Sample records for inducing dna damage

  1. Noise Induced DNA Damage Within the Auditory Nerve.

    PubMed

    Guthrie, O'neil W

    2017-03-01

    An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mechanisms of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  4. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  5. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  6. Parvovirus infection-induced DNA damage response

    PubMed Central

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  7. DNA damage induced by the direct effect of radiation

    NASA Astrophysics Data System (ADS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.

    2008-10-01

    We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.

  8. Chemical determination of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  9. DNA damage induced by ascorbate in the presence of Cu2+.

    PubMed

    Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T

    1988-01-25

    DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.

  10. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  11. An extended sequence specificity for UV-induced DNA damage.

    PubMed

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  13. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2001-05-01

    We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA

  14. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  16. The human intra-S checkpoint response to UVC-induced DNA damage.

    PubMed

    Kaufmann, William K

    2010-05-01

    The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.

  17. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  18. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  19. PTEN positively regulates UVB-induced DNA damage repair

    PubMed Central

    Ming, Mei; Feng, Li; Shea, Christopher R.; Soltani, Keyoumars; Zhao, Baozhong; Han, Weinong; Smart, Robert C.; Trempus, Carol S.; He, Yu-Ying

    2011-01-01

    Non-melanoma skin cancer is the most common cancer in the U.S., where DNA-damaging UVB radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared to skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCC, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin, through its ability to positively regulate XPC-dependent GG-NER following DNA damage. PMID:21771908

  20. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao, E-mail: xuwentaoboy@sina.com

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did notmore » affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage

  1. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes.

    PubMed

    Zegura, B; Gajski, G; Straser, A; Garaj-Vrhovac, V; Filipič, M

    2011-12-24

    Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  3. Unrepaired DNA damage in macrophages causes elevation of particulate matter- induced airway inflammatory response.

    PubMed

    Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao

    2018-04-14

    The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.

  4. Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans.

    PubMed

    Feng, Wei-Hong; Xue, Kathy S; Tang, Lili; Williams, Phillip L; Wang, Jia-Sheng

    2016-12-26

    Aflatoxin B₁ (AFB₁) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB₁ has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB₁ is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB₁, using Caenorhabditis elegans as a study model. Results found that AFB₁ induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB₁ inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB₁-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans .

  5. DNA Damage Response in Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Zhu, Shiyao; Pabla, Navjotsingh; Tang, Chengyuan; He, Liyu; Dong, Zheng

    2015-01-01

    Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side-effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) is an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy. PMID:26564230

  6. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    PubMed

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide.

    PubMed

    Murata, Mariko; Suzuki, Toshinari; Midorikawa, Kaoru; Oikawa, Shinji; Kawanishi, Shosuke

    2004-09-15

    Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.

  8. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  9. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity

    PubMed Central

    Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan

    2015-01-01

    Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133

  10. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  11. Characterization of UVC-induced DNA damage in bloodstains: forensic implications.

    PubMed

    Hall, Ashley; Ballantyne, Jack

    2004-09-01

    The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.

  12. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    PubMed

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Mequindox induced cellular DNA damage via generation of reactive oxygen species.

    PubMed

    Liu, Jing; Ouyang, Man; Jiang, Jun; Mu, Peiqiang; Wu, Jun; Yang, Qi; Zhang, Caihui; Xu, Weiying; Wang, Lijuan; Huen, Michael S Y; Deng, Yiqun

    2012-01-24

    Mequindox, a quinoxaline-N-dioxide derivative that possesses antibacterial properties, has been widely used as a feed additive in the stockbreeding industry in China. While recent pharmacological studies have uncovered potential hazardous effects of mequindox, exactly how mequindox induces pathological changes and the cellular responses associated with its consumption remain largely unexplored. In this study, we investigated the cellular responses associated with mequindox treatment. We report here that mequindox inhibits cell proliferation by arresting cells at the G2/M phase of the cell cycle. Interestingly, this mequindox-associated deleterious effect on cell proliferation was observed in human, pig as well as chicken cells, suggesting that mequindox acts on evolutionarily conserved target(s). To further understand the mequindox-host interaction and the mechanism underlying mequindox-induced cell cycle arrest, we measured the cellular content of DNA damage, which is known to perturb cell proliferation and compromise cell survival. Accordingly, using γ-H2AX as a surrogate marker for DNA damage, we found that mequindox treatment induced cellular DNA damage, which paralleled the chemical-induced elevation of reactive oxygen species (ROS) levels. Importantly, expression of the antioxidant enzyme catalase partially alleviated these mequindox-associated effects. Taken together, our results suggest that mequindox cytotoxicity is attributable, in part, to its role as a potent inducer of DNA damage via ROS. © 2011 Elsevier B.V. All rights reserved.

  14. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  16. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  17. Tangeretin sensitizes SGS1-deficient cells by inducing DNA damage.

    PubMed

    Chong, Shin Yen; Wu, Meng-Ying; Lo, Yi-Chen

    2013-07-03

    Tangeretin, a polymethoxyflavone found in citrus peel, has been shown to have antiatherogenic, anti-inflammatory, and anticarcinogenic properties. However, the underlying target pathways are not fully characterized. We investigated the tangeretin sensitivity of yeast (Saccharomyces cerevisiae) mutants for DNA damage response or repair pathways. We found that tangeretin treatment significantly reduced (p < 0.05) survival rate, induced preferential G1 phase accumulation, and elevated the DNA double-strand break (DSB) signal γH2A in DNA repair-defective sgs1Δ cells, but had no obvious effects on wild-type cells or mutants of the DNA damage checkpoint (including tel1Δ, sml1Δ mec1Δ, sml1Δ mec1Δ tel1Δ, and rad9Δ mutants). Additionally, microarray data indicated that tangeretin treatment up-regulates genes involved in nutritional processing and down-regulates genes related to RNA processing in sgs1Δ mutants. These results suggest tangeretin may sensitize SGS1-deficient cells by increasing a marker of DNA damage and by inducing G1 arrest and possibly metabolic stress. Thus, tangeretin may be suitable for chemosensitization of cancer cells lacking DSB-repair ability.

  18. [UV-induced DNA damage and protective effects of antioxidants on DNA damage in human lens epithelial cells studied with comet assay].

    PubMed

    Wu, Zhi-hong; Wang, Mian-rong; Yan, Qi-chang; Pu, Wei; Zhang, Jin-song

    2006-11-01

    To investigate the mechanism of UV-induced DNA damage and repair and the protective effects of antioxidants on DNA damage in human lens epithelial cells. Human lens epithelial cells were irradiated at UV-doses 0.0 (control group), 2.5, 5.0, 7.5, 10.0 mJ/cm(2) (treated group 1 - 4). The amounts of DNA single strand breaks (SSB) were measured with the alkaline comet assay (CA). The spontaneous repair of DNA SSB after exposure to UV at 10.0 mJ/cm(2) was also determined in human lens epithelial cells. Human lens epithelial cells were treated with different concentration of VitaminC (VitC), taurine, superoxide dismutase (SOD) and epigallocatechin gallate (EGCG) before and after ultraviolet radiation, the effects of antioxidants on DNA damage was examined with alkaline comet assay. The amount of DNA SSB in control group and treated groups 1 - 4 showed increased tendency, was dose-dependent to the dose of UV irradiation, the differences of DNA SSB in 5 group were significantly (P < 0.01). UV-induced DNA SSB at 10.0 mJ/cm(2) in human lens epithelial cells, the half repair time was 60 minutes. Human lens epithelial cells were treated with different concentrations of taurine, SOD and EGCG before ultraviolet radiation. The differences of DNA damage in control and various antioxidant treated groups was statistically significant (F = 6.591, 13.542, 4.626 in cells treated with taurine, SOD and EGCG, respectively, P < 0.01), the difference of VitC effect on DNA in control and treated group were not significantly (F = 1.451, P > 0.05). Human lens epithelial cells were treated with different concentration of VitC, taurine, SOD and EGCG after ultraviolet radiation. The differences of DNA damage between the control and treated group were statistically significant (F = 6.571, 4.810, 6.824, 9.182 in cells treated with VitC, taurine, SOD and EGCG, respectively, P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidants added before UV

  19. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jiali; Hui, Pingping; Meng, Wenying

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificatedmore » when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.« less

  20. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  1. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage

    PubMed Central

    Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore

    2017-01-01

    Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301

  2. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.

    PubMed

    Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P

    2016-07-01

    Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less

  4. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evaluation of DNA damage induced by Auger electrons from 137Cs.

    PubMed

    Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi

    2016-11-01

    To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.

  6. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  7. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  8. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    PubMed Central

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  9. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage.

    PubMed

    Yu, Yang; Cui, Yuxiang; Niedernhofer, Laura J; Wang, Yinsheng

    2016-12-19

    A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.

  10. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  11. Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis[OPEN

    PubMed Central

    Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales

    2015-01-01

    DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162

  12. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  13. The thyroid hormone receptor β induces DNA damage and premature senescence.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  14. Escin-induced DNA damage promotes escin-induced apoptosis in human colorectal cancer cells via p62 regulation of the ATM/γH2AX pathway.

    PubMed

    Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen

    2018-05-31

    Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.

  15. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis.

    PubMed

    Li, Diqiu; Huang, Qingchun; Lu, Miaoqing; Zhang, Lei; Yang, Zhichuan; Zong, Mimi; Tao, Liming

    2015-09-01

    The organophosphate insecticide chlorpyrifos (CPF) is known to induce neurological effects, malformation and micronucleus formation, persistent developmental disorders, and maternal toxicity in rats and mice. The binding of chlorpyrifos with DNA to produce DNA adducts leads to an increasing social concern about the genotoxic risk of CPF in human, but CPF-induced cytotoxicity through DNA damage and cell apoptosis is not well understood. Here, we quantified the cytotoxicity and potential genotoxicity of CPF using the alkaline comet assay, γH2AX foci formation, and the DNA laddering assay in order to detect DNA damage and apoptosis in human HeLa and HEK293 cells in vitro. Drosophila S2 cells were used as a positive control. The alkaline comet assay showed that sublethal concentrations of CPF induced significant concentration-dependent increases in single-strand DNA breaks in the treated cells compared with the control. The percentage of γH2AX-positive HeLa cells revealed that CPF also causes DNA double-strand breaks in a time-dependent manner. Moreover, DNA fragmentation analysis demonstrated that exposure to CPF induced a significant concentration- and time-dependent increase in cell apoptosis. We conclude that CPF is a strongly genotoxic agent that induces DNA damage and cell apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Is UV-induced DNA damage greater at higher elevation?

    PubMed

    Wang, Qing-Wei; Hidema, Jun; Hikosaka, Kouki

    2014-05-01

    • Although ultraviolet radiation (UV) is known to have negative effects on plant growth, there has been no direct evidence that plants growing at higher elevations are more severely affected by ultraviolet-B (UV-B) radiation, which is known to increase with elevation. We examined damage to DNA, a primary target of UV-B, in the widespread species Polygonum sachalinense (Fallopia sachalinensis) and Plantago asiatica at two elevations.• We sampled leaves of both species at 300 and 1700 m above sea level every 2 h for 11 d across the growing season and determined the level of cyclobutane pyrimidine dimer (CPD), a major product of UV damage to DNA.• The CPD level was significantly influenced by the time of day, date, elevation, and their interactions in both species. The CPD level tended to be higher at noon or on sunny days. DNA damage was more severe at 1700 m than at 300 m: on average, 8.7% greater at high elevation in P. asiatica and 7.8% greater in P. sachalinense Stepwise multiple regression analysis indicated that the CPD level was explained mainly by UV-B and had no significant relationship with other environmental factors such as temperature and photosynthetically active radiation.• UV-induced DNA damage in plants is greater at higher elevations. © 2014 Botanical Society of America, Inc.

  17. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6more » (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.« less

  18. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  19. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Lazović, S.; Maletić, D.; Leskovac, A.; Filipović, J.; Puač, N.; Malović, G.; Joksić, G.; Petrović, Z. Lj.

    2014-09-01

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  20. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells

    PubMed Central

    Bhute, Vijesh J.; Palecek, Sean P.

    2015-01-01

    Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723

  1. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  2. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  3. DNA damage and polyploidization.

    PubMed

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  4. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  5. Rapid communications: antiperspirant induced DNA damage in canine cells by comet assay.

    PubMed

    Yiu, Gloria

    2004-01-01

    Abstract Millions of people around the world use antiperspirants to decrease or eliminate body odors. Most antiperspirants contain aluminum zirconium or another form of aluminum as its active ingredient. The present investigation applied Comet assay to detect if Secret Platinum for women, Old Spice for men, or Crystal Natural produced DNA damage in Madin-Darby canine kidney cells (MDCKII). This study has shown that antiperspirants cause DNA damage on a single-cell level. Additionally, our data showed us that in general, Secret Platinum for women and Old Spice for men, produced equivalent damage. Crystal Natural, marketed as being safer or less damaging, induced the most extensive damage of all three antiperspirants tested.

  6. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazović, S.; Maletić, D.; Puač, N.

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of themore » treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.« less

  7. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected].

    PubMed

    Belin, Brittany J; Lee, Terri; Mullins, R Dyche

    2015-08-19

    Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.

  8. Analysis of nicotine-induced DNA damage in cells of the human respiratory tract.

    PubMed

    Ginzkey, Christian; Stueber, Thomas; Friehs, Gudrun; Koehler, Christian; Hackenberg, Stephan; Richter, Elmar; Hagen, Rudolf; Kleinsasser, Norbert H

    2012-01-05

    Epithelium of the upper and lower airways is a common origin of tobacco-related cancer. The main tobacco alkaloid nicotine may be associated with tumor progression. The potential of nicotine in inducing DNA mutations as a step towards cancer initiation is still controversially discussed. Different subtypes of nicotinic acetylcholine receptors (nAChR) are expressed in human nasal mucosa and a human bronchial cell line representing respiratory mucosa as a possible target for receptor-mediated pathways. In the present study, both cell systems were investigated with respect to DNA damage induced by nicotine and its mechanisms. Specimens of human nasal mucosa were harvested during surgery of the nasal air passage. After enzymatic digestion over night, single cells were exposed to an increasing nicotine concentration between 0.001 mM and 4.0mM. In a second step co-incubation was performed using the antioxidant N-acetylcysteine (NAC) and the nAChR antagonist mecamylamine. DNA damage was assessed using the alkali version of the comet assay. Dose finding experiments for mecamylamine to evaluate the maximal inhibitory effect were performed in the human bronchial cell line BEAS-2B with an increasing mecamylamine concentration and a constant nicotine concentration. The influence of nicotine in the apoptotic pathway was evaluated in BEAS-2B cells with the TUNEL assay combined with flow cytometry. After 1h of nicotine exposure with 0.001, 0.01, 0.1, 1.0 and 4.0mM, significant DNA damage was determined at 1.0mM. Further co-incubation experiments with mecamylamine and NAC were performed using 1.0mM of nicotine. The strongest inhibitory effect was measured at 1.0mM mecamylamine and this concentration was used for co-incubation. Both, the antioxidant NAC at a concentration of 1.0mM, based on the literature, as well as the receptor antagonist were capable of complete inhibition of the nicotine-induced DNA migration in the comet assay. A nicotine-induced increase or decrease in

  9. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    PubMed

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA,more » which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.« less

  11. Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity.

    PubMed

    Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J

    2015-12-01

    Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.

  12. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  13. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    PubMed Central

    Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2009-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287

  14. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells

    PubMed Central

    Yoshioka, Yasukiyo; Li, Xiu; Zhang, Tianshun; Mitani, Takakazu; Yasuda, Michiko; Nanba, Fumio; Toda, Toshiya; Yamashita, Yoko; Ashida, Hitoshi

    2017-01-01

    Black soybean seed coat extract (BE), which contains abundant polyphenols such as procyanidins, cyanidin 3-glucoside, (+)-catechin, and (−)­epicatechin, has been reported on health beneficial functions such as antioxidant activity, anti-inflammatory, anti-obesity, and anti-diabetic activities. In this study, we investigated that prevention of BE and its polyphenols on 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH)-induced oxidative DNA damage, and found that these polyphenols inhibited AAPH-induced formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker for oxidative DNA damage in HepG2 cells. Under the same conditions, these polyphenols also inhibited AAPH-induced accumulation of reactive oxygen species (ROS) in the cells. Inhibition of ROS accumulation was observed in both cytosol and nucleus. It was confirmed that these polyphenols inhibited formation of AAPH radical using oxygen radical absorbance capacity assay under the cell-free conditions. These results indicate that polyphenols in BE inhibit free radical-induced oxidative DNA damages by their potent antioxidant activity. Thus, BE is an effective food material for prevention of oxidative stress and oxidative DNA damages. PMID:28366989

  15. Aeroallergens Induce Reactive Oxygen Species Production and DNA Damage and Dampen Antioxidant Responses in Bronchial Epithelial Cells.

    PubMed

    Chan, Tze Khee; Tan, W S Daniel; Peh, Hong Yong; Wong, W S Fred

    2017-07-01

    Exposure to environmental allergens is a major risk factor for asthma development. Allergens possess proteolytic activity that is capable of disrupting the airway epithelium. Although there is increasing evidence pointing to asthma as an epithelial disease, the underlying mechanism that drives asthma has not been fully elucidated. In this study, we investigated the direct DNA damage potential of aeroallergens on human bronchial epithelial cells and elucidated the mechanisms mediating the damage. Human bronchial epithelial cells, BEAS-2B, directly exposed to house dust mites (HDM) resulted in enhanced DNA damage, as measured by the CometChip and the staining of DNA double-strand break marker, γH2AX. HDM stimulated cellular reactive oxygen species production, increased mitochondrial oxidative stress, and promoted nitrosative stress. Notably, expression of nuclear factor erythroid 2-related factor 2-dependent antioxidant genes was reduced immediately after HDM exposure, suggesting that HDM altered antioxidant responses. HDM exposure also reduced cell proliferation and induced cell death. Importantly, HDM-induced DNA damage can be prevented by the antioxidants glutathione and catalase, suggesting that HDM-induced reactive oxygen and nitrogen species can be neutralized by antioxidants. Mechanistic studies revealed that HDM-induced cellular injury is NADPH oxidase (NOX)-dependent, and apocynin, a NOX inhibitor, protected cells from double-strand breaks induced by HDM. Our results show that direct exposure of bronchial epithelial cells to HDM leads to the production of reactive oxygen and nitrogen species that damage DNA and induce cytotoxicity. Antioxidants and NOX inhibitors can prevent HDM-induced DNA damage, revealing a novel role for antioxidants and NOX inhibitors in mitigating allergic airway disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    NASA Astrophysics Data System (ADS)

    Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong

    2005-05-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  17. The production and repair of aflatoxin B sub 1 -induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leadon, S.A.

    To investigate the influence of function or activity of a DNA sequence on its repair, we have studied excision repair of aflatoxin B{sub 1} (AFB{sub 1})-induced damage in the nontranscribed, heterochromatic alpha DNA of monkey cells and in the metallothionein genes of human cells. In confluent cells, AFB{sub 1} adducts are produced in similar frequencies in alpha and in the rest of the DNA, but removal from alpha DNA is severely deficient, however, removal of AFB{sub 1} adducts from alpha DNA is enhanced by small doses of UV. The repair deficiencies are not observed in actively growing cells. We havemore » also shown that there is preferential repair of AFB{sub 1} damage in active genes. AFB{sub 1} damage is efficiently repaired in the active human metallothionein (hMT) genes, but deficiently repaired in inactive hMT genes. 51 refs., 3 tabs.« less

  18. DDB2 promotes chromatin decondensation at UV-induced DNA damage

    PubMed Central

    Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.

    2012-01-01

    Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724

  19. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    PubMed

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  20. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  1. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice.

    PubMed

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity.

