein (CIRP), a novel proinflammatory molecule, can contribute to alcohol-induced neuroinflammation. To test this theory male wild-type (WT) mice were exposed to alcohol at concentrations consistent to binge drinking and blood and brain tissues were collected. At 5 h after alcohol, a significant increase of 53% in the brain of CIRP mRNA was observed and its expression remained elevated at 10 h and 15 h. Brain CIRP protein levels were increased by 184% at 10 h and remained high at 15 h. We then exposed male WT and CIRP knockout (CIRP(-/-)) mice to alcohol, and blood and brain tissues were collected at 15 h post-alcohol infusion. Serum levels of tissue injury markers (AST, ALT and LDH) were significantly elevated in alcohol-exposed WT mice while they were less increased in the CIRP(-/-) mice. Brain TNF-α mRNA and protein expressions along with IL-1β protein levels were significantly increased in WT mice, which was not seen in the CIRP(-/-) mice. In cultured BV2 cells (mouse microglia), ethanol at 100 mM showed an increase of CIRP mRNA by 274% and 408% at 24 h and 48 h respectively. Corresponding increases in TNF-α and IL-1β were also observed. CIRP protein levels were markedly increased in the medium, suggesting that CIRP was secreted by the BV2 cells. From this we conclude that alcohol exposure activates microglia to produce and secrete CIRP and possibly induce pro-inflammatory response and thereby causing neuroinflammation. CIRP could be a novel mediator of alcohol-induced brain inflammation.

  13. Cigarette smoke-induced reduction in binding of the salivary translocator protein is not mediated by free radicals.

    PubMed

    Nagler, R; Savulescu, D; Gavish, M

    2016-02-01

    Oral cancer is the most common malignancy of the head and neck and its main inducer is exposure to cigarette smoke (CS) in the presence of saliva. It is commonly accepted that CS contributes to the pathogenesis of oral cancer via reactive free radicals and volatile aldehydes. The 18 kDa translocator protein (TSPO) is an intracellular receptor involved in proliferation and apoptosis, and has been linked to various types of cancer. The presence of TSPO in human saliva has been linked to oral cancer, and its binding affinity to its ligand is reduced following exposure to CS. In the present study we wished to further investigate the mechanism behind the CS-induced reduction of TSPO binding by exploring the possible mediatory role of reactive oxygen species (ROS) and volatile aldehydes in this process. We first analyzed TSPO binding in control saliva and in saliva exposed to CS in the presence and absence of various antioxidants. These experiments found that TSPO binding ability was not reversed by any of the antioxidants added, suggesting that CS exerts its effect on TSPO via mechanisms that do not involve volatile aldehydes and free radicals tested. Next, we analyzed TSPO binding in saliva following addition of exogenous ROS in the form of H2O2. These experiments found that TSPO binding was enhanced due to the treatment, once again showing that the CS-induced TSPO binding reduction is not mediated by this common form of ROS. However, the previously reported CS-induced reduction in salivary TSPO binding together with the role of TSPO in cells and its link to cancer strongly suggest that TSPO has a critical role in the pathogenesis of CS-induced oral cancer. The importance of further elucidating the mechanisms behind it should be emphasized. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages.

    PubMed

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-15

    Interleukin-6 (IL-6) is a key proinflammatory cytokine which plays a central role in the pathogenesis of periodontal disease. Host modulatory agents targeting at inhibiting IL-6, therefore, appear to be beneficial in slowing the progression of periodontal disease and potentially reducing destructive aspects of the host response. The present study was designed to investigate the effect of the macrolide antibiotic azithromycin on IL-6 generation in murine macrophages treated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. Azithromycin significantly suppressed IL-6 production as well as its mRNA expression in P. intermedia LPS-activated RAW264.7 cells. LPS-induced activation of JNK and p38 was not affected by azithromycin treatment. Azithromycin failed to prevent P. intermedia LPS from degrading IκB-α. Instead, azithromycin significantly diminished nuclear translocation and DNA binding activity of NF-κB p50 subunit induced with LPS. Azithromycin inhibited P. intermedia LPS-induced STAT1 and STAT3 phosphorylation. In addition, azithromycin up-regulated the mRNA level of SOCS1 in cells treated with LPS. In conclusion, azithromycin significantly attenuated P. intermedia LPS-induced production of IL-6 in murine macrophages via inhibition of NF-κB, STAT1 and STAT3 activation, which is possibly related to the activation of SOCS1 signaling. Further in vivo studies are required to better evaluate the potential of azithromycin in the treatment of periodontal disease.