  2. The possible DNA damage induced by environmental organic compounds: The case of Nonylphenol.

    PubMed

    Noorimotlagh, Zahra; Mirzaee, Seyyed Abbas; Ahmadi, Mehdi; Jaafarzadeh, Neemat; Rahim, Fakher

    2018-08-30

    Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H 2 AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (n = 21), cell line (n = 6), human model (n = 4), microorganisms (n = 1), solid DNA (n = 1), infertility (n = 4), apoptosis (n = 6), and carcinogenesis (n = 3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    PubMed

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5 ERCC2 (AA) as compared to UV5 ERCC2 (CC) after cisplatin treatment. The DNA damage level of UV5 ERCC2 (AA) was significant decreased compared to UV5 ERCC2 (CC) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5 ERCC2 (AA) alleviated the apoptosis compared to UV5 ERCC2 (CC) , meanwhile P53mRNA levels in UV ERCC2 (AA) was also lower when compared UV5 ERCC2 (CC) . It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism. Copyright © 2016 Elsevier Ireland Ltd. All

  4. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  5. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2007-04-01

    Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage

  6. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less

  7. The effect of 2-[(aminopropyl)amino] ethanethiol on fission-neutron-induced DNA damage and repair.

    PubMed Central

    Grdina, D. J.; Sigdestad, C. P.; Dale, P. J.; Perrin, J. M.

    1989-01-01

    The effect(s) of the radioprotector 2-[(aminopropyl)amino] ethanethiol (WR 1065) on fission-neutron-induced DNA damage and repair in V79 Chinese hamster cells was determined by using a neutral filter elution procedure (pH 7.2). When required, WR1065, at a final working concentration of 4 mM, was added to the culture medium, either 30 min before and during irradiation with fission spectrum neutrons (beam energy of 0.85 MeV) from the JANUS research reactor, or for selected intervals of time following exposure. The frequency of neutron-induced DNA strand breaks as measured by neutral elution as a function of dose equalled that observed for 60Co gamma-ray-induced damage (relative biological effectiveness of one). In contrast to the protective effect exhibited by WR1065 in reducing 60Co-induced DNA damage, WR1065 was ineffective in reducing or protecting against induction of DNA strand breaks by JANUS neutrons. The kinetics of DNA double-strand rejoining were measured following neutron irradiation. In the absence of WR1065, considerable DNA degradation by cellular enzymes was observed. This process was inhibited when WR1065 was present. These results indicate that, under the conditions used, the quality (i.e. nature), rather than quantity, of DNA lesions (measured by neutral elution) formed by neutrons was significantly different from that formed by gamma-rays. PMID:2667608

  8. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection

    PubMed Central

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-01-01

    ABSTRACT Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51. PMID:27892797

  9. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.

    PubMed

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-02-16

    Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.

  10. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage.

    PubMed

    Petersen, Elijah J; Tu, Xiaomin; Dizdaroglu, Miral; Zheng, Ming; Nelson, Bryant C

    2013-01-28

    The overall level of ultrasonication-induced DNA damage is reduced in the presence of single-wall carbon nanotubes (SWCNTs), particularly for DNA lesions formed by one-electron reduction of intermediate radicals. The protective role of SWCNTs observed in this work suggests a contrary view to the general idea that carbon nanotubes have damaging effects on biomolecules. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  12. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  14. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  15. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, affects on the cellular response to DNA damage induced by exposures to radiation or other toxic chemicals will have an impact on the radiation risks for the astronauts, as well as on the mutation rate in microorganisms, is still an open question. Although the possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on the cellular response to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induces DNA damages including the double strand breaks (DSB) similar to the ionizing radiation. Damage in the DNA was measured by the phosphorylation of a histone protein H2AX (-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in the DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ti-67 signals. Our results suggested that the difference in -H2AX between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect the response of the DNA damage response genes to bleomycin treatment.

  16. The DNA damage response during mitosis.

    PubMed

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage – When is a DSB not a DSB?☆

    PubMed Central

    Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter

    2013-01-01

    The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615

  18. Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    PubMed Central

    Adeyemi, Richard O.; Landry, Sebastien; Davis, Meredith E.; Weitzman, Matthew D.; Pintel, David J.

    2010-01-01

    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells. PMID:20949077

  19. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  20. Neighboring base damage induced by permanganate oxidation of 8-oxoguanine in DNA.

    PubMed Central

    Koizume, S; Inoue, H; Kamiya, H; Ohtsuka, E

    1998-01-01

    We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G. PMID:9671825

  1. Improved methods of DNA extraction from human spermatozoa that mitigate experimentally-induced oxidative DNA damage.

    PubMed

    Xavier, Miguel J; Nixon, Brett; Roman, Shaun D; Aitken, Robert John

    2018-01-01

    Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.

  2. XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure

    PubMed Central

    2012-01-01

    Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904

  3. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2011-12-15

    Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran

    2011-01-01

    Objective To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage. PMID:23569799

  5. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  6. Small RNA-mediated repair of UV-induced DNA lesions by the DNA DAMAGE-BINDING PROTEIN 2 and ARGONAUTE 1

    PubMed Central

    Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean

    2017-01-01

    As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872

  7. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants.

    PubMed

    Gichner, Tomás; Znidar, Irena; Száková, Jirina

    2008-04-30

    Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 microM to 200 microM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 microM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.

  8. Oleuropein Prevents Azoxymethane-Induced Colon Crypt Dysplasia and Leukocytes DNA Damage in A/J Mice.

    PubMed

    Sepporta, Maria Vittoria; Fuccelli, Raffaela; Rosignoli, Patrizia; Ricci, Giovanni; Servili, Maurizio; Fabiani, Roberto

    2016-08-19

    Previous studies have shown that the precursor of olive oil secoiridoids, Oleuropein (OL) has several in vitro chemopreventive properties. OL inhibits proliferation and induces apoptosis in breast, thyroid, prostate, and colorectal cancer (CRC) cells. Much less is known about the effects of OL on animal models of carcinogenesis. In this study, we investigated the ability of OL to prevent the azoxymethane (AOM)-induced colon cancer upset and DNA damage in mice. Animals, fed with a basal diet either enriched or not with OL (125 mg/kg), were injected with AOM (10 mg/kg, once a week for 6 weeks) and sacrificed after either 7 weeks for histological analysis of colon crypt dysplasia and evaluation of DNA damage in leukocytes or 17 weeks for counting the macroscopically observable colon tumors. An OL-enriched diet prevented the AOM-induced preneoplastic lesions in different colon segments, reducing the severity of crypt dysplasia and DNA damage in peripheral leukocytes. In addition, OL significantly reduced the AOM-induced tumor incidence from 57% to 14% (P < .05, chi-square test) in the medial colon segment. This study shows that OL is able to prevent CRC and DNA damage in mice treated with the carcinogen AOM. These results stimulate further human cancer prevention studies with OL-enriched food supplements that are actually available on the market.

  9. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    PubMed

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli.

    PubMed Central

    Donaldson, Janet R; Courcelle, Charmain T; Courcelle, Justin

    2004-01-01

    Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo. PMID:15126385

  11. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    PubMed Central

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  12. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    PubMed

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.

  13. Mechanism of UVA-dependent DNA damage induced by an antitumor drug dacarbazine in relation to its photogenotoxicity.

    PubMed

    Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke

    2008-03-01

    It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.

  14. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    PubMed

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  15. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  16. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  17. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not

  18. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.

    PubMed

    Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S

    2015-10-01

    The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.

  19. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    PubMed

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  20. DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107

    PubMed Central

    Jagot-Lacoussiere, Léonard; Faye, Audrey; Bruzzoni-Giovanelli, Heriberto; Villoutreix, Bruno O; Rain, Jean-Christophe; Poyet, Jean-Luc

    2015-01-01

    Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response. PMID:25695197

  1. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation.

    PubMed

    Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo

    2010-06-01

    Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage.

    PubMed

    Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M

    2015-03-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.

  3. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  4. Individual variations in the correlation between erythemal threshold, UV-induced DNA damage and sun-burn cell formation.

    PubMed

    Heenen, M; Giacomoni, P U; Golstein, P

    2001-10-01

    A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an

  5. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells.

    PubMed

    Yao, Ke; Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia

    2008-05-19

    The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (gammaH2AX) foci formation assay. After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by gammaH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 muT electromagnetic noise could block RF-induced ROS increase and DNA damage. DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage.

  6. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Min; Choi, Ji Ye; Yi, Joo Mi

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated inmore » the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.« less

  7. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Kwiatkowska, Marta; Reszka, Edyta; Woźniak, Katarzyna; Jabłońska, Ewa; Michałowicz, Jaromir; Bukowska, Bożena

    2017-07-01

    Glyphosate is a very important herbicide that is widely used in the agriculture, and thus the exposure of humans to this substance and its metabolites has been noted. The purpose of this study was to assess DNA damage (determination of single and double strand-breaks by the comet assay) as well as to evaluate DNA methylation (global DNA methylation and methylation of p16 (CDKN2A) and p53 (TP53) promoter regions) in human peripheral blood mononuclear cells (PBMCs) exposed to glyphosate. PBMCs were incubated with the compound studied at concentrations ranging from 0.1 to 10 mM for 24 h. The study has shown that glyphosate induced DNA lesions, which were effectively repaired. However, PBMCs were unable to repair completely DNA damage induced by glyphosate. We also observed a decrease in global DNA methylation level at 0.25 mM of glyphosate. Glyphosate at 0.25 mM and 0.5 mM increased p53 promoter methylation, while it did not induce statistically significant changes in methylation of p16 promoter. To sum up, we have shown for the first time that glyphosate (at high concentrations from 0.5 to 10 mM) may induce DNA damage in leucocytes such as PBMCs and cause DNA methylation in human cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidasemore » (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA

  9. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    PubMed Central

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy. PMID:23471360

  10. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage

    PubMed Central

    Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C.M.; Jansen, Jacob G.; Hogenbirk, Marc A.; de Wind, Niels; Jacobs, Heinz

    2015-01-01

    Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. PMID:25505145

  11. DNA and chromosome damage induced by bleomycin in mammalian cells: An update.

    PubMed

    Bolzán, Alejandro D; Bianchi, Martha S

    Bleomycin (BLM) is an antibiotic isolated from Streptomyces verticillus. It has radiomimetic actions on DNA thus it has been widely used in clinical chemotherapy for the treatment of different types of cancer, including head and neck tumors, lymphomas, squamous-cell carcinomas and germ-cell tumors. Because of this, the study of BLM genotoxicity is of practical interest. This antibiotic is an S-independent clastogen and an agent that generates free radicals and induces single- and double-strand breaks in DNA. In the present review, we will summarize our current knowledge concerning the DNA and chromosome damage induced by BLM in mammalian cells, with emphasis on new developments published since 1991. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  13. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  14. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

    PubMed Central

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  15. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    PubMed

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  16. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector.

    PubMed

    Jermusek, Frank; Benedict, Chelsea; Dreischmeier, Emma; Brand, Michael; Uder, Michael; Jeffery, Justin J; Ranallo, Frank N; Fahl, William E

    2018-05-21

    While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an • OH pulse reduced to background the • OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.

  17. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells

    PubMed Central

    Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia

    2008-01-01

    Purpose The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). Methods An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (γH2AX) foci formation assay. Results After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by γH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 μT electromagnetic noise could block RF-induced ROS increase and DNA damage. Conclusions DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage. PMID:18509546

  18. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    PubMed

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  19. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    PubMed

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  20. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    PubMed Central

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  1. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage.

    PubMed

    Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C M; Jansen, Jacob G; Hogenbirk, Marc A; de Wind, Niels; Jacobs, Heinz

    2015-01-01

    Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    PubMed Central

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  3. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    PubMed

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  4. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    PubMed Central

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960

  5. Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode.

    PubMed

    Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia

    2011-06-15

    A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    heterozygous for the DNA repair genes Os-methylguanine methyltransferase (Mgmt), 3-methyladenine DNA glycosylase (Aag) , and xeroderma pigmentosum ...mice by human 06-alkylguanine-DNA alkyltransferase. Science 1993; 259: 219-222. 4. Enokido Y, Inamura N, Araki T, et al: Loss of the xeroderma ... pigmentosum group A gene (XPA) enhances apoptosis of cultured cerebellar neurons induced by UV but not by low-K+ medium. J Neurochem 199; 69: 246-251. 5

  7. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay.

    PubMed

    Topinka, Jan; Rossner, Pavel; Milcova, Alena; Schmuczerova, Jana; Svecova, Vlasta; Sram, Radim J

    2011-05-10

    The genotoxic activities of complex mixtures of organic extracts from the urban air particles collected in various localities of the Czech Republic, which differed in the extent and sources of air pollution, were compared. For this purpose, PM2.5 particles were collected by high volume samplers in the most polluted area of the Czech Republic--Ostrava region (localities Bartovice, Poruba and Karvina) and in the locality exhibiting a low level of air pollution--Trebon--a small town in the non-industrial region of Southern Bohemia. To prepare extractable organic matter (EOM), PM2.5 particles were extracted by dichloromethane and c-PAHs contents in the EOMs were determined. As markers of genotoxic potential, DNA adduct levels and oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG, levels) induced by EOMs in an acellular assay of calf thymus DNA coupled with ³²P-postlabeling (DNA adducts) and ELISA (8-oxodG) in the presence and absence of microsomal S9 fraction were employed. Twofold higher DNA adduct levels (17.20 adducts/10⁸ nucleotides/m³ vs. 8.49 adducts/10⁸ nucleotides/m³) were induced by EOM from Ostrava-Bartovice (immediate proximity of heavy industry) compared with that from Ostrava-Poruba (mostly traffic emissions). Oxidative DNA damage induced by EOM from Ostrava-Bartovice was more than fourfold higher than damage induced by EOM from Trebon (8-oxodG/10⁸ dG/m³: 0.131 vs. 0.030 for Ostrava-Bartovice vs. Trebon, respectively). Since PM2.5 particles collected in various localities differ with respect to their c-PAHs content, and c-PAHs significantly contribute to genotoxicity (DNA adduct levels), we suggest that monitoring of PM2.5 levels is not a sufficient basis to assess genotoxicity of respirable aerosols. It seems likely that the industrial emissions prevailing in Ostrava-Bartovice represent a substantially higher genotoxic risk than mostly traffic-related emissions in Ostrava-Poruba. B[a]P and c-PAH contents in EOMs are the most

  8. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  9. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    PubMed

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P < 0.05), and the correlation between Olive TM and reactive oxygen species was better than other parameters (r = 0.77, P < 0.05). This study indicates that FPG-comet assay

  10. Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin.

    PubMed

    Cabrer, J; Burkhardt, S; Tan, D X; Manchester, L C; Karbownik, M; Reiter, R J

    2001-11-01

    Melatonin, the main secretory product of the pineal gland, is a free radical scavenger and antioxidant which protects against oxidative damage due to a variety of toxicants. However, there is little information regarding melatonin's antioxidative capacity in tissues of primates. In this study we examined the protective effects of melatonin in monkey liver homogenates against lipid damage that occurred as a result of autoxidation or that induced by exogenous addition of H202 and ferrous iron (Fe2+). Additionally, we tested melatonin's protective effect against oxidative damage to DNA induced by chromium(III) (CrIII) plus H202. The levels of malondialdehyde and 4-hydroxyalkenals were assayed as an index of lipid peroxidation, and the concentrations of 8-hydroxydeoxyguanosine (8-OHdG) as an endpoint of oxidative DNA damage. The increases in malondialdehyde+4-hydroxyalkenals concentrations as a consequence of autoxidation or after the addition of H202 plus Fe2+ to the homogenates were time-dependent. The accumulation of these damaged products due to either auto-oxidative processes or induced by H202 and Fe2+ were significantly reduced by melatonin in a concentration-dependent-manner. The levels of 8-OHdG were elevated in purified monkey liver DNA incubated with a combination of CrCl3 plus H2O2. This rise in oxidatively damaged DNA was prevented by 10 microM concentration of melatonin. Also, melatonin reduced the damage to DNA that was caused by auto-oxidative processes. These findings in monkey liver tissue document the ability of melatonin to protect against oxidative damage to both lipid and DNA in primate tissue, as observed previously in rodent tissue. The findings provide support for the use of melatonin as suitable agent to reduce damage inflicted by free radical species in primates.

  11. RNF168 forms a functional complex with RAD6 during the DNA damage response

    PubMed Central

    Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009

  12. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  13. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production.

    PubMed

    El-Amine, Rawan; Germini, Diego; Zakharova, Vlada V; Tsfasman, Tatyana; Sheval, Eugene V; Louzada, Ruy A N; Dupuy, Corinne; Bilhou-Nabera, Chrystèle; Hamade, Aline; Najjar, Fadia; Oksenhendler, Eric; Lipinski, Marс; Chernyak, Boris V; Vassetzky, Yegor S

    2018-05-01

    Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuejiao; Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000; Zhang, Zhan

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose-more » and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by

  15. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  16. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  17. Catch the live show: Visualizing damaged DNA in vivo.

    PubMed

    Oshidari, Roxanne; Mekhail, Karim

    2018-06-01

    The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells.

    PubMed

    You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z

    2014-03-01

    4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells

    PubMed Central

    Ye, J; Wu, H; Wu, Y; Wang, C; Zhang, H; Shi, X; Yang, J

    2012-01-01

    Purpose To investigate the toxic effects of ethylenediaminetetraacetic acid disodium salt (EDTA), a corneal penetration enhancer in topical ophthalmic formulations, on DNA in human corneal epithelial cells (HCEs), and to investigate whether the effect induced by EDTA can be inhibited by high molecular weight hyaluronan (HA). Methods Cells were exposed to EDTA in concentrations ranging from 0.00001 to 0.01% for 60 min, or 30 min high molecular weight HA pretreatment followed by EDTA treatment. The cell viability was measured by the MTT test. Cell apoptosis was determined with annexin V staining by flow cytometry. The DNA single- and double-strand breaks of HCEs were examined by alkaline comet assay and by immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci, respectively. Reactive oxygen species (ROS) production was assessed by the fluorescent probe, 2′, 7′-dichlorodihydrofluorescein diacetate. Results EDTA exhibited no adverse effect on cell viability and did not induce cell apoptosis in human corneal epithelial cells at concentrations lower than 0.01%. However, a significant increase of DNA single- and double-strand breaks was observed in a dose-dependent manner with all the concentrations of EDTA tested in HCEs. In addition, EDTA treatment led to elevated ROS generation. Moreover, 30 min preincubation with high molecular weight HA significantly decreased EDTA-induced ROS generation and DNA damage. Conclusions EDTA could induce DNA damage in HCEs, probably through oxidative stress. Furthermore, high molecular weight HA was an effective protective agent that had antioxidant properties and decreased DNA damage induced by EDTA. PMID:22595911

  20. Roles of nibrin and AtM/ATR kinases on the G2 checkpoint under endogenous or radio-induced DNA damage.

    PubMed

    Marcelain, Katherine; De La Torre, Consuelo; González, Patricio; Pincheira, Juana

    2005-01-01

    Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.

  1. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    PubMed Central

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  2. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    PubMed

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  3. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry ofmore » γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.« less

  4. [Blocking 1800 MHz mobile phone radiation-induced reactive oxygen species production and DNA damage in lens epithelial cells by noise magnetic fields].

    PubMed

    Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun

    2008-01-01

    To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.

  5. XPD-dependent activation of apoptosis in response to triplex-induced DNA damage

    PubMed Central

    Kaushik Tiwari, Meetu; Rogers, Faye A.

    2013-01-01

    DNA sequences capable of forming triplexes are prevalent in the human genome and have been found to be intrinsically mutagenic. Consequently, a balance between DNA repair and apoptosis is critical to counteract their effect on genomic integrity. Using triplex-forming oligonucleotides to synthetically create altered helical distortions, we have determined that pro-apoptotic pathways are activated by the formation of triplex structures. Moreover, the TFIIH factor, XPD, occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. Here, we show that triplexes are capable of inducing XPD-independent double strand breaks, which result in the formation of γH2AX foci. XPD was subsequently recruited to the triplex-induced double strand breaks and co-localized with γH2AX at the damage site. Furthermore, phosphorylation of H2AX tyrosine 142 was found to stimulate the signaling pathway of XPD-dependent apoptosis. We suggest that this mechanism may play an active role in minimizing genomic instability induced by naturally occurring noncanonical structures, perhaps protecting against cancer initiation. PMID:23913414

  6. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malloy, K.D.; Holman, M.A.; Mitchell, D.