  15. Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta.

    PubMed

    Wang, Yang; Jiang, Haobo

    2017-04-01

    Manduca sexta microbe binding protein (MBP) is a member of the β-1,3-glucanase-related protein superfamily that includes Gram-negative bacteria-binding proteins (GNBPs), β-1,3-glucan recognition proteins (βGRPs), and β-1,3-glucanases. Our previous and current studies showed that the purified MBP from baculovirus-infected insect cells had stimulated prophenoloxidase (proPO) activation in the hemolymph of naïve and immune challenged larvae and that supplementation of the exogenous MBP and peptidoglycans (PGs) had caused synergistic increases in PO activity. To explore the underlying mechanism, we separated by SDS-PAGE naïve and induced larval plasma treated with buffer or MBP and detected on immunoblots changes in intensity and/or mobility of hemolymph (serine) proteases [HP14, HP21, HP6, HP8, proPO-activating proteases (PAPs) 1-3] and their homologs (SPH1, SPH2). In a nickel pull-down assay, we observed association of MBP with proHP14 (slightly), βGRP2, PG recognition protein-1 (PGRP1, indirectly), SPH1, SPH2, and proPO2. Further experiments indicated that diaminopimelic acid (DAP) or Lys PG, MBP, PGRP1, and proHP14 together trigger the proPO activation system in a Ca(2+)-dependent manner. Injection of the recombinant MBP into the 5th instar naïve larvae significantly induced the expression of several antimicrobial peptide genes, revealing a possible link between HP14 and immune signal transduction. Together, these results suggest that the recognition of Gram-negative or -positive bacteria via their PGs induces the melanization and Toll pathways in M. sexta.

  16. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.

    PubMed

    de la Haba, Carlos; Palacio, José R; Palkovics, Tamas; Szekeres-Barthó, Júlia; Morros, Antoni; Martínez, Paz

    2014-01-01

    Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering. © 2013.

  17. Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies.

    PubMed

    Chelbi-Alix, Mounira K; Vidy, Aurore; El Bougrini, Jamila; Blondel, Danielle

    2006-05-01

    Interferons (IFNs) are a family of secreted proteins with antiviral, antiproliferative, and immunomodulatory activities. The different biologic actions of IFN are believed to be mediated by the products of specifically IFN-stimulated genes (ISG) in the target cells. The IFN response is the first line of defense against viral infections. Viruses, which require the cellular machinery for their replication, have evolved different ways to counteract the action of IFN by inhibiting IFN production or Jak-Stat signaling or by altering ISG products. This review focuses on the role of viral proteins from the RNA virus family, particularly rabies P protein. P protein mediates inhibition of the IFN system by different pathways: it inhibits IFN production by impairing IFN regulatory factor-3 (IRF-3) phosphorylation and IFN signaling by blocking nuclear transport of Stat1 and alters promyelocytic leukemia (PML) nuclear bodies by retaining PML in the cytoplasm.

  18. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3.

    PubMed Central

    Dumoutier, Laure; Lejeune, Diane; Hor, Simon; Fickenscher, Helmut; Renauld, Jean-Christophe

    2003-01-01

    In the present paper, we report the identification of a new gene encoding a transmembrane protein of 520 amino acids, showing 22% amino acid identity with the extracellular domain of the interleukin (IL)-20 receptor. This gene, termed likely interleukin or cytokine receptor-2 ( LICR2 ), is located on chromosome 1, at 25 kb from the IL22R (IL-22 receptor) gene, and is constitutively expressed in most tissues. A chimaeric receptor, consisting of the extracellular domain of the IL-10 receptor alpha chain and the intracellular domain of LICR2, activated signal transducer and activator of transcription (STAT)1, STAT2, STAT3 and STAT5 upon IL-10 stimulation, in a Janus kinase 1-dependent manner. In contrast, none of the IL-10-related cytokines described so far could activate LICR2-transfected cells, suggesting that LICR2 is a signalling receptor for a new cytokine of the IL-10 family. PMID:12521379

  19. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  20. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles.

    PubMed

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P; Osorio-Fuentealba, Cesar; Antonescu, Costin N; Bayer, K Ulrich; Bilan, Philip J; Klip, Amira

    2012-10-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.

  1. Combined albumin and bicarbonate induces head-to-head sperm agglutination which physically prevents equine sperm-oviduct binding.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; Sostaric, Edita; De Schauwer, Catharina; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2016-04-01

    In many species, sperm binding to oviduct epithelium is believed to be an essential step in generating a highly fertile capacitated sperm population primed for fertilization. In several mammalian species, this interaction is based on carbohydrate-lectin recognition. D-galactose has previously been characterized as a key molecule that facilitates sperm-oviduct binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) assays to investigate the effects of various carbohydrates; glycosaminoglycans; lectins; S-S reductants; and the capacitating factors albumin, Ca(2+) and HCO3(-) on sperm-oviduct binding in the horse. Carbohydrate-specific lectin staining indicated that N-acetylgalactosamine, N-acetylneuraminic acid (sialic acid) and D-mannose or D-glucose were the most abundant carbohydrates on equine oviduct epithelia, whereas D-galactose moieties were not detected. However, in a competitive binding assay, sperm-oviduct binding density was not influenced by any tested carbohydrates, glycosaminoglycans, lectins or D-penicillamine, nor did the glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. Furthermore, N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not alter sperm-oviduct binding density. By contrast, a combination of the sperm-capacitating factors albumin and HCO3(-) severely reduced (>10-fold) equine sperm-oviduct binding density by inducing rapid head-to-head agglutination, both of which events were independent of Ca(2+) and an elevated pH (7.9). Conversely, neither albumin and HCO3(-) nor any other capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination of albumin and HCO3(-) markedly induced sperm head-to-head agglutination which physically prevented stallion sperm to bind to oviduct epithelium. © 2016 Society for Reproduction and Fertility.

  2. Truncated variants of hyaluronan-binding protein 1 bind hyaluronan and induce identical morphological aberrations in COS-1 cells.

    PubMed Central

    Sengupta, Aniruddha; Tyagi, Rakesh K; Datta, Kasturi

    2004-01-01

    Hyaluronan (HA)-binding protein 1 (HABP1) is multifunctional in nature and exists as a trimer through coiled-coil interaction between alpha-helices at its N- and C-termini. To investigate the importance of trimeric assemblage and HA-binding ability of HABP1, we generated and overexpressed variants of HABP1 by truncating the alpha-helices at its termini. Subsequently, these variants were transiently expressed in COS-1 cells to examine the influence of these structural variations on normal cell morphology, as compared with those imparted by HABP1. Substantiating the centrality of coiled-coil interaction for maintaining the trimeric assembly of HABP1, we demonstrate that disruption of trimerization does not alter the affinity of variants towards its ligand HA. Transient expression of HABP1 altered the morphology of COS-1 cells by generating numerous cytoplasmic vacuoles along with disruption of the f-actin network. Interestingly, the truncated variants also imparted identical morphological changes. Characterization of the cytoplasmic vacuoles revealed that most of these vacuoles were autophagic in nature, resembling those generated under stress conditions. The identical morphological changes manifested in COS-1 cells on transient expression of HABP1 or its variants is attributed to their comparable HA-binding ability, which in concert with endogenous HABP1, may deplete the cellular HA pool. Such quenching of HA below a threshold level in the cellular milieu could generate a stress condition, manifested through cytoplasmic vacuoles and a disassembly of the f-actin network. PMID:15005653

  3. Early Activation of Rat Skeletal Muscle IL-6/STAT1/STAT3 Dependent Gene Expression in Resistance Exercise Linked to Hypertrophy

    PubMed Central

    Begue, Gwénaëlle; Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Candau, Robin; Py, Guillaume