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the differencemore » between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.« less

  7. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  8. Protective effects of folic acid on DNA damage and DNA methylation levels induced by N-methyl- N'-nitro- N-nitrosoguanidine in Kazakh esophageal epithelial cells.

    PubMed

    Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H

    2018-01-01

    The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.

  9. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  10. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feiye, E-mail: zhizi0269@doc.medic.mie-u.ac.jp; Ma, Ning, E-mail: maning@suzuka-u.ac.jp; Horibe, Yoshiteru, E-mail: violinteru@yahoo.co.jp

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formationmore » at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA

  11. Chemotherapy-induced bystander effect in response to several chloroethylnitrosoureas: an origin independent of DNA damage?

    PubMed

    Merle, Patrick; Morvan, Daniel; Caillaud, Denis; Demidem, Aicha

    2008-01-01

    Chloroethylnitrosourea (CENU) chemotherapy is used for the treatment of melanoma tumors. The main mechanism of action of this anticancer agent is via DNA damage. We recently showed in murine experiments using a parental double B16 melanoma tumor model that, after treatment of primary tumors with cystemustine (CENU agent), untreated secondary tumors exhibited growth inhibition and metabolism disorders. The response of secondary untreated tumor was called the chemotherapy-induced bystander effect. To see whether chemotherapy-induced bystander effects were induced with other members of the CENU family, we compared three CENU(s) used in melanoma treatment: cystemustine, carmustine and fotemustine. Our results demonstrate that fotemustine, like cystemustine, but not carmustine induced a protective effect against secondary untreated tumors including alterations in phospholipid derivative and glutathione which are the metabolic signature of the bystander effect. From these data we may conclude that DNA damage to the primary tumor is not sufficient to explain chemotherapy-induced bystander effects.

  12. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  13. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  14. Ursolic Acid-Regulated Energy Metabolism—Reliever or Propeller of Ultraviolet-Induced Oxidative Stress and DNA Damage?

    PubMed Central

    Lee, Yuan-Hao; Sun, Youping; Glickman, Randolph D.

    2014-01-01

    Ultraviolet (UV) light is a leading cause of diseases, such as skin cancers and cataracts. A main process mediating UV-induced pathogenesis is the production of reactive oxygen species (ROS). Excessive ROS levels induce the formation of DNA adducts (e.g., pyrimidine dimers) and result in stalled DNA replication forks. In addition, ROS promotes phosphorylation of tyrosine kinase-coupled hormone receptors and alters downstream energy metabolism. With respect to the risk of UV-induced photocarcinogenesis and photodamage, the antitumoral and antioxidant functions of natural compounds become important for reducing UV-induced adverse effects. One important question in the field is what determines the differential sensitivity of various types of cells to UV light and how exogenous molecules, such as phytochemicals, protect normal cells from UV-inflicted damage while potentiating tumor cell death, presumably via interaction with intracellular target molecules and signaling pathways. Several endogenous molecules have emerged as possible players mediating UV-triggered DNA damage responses. Specifically, UV activates the PIKK (phosphatidylinositol 3-kinase-related kinase) family members, which include DNA-PKcs, ATM (ataxia telangiectasia mutated) and mTOR (mammalian target of rapamycin), whose signaling can be affected by energy metabolism; however, it remains unclear to what extent the activation of hormone receptors regulates PIKKs and whether this crosstalk occurs in all types of cells in response to UV. This review focuses on proteomic descriptions of the relationships between cellular photosensitivity and the phenotypic expression of the insulin/insulin-like growth receptor. It covers the cAMP-dependent pathways, which have recently been shown to regulate the DNA repair machinery through interactions with the PIKK family members. Finally, this review provides a strategic illustration of how UV-induced mitogenic activity is modulated by the insulin sensitizer, ursolic

  15. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis

    PubMed Central

    Magni, Martina; Ruscica, Vincenzo; Buscemi, Giacomo; Kim, Ja-Eun; Nachimuthu, Benjamin Tamilselvan; Fontanella, Enrico; Delia, Domenico; Zannini, Laura

    2014-01-01

    Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in the DNA damage response (DDR) also depends on Chk2, the transducer kinase that is activated by ATM upon DNA lesions and contributes to the spreading of DNA damage signal. Indeed we found that inactivation of Chk2 reduces DBC1-SIRT1 binding, thus preventing p53 acetylation and DBC1-induced apoptosis. These events are mediated by Chk2 phosphorylation of the 11S proteasome activator REGγ on Ser247, which increases REGγ-DBC1 interaction and SIRT1 inhibition. Overall our results clarify the mechanisms underlying the DBC1-dependent SIRT1 inhibition and link, for the first time, Chk2 and REGγ to the ATM-DBC1-SIRT1 axis. PMID:25361978

  16. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage.

    PubMed

    Chen, Liming; Liu, Yinghui; Dong, Liangliang; Chu, Xiaoxia

    2015-03-01

    Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p < 0.05). Thus, the current study indicates that edaravone offers protection from radiation-induced cytogenetic alterations.

  17. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    PubMed

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  18. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay.

    PubMed

    Bausinger, Julia; Speit, Günter

    2016-09-01

    The comet assay is frequently used in human biomonitoring for the detection of exposure to genotoxic agents. Peripheral blood samples are most frequently used and tested either as whole blood or after isolation of lymphocytes (i.e. peripheral blood mononuclear cells, PBMC). To investigate a potential impact of lymphocyte isolation on induced DNA damage in human blood samples, we exposed blood ex vivo to mutagens with different modes of genotoxic action. The comet assay was performed either directly with whole blood at the end of the exposure period or with lymphocytes isolated directly after exposure. In addition to the recommended standard protocol for lymphocyte isolation, a shortened protocol was established to optimise the isolation procedure. The results indicate that the effects of induced DNA strand breaks and alkali-labile sites induced by ionising radiation and alkylants, respectively, are significantly reduced in isolated lymphocytes. In contrast, oxidative DNA base damage (induced by potassium bromate) and stable bulky adducts (induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide; BPDE) seem to be less affected. Our findings suggest that in vivo-induced DNA damage might also be reduced in isolated lymphocytes in comparison with the whole blood depending of the types of DNA damage induced. Because only small genotoxic effects can generally be expected in human biomonitoring studies with the comet assay after occupational and environmental exposure to genotoxic agents, any loss might be relevant and should be avoided. The possibility of such effects and their potential impact on variability of comet assay results in human biomonitoring should be considered when performing or evaluating such kind of studies. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    PubMed

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  20. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier

    PubMed Central

    Santos, Margarida A.; Faryabi, Robert B.; Ergen, Aysegul V.; Day, Amanda M.; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J.; Ito, Keisuke; Ge, Kai; Aplan, Peter D.; Armstrong, Scott A.; Nussenzweig, André

    2015-01-01

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells1. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks2–4, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma5,6, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL–AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4−/− MLL–AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL–AF9 blasts, which requires cyclin-dependent kinase inhibitor p21Cip1 (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia. PMID:25079327

  1. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  2. Detection of in vivo DNA damage induced by ethanol in multiple organs of pregnant mice using the alkaline single cell gel electrophoresis (Comet) assay.

    PubMed

    Kido, Ryoko; Sato, Itaru; Tsuda, Shuji

    2006-01-01

    Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.

  3. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lungmore » cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.« less

  4. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes.

    PubMed

    Zana, Marianna; Szécsényi, Anita; Czibula, Agnes; Bjelik, Annamária; Juhász, Anna; Rimanóczy, Agnes; Szabó, Krisztina; Vetró, Agnes; Szucs, Péter; Várkonyi, Agnes; Pákáski, Magdolna; Boda, Krisztina; Raskó, István; Janka, Zoltán; Kálmán, János

    2006-06-30

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n=7) and adults (n=18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults.

  5. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.

    PubMed

    Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.

  6. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    PubMed

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    PubMed

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  8. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  9. Hereditary Disorders with Defective Repair of UV-Induced DNA Damage

    PubMed Central

    Moriwaki, Shinichi

    2013-01-01

    Nucleotide excision repair (NER) is an essential system for correcting ultraviolet (UV)—induced DNA damage. Lesions remaining in DNA due to reduced capacity of NER may result in cellular death, premature aging, mutagenesis and carcinogenesis of the skin. So, NER is an important protection against these changes. There are three representative genodermatoses resulting from genetic defects in NER: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). In Japan, CS is similarly rare but XP is more common and TTD is less common compared to Western countries. In 1998, we established the system for the diagnosis of these disorders and we have been performing DNA repair and genetic analysis for more than 400 samples since then. At present, there is no cure for any human genetic disorder. Early diagnosis and symptomatic treatment of neurological, ocular and dermatological abnormalities should contribute to prolonging life and elevating QOL in patients. PMID:23966815

  10. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  11. Induction of oxidative DNA damage in anaerobes.

    PubMed

    Takeuchi, T; Nakaya, Y; Kato, N; Watanabe, K; Morimoto, K

    1999-05-07

    We compared oxidative DNA damage in strictly anaerobic Prevotella melaninogenica, aerotolerant anaerobic Bacteroides fragilis, and facultative anaerobic Salmonella typhimurium after exposure to O2 or H2O2. Using HPLC with electrochemical detection, we measured 8-hydroxydeoxyguanosine (8OHdG) as a damage marker. O2 induced 8OHdG in P. melaninogenica but not in B. fragilis, which shows catalase activity, or in S. typhimurium. In P. melaninogenica, with catalase, O2 induced less 8OHdG; superoxide dismutase had no effect; with glucose and glucose oxidase, O2 induced more 8OHdG. H2O2 also markedly increased 8OHdG. O2 was suggested to induce 8OHdG through H2O2. O2 or H2O2 decreased survival only in P. melaninogenica. Highly sensitive to oxidative stress, P. melaninogenica could prove useful for investigating oxidative DNA damage.

  12. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  13. Cellular responses to environmental DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  14. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA.

    PubMed

    Alizadeh, Elahe; Orlando, Thomas M; Sanche, Léon

    2015-04-01

    Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.

  15. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression.

    PubMed

    Sen, Onur; Saurin, Adrian T; Higgins, Jonathan M G

    2018-05-21

    SiR-Hoechst (SiR-DNA) is a far-red fluorescent DNA probe being used widely for time-lapse imaging of living cells that is reported to be minimally toxic at concentrations as high as 10-25 µM. However, measuring nuclear import of Cyclin B1, inhibition of mitotic entry, and the induction of γH2AX foci in cultured human cells reveals that SiR-Hoechst induces DNA damage responses and G2 arrest at concentrations well below 1 µM. SiR-Hoechst is useful for live cell imaging, but it should be used with caution and at the lowest practicable concentration.

  16. Genistein protects hematopoietic stem cells against G-CSF-induced DNA damage.

    PubMed

    Souza, Liliana R; Silva, Erica; Calloway, Elissa; Kucuk, Omer; Rossi, Michael; McLemore, Morgan L

    2014-05-01

    Granulocyte colony-stimulating factor (G-CSF) has been used to treat neutropenia in various clinical settings. Although clearly beneficial, there are concerns that the chronic use of G-CSF in certain conditions increases the risk of myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). The most striking example is in severe congenital neutropenia (SCN). Patients with SCN develop MDS/AML at a high rate that is directly correlated to the cumulative lifetime dosage of G-CSF. Myelodysplastic syndrome and AML that arise in these settings are commonly associated with chromosomal deletions. We have demonstrated in this study that chronic G-CSF treatment in mice results in expansion of the hematopoietic stem cell (HSC) population. In addition, primitive hematopoietic progenitors from G-CSF-treated mice show evidence of DNA damage as demonstrated by an increase in double-strand breaks and recurrent chromosomal deletions. Concurrent treatment with genistein, a natural soy isoflavone, limits DNA damage in this population. The protective effect of genistein seems to be related to its preferential inhibition of G-CSF-induced proliferation of HSCs. Importantly, genistein does not impair G-CSF-induced proliferation of committed hematopoietic progenitors, nor diminishes neutrophil production. The protective effect of genistein was accomplished with plasma levels that are attainable through dietary supplementation.

  17. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog

    2016-01-01

    Abstract Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. Innovation: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. Conclusion: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072–1083. PMID:26935406

  18. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    PubMed

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  19. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    PubMed

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  20. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  1. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Xu; Ptasinska, Sylwia; Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  2. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  3. Cigarette smoke-induced DNA damage and repair detected by the comet assay in HPV-transformed cervical cells.

    PubMed

    Moktar, Afsoon; Ravoori, Srivani; Vadhanam, Manicka V; Gairola, C Gary; Gupta, Ramesh C

    2009-12-01

    Human papillomavirus (HPV) is the causative factor in the development and progression of cervical cancers in >97% of the cases, although insufficient. Epidemiological studies suggest an elevated risk of cervical cancer for cigarette smokers; therefore, we examined cigarette smoke-induced DNA damage and repair in HPV16-transformed human ectocervical cells (ECT1/E6 E7). Cells were treated with cigarette smoke condensate (CSC) for 72 h to assess the formation of single- and double-strand DNA breaks, measured by alkaline and neutral single cell gel electrophoresis assays, respectively. The mean tail length of cells with single-strand breaks was increased by 1.8-, 2.7- and 3.7-fold (p<0.001) after treatment with 4, 8 and 12 microg/ml CSC, respectively. The tail length with double-strand breaks was also increased dose-dependently. These results were further supported by measurement of the mean tail moment: the increase in both single- and double-strand breaks were much more pronounced with increasing concentration of CSC, by up to 23.5-fold (p<0.0001 for both assays). To examine the DNA repair, cells were treated with CSC for 72 h, followed by CSC withdrawal and re-incubation of the cells with fresh medium for 24, 48, or 72 h. Both single- and double-strand DNA breaks were removed during the initial 24 h but no further removal of the damage was observed. Up to 80% of residual single- and double-strand DNA breaks (p<0.05) were found to persist at all CSC concentrations examined. Ellagic acid, a known antioxidant and free-radical scavenger, was found to significantly inhibit DNA breaks induced by CSC. Thus, free radicals may be a plausible source of CSC-induced DNA damage. These data show that CSC-mediated DNA strand breaks are highly persistent, and suggest that persistence of cigarette smoke-associated DNA damage in the presence of HPV infection may lead to increased mutations in cervical cells and ultimately higher cancer risk.

  4. REC-2006—A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo

    PubMed Central

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  5. DNA damage in blood cells exposed to low-level lasers.

    PubMed

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  6. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2003-07-20

    The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.

  7. Ex vivo study for the assessment of behavioral factor and gene polymorphisms in individual susceptibility to oxidative DNA damage metals-induced.

    PubMed

    Di Pietro, Angela; Baluce, Barbara; Visalli, Giuseppa; La Maestra, Sebastiano; Micale, Rosanna; Izzotti, Alberto

    2011-06-01

    Transition metals in fine particulate matter generated by combustion induce oxidative DNA damage and inflammation. However, there is remarkable inter-individual variability in susceptibility to these damages. To assess this variability, an ex vivo study was performed using lymphocytes of 47 Caucasian healthy subjects. Cell samples were exposed to a water solution of oil fly ash (OFA). This was formed by the distinctive transition metals vanadium, iron, and nickel. Oxidative DNA damage was evaluated by testing cell viability, intracellular ROS production and 8-oxo-dG. DNA fragmentation and DNA repair capacity were assessed by using the Alkaline-Halo assay. GSTM1, GSTT1, hOGG1, and C677T and A1298C MTHFR gene polymorphisms were tested. Demographic and behavioral factors, collected by questionnaire, were also considered. OFA induced damages showed: (a) a 20-fold variation in range among different subjects in ROS production, (b) a 7-fold variation in range of 8-oxo-dG, and (c) a 25-fold variation in range in DNA repair capacity. A significant increase in DNA damage was detected in GSTT1-deficent subjects compared with wild type genotype carriers. Increases in cytoplasmic ROS and decreases in DNA repair capacity (P<0.05) were observed in C677T and A1298C variants of MTHFR. A remarkable protective effect of high fruits and vegetable intake was observed for ROS production and DNA damage. Conversely, an adverse effect of meat intake was observed on ROS increase, DNA damage and repair capacity, probably due to the increased intake of bioavailable iron. Smoking decreased DNA repair capacity, while age increased OFA-induced DNA damage. The wide comparative analysis of the complex interactions network, between genetic and behavioral factors provides evidence of the remarkable role of several lifestyle factors. In comparison to genetic polymorphisms they seem to have a higher weight in determining individual susceptibility to the adverse effects of airborne pollutants as

  8. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model.more » The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage

  9. X-Ray Induced DNA Damage and Repair in Germ Cells of PARP1−/− Male Mice

    PubMed Central

    Villani, Paola; Fresegna, Anna Maria; Ranaldi, Roberto; Eleuteri, Patrizia; Paris, Lorena; Pacchierotti, Francesca; Cordelli, Eugenia

    2013-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX. PMID:24009020

  10. Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium

    PubMed Central

    Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711

  11. Retinoic acid-related orphan receptor-α is induced in the setting of DNA damage and promotes pulmonary emphysema.

    PubMed

    Shi, Ying; Cao, Jiaofei; Gao, Jane; Zheng, Liang; Goodwin, Andrew; An, Chang Hyoek; Patel, Avignat; Lee, Janet S; Duncan, Steven R; Kaminski, Naftali; Pandit, Kusum V; Rosas, Ivan O; Choi, Augustine M K; Morse, Danielle

    2012-09-01

    The discovery that retinoic acid-related orphan receptor (Rora)-α is highly expressed in lungs of patients with COPD led us to hypothesize that Rora may contribute to the pathogenesis of emphysema. To determine the role of Rora in smoke-induced emphysema. Cigarette smoke extract in vitro and elastase or cigarette smoke exposure in vivo were used to model smoke-related cell stress and airspace enlargement. Lung tissue from patients undergoing lung transplantation was examined for markers of DNA damage and Rora expression. Rora expression was induced by cigarette smoke in mice and in cell culture. Gene expression profiling of Rora-null mice exposed to cigarette smoke demonstrated enrichment for genes involved in DNA repair. Rora expression increased and Rora translocated to the nucleus after DNA damage. Inhibition of ataxia telangiectasia mutated decreased the induction of Rora. Gene silencing of Rora attenuated apoptotic cell death in response to cigarette smoke extract, whereas overexpression of Rora enhanced apoptosis. Rora-deficient mice were protected from elastase and cigarette smoke induced airspace enlargement. Finally, lungs of patients with COPD showed evidence of increased DNA damage even in the absence of active smoking. Taken together, these findings suggest that DNA damage may contribute to the pathogenesis of emphysema, and that Rora has a previously unrecognized role in cellular responses to genotoxicity. These findings provide a potential link between emphysema and features of premature ageing, including enhanced susceptibility to lung cancer.

  12. Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals.