    2013-01-01

    Cytokine interleukin-6 (IL-6) is an essential regulator of satellite cell-mediated hypertrophic muscle growth through the transcription factor signal transducer and activator of transcription 3 (STAT3). The importance of this pathway linked to the modulation of myogenic regulatory factors expression in rat skeletal muscle undergoing hypertrophy following resistance exercise, has not been investigated. In this study, the phosphorylation and nuclear localization of STAT3, together with IL-6/STAT3-responsive gene expression, were measured after both a single bout of resistance exercise and 10 weeks of training. Flexor Digitorum Profundus muscle samples from Wistar rats were obtained 2 and 6 hours after a single bout of resistance exercise and 72 h after the last bout of either 2, 4, or 10 weeks of resistance training. We observed an increase in IL-6 and SOCS3 mRNAs concomitant with phosphorylation of STAT1 and STAT3 after 2 and 6 hours of a single bout of exercise (p<0.05). STAT3-dependent early responsive genes such as CyclinD1 and cMyc were also upregulated whereas MyoD and Myf5 mRNAs were downregulated (p<0.05). BrdU-positive satellite cells increased at 2 and 6 hours after exercise (p<0.05). Muscle fiber hypertrophy reached up to 100% after 10 weeks of training and the mRNA expression of Myf5, c-Myc and Cyclin-D1 decreased, whereas IL-6 mRNA remained upregulated. We conclude that the IL-6/STAT1/STAT3 signaling pathway and its responsive genes after a single bout of resistance exercise are an important event regulating the SC pool and behavior involved in muscle hypertrophy after ten weeks of training in rat skeletal muscle. PMID:23451164

  4. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    SciTech Connect

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A. |

    1999-04-14

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of {sup 129}Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved {sup 1}H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the {sup 1}H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective {sup 1}H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon.

  5. The Role of Osmotically-induced Tension in Binding of N-BAR to Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Dinsmore, Anthony D.; Hutchison, Jaime B.; Wood, Derek A.; Weis, Robert M.

    2014-03-01

    We measured the binding affinity of a curvature-sensing protein domain (N-BAR) as a function of applied membrane tension while the membrane curvature was held nearly constant. We focus on the N-BAR domain of Drosophila amphiphysin, which participates in a range of key cell functions including synaptic vesicle endocytosis. We monitored N-BAR binding on unilamellar vesicles composed of 90 mol% DOPC and 10 mol% PIP. Controlled tension was applied by osmotic stress. We found that the bound fraction of N-BAR was enhanced by a factor 6.5 when the tension increased from zero to 2.6 mN/m. This tension-induced response can be explained by the hydrophobic insertion mechanism with a hydrophobic domain area that is consistent with known structure. These results suggest that membrane strain might explain the previously reported curvature affinity of N-BAR. This work was supported by the National Science Foundation through grant DMR-0907195.

  6. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor

    SciTech Connect

    Raymond, Marc-Andre; Desormeaux, Anik; Labelle, Andree; Soulez, Mathilde; Soulez, Gilles; Langelier, Yves; Pshezhetsky, Alexey V.; Hebert, Marie-Josee . E-mail: marie-josee.hebert.chum@ssss.gouv.qc.ca

    2005-12-23

    Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols, 25-hydroxyvitamin-D, and 1{alpha},25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury.

  7. Unique properties of cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Hayashi, Y.; Nakagawa, C.W.; Murasugi, A.

    1986-03-01

    Metallothioneins, a class of low molecular weight cysteine-rich proteins that bind heavy metal ions, have been found in various eucaryotic organisms. When fission yeasts are grown in the presence of high concentration of CdCl/sub 2/, large amounts of Cd-binding peptides (Cd-BP1 and Cd-BP2) are synthesized. While Cd-BP2 shows similarities to mammalian Cd-thioneins in UV and CD spectra, Cd-BP1has a characteristic shoulder at 265 nm in the UV absorption spectrum and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These characteristics of Cd-BP1 are not found in the other Cd-thioneins. The UV and CD spectra differences between reconstituted and native Cd-BP1 suggest the requirement for some additional molecular architecture including another peptide-Cd/sup 2 +/ interaction. Induction of cadystin synthesis is almost exclusive for Cd, but an exception is a small amount of cadystin also induced by the higher concentration of CuCl/sub 2/ (2.5 mM). The UV spectrum of the natural Cu-cadystin complex was similar to that of Cd-BP1. On the basis of these findings the models for Cd-BP1 and Cd-BP2 are proposed.

  8. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike.

    PubMed

    Li, Sai; Sun, Zhaoyang; Pryce, Rhys; Parsy, Marie-Laure; Fehling, Sarah K; Schlie, Katrin; Siebert, C Alistair; Garten, Wolfgang; Bowden, Thomas A; Strecker, Thomas; Huiskonen, Juha T

    2016-02-01

    Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.

  9. A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells

    NASA Astrophysics Data System (ADS)

    Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.

    2017-09-01

    The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.

  10. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike

    PubMed Central

    Li, Sai; Sun, Zhaoyang; Pryce, Rhys; Parsy, Marie-Laure; Fehling, Sarah K.; Schlie, Katrin; Siebert, C. Alistair; Garten, Wolfgang; Bowden, Thomas A.; Strecker, Thomas; Huiskonen, Juha T.

    2016-01-01

    Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits. PMID:26849049

  11. Selective inhibitors of the FK506-binding protein 51 by induced fit.

    PubMed

    Gaali, Steffen; Kirschner, Alexander; Cuboni, Serena; Hartmann, Jakob; Kozany, Christian; Balsevich, Georgia; Namendorf, Christian; Fernandez-Vizarra, Paula; Sippel, Claudia; Zannas, Anthony S; Draenert, Rika; Binder, Elisabeth B; Almeida, Osborne F X; Rühter, Gerd; Uhr, Manfred; Schmidt, Mathias V; Touma, Chadi; Bracher, Andreas; Hausch, Felix

    2015-01-01

    The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) is an established risk factor for stress-related psychiatric disorders such as major depression. Drug discovery for FKBP51 has been hampered by the inability to pharmacologically differentiate against the structurally similar but functional opposing homolog FKBP52, and all known FKBP ligands are unselective. Here, we report the discovery of the potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2. This new class of ligands achieves selectivity for FKBP51 by an induced-fit mechanism that is much less favorable for FKBP52. By using these ligands, we demonstrate that selective inhibition of FKBP51 enhances neurite elongation in neuronal cultures and improves neuroendocrine feedback and stress-coping behavior in mice. Our findings provide the structural and functional basis for the development of mechanistically new antidepressants.

  12. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    PubMed

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  13. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    PubMed Central

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  14. A novel PRD I and TG binding activity involved in virus-induced transcription of IFN-A genes.

    PubMed Central

    Génin, P; Bragança, J; Darracq, N; Doly, J; Civas, A

    1995-01-01

    Comparative analysis of the inducible elements of the mouse interferon A4 and A11 gene promoters (IE-A4 and IE-A11) by transient transfection experiments, DNase 1 footprinting and electrophoretic mobility shift assays resulted in identification of a virus-induced binding activity suggested to be involved in NDV-induced activation of transcription of these genes. The virus-induced factor, termed VIF, is activated early by contact of virions with cells. It specifically recognizes the PRD I-like domain shared by both inducible elements, as well as the TG-like domain of IE-A4. This factor, distinct from the IRF-1, IRF-2 and the alpha F1 binding proteins and presenting a different affinity pattern from that of the TG protein, is proposed as a candidate for IFN-type I gene regulation. Images PMID:8559665

  15. Sialoadhesin Expressed on IFN-Induced Monocytes Binds HIV-1 and Enhances Infectivity

    PubMed Central

    Rempel, Hans; Calosing, Cyrus; Sun, Bing; Pulliam, Lynn

    2008-01-01

    Background HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. Methodology/Principal Findings We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-α and interferon-γ but not tumor necrosis factor-α. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. Conclusions/Significance Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells. PMID:18414664

  16. TGFβ Inducible Early Gene-1 Directly Binds to, and Represses, the OPG Promoter in Osteoblasts

    PubMed Central

    Subramaniam, M.; Hawse, J. R.; Bruinsma, E. S.; Grygo, S. B.; Cicek, M.; Oursler, M. J.; Spelsberg, T. C.