    PubMed

    Zhou, Juan; Li, Peng; Cheng, Ni; Gao, Hui; Wang, Bini; Wei, Yahui; Cao, Wei

    2012-08-01

    To understand the antioxidant properties of buckwheat honeys, we investigated their antioxidant effects on hydroxyl radical-induced DNA breaks in the non-site-specific and site-specific systems, the physicochemical properties, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, chelating, and reducing power assays), total phenolic content and individual phenolic acids were also determined. Total phenolic content of buckwheat honeys ranged from 774 to 1694 mg PA/kg, and p-hydroxybenzoic and p-coumaric acids proved to be the main components in buckwheat honeys. All the buckwheat honey samples possess stronger capability to protect DNA in the non-site-specific systems than in the site-specific systems from being damaged by hydroxyl radicals. In the non-site-specific and site-specific system, buckwheat honeys samples prevented ()OH-induced DNA breaks by 21-78% and 5-31% over control value, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  14. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage

    PubMed Central

    Ciamporcero, Eric; Shen, He; Ramakrishnan, Swathi; Ku, Sheng Yu; Chintala, Sreenivasulu; Shen, Li; Adelaiye, Remi; Miles, Kiersten Marie; Ullio, Chiara; Pizzimenti, Stefania; Daga, Martina; Azabdaftari, Gissou; Attwood, Kris; Johnson, Candace; Zhang, Jianmin; Barrera, Giuseppina; Pili, Roberto

    2015-01-01

    Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knock-down sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC. PMID:26119935

  15. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage.

    PubMed

    Ciamporcero, E; Shen, H; Ramakrishnan, S; Yu Ku, S; Chintala, S; Shen, L; Adelaiye, R; Miles, K M; Ullio, C; Pizzimenti, S; Daga, M; Azabdaftari, G; Attwood, K; Johnson, C; Zhang, J; Barrera, G; Pili, R

    2016-03-24

    Current standard of care for muscle-invasive urothelial cell carcinoma (UCC) is surgery along with perioperative platinum-based chemotherapy. UCC is sensitive to cisplatin-based regimens, but acquired resistance eventually occurs, and a subset of tumors is intrinsically resistant. Thus, there is an unmet need for new therapeutic approaches to target chemotherapy-resistant UCC. Yes-associated protein (YAP) is a transcriptional co-activator that has been associated with bladder cancer progression and cisplatin resistance in ovarian cancer. In contrast, YAP has been shown to induce DNA damage associated apoptosis in non-small cell lung carcinoma. However, no data have been reported on the YAP role in UCC chemo-resistance. Thus, we have investigated the potential dichotomous role of YAP in UCC response to chemotherapy utilizing two patient-derived xenograft models recently established. Constitutive expression and activation of YAP inversely correlated with in vitro and in vivo cisplatin sensitivity. YAP overexpression protected while YAP knockdown sensitized UCC cells to chemotherapy and radiation effects via increased accumulation of DNA damage and apoptosis. Furthermore, pharmacological YAP inhibition with verteporfin inhibited tumor cell proliferation and restored sensitivity to cisplatin. In addition, nuclear YAP expression was associated with poor outcome in UCC patients who received perioperative chemotherapy. In conclusion, these results suggest that YAP activation exerts a protective role and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of UCC.

  16. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  17. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP

    PubMed Central

    Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg

    2016-01-01

    PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846

  18. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  19. Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage

    NASA Technical Reports Server (NTRS)

    Plante, Ianik

    2017-01-01

    Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.

  20. Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage. A novel approach for a DNA-based radiosensitive device

    NASA Astrophysics Data System (ADS)

    Heimbach, Florian; Arndt, Alexander; Nettelbeck, Heidi; Langner, Frank; Giesen, Ulrich; Rabus, Hans; Sellner, Stefan; Toppari, Jussi; Shen, Boxuan; Baek, Woon Yong

    2017-08-01

    The ability of DNA to conduct electric current has been the topic of numerous investigations over the past few decades. Those investigations indicate that this ability is dependent on the molecular structure of the DNA. Radiation-induced damages, which lead to an alteration of the molecular structure, should therefore change the electrical impedance of a DNA molecule. In this paper, the damage due to ionising radiation is shown to have a direct effect on the electrical transport properties of DNA. Impedance measurements of DNA samples were carried out by an AC impedance spectrometer before, during and after irradiation. The samples comprised of DNA segments, which were immobilized between gold electrodes with a gap of 12 μm. The impedance of all DNA samples exhibited rising capacitive behaviour with increasing absorbed dose.

  1. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  2. [DNA damage in human pleural mesothelial cells induced by exposure to carbon nanotubes].

    PubMed

    Ogasawara, Yuki; Umezu, Noriaki; Ishii, Kazuyuki

    2012-01-01

    Nanomaterials are currently used in electronics, industrial materials, cosmetics, and medicine because they have useful physicochemical properties, such as strength, conductivity, durability, and chemical stability. As these materials have become widespread, many questions have arisen regarding their effects on health and the environment. In particular, recent studies have demonstrated that carbon nanotubes (CNTs) cause significant inflammation and mesothelioma in vivo. In this study, we investigated the potential risk posed by singlewalled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT) exposure in human pleural mesothelial cells. CNT cytotoxicity was determined by a trypan blue exclusion assay, and DNA damage was detected by an alkaline comet assay. The concentration of 8-oxodeoxyguanosine (8-OHdG) in DNA was measured by high perhormance liquid chromatography with electrochemical detection. The expression of base excision repair enzymes in the cell was estimated by immunoblot analysis. We observed inhibitory effects on cell proliferation and the induction of DNA damage following exposure of cells to purified CNTs that were suspended in dispersion medium. However, accumulation of 8-OHdG in DNA was not found. In addition, the expression levels of base excision enzymes that are involved in hOGG1, hMTH1, and MYH in MeT-5A cells remained unchanged for 24 h after carbon nanotube exposure. CNTs significantly inhibit cell proliferation and decrease DNA damage in human pleural mesothelial cells. Our results indicate that the mechanism of CNT-induced genotoxicity is different from that following exposure to reactive oxygen species, which causes oxidative DNA modifications and 8-OHdG production. Further investigation is required to characterize the specific DNA mutations that occur following CNT exposure.

  3. Effects of a Mangifera indica L. stem bark extract and mangiferin on radiation-induced DNA damage in human lymphocytes and lymphoblastoid cells.

    PubMed

    Rodeiro, I; Delgado, R; Garrido, G

    2014-02-01

    Mangifera indica L. (mango) stem bark aqueous extract (MSBE) that has antioxidant, anti-inflammatory and immunomodulatory properties, can be obtained in Cuba. It is rich in polyphenols, where mangiferin is the main component. In this study, we have tested DNA damage and protection effects of MSBE and mangiferin on primary human lymphocytes and lymphoblastoid cells. Cell suspensions were incubated with the products (50-1000 μg/ml) for experiments on damage induction, and evaluation of any potential protective effects (5-100 μg/ml) for 60 min at 37 °C. Irradiation was performed using a γ-ray source, absorbed dose 5 Gy. At the end of exposure, DNA damage, protection and repair processes were evaluated using the comet assay. MSBE (100-1000 μg/ml) induced DNA damage in a concentration dependent manner in both cell types tested, primary cells being more sensitive. Mangiferin (200 μg/ml) only induced light DNA damage at higher concentrations. DNA repair capacity was not affected after MSBE or mangiferin exposure. On the other hand, MSBE (25 and 50 μg/ml) and mangiferin (5-25 ug/ml) protected against gamma radiation-induced DNA damage. These results show MSBE has protector or harmful effects on DNA in vitro depending on the experimental conditions, which suggest that the extract could be acting as an antioxidant or pro-oxidant product. Mangiferin was involved in protective effects of the extract. © 2013 John Wiley & Sons Ltd.

  4. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  5. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    PubMed

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Visualization of complex DNA damage along accelerated ions tracks

    NASA Astrophysics Data System (ADS)

    Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena

    2018-04-01

    The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.

  7. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  8. DNA damage in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-06-01

    Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons.

    PubMed

    Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Tsvetkov, Andrey S

    2016-05-11

    Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors.

  10. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons

    PubMed Central

    Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Tsvetkov, Andrey S.

    2016-01-01

    Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474

  11. Chromosome territories reposition during DNA damage-repair response

    PubMed Central

    2013-01-01

    Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859

  12. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  13. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  14. DNA vaccination protects mice against Zika virus-induced damage to the testes

    PubMed Central

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  15. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNAmore » populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.« less

  16. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  17. DNA damage, DNA susceptibility to oxidation and glutathione redox status in patients with Alzheimer's disease treated with and without memantine.

    PubMed

    Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız

    2017-07-15

    The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.

    PubMed

    Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L

    2015-09-01

    Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence

  19. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.

    PubMed

    Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado

    2017-06-01

    The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All

  20. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  1. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  2. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  3. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  4. Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes.

    PubMed

    Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin

    2015-04-01

    In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood

  5. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  6. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  7. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.

    PubMed

    Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi

    2017-08-01

    The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    PubMed

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  10. DNA damage-inducible genes as biomarkers for exposures to environmental agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, N.F.; Carpenter, T.R.; Jaramillo, R.J.

    1997-06-01

    A biodosimetric approach to determine alpha-particle dose to the respiratory tract epithelium from known exposures to radon has been developed in the rat. Cytotoxicity assays have been used to obtain dose-conversion factors for cumulative exposures typical of those encountered by underground uranium miners. However, this approach is not sensitive enough to derive close-conversion factors for indoor radon exposures. The expression of DNA damage-inducible genes is being investigated as a biomarker of exposure to radon progeny. Exposure of cultures of A549 cells to alpha particles resulted in an increase in the protein levels of the DNA damage-inducible genes, p53, Cip 1,more » and Gadd45. These protein changes were associated with a transient arrest of cells passing through the cell cycle. This arrest was typified by an increase in the number of cells in the G{sub 1} and G{sub 2} phases and a decrease in the number of cells in the S phase. The effect of inhaled alpha particles (radon progeny) in rats was examined in the epithelial cells of the lateral wall of the anterior nasal cavity. Exposures to radon progeny resulted in a significant increase in the number of cells in the G{sub 1} phase and a decrease in the number of cells in the S phase. These cell-cycle changes were concomitant with an increase in the number of cells containing DNA strand breaks. In addition to ionizing radiation, A549 cells were exposed to 4-nitroquinoline-1-oxide, methyl methanesulphonate, crocidolite asbestos, and glass microfiber. These studies showed that physical and chemical agents induce different expression patterns of p53, Cip 1, and Gadd153 proteins and they could be used to discriminate between toxic and nontoxic materials such as asbestos and glass microfiber. The measurement of gene expression in A549 cells may provide a means to identify a broad spectrum of physical and chemical toxicants encountered in the environment. 9 figs., 42 refs.« less

  11. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  12. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    PubMed

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study

  13. ORGANIC AND INORGANIC ARSENICALS SENSITIZE HUMAN BRONCHIAL EPITHELIAL CELLS TO HYDROGEN PEROXIDE-INDUCED DNA DAMAGE

    EPA Science Inventory

    The lungs are a target organ for arsenic carcinogenesis, however, its mechanism of action remains unclear. Furthermore, it has been suggested that inorganic arsenic (iAs) can potentiate DNA damage induced by other agents. Once inside the human body iAs generally undergoes two ...

  14. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  15. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  16. Lead induced oxidative DNA damage in battery-recycling child workers from Bangladesh.

    PubMed

    Arif, Mohammad; Islam, Mm Towhidul; Shekhar, Hossain Uddin

    2018-04-01

    Lead exposure can damage cells directly by effecting DNA or indirectly by modifying proteins and enzymes. In Bangladesh, many working children are exposed to a very high level of lead during their early life due to their involvement with lead-oriented professions. This imposes a severe threat to the growth and development of the children. Therefore to study the effect of lead, we enrolled 60 age-matched male children, from an area of old Dhaka city, where battery-recycling shops are located, depending on their blood lead concentration. If the children had a plasma lead concentration above the WHO recommended threshold level of 10 µg/dl, we grouped them as test subjects and others as control subjects to determine the effect of lead on different biochemical parameters of the body. Compared to the controls, acculumlation of the lipid peroxidation product, malondialdehyde, increased significantly in test subjects ( p < 0.01). Lead exposure also increased the protein carbonyl content ( p < 0.05) and significantly decreased the plasma glutathione levels of test subjects compared to the controls ( p < 0.05). While comparing the lead-exposed group against controls, it was found that the percentage of damaged DNA, as measured using the Comet assay, significantly increased in tail ( p < 0.01) and decreased in head regions. All of these results suggest that high-plasma lead content may induce an oxidative stress to the study population, which may lead to DNA damage.

  17. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division.

    PubMed

    Singh, Deepti; Narayanamoorthy, Shwetha; Gamre, Sunita; Majumdar, Ananda Guha; Goswami, Manish; Gami, Umesh; Cherian, Susan; Subramanian, Mahesh

    2018-05-20

    Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest

    PubMed Central

    Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.

    2013-01-01

    The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047

  19. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  20. Pregnane X receptor regulates the AhR/Cyp1A1 pathway and protects liver cells from benzo-[α]-pyrene-induced DNA damage.

    PubMed

    Cui, Hongmei; Gu, Xinsheng; Chen, Jingshu; Xie, Ying; Ke, Sui; Wu, Jing; Golovko, Andrei; Morpurgo, Benjamin; Yan, Chunhong; Phillips, Timothy D; Xie, Wen; Luo, Jianyuan; Zhou, Zhijun; Tian, Yanan

    2017-06-05

    Pregnane X receptor (PXR) plays an important role in protecting cells from mutagenic DNA damages induced by endogenous and exogenous toxicants. This protective function is often attributed to the PXR-regulated metabolic detoxification. Here we report a novel potential mechanism that PXR reduces benzo-[α]-pyrene(BaP)-induced DNA damage through inhibiting the transcriptional activity of aryl hydrocarbon receptor (AhR) which plays a pivotal role in the bioactivation of BaP. We have utilized three well-characterized cell lines, i.e. Hepa1c1c7, AhR +/+; Bpr lacks AhR obligatory partner ARNT; Tao, lacks AhR, to analyze pivotal role of AhR/ARNT complex in mediating the BaP-induced DNA damages using comet assay (single-cell gel electrophoresis). We found that PXR activation could significantly inhibit BaP-induced DNA damage in the HepG2 cells as well as mouse hepatocytes. Using PXR-null and wild type mouse hepatocytes we showed that PXR activation by pregnenolone 16α-carbonitrile (PCN) significantly inhibited BaP-induced DNA damage and this protective effect was abolished in PXR-null hepatocytes. Mechanistically, PXR activation inhibited expression of AhR-target genes for CYP1A1, CYP1B1 and CYP1A2 that are required for BaP biotransformation in cultured liver cells, or in the livers of C57BL/6J mice. Using an AhR-responsive reporter assay as well as chromatin immunoprecipitation assay we found that PXR activation transcriptionally represses AhR-regulated gene expression. Furthermore, we found that PXR directly bound AhR at its DNA-binding domain, and this association may play a role in preventing of the AhR from binding to its target genes as shown in the ChIP assay. Taken together, our study has revealed a novel mechanism by which PXR protects liver cells from BaP-induced DNA damage through inhibiting the BaP biotransformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An improved method for the isolation of rat alveolar type II lung cells: Use in the Comet assay to determine DNA damage induced by cigarette smoke.

    PubMed

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive

    2015-06-01

    Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    NASA Astrophysics Data System (ADS)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (p<0.05) from control, both in the absence and presence of BM extract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (p<0.05) in the lymphocytes group treated with 25.0 μEq GA/ml BM extract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  3. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelali, Ala

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers

  4. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  5. OGG1 Involvement in High Glucose-Mediated Enhancement of Bupivacaine-Induced Oxidative DNA Damage in SH-SY5Y Cells

    PubMed Central

    Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan

    2015-01-01

    Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242

  6. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  7. Alterations of GSH and MDA levels and their association with bee venom-induced DNA damage in human peripheral blood leukocytes.

    PubMed

    Gajski, Goran; Domijan, Ana-Marija; Garaj-Vrhovac, Vera

    2012-07-01

    Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV. Copyright © 2012 Wiley Periodicals, Inc.

  8. Mimosa (Mimosa caesalpiniifolia) prevents oxidative DNA damage induced by cadmium exposure in Wistar rats.

    PubMed

    Silva, Marcelo Jose Dias; Vilegas, Wagner; da Silva, Marcelo Aparecido; de Moura, Carolina Foot Gomes; Ribeiro, Flávia Andressa Pidone; da Silva, Victor Hugo Pereira; Ribeiro, Daniel Araki

    2014-12-01

    The Mimosa (Mimosa caesalpiniifolia) is a plant native from South America; it is used in the traditional medicine systems for treating bacterial, fungal, parasitic and inflammatory conditions. The aim of this study was to evaluate the antigenotoxic and antioxidant activities induced by mimosa (M. caesalpiniifolia) in multiple rodent organs subjected to intoxication with cadmium chloride. A total of 40 Wistar rats (8 weeks old, 250 g) were distributed into eight groups (n = 5), as follows: Control group (non-treated group, CTRL); Cadmium exposed group (Cd); cadmium exposure and treated with extract at 62.5 mg/kg/day; cadmium exposure and treated with extract at 125 mg/kg/day; cadmium exposure and treated with extract at 250 mg/kg/day; cadmium exposure and treated with ethyl acetate fraction at 62.5 mg/kg/day. For evaluating the toxicogenetic potential of mimosa, two groups were included in the study being treated with extract at 250 mg/kg/day and acetate fraction of mimosa at 62 mg/kg/day, only. Extract of mimosa at concentrations of 62.5 and 125 mg decreased DNA damage in animals intoxicated with cadmium when compared to cadmium group. In a similar manner, treatment with ethyl acetate fraction of mimosa at 62.5 mg concentration in animals previously exposed to cadmium reduced genetic damage in peripheral blood cells. In a similar manner, the treatment with ethyl acetate fraction reduced DNA damage in liver cells. Oxidative DNA damage was reduced to animals exposed to cadmium and treated with 125 mg of extract as well as those intoxicated to cadmium and treated with 62.5 of acetate fraction of mimosa. Taken together, our results indicate that mimosa prevents genotoxicity induced by cadmium exposure in liver and peripheral blood cells of rats as a result of antioxidant activity.

  9. Bioenergetic metabolites regulate base excision repair dependent cell death in response to DNA damage

    PubMed Central

    Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.

    2009-01-01

    Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071

  10. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals.

    PubMed

    Hawkins, Clare L; Davies, Michael J

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence

  12. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  13. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis

    PubMed Central

    Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.

    2013-01-01

    Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634

  14. Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2015-01-01

    Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136

  15. Mangiferin activates the Nrf2-ARE pathway and reduces etoposide-induced DNA damage in human umbilical cord mononuclear blood cells.

    PubMed

    Zhang, Benping; Zhao, Jie; Li, Shanshan; Zeng, Linglan; Chen, Yan; Fang, Jun

    2015-04-01

    Mangiferin (2-C-β-d-gluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) is a well-known natural antioxidant distributed in various plants of the Anacardiaceae and Gentianaceae families. Mangiferin can inhibit carcinogen-induced lung or colon tumor formation in experimental animals. However, the molecular mechanisms of its chemopreventive activity remain unexplored. This study aimed to investigate the effects of mangiferin on chemical carcinogen-induced DNA damage and Nrf2-ARE signaling in hematopoietic cells. Mononuclear cells (MNCs) were isolated from human umbilical cord blood (hUCB). DNA damage was evaluated by comet and micronucleus assays. The expression of Nrf2 and NQO1 was examined by immunofluorescence and western blotting. An electrophoretic mobility shift assay (EMSA) was used to detect the binding activity of Nrf2 with NQO1-ARE sequences. We found that mangiferin treatment significantly reduced DNA damage in etoposide-treated MNCs, which was verified by decreased olive tail moment (OTM) and micronucleus (MN) frequency. Mangiferin treatment significantly promoted Nrf2 translocation into the nucleus and increased nuclear Nrf2 expression. Moreover, NQO1, an Nrf2 signaling target, was significantly upregulated by mangiferin treatment, and the binding activity of Nrf2 with NQO1-ARE sequences was elevated after mangiferin treatment. Mangiferin activated Nrf2 signaling, upregulated NQO1 expression, and significantly reduced etoposide-induced DNA damage. Thus, mangiferin is a potential cytoprotective agent for hematopoietic cells.