    2010-01-01

    TGFβ Inducible Early Gene-1 (TIEG) is a member of the Krüppel-like family of transcription factors (KLF10) that plays an important role in TGFβ mediated Smad signaling. In order to better understand the role of TIEG in bone, we generated TIEG knockout (KO) mice. Calvarial osteoblasts (OBs) isolated from these mice exhibit a reduced ability to support osteoclastogenesis in vitro. Gene expression studies revealed decreased receptor activator of NF-kB ligand (RANKL) and increased osteoprotegerin (OPG) expression in TIEG KO OBs, suggesting a potential role for TIEG in regulating the expression of these genes. Since OPG and RANKL are two important regulators of osteoclast (OC) differentiation, we sought to determine if TIEG directly regulates their expression. Luciferase constructs, containing fragments of either the mouse OPG promoter (−1486 to +133 bp) or the RANKL promoter (−2000 to +1 bp) were each cloned into the pGL3 basic reporter vector and transiently transfected into TIEG KO calvarial OBs with and without a TIEG expression vector. No significant changes in the activity of the RANKL promoter were detected in the presence of TIEG. However, OPG promoter activity was inhibited in the presence of TIEG protein suggesting that TIEG directly represses the expression of OPG in OBs. In order to determine the region of this promoter through which TIEG acts, sequential 5′-deletion constructs were generated. Transient transfection of these constructs revealed that the TIEG regulatory element(s) reside within a 200 bp region of the OPG promoter. Transient ChIP analyses, using a TIEG-specific antibody, revealed that TIEG binds to this region of the OPG promoter. Since we have previously shown that TIEG regulates target gene expression through Sp-1 sites, we examined this region of the OPG promoter for potential TIEG binding elements and identified four potential Sp-1 binding sites. Site directed mutagenesis was used to determine if TIEG utilizes these Sp-1 elements

  17. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    PubMed

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-05

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  18. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding.

    PubMed

    Furuta, Tadaomi; Sato, Yukiko; Sakurai, Minoru

    2016-12-06

    TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.

  19. Decrease of the affinity of theophylline bind to serum proteins induced by flavonoids and their synergies on protein conformation.

    PubMed

    Wang, Xin; He, Ling-Ling; Liu, Bin; Wang, Xin; Xu, Liang; Wang, Xiao-Fang; Sun, Ting

    2017-09-22

    In this study, the single and simultaneous interactions of theophylline and flavonoids with human serum albumin (HSA) were studied by multi-spectroscopic and molecular docking approaches. The influences of flavonoids on the binding constant (Kb) and the binding distance (r) of theophylline bind to HSA were determined and the changes of HSA conformation caused by the synergies of theophylline and flavonoids were investigated. Because theophylline, rutin and baicalin are all bond to the same binding site, the competitive bind of theophylline and flavonoids to HSA leads to the reduction of the Ka value of theophylline binding to HSA. The addition of rutin and baicalin can increase the value of r of theophylline binding to HSA, which further confirm the existence of the competitive bind of theophylline and flavonoids to HSA. Additionally, the results of synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectra indicate that the presence of rutin and baicalin can give rise to the further changes of HSA conformation. These results suggest that the intake of flavonoid-rich food and beverages can increase the serum concentrations of theophylline and induce a high incidence of toxic symptom in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies

    PubMed Central

    Fellinger, Christoph H.; Prasad, Neha R.; Zhou, Amber S.; Kondur, Hema R.; Joshi, Vinita R.; Quinlan, Brian D.; Farzan, Michael

    2016-01-01

    ABSTRACT The HIV-1 envelope glycoprotein (Env) is a trimer of gp120/gp41 heterodimers that mediates viral entry. Env binds cellular CD4, an association which stabilizes a conformation favorable to its subsequent association with a coreceptor, typically CCR5 or CXCR4. The CD4- and coreceptor-binding sites serve as epitopes for two classes of HIV-1-neutralizing antibodies: CD4-binding site (CD4bs) and CD4-induced (CD4i) antibodies, respectively. Here we observed that, at a fixed total concentration, mixtures of the CD4i antibodies (E51 or 412d) and the CD4bs antibody VRC01 neutralized the HIV-1 isolates 89.6, ADA, SG3, and SA32 more efficiently than either antibody alone. We found that E51, and to a lesser extent 412d and 17b, promoted association of four CD4bs antibodies to the Env trimer but not to monomeric gp120. We further demonstrated that the binding of the sulfotyrosine-binding pocket by CCR5mim2-Ig was sufficient for promoting CD4bs antibody binding to Env. Interestingly, the relationship is not reciprocal: CD4bs antibodies were not as efficient as CD4-Ig at promoting E51 or 412d binding to Env trimer. Consistent with these observations, CD4-Ig, but none of the CD4bs antibodies tested, substantially increased HIV-1 infection of a CD4-negative, CCR5-positive cell line. We conclude that the ability of CD4i antibodies to promote VRC01 association with Env trimers accounts for the increase potency of VRC01 and CD4i antibody mixtures. Our data further suggest that potent CD4bs antibodies avoid inducing Env conformations that bind CD4i antibodies or CCR5. IMPORTANCE Potent HIV-1-neutralizing antibodies can prevent viral transmission and suppress an ongoing infection. Here we show that CD4-induced (CD4i) antibodies, which recognize the conserved coreceptor-binding site of the HIV-1 envelope glycoprotein (Env), can increase the association of Env with potent broadly neutralizing antibodies that recognize the CD4-binding site (CD4bs antibodies). We further show that

  1. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    PubMed

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-09-13

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. The role of interstitial binding in radiation induced segregation in W-Re alloys

    NASA Astrophysics Data System (ADS)

    Gharaee, Leili; Marian, Jaime; Erhart, Paul

    2016-07-01

    Due to their high strength and advantageous high-temperature properties, tungsten-based alloys are being considered as plasma-facing candidate materials in fusion devices. Under neutron irradiation, rhenium, which is produced by nuclear transmutation, has been found to precipitate in elongated precipitates forming thermodynamic intermetallic phases at concentrations well below the solubility limit. Recent measurements have shown that Re precipitation can lead to substantial hardening, which may have a detrimental effect on the fracture toughness of W alloys. This puzzle of sub-solubility precipitation points to the role played by irradiation induced defects, specifically mixed solute-W interstitials. Here, using first-principles calculations based on density functional theory, we study the energetics of mixed interstitial defects in W-Re, W-V, and W-Ti alloys, as well as the heat of mixing for each substitutional solute. We find that mixed interstitials in all systems are strongly attracted to each other with binding energies of -2.4 to -3.2 eV and form interstitial pairs that are aligned along parallel first-neighbor <111 > strings. Low barriers for defect translation and rotation enable defect agglomeration and alignment even at moderate temperatures. We propose that these elongated agglomerates of mixed-interstitials may act as precursors for the formation of needle-shaped intermetallic precipitates. This interstitial-based mechanism is not limited to radiation induced segregation and precipitation in W-Re alloys but is also applicable to other body-centered cubic alloys.

  3. Comparative Analysis of Induced vs. Spontaneous Models of Autoimmune Uveitis Targeting the Interphotoreceptor Retinoid Binding Protein

    PubMed Central

    Chen, Jun; Qian, Haohua; Horai, Reiko; Chan, Chi-Chao; Falick, Yishay; Caspi, Rachel R.

    2013-01-01

    Animal models of autoimmunity to the retina mimic specific features of human uveitis, but no model by itself reproduces the full spectrum of human disease. We compared three mouse models of uveitis that target the interphotoreceptor retinoid binding protein (IRBP): (i) the “classical” model of experimental autoimmune uveitis (EAU) induced by immunization with IRBP; (ii) spontaneous uveitis in IRBP T cell receptor transgenic mice (R161H) and (iii) spontaneous uveitis in Autoimmune Regulator (AIRE)−/− mice. Disease course and severity, pathology and changes in visual function were studied using fundus imaging and histological examinations, optical coherence tomography and electroretinography. All models were on the B10.RIII background. Unlike previously reported, IRBP-induced EAU in B10.RIII mice exhibited two distinct patterns of disease depending on clinical scores developed after onset: severe monophasic with extensive destruction of the retina and rapid loss of visual signal, or lower grade with a prolonged chronic phase culminating after several months in retinal degeneration and loss of vision. R161H and AIRE−/− mice spontaneously developed chronic progressive inflammation; visual function declined gradually as retinal degeneration developed. Spontaneous uveitis in R161H mice was characterized by persistent cellular infiltrates and lymphoid aggregation, whereas AIRE−/− mice characteristically developed multi-focal infiltrates and severe choroidal inflammation. These data demonstrate variability and unique distinguishing