  16. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    PubMed Central

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  17. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    PubMed Central

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  18. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage

    PubMed Central

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin

    2011-01-01

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183

  19. Radioprotective effects of honeybee venom (Apis mellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2009-01-01

    The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.

  20. Linking JNK Activity to the DNA Damage Response

    PubMed Central

    Picco, Vincent

    2013-01-01

    The activity of c-Jun N-terminal kinase (JNK) was initially described as ultraviolet- and oncogene-induced kinase activity on c-Jun. Shortly after this initial discovery, JNK activation was reported for a wider variety of DNA-damaging agents, including γ-irradiation and chemotherapeutic compounds. As the DNA damage response mechanisms were progressively uncovered, the mechanisms governing the activation of JNK upon genotoxic stresses became better understood. In particular, a recent set of papers links the physical breakage in DNA, the activation of the transcription factor NF-κB, the secretion of TNF-α, and an autocrine activation of the JNK pathway. In this review, we will focus on the pathway that is initiated by a physical break in the DNA helix, leading to JNK activation and the resultant cellular consequences. The implications of these findings will be discussed in the context of cancer therapy with DNA-damaging agents. PMID:24349633

  1. NEIL2 Protects against Oxidative DNA Damage Induced by Sidestream Smoke in Human Cells

    PubMed Central

    Sarker, Altaf H.; Chatterjee, Arpita; Williams, Monique; Lin, Sabrina; Havel, Christopher; Jacob III, Peyton; Boldogh, Istvan; Hazra, Tapas K.; Talbot, Prudence; Hang, Bo

    2014-01-01

    Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon–quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer. PMID:24595271

  2. [Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].

    PubMed

    Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming

    2002-10-01

    To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.

  3. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages.

    PubMed

    Fatehi, A N; Bevers, M M; Schoevers, E; Roelen, B A J; Colenbrander, B; Gadella, B M

    2006-01-01

    The main goal of this study was to investigate whether and at what level damage of paternal DNA influences fertilization of oocytes and early embryonic development. We hypothesized that posttesticular sperm DNA damage will only marginally affect sperm physiology due to the lack of gene expression, but that it will affect embryo development at the stage that embryo genome (including the paternal damaged DNA) expression is initiated. To test this, we artificially induced sperm DNA damage by irradiation with x- or gamma rays (doses of 0-300 Gy). Remarkably, sperm cells survived the irradiation quite well and, when compared with nonirradiated cells, sperm motility and integrity of plasma membrane, acrosome, and mitochondria were not altered by this irradiation treatment. In contrast, a highly significant logarithmic relation between irradiation dose and induced DNA damage to sperm cells was found by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and the acridin orange assay. Despite the DNA damage, irradiated sperm cells did not show any sign of apoptosis (nuclear fragmentation, depolarization of inner mitochondrial membranes, or phospholipid scrambling) and were normally capable of fertilizing oocytes, as there was no reduction in cleavage rates when compared with nonirradiated sperm samples up to irradiation doses of less than 10 Gy. Further embryonic development was completely blocked as the blastocyst rates at days 7 and 9 dropped from 28% (nonirradiated sperm) to less than 3% by greater than 2.5-Gy-irradiated sperm. This block in embryonic development was accompanied with the initiation of apoptosis after the second or third cleavage. Specific signs of apoptosis, such as nuclear fragmentation and aberrations in spindle formation, were observed in all embryos resulting from in vitro fertilization with irradiated sperm (irradiation doses >1.25 Gy). The results show that sperm DNA damage does not impair fertilization of the

  4. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  5. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    PubMed

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  6. Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression.

    PubMed

    Zager, Valerija; Cemazar, Maja; Hreljac, Irena; Lah, Tamara T; Sersa, Gregor; Filipic, Metka

    2010-03-01

    Human exposure to genotoxic agents in the environment and everyday life represents a serious health threat. Fast and reliable assessment of genotoxicity of chemicals is of main importance in the fields of new chemicals and drug development as well as in environmental monitoring. The tumor suppressor gene p21, the major downstream target gene of activated p53 which is responsible for cell cycle arrest following DNA damage, has been shown to be specifically up-regulated by genotoxic carcinogens. The aim of our study was to develop a human cell-based biosensor system for simple and fast detection of genotoxic agents. Metabolically active HepG2 human hepatoma cells were transfected with plasmid encoding Enhanced Green Fluorescent Protein (EGFP) under the control of the p21 promoter (p21HepG2GFP). DNA damage was induced by genotoxic agents with known mechanisms of action. The increase in fluorescence intensity, due to p21 mediated EGFP expression, was measured with a fluorescence microplate reader. The viability of treated cells was determined by the colorimetric MTS assay. The directly acting alkylating agent methylmethane sulphonate (MMS) showed significant increase in EGFP production after 48 h at 20 μg/mL. The indirectly acting carcinogen benzo(a)pyren (BaP) and the cross-linking agent cisplatin (CisPt) induced a dose- dependent increase in EGFP fluorescence, which was already significant at concentrations 0.13 μg/mL and 0.41 μg/mL, respectively. Vinblastine (VLB), a spindle poison that does not induce direct DNA damage, induced only a small increase in EGFP fluorescence intensity after 24 h at the lowest concentration (0.1 μg/mL), while exposure to higher concentrations was associated with significantly reduced cell viability. The results of our study demonstrated that this novel assay based on the stably transformed cell line p21HepG2GFP can be used as a fast and simple biosensor system for detection of genetic damage caused by chemical agents.

  7. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    PubMed

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  8. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dizdaroglu, Miral

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the successmore » of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  9. Modulation of inflammation and disease tolerance by DNA damage response pathways.

    PubMed

    Neves-Costa, Ana; Moita, Luis F

    2017-03-01

    The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.

  10. Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model.

    PubMed

    Yao, Xiao; Carlson, Deborah; Sun, Yuxiao; Ma, Lisha; Wolf, Steven E; Minei, Joseph P; Zang, Qun S

    2015-01-01

    We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL-1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL-1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis.

  11. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage.

    PubMed

    Song, Guo Hua; Gao, Ji Ping; Wang, Chun Fang; Chen, Chao Yang; Yan, Xiao Yan; Guo, Min; Wang, Yu; Huang, Fu Bing

    2014-09-01

    Long-term excessive sodium fluoride (NaF) intake can cause many bone diseases and nonskeletal fluorosis. The kidneys are the primary organs involved in the excretion and retention of NaF. The objective of the present study was to determine the effects of NaF treatment on renal cell apoptosis, DNA damage, and the protein expression levels of cytosolic cytochrome C (Cyt C) and cleaved caspases 9, 8, and 3 in vivo. Male Sprague-Dawley rats were divided randomly into four groups (control, low fluoride, medium fluoride, and high fluoride) and administered 0, 50, 100, and 200 mg/L of NaF, respectively, via drinking water for 120 days. Histopathological changes in the kidneys were visualized using hematoxylin and eosin staining. Renal cell apoptosis was examined using flow cytometry, and renal cell DNA damage was detected using the comet assay. Cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein expression levels were visualized using immunohistochemistry and Western blotting. The results showed that NaF treatment increased apoptosis and DNA damage. In addition, NaF treatment increased the protein expression levels of cytosolic Cyt C and cleaved caspases 9, 8, and 3. These results indicated that NaF induces apoptosis in the kidney of rats through caspase-mediated pathway, and DNA damage may be involved in this process.

  12. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  13. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay.

    PubMed

    Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian

    2012-04-20

    To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.

  14. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay

    PubMed Central

    2012-01-01

    Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045

  15. Fundamental mechanisms of DNA radiosensitization: damage induced by low-energy electrons in brominated oligonucleotide trimers.

    PubMed

    Park, Yeunsoo; Polska, Katarzyna; Rak, Janusz; Wagner, J Richard; Sanche, Léon

    2012-08-16

    The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.

  16. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    PubMed

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.

  17. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    PubMed

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  18. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  19. Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants.

    PubMed

    Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria

    2010-01-01

    Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.

  20. Mitochondrial DNA Damage and Diseases.

    PubMed

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  1. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052

  2. [Biomarkers of radiation-induced DNA repair processes].

    PubMed

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. miR-520 promotes DNA-damage-induced trophoblast cell apoptosis by targeting PARP1 in recurrent spontaneous abortion (RSA).

    PubMed

    Dong, Xiujuan; Yang, Long; Wang, Hui

    2017-04-01

    The establishment and maintenance of successful pregnancy mainly depends on trophoblast cells. Their dysfunction has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy. However, the underlying mechanisms of trophoblasts dysfunction remain unclear. DNA-damage-induced cell apoptosis has been reported to play a vital role in cell death. In this study, we identified a novel microRNA (miR-520) in RSA progression via regulating trophoblast cell apoptosis. Microarray analysis showed that miR-520 was highly expressed in villus of RSA patients. By using flow cytometry analysis, we observed miR-520 expression was correlated with human trophoblast cell apoptosis in vitro, along with decreased poly (ADP-ribose) polymerase-1 (PARP1) expression. With the analysis of clinic samples, we observed that miR-520 level was negatively correlated with PARP1 level in RSA villus. In addition, overexpression of PARP1 restored the miR-520-induced trophoblast cell apoptosis in vitro. The status of chromosome in trophoblast implied that miR-520-promoted DNA-damage-induced cell apoptosis to regulate RSA progression. These results indicated that the level of miR-520 might associate with RSA by prompting trophoblast cell apoptosis via PARP1 dependent DNA-damage pathway.

  4. Alkaline ceramidase 2 and its bioactive product sphingosine are novel regulators of the DNA damage response

    PubMed Central

    Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2016-01-01

    Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039

  5. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence.

    PubMed

    Guthrie, Jeffrey W; Limmer, Robert T; Brooks, Eric A; Wisnewski, Chelsea C; Loggins-Davis, Nnekia D; Bouzid, Abderraouf

    2015-01-01

    An immunoassay based on CE-LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL(-1)) of DNA under a low UVB fluence of 65 J m(-2) for CPDs or 195 J m(-2) for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Cross-Linking Interferes With Assessing Sulfur Mustard-Induced DNA Damage in Human Peripheral Blood Lymphocytes Using the Comet Assay

    DTIC Science & Technology

    2004-01-01

    of SM to impede the migration of H,0 2 -damaged mal ian cell lethality with bifunctional alkylating agents . Chemr. Biol. Iriterui. 38:75-86.DNA is an...3100 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010-5400 N-3 position of adenine, and alkylation leads to depurination of Sulfur...mustard (SM) is a blistering agent that produces DNA DNA strands. Subsequent breakage of phosphodiester bonds at strand breaks. To detect SM-induced DNA

  7. Western and Chinese antirheumatic drug-induced T cell apoptotic DNA damage uses different caspase cascades and is independent of Fas/Fas ligand interaction.

    PubMed

    Lai, J H; Ho, L J; Lu, K C; Chang, D M; Shaio, M F; Han, S H

    2001-06-01

    Spontaneous or therapeutic induction of T cell apoptosis plays a critical role in establishing transplantation tolerance and maintaining remission of autoimmune diseases. We investigated the mechanisms of apoptosis induced by Chinese and Western antirheumatic drugs (ARDs) in human T cells. We found that hydroxychloroquine, Tripterygium wilfordii hook F, and tetrandrine (Tet), but not methotrexate, at therapeutic concentrations can cause T cell death. In addition, Tet selectively killed T cells, especially activated T cells. Although ARD-induced cytotoxicity was mediated through apoptotic mechanisms, Fas/Fas ligand interaction was not required. We further demonstrated that the processes of phosphatidylserine externalization and DNA damage along the ARD-induced T cell apoptotic pathway could operate independently, and that selective inhibition of DNA damage by caspase inhibitors did not prevent T cells from undergoing cell death. Moreover, we found that Tet- and Tripterygium wilfordii hook F-induced T cell DNA damage required caspase-3 activity, and hydroxychloroquine-induced T cell DNA damage was mediated through a caspase-3- and caspase-8-independent, but Z-Asp-Glu-Val-Asp-fluomethyl ketone-sensitive, signaling pathway. Finally, the observation that ARD-induced activation of caspase-3 in both Fas-sensitive and Fas-resistant Jurkat T cells indicates that Fas/Fas ligand interaction plays no role in ARD-induced T cell apoptosis. Our observations provide new information about the complex apoptotic mechanisms of ARDs, and have implications for combining Western and Chinese ARDs that have different immunomodulatory mechanisms in the therapy of autoimmune diseases and transplantation rejection.

  8. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    PubMed

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  9. Ordered Conformational Changes in Damaged DNA Induced by Nucleotide Excision Repair Factors*

    PubMed Central

    Tapias, Angels; Auriol, Jerome; Forget, Diane; Enzlin, Jacqueline H.; Schärer, Orlando D; Coin, Frederic; Coulombe, Benoit; Egly, Jean-Marc

    2015-01-01

    In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position −3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position −6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position −19 to +8. XPG and XPF/ERCC1 endo-nucleases then cut the damaged DNA at the limit of the opened structure that was previously “labeled” by the positioning of XPC/HR23B and TFIIH. PMID:14981083

  10. Modulation of DNA-Induced Damage and Repair Capacity in Humans after Dietary Intervention with Lutein-Enriched Fermented Milk

    PubMed Central

    Herrero-Barbudo, Carmen; Soldevilla, Beatriz; Pérez-Sacristán, Belén; Blanco-Navarro, Inmaculada; Herrera, Mercedes; Granado-Lorencio, Fernando; Domínguez, Gemma

    2013-01-01

    Dietary factors provide protection against several forms of DNA damage. Additionally, consumer demand for natural products favours the development of bioactive food ingredients with health benefits. Lutein is a promising biologically active component in the food industry. The EFSA Panel on Dietetic Products, Nutrition and Allergies considers that protection from oxidative damage may be a beneficial physiological effect but that a cause and effect relationship has not been established. Thus, our aim was to evaluate the safety and potential functional effect of a lutein-enriched milk product using the Comet Assay in order to analyze the baseline, the induced DNA-damage and the repair capacity in the lymphocytes of 10 healthy donors before and after the intake of the mentioned product. Our data suggest that the regular consumption of lutein-enriched fermented milk results in a significant increase in serum lutein levels and this change is associated with an improvement in the resistance of DNA to damage and the capacity of DNA repair in lymphocytes. Our results also support the lack of a genotoxic effect at the doses supplied as well as the absence of interactions and side effects on other nutritional and biochemicals markers. PMID:24040187

  11. Origins and consequences of DNA damage in male germ cells.

    PubMed

    Aitken, R John; De Iuliis, Geoffry N

    2007-06-01

    DNA damage in the male germline is associated with poor fertilization rates following IVF, defective preimplantation embryonic development, and high rates of miscarriage and morbidity in the offspring, including childhood cancer. This damage is poorly characterized, but is known to involve hypomethylation of key genes, oxidative base damage, endonuclease-mediated cleavage and the formation of adducts with xenobiotics and the products of lipid peroxidation. There are many possible causes of such DNA damage, including abortive apoptosis, the oxidative stress associated with male genital tract infection, exposure to redox cycling chemicals, and defects of spermiogenesis associated with the retention of excess residual cytoplasm. Physical factors such as exposure to radiofrequency electromagnetic radiation or mild scrotal heating can also induce DNA damage in mammalian spermatozoa, although the underlying mechanisms are unclear. Ultimately, resolving the precise nature of the DNA lesions present in the spermatozoa of infertile men will be an important step towards uncovering the aetiology of this damage and developing strategies for its clinical management.

  12. In vivo antigenotoxic activity of watercress juice (Nasturtium officinale) against induced DNA damage.

    PubMed

    Casanova, Natalia A; Ariagno, Julia I; López Nigro, Marcela M; Mendeluk, Gabriela R; de los A Gette, María; Petenatti, Elisa; Palaoro, Luis A; Carballo, Marta A

    2013-09-01

    The present study was carried out to investigate the genotoxicity as well as possible protective activity against damage induced by cyclophosphamide (CP) of the aqueous juice of watercress (Nasturtium officinale, W.T. Aiton) in vivo. Male and female Swiss mice 7-8 weeks old (N = 48) were treated by gavage with 1 g kg(-1) body weight and 0.5 g kg(-1) body weight of watercress juice during 15 consecutive days. Genotoxicity and its possible protective effect were tested by the comet assay in peripheral blood cells and the micronucleus test in bone marrow. In addition, biopsies of the bladder, epididymis and testicles of mice were performed to extend the experimental design. Watercress juice per se did not induce genetic damage according to the comet assay and micronucleus study, exhibiting a protective activity against CP (P < 0.05 and P < 0.001, respectively). The comparative analysis of bladder histological changes obtained in the watercress plus CP group against those treated with CP alone suggests a probable protective effect. Further studies are needed in order to establish the protective role of watercress juice against DNA damage. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  14. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  15. Fungal beta glucan protects radiation induced DNA damage in human lymphocytes.

    PubMed

    Pillai, Thulasi G; Maurya, Dharmendra K; Salvi, Veena P; Janardhanan, Krishnankutty K; Nair, Cherupally K K

    2014-02-01

    Ganoderma lucidum (Ling Zhi), a basidiomycete white rot macrofungus has been used extensively for therapeutic use in China, Japan, Korea and other Asian countries for 2,000 years. The present study is an attempt to investigate its DNA protecting property in human lymphocytes. Beta glucan (BG) was isolated by standard procedure and the structure and composition were studied by infrared radiation (IR) and nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography and paper chromatography. The radioprotective properties of BG isolated from the macro fungi Ganoderma lucidum was assessed by single cell gel electrophoresis (comet assay). Human lymphocytes were exposed to 0, 1, 2 and 4 Gy gamma radiation in the presence and absence of BG. The comet parameters were reduced by BG. The results indicate that the BG of G. lucidum possessed significant radioprotective activity with DNA repairing ability and antioxidant activity as the suggestive mechanism. The findings suggest the potential use of this mushroom for the prevention of radiation induced cellular damages.

  16. Platinum nanoparticles induce damage to DNA and inhibit DNA replication.

    PubMed

    Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel; Adam, Vojtech

    2017-01-01

    Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.

  17. Platinum nanoparticles induce damage to DNA and inhibit DNA replication

    PubMed Central

    Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel

    2017-01-01

    Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436

  18. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    PubMed

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  19. Glycosylases utilize ``stop and go'' motion to locate DNA damage

    NASA Astrophysics Data System (ADS)

    Nelson, Shane

    2015-03-01

    Oxidative damage to DNA results in alterations that are mutagenic or even cytotoxic. Base excision repair is a mechanism that functions to identify and correct these lesions, and is present in organisms ranging from bacteria to humans. DNA glycosylases are the first enzymes in this pathway and function to locate and remove oxidatively damaged bases, and do so utilizing only thermal energy. However, the question remains of how these enzymes locate and recognize a damaged base among millions of undamaged bases. Utilizing fluorescence video microscopy with high spatial and temporal resolution, we have observed a number of different fluorescently labeled glycosylases (including bacterial FPG, NEI, and NTH as well as mammalian MutyH and OGG). These enzymes diffuse along DNA tightropes at approximately 0.01 +/- 0.005 μm2/s with binding lifetimes ranging from one second to several minutes. Chemically induced damage to the DNA substrate causes a ~ 50% reduction in diffusion coefficients and a ~ 400% increase in binding lifetimes, while mutation of the key ``wedge residue'' - which has been shown to be responsible for damage detection - results in a 200% increase in the diffusion coefficient. Utilizing a sliding window approach to measure diffusion coefficients within individual trajectories, we observe that distributions of diffusion coefficients are bimodal, consistent with periods of diffusive motion interspersed with immobile periods. Utilizing a unique chemo-mechanical simulation approach, we demonstrate that the motion of these glycosylases can be explained as free diffusion along the helical pitch of the DNA, punctuated with two different types of pauses: 1) rapid, short-lived pauses as the enzyme rapidly probes DNA bases to interrogate for damage and, 2) less frequent, longer lived pauses that reflect the enzyme bound to and catalytically removing a damaged base. These simulations also indicate that the wedge residue is critical for interrogation and recognition of

  20. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands.

    PubMed

    Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki

    2016-08-01

    High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.

  1. A novel mechanism of acid and bile acid-induced DNA damage involving Na+/H+ exchanger: implication for Barrett's oesophagus.

    PubMed

    Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina

    2010-12-01

    Barrett's oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pH(i)) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett's oesophagus (CP-A). Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium-hydrogen exchanger (NHE). Nitric oxide (NO), pH(i) and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett's oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. A dose dependent decrease in pH(i) was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pH(i). The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett's oesophagus but an absence of NHE1 in normal epithelium. The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett's oesophagus.

  2. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    PubMed Central

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  3. Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.

    PubMed

    Rai, Prashant; Parrish, Marcus; Tay, Ian Jun Jie; Li, Na; Ackerman, Shelley; He, Fang; Kwang, Jimmy; Chow, Vincent T; Engelward, Bevin P

    2015-06-30

    Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.

  4. Control of G1 arrest after DNA damage.

    PubMed Central

    Kastan, M B; Kuerbitz, S J

    1993-01-01

    The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425

  5. Gold nanoparticles induce DNA damage in the blood and liver of rats

    NASA Astrophysics Data System (ADS)

    Cardoso, Eria; Londero, Eduardo; Ferreira, Gabriela Kozuchovski; Rezin, Gislaine Tezza; Zanoni, Elton Torres; de Souza Notoya, Frederico; Leffa, Daniela Dimer; Damiani, Adriani Paganini; Daumann, Francine; Rohr, Paula; da Silva, Luciano; Andrade, Vanessa M.; da Silva Paula, Marcos Marques

    2014-11-01

    The potential of gold nanoparticles (GNPs) for use in different biological applications has led to a strong interest in the study of their possible deleterious effects in biological systems and how these effects may be mitigated. This study was undertaken to investigate the effects of the acute and chronic administration of GNPs with mean diameters of 10 and 30 nm on deoxyribonucleic acid (DNA) damage in the blood and liver of adult rats. For the acute administration, Wistar adult rats received a single intraperitoneal injection of either GNPs or a saline solution. For the chronic administration, Wistar adult rats received a daily single injection of the same GNPs or saline solution for 28 days. Twenty-four hours after either the single (acute) or final injection (chronic), the rats were euthanised by decapitation, and the blood and liver were isolated for the evaluation of DNA damage. In this study, we demonstrated that the acute and chronic administration of GNPs 10 and 30 nm in size increased the frequency of DNA damage and the damage index in the blood and liver of adult rats. These findings suggest that the DNA damage may be caused by oxidative stress, which occurred regardless of the type of administration and GNP size.

  6. The tumour suppressor CYLD regulates the p53 DNA damage response

    PubMed Central

    Fernández-Majada, Vanesa; Welz, Patrick-Simon; Ermolaeva, Maria A.; Schell, Michael; Adam, Alexander; Dietlein, Felix; Komander, David; Büttner, Reinhard; Thomas, Roman K.; Schumacher, Björn; Pasparakis, Manolis

    2016-01-01

    The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD. PMID:27561390

  7. Electron Nuclear Dynamics Simulations of Proton Cancer Therapy Reactions: Water Radiolysis and Proton- and Electron-Induced DNA Damage in Computational Prototypes.

    PubMed

    Teixeira, Erico S; Uppulury, Karthik; Privett, Austin J; Stopera, Christopher; McLaurin, Patrick M; Morales, Jorge A

    2018-05-06

    Proton cancer therapy (PCT) utilizes high-energy proton projectiles to obliterate cancerous tumors with low damage to healthy tissues and without the side effects of X-ray therapy. The healing action of the protons results from their damage on cancerous cell DNA. Despite established clinical use, the chemical mechanisms of PCT reactions at the molecular level remain elusive. This situation prevents a rational design of PCT that can maximize its therapeutic power and minimize its side effects. The incomplete characterization of PCT reactions is partially due to the health risks associated with experimental/clinical techniques applied to human subjects. To overcome this situation, we are conducting time-dependent and non-adiabatic computer simulations of PCT reactions with the electron nuclear dynamics (END) method. Herein, we present a review of our previous and new END research on three fundamental types of PCT reactions: water radiolysis reactions, proton-induced DNA damage and electron-induced DNA damage. These studies are performed on the computational prototypes: proton + H₂O clusters, proton + DNA/RNA bases and + cytosine nucleotide, and electron + cytosine nucleotide + H₂O. These simulations provide chemical mechanisms and dynamical properties of the selected PCT reactions in comparison with available experimental and alternative computational results.

  8. Hypoxia induced DNA damage in children with isolated septal defect and septal defect with great vessel anomaly of heart.

    PubMed

    G, Vidya; H Y, Suma; Bhat B, Vishnu; Chand, Parkash; Rao K, Ramachandra

    2014-04-01

    In Congenital Heart Disease (CHD), shunting of blood occurs through the anatomical defects which lead to mixing of oxygenated and deoxygenated blood. Chronic hypoxia which occurs due to the above said mechanism has the potency to cause DNA damage in children with CHD. In chronic hypoxia, there is a liberation of Reactive Oxygen Species (ROS) due to tissue injury as a result of ischemia and induction of hypoxia inducible factor - 1HIF-1 and p53 which in turn activates pro-apoptotic factors leading to alteration in the regulation of pro-apoptotic gene Blc-2 to be involved in causing the DNA damage. The extent of chronic hypoxia and the DNA damage depends on the nature of the anatomical heart defect. Hence, the present case-control study was conducted to find out the DNA damage in children with isolated septal defect and septal defect with great vessel anomaly of heart and to compare the same. The study group was categorized into those with isolated septal defects and septal defects associated with great vessel anomaly based on echo-cardiogram. Age and sex matched healthy children were taken as controls. Single-cell gel electrophoresis - Comet Assay of Alkaline Version was performed conventionally and the comets were analyzed using comet score software. The comet metrics was found to be statistically significant in children with isolated septal defect and septal defect with great vessel anomaly when compared with that of the controls. In addition, comet metrics also showed significantly increased DNA damage among children with septal defects associated with great vessel anomaly when compared to isolated septal defects. The data strongly suggests a linear correlation of severity of the anomaly involved with the degree of DNA damage as evidenced by lesser extent of DNA damage in isolated septal defect and greater in septal defect with great vessel anomaly.

  9. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  10. RhoJ Regulates Melanoma Chemoresistance by Suppressing Pathways that Sense DNA Damage

    PubMed Central

    Ho, Hsiang; Aruri, Jayavani; Kapadia, Rubina; Mehr, Hootan; White, Michael A.; Ganesan, Anand K.

    2012-01-01

    Melanomas resist conventional chemotherapeutics in part through intrinsic disrespect of apoptotic checkpoint activation. In this study, using an unbiased genome-wide RNAi screen we identified RhoJ and its effector Pak1, as key modulators of melanoma cell sensitivity to DNA damage. We find that RhoJ activates Pak1 in response to drug-induced DNA damage, which then uncouples ATR from its downstream effectors, ultimately resulting in a blunted DNA damage response (DDR). In addition, ATR suppression leads to the decreased phosphorylation of ATF2, and consequent increased expression of the melanocyte survival gene Sox10 resulting in a higher DDR threshold required to engage melanoma cell death. In the setting of normal melanocyte behavior, this regulatory relationship may facilitate appropriate epidermal melanization in response to UV-induced DNA damage. However, pathological pathway activation during oncogenic transformation produces a tumor that is intrinsically resistant to chemotherapy and has the propensity to accumulate additional mutations. These findings identify DNA damage agents and pharmacological inhibitors of RhoJ/PAK1 as novel synergistic agents that can be used to treat melanomas that are resistant to conventional chemotherapies. PMID:22971344

  11. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  12. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  13. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histonemore » H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.« less

  14. Spectrum of complex DNA damages depends on the incident radiation

    NASA Astrophysics Data System (ADS)

    Hada, M.; Sutherland, B.

    Ionizing radiation induces clustered DNA damages in DNA-two or more abasic sites oxidized bases and strand breaks on opposite DNA strands within a few helical turns Clustered damages are considered to be difficult to repair and therefore potentially lethal and mutagenic damages Although induction of single strand breaks and isolated lesions has been studied extensively little is known of factors affecting induction of clusters other than double strand breaks DSB The aim of the present study was to determine whether the type of incident radiation could affect yield or spectra of specific clusters Genomic T7 DNA a simple 40 kbp linear blunt-ended molecule was irradiated in non-scavenging buffer conditions with Fe 970 MeV n Ti 980 MeV n C 293 MeV n Si 586 MeV n ions or protons 1 GeV n at the NASA Space Radiation Laboratory or with 100 kVp X-rays Irradiated DNA was treated with homogeneous Fpg or Nfo proteins or without enzyme treatment for DSB quantitation then electrophoresed in neutral agarose gels DSB Fpg-OxyPurine clusters and Nfo-Abasic clusters were quantified by number average length analysis The results show that the yields of all these complex damages depend on the incident radiation Although LETs are similar protons induced twice as many DSBs than did X-rays Further the spectrum of damage also depends on the radiation The yield damage Mbp Gy of all damages decreased with increasing linear energy transfer LET of the radiation The relative frequencies of DSBs to Abasic- and OxyBase clusters were higher

  15. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

    PubMed

    Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G

    2018-05-03

    Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

  16. Assessment of the role of DNA repair in damaged forensic samples.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce

    2014-11-01

    Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.

  17. The use of suction blisters to measure sunscreen protection against UVR-induced DNA damage.

    PubMed

    Josse, Gwendal; Douki, Thierry; Le Digabel, Jimmy; Gravier, Eleonore; Questel, Emmanuel

    2018-02-01

    The formation of DNA photoproducts caused by solar UVR exposure needs to be investigated in-vivo and in particular in order to assess sunscreens' level of protection against solar genotoxicity. The study's purposes were: i) to evaluate if the roof of suction blisters is an appropriate sampling method for measuring photoproducts, and ii) to measure in-vivo sunscreen protection against cyclobutane pyrimidine dimers. Skin areas on the interior forearms of eight healthy volunteers were exposed in-vivo to 2 MED of simulated solar radiation (SSR) and to 15 MED on a sunscreen protected area. After irradiation, six suction blisters were induced and the blister roofs were collected. Analysis of SSR-induced CPDs was performed by two independent methods: a chromatography coupled to mass spectroscopy (HPLC-MS/MS) approach and a 3D-imaging of CPD immunostaining by multiphoton microscopy on floating epidermal sheets. HPLC-MS/MS analyses showed that SSR-unexposed skin presented no CPD dimers, whereas 2 MED SSR-exposed skin showed a significant number of TT-CPD. The sunscreen covered skin exposed to 15 MED appeared highly protected from DNA damage, as the amount of CPD-dimers remained below the detection limit. The multiphoton-immunostaining analysis consistently showed that no CPD staining was observed on the non-SSR-exposed skin. A significant increase of CPD staining intensity and number of CPD-positive cells were observed on the 2 MED SSR-exposed skin. Sunscreen protected skin presented a very low staining intensity and the number of CPD-positive cells remained very close to non-SSR-exposed skin. This study showed that suction blister samples are very appropriate for measuring CPD dimers in-vivo, and that sunscreens provide high protection against UVR-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    PubMed

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  19. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat.

    PubMed

    Suresh, Sekar; Prithiviraj, Elumalai; Lakshmi, Nagella Venkata; Ganesh, Mohanraj Karthik; Ganesh, Lakshmanan; Prakash, Seppan

    2013-01-09

    Mucuna pruriens Linn. (M. pruriens) is a leguminous plant that has been recognized as an herbal medicine for improving fertility and related disorders in the Indian traditional system of medicine, however without proper scientific validations. To study the effect of ethanolic seed extract of M. pruriens on mitochondrial dysfunction and the DNA damage in hyperglycemic rat epididymal spermatozoa. Male Wistar albino rats were divided as control (Sham), diabetes induced [streptozotocin 60 mg/kg of body weight (b.w.) in 0.1M citrate buffer] (STZ), diabetic rats administered with 200mg/kg b.w. of extract (STZ+MP) and normal rats administered with 200mg/kg b.w. of extract (Sham+MP). M. pruriens was administered (gavage) once daily for a period of 60 days. On 60th day animals were sacrificed by cervical dislocation sperm were collected from epididymis and subjected various analysis like antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential (MMP). Significant reduction in the sperm count, motility, viability and significant increase in the number of abnormal sperm in STZ compared to sham was noticed. STZ rat sperm showed significant increase in LPO and DNA damage. Both the enzymic and non-enzymic were decreased; MMP and the mitochondrial functions were severely affected in STZ group. The diabetic rats supplemented with M. pruriens showed a remarkable recovery in antioxidant levels and reduced LPO with well preserved sperm DNA. MMP and mitochondrial function test were also preserved in STZ+MP rat sperm. The present study has clearly demonstrated the potency of M. pruriens to reduce the diabetic induced sperm damage induced by oxidative stress (OS). These observations are encouraging to perform similar studies in human. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

    PubMed Central

    2017-01-01

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208

  1. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli

    PubMed Central

    Moore, Jessica M.; Correa, Raul; Rosenberg, Susan M.

    2017-01-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  2. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    PubMed

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  3. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    PubMed

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  4. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  5. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  6. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    PubMed

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect

  7. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  8. Mediator of DNA damage checkpoint 1 (MDC1) contributes to high NaCl-induced activation of the osmoprotective transcription factor TonEBP/OREBP.

    PubMed

    Kunin, Margarita; Dmitrieva, Natalia I; Gallazzini, Morgan; Shen, Rong-Fong; Wang, Guanghui; Burg, Maurice B; Ferraris, Joan D

    2010-08-11

    Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of that factor's transcriptional activity.

  9. Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.

    PubMed

    Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong

    2018-06-14

    DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes.

    PubMed

    Zakaria, N N A; Okello, E J; Howes, M-J; Birch-Machin, M A; Bowman, A

    2018-06-01

    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H 2 O 2 compared with control (H 2 O 2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p < .05). CTW was chemically-characterized using high resolution liquid chromatography-mass spectrometry. The main compounds detected were assigned as anthocyanins derived from delphinidin, including polyacylated ternatins, and flavonol glycosides derived from quercetin and kaempferol. These results demonstrated the protective effects of C. ternatea flower extracts that contain polyacylated anthocyanins and flavonol glycosides as major constituents, against H 2 O 2 and UV-induced oxidative stress on skin cells, and may provide some explanation for the putative traditional and cosmetic uses of C. ternatea flower against skin aging. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Activation of ATM by DNA Damaging Agents

    DTIC Science & Technology

    2004-09-01

    risk for breast cancer . Since many anti-tumor chemotherapeutics used in breast cancer treatment have the capacity to induce DNA DSBs, I have...of a subset of downstream effectors of ATM in two human breast cancer cell lines. Studies are now underway to identify proteins that interact with ATM...implications for the treatment of breast cancer patients harboring mutations in ATM. 14. SUBJECT TERMS 15. NUMBER OF PAGES signal transduction, DNA damage and

  12. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription

    PubMed Central

    Gerasimova, N. S.; Pestov, N. A.; Kulaeva, O. I.; Clark, D. J.; Studitsky, V. M.

    2016-01-01

    ABSTRACT RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure. PMID:27115204

  13. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein.

    PubMed Central

    Stein, B; Rahmsdorf, H J; Steffen, A; Litfin, M; Herrlich, P

    1989-01-01

    UV irradiation of human and murine cells enhances the transcription of several genes. Here we report on the primary target of relevant UV absorption, on pathways leading to gene activation, and on the elements receiving the UV-induced signal in the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, in the gene coding for collagenase, and in the cellular oncogene fos. In order to induce the expression of genes. UV radiation needs to be absorbed by DNA and to cause DNA damage of the kind that cannot be repaired by cells from patients with xeroderma pigmentosum group A. UV-induced activation of the three genes is mediated by the major enhancer elements (located between nucleotide positions -105 and -79 of HIV-1, between positions -72 and -65 of the collagenase gene, and between positions -320 and -299 of fos). These elements share no apparent sequence motif and bind different trans-acting proteins; a member of the NF kappa B family binds to the HIV-1 enhancer, the heterodimer of Jun and Fos (AP-1) binds to the collagenase enhancer, and the serum response factors p67 and p62 bind to fos. DNA-binding activities of the factors recognizing the HIV-1 and collagenase enhancers are augmented in extracts from UV-treated cells. The increase in activity is due to posttranslational modification. While AP-1 resides in the nucleus and must be modulated there, NF kappa B is activated in the cytoplasm, indicating the existence of a cytoplasmic signal transduction pathway triggered by UV-induced DNA damage. In addition to activation, new synthesis of AP-1 is induced by UV radiation. Images PMID:2557547

  14. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  15. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.

    PubMed

    Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei

    2017-07-01

    This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.

  16. Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct

    PubMed Central

    Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.

    2013-01-01

    Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034

  17. In vivo gamma-rays induced initial DNA damage and the effect of famotidine in mouse leukocytes as assayed by the alkaline comet assay.

    PubMed

    Mozdarani, Hossein; Nasirian, Borzo; Haeri, S Abolghasem

    2007-03-01

    Ionizing radiation induces a variety of lesions in DNA, each of which can be used as a bio-indicator for biological dosimetry or the study of the radioprotective effects of substances. To assess gamma ray-induced DNA damage in vivo in mouse leukocytes at various doses and the effect of famotidine, blood was collected from Balb/c male mice after irradiation with 4 Gy gamma-rays at different time intervals post-irradiation. To assess the response, mice were irradiated with doses of gamma-rays at 1 to 4 Grays. Famotidine was injected intra-peritoneally (i.p) at a dose of 5 mg/kg at various time intervals before irradiation. Four slides were prepared from each sample and alkaline comet assay was performed using standard protocols. Results obtained show that radiation significantly increases DNA damage in leukocytes in a dose dependent manner (p < 0.01) when using appropriate sampling time after irradiation, because increasing sampling time after irradiation resulted in a time dependent disappearance of DNA damage. Treatment with only 5 mg/kg famotidine before 4 Gy irradiation led to almost 50% reduction in DNA damage when compared with those animals which received radiation alone. The radioprotective capability of famotidine might be attributed to radical scavenging properties and an anti-oxidation mechanism.

  18. The simultaneous detection of mitochondrial DNA damage from sun-exposed skin of three whale species and its association with UV-induced microscopic lesions and apoptosis.

    PubMed

    Bowman, Amy; Martinez-Levasseur, Laura M; Acevedo-Whitehouse, Karina; Gendron, Diane; Birch-Machin, Mark A

    2013-07-01

    Due to life history and physiological constraints, cetaceans (whales) are unable to avoid prolonged exposure to external environmental insults, such as solar ultraviolet radiation (UV). The majority of studies on the effects of UV on skin are restricted to humans and laboratory animals, but it is important to develop tools to understand the effects of UV damage on large mammals such as whales, as these animals are long-lived and widely distributed, and can reflect the effects of UV across a large geographical range. We and others have used mitochondrial DNA (mtDNA) as a reliable marker of UV-induced damage particularly in human skin. UV-induced mtDNA strand breaks or lesions accumulate throughout the lifespan of an individual, thus constituting an excellent biomarker for cumulative exposure. Based on our previous studies in human skin, we have developed for the first time in the literature a quantitative real-time PCR methodology to detect and quantify mtDNA lesions in skin from sun-blistered whales. Furthermore the methodology allows for simultaneous detection of mtDNA damage in different species. Therefore using 44 epidermal mtDNA samples collected from 15 blue whales, 10 fin whales, and 19 sperm whales from the Gulf of California, Mexico, we quantified damage across 4.3 kilobases, a large region of the ~16,400 base pair whale mitochondrial genome. The results show a range of mtDNA damage in the skin of the three different whale species. This previously unreported observation was correlated with apoptotic damage and microscopic lesions, both of which are markers of UV-induced damage. As is the case in human studies, this suggests the potential use of mtDNA as a biomarker for measuring the effect of cumulative UV exposure in whales and may provide a platform to help understand the effects of changing global environmental conditions. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  19. DNA damage induces down-regulation of Prp19 via impairing Prp19 stability in hepatocellular carcinoma cells.

    PubMed

    Yin, Jie; Zhang, Yi-An; Liu, Tao-Tao; Zhu, Ji-Min; Shen, Xi-Zhong

    2014-01-01

    Pre-mRNA processing factor 19 (Prp19) activates pre-mRNA spliceosome and also mediates DNA damage response. Prp19 overexpression in cells with functional p53 leads to decreased apoptosis and increases cell survival after DNA damage. Here we showed that in hepatocellular carcinoma (HCC) cells with inactive p53 or functional p53, Prp19 was down-regulated due to the impaired stability under chemotherapeutic drug treatment. Silencing Prp19 expression enhanced apoptosis of HCC cells with or without chemotherapeutic drug treatment. Furthermore high level of Prp19 may inhibit chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells through modulating myeloid leukemia cell differentiation 1 expression. These results indicated that targeting Prp19 may potentiate pro-apoptotic effect of chemotherapeutic agents on HCC.

  20. Nicotinamide Enhances Repair of Arsenic and Ultraviolet Radiation-Induced DNA Damage in HaCaT Keratinocytes and Ex Vivo Human Skin

    PubMed Central

    Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2′-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  1. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers.

    PubMed

    Akram, Zertashia; Riaz, Sadaf; Kayani, Mahmood Akhtar; Jahan, Sarwat; Ahmad, Malik Waqar; Ullah, Muhammad Abaid; Wazir, Hizbullah; Mahjabeen, Ishrat

    2018-01-16

    Oxidative stress and DNA damage are considered as possible mechanisms involved in lead toxicity. To test this hypothesis, DNA damage and expression variations of aminolevulinic acid dehydratase (ALAD), superoxide dismutase 2 (SOD2), and 8-oxoguanine DNA glycosylase 2a (OGG1-2a) genes was studied in a cohort of 100 exposed workers and 100 controls with comet assay and real-time polymerse chain reaction (PCR). Results indicated that increased number of comets was observed in exposed workers versus controls (p < 0.001). After qPCR analysis, significant down-regulation in ALAD (p < 0.0001), SOD2 (p < 0.0001), and OGG1-2a (p < 0.0001) level was observed in exposed workers versus controls. Additionally, a positive spearmen correlation was observed between ALAD versus SOD2 (r = 0.402**, p < 0.001), ALAD versus OGG1-2a (r = 0.235*, p < 0.05), and SOD2 versus OGG1-2a (r = 0.292*, p < 0.05). This study showed that lead exposure induces DNA damage, which is accompanied by an elevated intensity of oxidative stress and expression variation of lead-related gene.

  2. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  3. Diet-Induced Weight Loss Reduces DNA Damage and Cardiometabolic Risk Factors in Overweight/Obese Women with Polycystic Ovary Syndrome.

    PubMed

    Soares, Nayara Pereira; Santos, Ana Celly Souza dos; Costa, Eduardo Caldas; Azevedo, George Dantas; Damasceno, Débora Cristina; Fayh, Ana Paula Trussardi; Lemos, Telma Maria Araújo Moura

    2016-01-01

    We aimed to investigate the impact of following a diet to induce weight loss (500 kcal deficit per day) over DNA damage and cardiometabolic risk factors in women with overweight/obesity diagnosed with polycystic ovary syndrome (PCOS). A study was conducted in Natal, RN, Brazil selecting overweight/obese (body mass index ≥25 and <39 kg/m2) women (18-35 years). The levels of DNA damage were assessed by a single cell gel electrophoresis. Repeated 24 h dietary recall questionnaires, anthropometry, biochemical profile and sex hormones were collected at baseline and after 12 weeks of intervention. Women exhibiting a decrease in the markers of DNA damage: tail intensity (24.35 ± 5.86 - pre diet vs. 17.15 ± 5.04 - post-diet; p < 0.001) and tail moment (20.47 ± 7.85 - pre diet vs. 14.13 ± 6.29 - post-diet; p < 0.002). Reduction of calorie intake, weight loss, decreased sexual hormone and cardiometabolic markers such as insulin, homeostasis model assessment of insulin resistance and low-density lipoprotein cholesterol were verified In the multivariate regression analysis, quantitative insulin sensitivity check index and progesterone were responsible for the variation markers in DNA damage before the diet, losing its influence upon diet. DNA damage and the impact of cardiometabolic risk factors decreased after the intervention in women with PCOS, indicating the relevance of a nutritional approach in this group of patients. © 2016 S. Karger AG, Basel.

  4. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression.

    PubMed

    Gore, Prashant R; Prajapati, Chaitali P; Mahajan, Umesh B; Goyal, Sameer N; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R

    2016-01-01

    Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues.

  5. Fungal beta glucan protects radiation induced DNA damage in human lymphocytes

    PubMed Central

    Maurya, Dharmendra K.; Salvi, Veena P.; Janardhanan, Krishnankutty K; Nair, Cherupally K. K.

    2014-01-01

    Background Ganoderma lucidum (Ling Zhi), a basidiomycete white rot macrofungus has been used extensively for therapeutic use in China, Japan, Korea and other Asian countries for 2,000 years. The present study is an attempt to investigate its DNA protecting property in human lymphocytes. Materials and methods Beta glucan (BG) was isolated by standard procedure and the structure and composition were studied by infrared radiation (IR) and nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography and paper chromatography. The radioprotective properties of BG isolated from the macro fungi Ganoderma lucidum was assessed by single cell gel electrophoresis (comet assay). Human lymphocytes were exposed to 0, 1, 2 and 4 Gy gamma radiation in the presence and absence of BG. Results The comet parameters were reduced by BG. The results indicate that the BG of G. lucidum possessed significant radioprotective activity with DNA repairing ability and antioxidant activity as the suggestive mechanism. Conclusions The findings suggest the potential use of this mushroom for the prevention of radiation induced cellular damages. PMID:25332989

  6. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queisser, Nina; Happ, Kathrin; Link, Samuel

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure.more » To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid

  7. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2017-11-01

    We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.

  8. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    PubMed

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  9. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    PubMed

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  10. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: a protective role of melatonin.

    PubMed

    Liu, Chuan; Gao, Peng; Xu, Shang-Cheng; Wang, Yuan; Chen, Chun-Hai; He, Min-Di; Yu, Zheng-Ping; Zhang, Lei; Zhou, Zhou

    2013-11-01

    To evaluate whether exposure to mobile phone radiation (MPR) can induce DNA damage in male germ cells. A mouse spermatocyte-derived GC-2 cell line was exposed to a commercial mobile phone handset once every 20 min in standby, listen, dialed or dialing modes for 24 h. DNA damage was determined using an alkaline comet assay. The levels of DNA damage were significantly increased following exposure to MPR in the listen, dialed and dialing modes. Moreover, there were significantly higher increases in the dialed and dialing modes than in the listen mode. Interestingly, these results were consistent with the radiation intensities of these modes. However, the DNA damage effects of MPR in the dialing mode were efficiently attenuated by melatonin pretreatment. These results regarding mode-dependent DNA damage have important implications for the safety of inappropriate mobile phone use by males of reproductive age and also suggest a simple preventive measure: Keeping mobile phones as far away from our body as possible, not only during conversations but during 'dialed' and 'dialing' operation modes. Since the 'dialed' mode is actually part of the standby mode, mobile phones should be kept at a safe distance from our body even during standby operation. Furthermore, the protective role of melatonin suggests that it may be a promising pharmacological candidate for preventing mobile phone use-related reproductive impairments.

  11. Red light improves spermatozoa motility and does not induce oxidative DNA damage

    NASA Astrophysics Data System (ADS)

    Preece, Daryl; Chow, Kay W.; Gomez-Godinez, Veronica; Gustafson, Kyle; Esener, Selin; Ravida, Nicole; Durrant, Barbara; Berns, Michael W.

    2017-04-01

    The ability to successfully fertilize ova relies upon the swimming ability of spermatozoa. Both in humans and in animals, sperm motility has been used as a metric for the viability of semen samples. Recently, several studies have examined the efficacy of low dosage red light exposure for cellular repair and increasing sperm motility. Of prime importance to the practical application of this technique is the absence of DNA damage caused by radiation exposure. In this study, we examine the effect of 633 nm coherent, red laser light on sperm motility using a novel wavelet-based algorithm that allows for direct measurement of curvilinear velocity under red light illumination. This new algorithm gives results comparable to the standard computer-assisted sperm analysis (CASA) system. We then assess the safety of red light treatment of sperm by analyzing, (1) the levels of double-strand breaks in the DNA, and (2) oxidative damage in the sperm DNA. The results demonstrate that for the parameters used there are insignificant differences in oxidative DNA damage as a result of irradiation.

  12. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less

  13. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  14. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    PubMed

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  15. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II.

    PubMed

    Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.

  16. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  17. CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis.

    PubMed

    Alkreathy, Huda Mohammad; Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2014-11-21

    Sonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats. 36 male Sprague-Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages. Results of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME. These results reveal that treatment of SME may be useful in the prevention of hepatic stress.

  18. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage.

    PubMed

    Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2018-06-01

    In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer

    PubMed Central

    Hardbower, Dana M.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. Given that ∼50% of the global population is infected with this pathogen, there is great impetus to elucidate underlying causes that mediate progression from infection to cancer. Recent evidence suggests that H. pylori-induced chronic inflammation and oxidative stress create an environment conducive to DNA damage and tissue injury. DNA damage leads to genetic instability and eventually, neoplastic transformation. Pathogen-encoded virulence factors induce a robust but futile immune response and alter host pathways that lower the threshold for carcinogenesis, including DNA damage repair, polyamine synthesis and catabolism, antioxidant responses, and cytokine production. Collectively, such dysregulation creates a protumorigenic microenvironment within the stomach. This review seeks to address each of these aspects of H. pylori infection and to call attention to areas of particular interest within this field of research. This review also seeks to prioritize areas of translational research related to H. pylori-induced gastric cancer based on insights garnered from basic research in this field. See related review by Dalal and Moss, At the Bedside: H. pylori, dysregulated host responses, DNA damage, and gastric cancer. PMID:24868089

  20. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments. II. Experimental detection

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The basic 30-nm chromatin fiber in the mammalian cell consists of an unknown (possibly helical) arrangement of nucleosomes, with about 1.2 kb of DNA per 10-nm length of fiber. Track-structure considerations suggest that interactions of single delta rays or high-LET particles with the chromatin fiber might result in the formation of multiple lesions spread over a few kilobases of DNA (see the accompanying paper: W.R. Holley and A. Chatterjee, Radiat. Res. 145, 188-199, 1996). In particular, multiple DNA double-strand breaks and single-strand breaks may form. To test this experimentally, primary human fibroblasts were labeled with [3H]thymidine and exposed at 0 degrees C to X rays or accelerated nitrogen or iron ions in the LET range of 97-440 keV/microns. DNA was isolated inside agarose plugs and subjected to agarose gel electrophoresis under conditions that allowed good separation of 0.1-2 kb size DNA. The bulk of DNA remained in the well or migrated only a small distance into the gel. It was found that DNA fragments in the expected size range were formed linearly with dose with an efficiency that increased with LET. A comparison of the yield of such fragments with the yield of total DNA double-strand breaks suggests that for the high-LET ions a substantial proportion (20-90%) of DNA double-strand breaks are accompanied within 0.1-2 kb by at least one additional DNA double-strand break. It is shown that these results are in good agreement with theoretical calculations based on treating the 30-nm chromatin fiber as the target for ionizing particles. Theoretical considerations also predict that the clusters will contain numerous single-strand breaks and base damages. It is proposed that such clusters be designated "regionally multiply damaged sites." Postirradiation incubation at 37 degrees C resulted in a decline in the number of short DNA fragments, suggesting a repair activity. The biological significance of regionally multiply damaged sites is presently unknown.

  1. In situ analysis of DNA damage response and repair using laser microirradiation.

    PubMed

    Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko

    2007-01-01

    A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.

  2. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  3. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  4. Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage.

    PubMed

    Ahmad, Israr; Jimenez, Hugo; Yaacob, Nik Soriani; Yusuf, Nabiha

    2012-01-01

    Malaysian tualang honey possesses strong antioxidant and anti-inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm(-2) ) irradiation. We found that the treatment of tualang honey inhibited UVB-induced DNA damage, and enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers and 8-oxo-7,8-dihydro-2'-deoxyguanosine. Treatment of tualang honey inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB-induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB-induced COX-2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  5. Acute oral dose of sodium nitrite induces redox imbalance, DNA damage, metabolic and histological changes in rat intestine.

    PubMed

    Ansari, Fariheen Aisha; Ali, Shaikh Nisar; Arif, Hussain; Khan, Aijaz Ahmed; Mahmood, Riaz

    2017-01-01

    Industrialization and unchecked use of nitrate/nitrite salts for various purposes has increased human exposure to high levels of sodium nitrite (NaNO2) which can act as a pro-oxidant and pro-carcinogen. Oral exposure makes the gastrointestinal tract particularly susceptible to nitrite toxicity. In this work, the effect of administration of a single acute oral dose of NaNO2 on rat intestine was studied. Animals were randomly divided into four groups and given single doses of 20, 40, 60 and 75 mg NaNO2/kg body weight. Untreated animals served as the control group. An NaNO2 dose-dependent decline in the activities of brush border membrane enzymes, increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased thiol content was observed in all treated groups. The activities of various metabolic and antioxidant defense enzymes were also altered. NaNO2 induced a dose-dependent increase in DNA damage and DNA-protein crosslinking. Histopathological studies showed marked morphological damage in intestinal cells. The intestinal damage might be due to nitrite-induced oxidative stress, direct action of nitrite anion or chemical modification by reaction intermediates.

  6. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  7. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  8. Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China.

    PubMed

    Alabi, Okunola A; Bakare, Adekunle A; Xu, Xijin; Li, Bin; Zhang, Yuling; Huo, Xia

    2012-04-15

    In the last decade, China and Nigeria have been prime destinations for the world's e-waste disposal leading to serious environmental contamination. We carried out a comparative study of the level of contamination using soils and plants from e-waste dumping and processing sites in both countries. Levels of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were analyzed using gas chromatography/spectrophotometry and heavy metals using atomic absorption spectrophotometry. DNA damage was assayed in human peripheral blood lymphocytes using an alkaline comet assay. Soils and plants were highly contaminated with toxic PAHs, PCBs, PBDEs, and heavy metals in both countries. Soil samples from China and plant samples from Nigeria were more contaminated. There was a positive correlation between the concentrations of organics and heavy metals in plant samples and the surrounding soils. In human lymphocytes, all tested samples induced significant (p<0.05) concentration-dependent increases in DNA damage compared with the negative control. These findings suggest that e-waste components/constituents can accumulate, in soil and surrounding vegetation, to toxic and genotoxic levels that could induce adverse health effects in exposed individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity.

    PubMed

    Jang, Jun-Ho; Bruse, Shannon; Liu, Yushi; Duffy, Veronica; Zhang, Chunyu; Oyamada, Nathaniel; Randell, Scott; Matsumoto, Akiko; Thompson, David C; Lin, Yong; Vasiliou, Vasilis; Tesfaigzi, Yohannes; Nyunoya, Toru

    2014-03-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs. Published by Elsevier Inc.

  10. DNA damage by various radiations

    NASA Astrophysics Data System (ADS)

    Hasegawa, K.; Yoshioka, H.; Yoshioka, H.

    1997-01-01

    In an attempt to shed light on the influence of tritiated water on DNA we have investigated the post-irradiation damage with a simple plasmid DNA, pBR322 and pUC18. The survival of covalently closed circular (CCC) DNA form was directly followed by agarose gel electrophoresis. The survival percentage of DNA in tritiated water was almost the same as with the irradiation with X-rays at the same absorbed dose. For irradiation with γ-rays, on the other hand, the decay rate was larger than those observed with both tritiated water and X-rays. The percentages of breakage for DNA in tritiated water, X-rays and γ-rays were found to be 34, 38 and 33% at 100 Gy of absorbed dose. The effect of dose rate was not observed for irradiation with tritiated water, X-rays and γ-rays. In order to study protection of DNA against radiation, we investigated the protecting effect of tea catechin which is the main component of (-)-epigallocatechin gallate (EGCg). The protection mechanism for DNA against radiation-induced scission has been studied using ESR spin-trapping method.

  11. DNA damage response in nephrotoxic and ischemic kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Mingjuan; Tang, Chengyuan

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore reliesmore » on a thorough elucidation of the DDR pathways in various forms of AKI.« less

  12. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  13. Markers of oxidative DNA damage in human interventions with fruit and berries.

    PubMed

    Freese, Riitta

    2006-01-01

    Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.

  14. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells.

    PubMed

    Zhang, Linhua; Hao, Wenbo; Xu, Lv; Gao, Yongfeng; Wang, Xusheng; Zhu, Dunwan; Chen, Zhuo; Zhang, Xudong; Chen, Hongbo; Mei, Lin

    2017-10-15

    Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Consequently, methenamine mandelate/NaHCO 3 -coloaded nanoparticles caused cell cycle arrest, cell growth inhibition and apoptosis of cancer cells. Moreover, methenamine mandelate/NaHCO 3 -coloaded nanoparticles also show intensive inhibitory effect on the growth of MCF-7 xenograft tumor in vivo. Therefore, methenamine mandelate/NaHCO 3 -coloaded nanoparticle is a promising type of formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical. Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic

  15. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    EPA Science Inventory

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  16. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage

    PubMed Central

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong

    2017-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563

  17. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  18. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-inducedmore » heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.« less

  19. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  20. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  1. Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress.

    PubMed

    Žegura, B; Gajski, G; Štraser, A; Garaj-Vrhovac, V

    2011-11-01

    Cylindrospermopsin (CYN), a potent cyanobacterial cytototoxin produced by certain freshwater cyanobacteria, is regularly found in water supplies in many parts of the world, and has been associated with the intoxication of humans and livestock. The few genotoxicity studies available indicate that CYN is genotoxic, generally implying that it is pro-genotoxic. In human peripheral blood lymphocytes (HPBLs) CYN (0, 0.05, 0.1 and 0.5 μg/ml) induced the formation of DNA single strand breaks, applying the comet assay. Time and dose dependent significant increase in the frequency of micronuclei and nuclear buds was observed after the exposure of HPBLs to CYN, while there was only slight increase in the number of nucleoplasmic bridges. For the first time the modulation of gene expression in HPBLs was studied after the exposure to CYN (0.5 μg/ml), using the quantitative real-time PCR. The genes presumably involved in CYN metabolism (CYP1A1 and CYP1A2) were up-regulated after the exposure. CYN induced changes in the mRNA expression of P53 and its downstream regulated DNA damage responsive genes MDM2, GADD45α and apoptosis genes, BCL-2 and BAX, as well as oxidative stress responsive genes (GPX1, SOD1, GSR, GCLC), while no changes in the expression of genes CDKN1A and CAT were observed. These results provide strong evidence that CYN should be considered as genotoxic and that lymphocytes can also be a target of cylindrospermopsin induced genotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 6-Gingerol prevents MEHP-induced DNA damage in human umbilical vein endothelia cells.

    PubMed

    Yang, G; Gao, X; Jiang, L; Sun, X; Liu, X; Chen, M; Yao, X; Sun, Q; Wang, S

    2017-11-01

    Mono (2-ethylhexyl) phthalate (MEHP) is the principal metabolite of di (2-etylhexyl) phthalate, which is widely used as a plasticizer, especially in medical devices. MEHP has toxic effects on cardiovascular system. The aim of this study was to investigate the possibility that 6-gingerol may inhibit the oxidative DNA damage of MEHP in human umbilical vein endothelial cells (HUVECs) and the potential mechanism. The comet assay was used to monitor DNA strand breaks. We have shown that 6-gingerol significantly reduced the DNA strand breaks caused by MEHP. MEHP increased the levels of reactive oxygen species and malondialdehyde, decreased the level of glutathione and activity of superoxide dismutase, and altered the mitochondrial membrane potential. In addition, DNA damage-associated proteins (p53 and p-Chk2 (T68)) were significantly increased by the treatment of MEHP. Those effects can all be protected by 6-gingerol. The results firmly indicate that 6-gingerol may have a strong protective ability against the DNA damage caused by MEHP in HUVECs, and the mechanism may relate to the antioxidant activity.

  3. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  4. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  5. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  6. Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.

    PubMed

    Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A

    2017-04-01

    Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  8. Fipronil-induced genotoxicity and DNA damage in vivo: Protective effect of vitamin E.

    PubMed

    Badgujar, P C; Selkar, N A; Chandratre, G A; Pawar, N N; Dighe, V D; Bhagat, S T; Telang, A G; Vanage, G R

    2017-05-01

    Fipronil, an insecticide of the phenylpyrazole class has been classified as a carcinogen by United States Environmental Protection Agency, yet very limited information is available about its genotoxic effects. Adult male and female animals were gavaged with various doses of fipronil (2.5, 12.5, and 25 mg/kg body weight (bw)) to evaluate micronucleus test (mice), chromosome aberration (CA), and comet assay (rats), respectively. Cyclophosphamide (40 mg/kg bw; intraperitoneal) was used as positive control. Another group of animals were pretreated with vitamin E orally (400 mg/kg bw) for 5 days prior to administration of fipronil (12.5 mg/kg). Fipronil exposure in both male and female mice caused significant increase in the frequency of micronuclei (MN) in polychromatic erythrocytes. Similarly, structural CAs in bone marrow cells and DNA damage in the lymphocytes was found to be significantly higher in the male and female rats exposed to fipronil as compared to their respective controls. The average degree of protection (male and female animals combined together) shown by pretreatment of vitamin E against fipronil-induced genotoxicity was 63.28%: CAs; 47.91%: MN formation; and 74.70%: DNA damage. Findings of this study demonstrate genotoxic nature of fipronil regardless of gender effect and documents protective role of vitamin E.

  9. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.

    PubMed

    Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L

    2009-11-13

    Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.

  10. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    PubMed

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  11. Detection of DNA damage in individual cells by flow cytometric analysis using anti-DNA monoclonal antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankfurt, O.S.

    A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to themore » drug dose. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.« less

  12. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  13. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  14. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  15. Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures.

    PubMed

    Baumeister, Philipp; Reiter, Maximilian; Kleinsasser, Norbert; Matthias, Christoph; Harréus, Ulrich

    2009-06-01

    Although epidemiological studies indicate cancer preventive effects of diets rich in fruit and vegetables, large clinical intervention studies conducted to evaluate dietary supplementation with micronutrients, mostly vitamins, showed disappointing results in large parts. In contrast, there is encouraging epidemiologic data indicating great chemopreventive potential of a large group of phytochemicals, namely polyphenols. This study shows the DNA protective effect epigallocatechin-3-gallate, a tea catechin, and one of the best-studied substances within this group, on carcinogen-induced DNA fragmentation in upper aerodigestive tract cells. Cell cultures from fresh oropharyngeal mucosa biopsies were preincubated with epigallocatechin-3-gallate in different concentrations before DNA damage was introduced with the metabolically activated carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide or cigarette smoke condensate. Effects on resulting DNA fragmentation were measured using the alkaline single-cell microgel electrophoresis (comet assay). Epigallocatechin-3-gallate significantly reduced benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage by up to 51% (P<0.001). Fragmentation induced by cigarette smoke condensate could be lowered by 47% (P<0.001). Data suggest a cancer preventive potential of epigallocatechin-3-gallate as demonstrated on a subcellular level. An additional mechanism of tea catechin action is revealed by using a primary mucosa culture model.

  16. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    PubMed

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. TAO kinases mediate activation of p38 in response to DNA damage

    PubMed Central

    Raman, Malavika; Earnest, Svetlana; Zhang, Kai; Zhao, Yingming; Cobb, Melanie H

    2007-01-01

    Thousand and one amino acid (TAO) kinases are Ste20p-related MAP kinase kinase kinases (MAP3Ks) that activate p38 MAPK. Here we show that the TAO kinases mediate the activation of p38 in response to various genotoxic stimuli. TAO kinases are activated acutely by ionizing radiation, ultraviolet radiation, and hydroxyurea. Full-length and truncated fragments of dominant negative TAOs inhibit the activation of p38 by DNA damage. Inhibition of TAO expression by siRNA also decreases p38 activation by these agents. Cells in which TAO kinases have been knocked down are less capable of engaging the DNA damage-induced G2/M checkpoint and display increased sensitivity to IR. The DNA damage kinase ataxia telangiectasia mutated (ATM) phosphorylates TAOs in vitro; radiation induces phosphorylation of TAO on a consensus site for phosphorylation by the ATM protein kinase in cells; and TAO and p38 activation is compromised in cells from a patient with ataxia telangiectasia that lack ATM. These findings indicate that TAO kinases are regulators of p38-mediated responses to DNA damage and are intermediates in the activation of p38 by ATM. PMID:17396146

  18. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage

    PubMed Central

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter; Simonsen, Jacob; Glasius, Marianne; Wåhlin, Peter; Raaschou-Nielsen, Ole; Loft, Steffen

    2007-01-01

    Background Particulate matter, especially ultrafine particles (UFPs), may cause health effects through generation of oxidative stress, with resulting damage to DNA and other macromolecules. Objective We investigated oxidative damage to DNA and related repair capacity in peripheral blood mononuclear cells (PBMCs) during controlled exposure to urban air particles with assignment of number concentration (NC) to four size modes with average diameters of 12, 23, 57, and 212 nm. Design Twenty-nine healthy adults participated in a randomized, two-factor cross-over study with or without biking exercise for 180 min and with exposure to particles (NC 6169-15362/cm3) or filtered air (NC 91-542/cm3) for 24 hr. Methods The levels of DNA strand breaks (SBs), oxidized purines as formamidopyrimidine DNA glycolase (FPG) sites, and activity of 7,8-dihydro-8-oxoguanine-DNA glycosylase (OGG1) in PBMCs were measured by the Comet assay. mRNA levels of OGG1, nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), and heme oxygenase-1 (HO1) were determined by real-time reverse transcriptase–polymerase chain reaction. Results Exposure to UFPs for 6 and 24 hr significantly increased the levels of SBs and FPG sites, with a further insignificant increase after physical exercise. The OGG1 activity and expression of OGG1, NUDT1, and HO1 were unaltered. There was a significant dose–response relationship between NC and DNA damage, with the 57-nm mode as the major contributor to effects. Concomitant exposure to ozone, nitrogen oxides, and carbon monoxide had no influence. Conclusion Our results indicate that UFPs, especially the 57-nm soot fraction from vehicle emissions, causes systemic oxidative stress with damage to DNA and no apparent compensatory up-regulation of DNA repair within 24 hr. PMID:17687444

  19. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    PubMed Central

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  20. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    PubMed Central

    Panda, Kamal K.; Golari, Dambaru; Venugopal, A.; Achary, V. Mohan M.; Phaomei, Ganngam; Parinandi, Narasimham L.; Sahu, Hrushi K.; Panda, Brahma B.

    2017-01-01

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH3COO)2) through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn2+ from Zn(CH3COO)2 were tested in a dose range of 0–100 mg·L−1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone. PMID:28524089

  1. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis.

    PubMed

    Conroy, Pauline C; Saladino, Chiara; Dantas, Tiago J; Lalor, Pierce; Dockery, Peter; Morrison, Ciaran G

    2012-10-15

    Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.

  2. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.

    PubMed Central

    Jornot, L; Petersen, H; Junod, A F

    1998-01-01

    In cells undergoing oxidative stress, DNA damage may result from attack by .OH radicals produced by the Fenton reaction, and/or by nucleases activated by nuclear calcium. In the present study, the participation of these two mechanisms was investigated in HeLa cells. Nuclear-targeted aequorin was used for selectively monitoring Ca2+ concentrations within the nuclei ([Ca2+]n), in conjunction with the cell-permeant calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), the lipid-soluble broad-spectrum metal chelator with low affinity for Ca2+ and Mg2+ N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and the high-affinity iron/copper chelator 1, 10-phenanthroline (PHE). In Ca2+-containing medium, H2O2 induced extensive DNA strand breaks and an increase in [Ca2+]n that was almost identical to that observed in the cytosol ([Ca2+]c). In cells bathed in Ca2+-free/EGTA medium, in which the increases in [Ca2+]n and [Ca2+]c due to H2O2 were significantly reduced, similar levels of DNA fragmentation also occurred. In cells preloaded with BAPTA/AM or TPEN, the small increase of [Ca2+]n normally elicited by H2O2 in Ca2+-free medium was completely buffered, and DNA damage was largely prevented. On the other hand, pretreatment with PHE did not affect the calcium response in the nuclei, but completely prevented DNA strand breakage induced by H2O2. Re-addition of 100 microM CuSO4 and 100 microM FeSO4 to TPEN- and PHE-treated cells prior to H2O2 challenge reversed the effect of TPEN and PHE, whereas 1 mM was necessary to negate the effect of BAPTA/AM. The levels of DNA strand breakage observed, however, did not correlate with the amounts of 8-hydroxy 2'-deoxyguanosine (8-OHdG): H2O2 did not produce 8-OHdG, whereas PHE alone slightly increased 8-OHdG levels. CuSO4 and FeSO4 enhanced the effects of PHE, particularly in the presence of H2O2. Exposure of cells to a mixture of CuSO4/FeSO4 also resulted in a significant increase in

  3. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.

    PubMed

    Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena

    2017-03-15

    NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.

  4. Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis.

    PubMed

    Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema

    2016-12-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Comparative analysis of the relative potential of silver, zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis

    PubMed Central

    Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; AL-Ghadhban, Ahmed; Deshmukh, Sachin K.; Carter, James E.; Singh, Ajay P.; Singh, Seema

    2016-01-01

    Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs. PMID:27693632

  6. Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals.

    PubMed

    Shao, Bo; Mao, Li; Qu, Na; Wang, Ya-Fen; Gao, Hui-Ying; Li, Feng; Qin, Li; Shao, Jie; Huang, Chun-Hua; Xu, Dan; Xie, Lin-Na; Shen, Chen; Zhou, Xiang; Zhu, Ben-Zhan

    2017-03-01

    2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H 2 O 2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Protective effect of dry olive leaf extract in adrenaline induced DNA damage evaluated using in vitro comet assay with human peripheral leukocytes.

    PubMed

    Cabarkapa, Andrea; Zivković, Lada; Zukovec, Dijana; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2014-04-01

    Excessive release of stress hormone adrenaline is accompanied by generation of reactive oxygen species which may cause disruption of DNA integrity leading to cancer and age-related disorders. Phenolic-rich plant product dry olive leaf extract (DOLE) is known to modulate effects of various oxidants in human cells. The aim was to evaluate the effect of commercial DOLE against adrenaline induced DNA damage in human leukocytes by using comet assay. Peripheral blood leukocytes from 6 healthy subjects were treated in vitro with three final concentrations of DOLE (0.125, 0.5, and 1mg/mL) for 30 min at 37°C under two different protocols, pretreatment and post-treatment. Protective effect of DOLE was assessed from its ability to attenuate formation of DNA lesions induced by adrenaline. Compared to cells exposed only to adrenaline, DOLE displayed significant reduction (P<0.001) of DNA damage at all three concentrations and under both experimental protocols. Pearson correlation analysis revealed a significant positive association between DOLE concentration and leukocytes DNA damage (P<0.05). Antigenotoxic effect of the extract was more pronounced at smaller concentrations. Post-treatment with 0.125 mg/mL DOLE was the most effective against adrenaline genotoxicity. Results indicate genoprotective and antioxidant properties in dry olive leaf extract, strongly supporting further explorations of its underlying mechanisms of action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    NASA Astrophysics Data System (ADS)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-03-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.

  9. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2006-04-01

    replication in yeast cells. In the prior reporting period we demonstrated that re-replication induces a rapid and significant decrease in cell viability...repair, DNA replication, checkpoint, cell cycle, yeast , RAD9 16. SECURITY CLASSIFICATION OF: 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...initiation, our laboratory has been able to conditionally induce varying amounts of re- replication in yeast cells. Effectively, cells enter, but do not

  10. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    PubMed

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  11. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  12. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin

    2015-07-01

    Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.

  14. PRP19 Transforms into a Sensor of RPA-ssDNA after DNA Damage and Drives ATR Activation via a Ubiquitin-Mediated Circuitry

    PubMed Central

    Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee

    2014-01-01

    Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808

  15. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry.

    PubMed

    Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee

    2014-01-23

    PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Is lack of sleep capable of inducing DNA damage in aged skin?

    PubMed

    Kahan, V; Ribeiro, D A; Egydio, F; Barros, L A; Tomimori, J; Tufik, S; Andersen, M L

    2014-01-01

    Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. The aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation nor sleep restriction increased genetic damage, measured by tail movement and tail intensity values. Taken together, the findings are consistent with the notion that aging overrides the effect of sleep loss on the genetic damage in elderly mice. © 2014 S. Karger AG, Basel.

  17. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed Central

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-01-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication. PMID:9725831

  18. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-09-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.

  19. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation

    PubMed Central

    Mittra, Indraneel; Samant, Urmila; Sharma, Suvarna; Raghuram, Gorantla V; Saha, Tannistha; Tidke, Pritishkumar; Pancholi, Namrata; Gupta, Deepika; Prasannan, Preeti; Gaikwad, Ashwini; Gardi, Nilesh; Chaubal, Rohan; Upadhyay, Pawan; Pal, Kavita; Rane, Bhagyeshri; Shaikh, Alfina; Salunkhe, Sameer; Dutt, Shilpee; Mishra, Pradyumna K; Khare, Naveen K; Nair, Naveen K; Dutt, Amit

    2017-01-01

    Bystander cells of the tumor microenvironment show evidence of DNA damage and inflammation that can lead to their oncogenic transformation. Mediator(s) of cell–cell communication that brings about these pro-oncogenic pathologies has not been identified. We show here that cell-free chromatin (cfCh) released from dying cancer cells are the key mediators that trigger both DNA damage and inflammation in the surrounding healthy cells. When dying human cancer cells were cultured along with NIH3T3 mouse fibroblast cells, numerous cfCh emerged from them and rapidly entered into nuclei of bystander NIH3T3 cells to integrate into their genomes. This led to activation of H2AX and inflammatory cytokines NFκB, IL-6, TNFα and IFNγ. Genomic integration of cfCh triggered global deregulation of transcription and upregulation of pathways related to phagocytosis, DNA damage and inflammation. None of these activities were observed when living cancer cells were co-cultivated with NIH3T3 cells. However, upon intravenous injection into mice, both dead and live cells were found to be active. Living cancer cells are known to undergo extensive cell death when injected intravenously, and we observed that cfCh emerging from both types of cells integrated into genomes of cells of distant organs and induced DNA damage and inflammation. γH2AX and NFκB were frequently co-expressed in the same cells suggesting that DNA damage and inflammation are closely linked pathologies. As concurrent DNA damage and inflammation is a potent stimulus for oncogenic transformation, our results suggest that cfCh from dying cancer cells can transform cells of the microenvironment both locally and in distant organs providing a novel mechanism of tumor invasion and metastasis. The afore-described pro-oncogenic pathologies could be abrogated by concurrent treatment with chromatin neutralizing/degrading agents suggesting therapeutic possibilities. PMID:28580170

  20. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, B.; Sutherland, B.; Bennett, P. V.

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF)more » followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.« less

  1. Low-dose environmental radiation, DNA damage, and cancer: the possible contribution of psychological factors.

    PubMed

    Cwikel, Julie G; Gidron, Yori; Quastel, Michael

    2010-01-01

    Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.

  2. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects

    PubMed Central

    Sprung, Carl N.; Ivashkevich, Alesia; Forrester, Helen B.; Redon, Christophe E.; Georgakilas, Alexandros; Martin, Olga A.

    2013-01-01

    A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the “bystander effect”. These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors. PMID:24041866

  3. Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster.

    PubMed

    Mehdi, Syed Hassan; Qamar, Ayesha

    2013-08-01

    Paraquat (PQ), a quaternary nitrogen herbicide, is commonly used as a pesticide despite of its high toxicity. Our study evaluated the effect of subchronic PQ exposure on the neuropathology, genotoxicity, and antioxidant activity on the nervous tissue of Drosophila melanogaster. We also explored the behavioral effect of PQ on D. melanogaster. Furthermore, we attempted to validate the mechanism by evaluating PQ-induced cytotoxicity on the D-Mel2 cell lines. The fruit fly D. melanogaster serves as a feasible model to understand the mechanism of neurodegenerative diseases. Our study shows a dose-dependent PQ-induced neuropathology in the brain tissue of D. melanogaster as evidenced by hematoxylin and eosin staining, silver nitrate staining, and transmission electron microscopy. Electron microscopic study of D. melanogaster brain tissue exhibited vacuolar degeneration and significant neuronal damage across the nervous tissue structure in comparison with control. Our findings also indicate a dose-dependent locomotor impairment and decreased superoxide dismutase (SOD) specific activity in PQ-treated D. melanogaster. These PQ-induced neuroanatomical changes and decreased SOD specific activity showed a significant association with oxidative DNA damage as observed by alkaline comet assay. Additionally, we show, for the first time, a dose-dependent PQ-induced cytotoxicity in the D-Mel2 cells suggesting loss of neuronal cell viability via cytotoxic damage. Our data suggest that PQ exposure results in neurodegeneration in D. melanogaster and that fruit fly is a suitable in vivo model for correlating the neuroanatomical changes with neurotoxic damages to nervous system.

  4. Monte Carlo approach in assessing damage in higher order structures of DNA

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Schmidt, J. B.; Holley, W. R.

    1994-01-01

    We have developed a computer monitor of nuclear DNA in the form of chromatin fibre. The fibres are modeled as a ideal solenoid consisting of twenty helical turns with six nucleosomes per turn. The chromatin model, in combination with are Monte Carlo theory of radiation damage induces by charged particles, based on general features of tack structure and stopping power theory, has been used to evaluate the influence of DNA structure on initial damage. An interesting has emerged from our calculations. Our calculated results predict the existence of strong spatial correlations in damage sites associated with the symmetries in the solenoidal model. We have calculated spectra of short fragments of double stranded DNA produced by multiple double strand breaks induced by both high and low LET radiation. The spectra exhibit peaks at multiples of approximately 85 base pairs (the nucleosome periodicity), and approximately 1000 base pairs (solenoid periodicity). Preliminary experiments to investigate the fragment distributions from irradiated DNA, made by B. Rydberg at Lawrence Berkeley Laboratory, confirm the existence of short DNA fragments and are in substantial agreement with the predictions of our theory.

  5. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    PubMed

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Linking loss of sodium-iodide symporter expression to DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less

  7. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing

    PubMed Central

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  8. Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.

    PubMed

    Lieberman, Rachel; You, Ming

    2017-07-15

    The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.

  9. NIST gold nanoparticle reference materials do not induce oxidative DNA damage.

    PubMed

    Nelson, Bryant C; Petersen, Elijah J; Marquis, Bryce J; Atha, Donald H; Elliott, John T; Cleveland, Danielle; Watson, Stephanie S; Tseng, I-Hsiang; Dillon, Andrew; Theodore, Mellisa; Jackman, Joany

    2013-02-01

    One primary challenge in nanotoxicology studies is the lack of well-characterised nanoparticle reference materials which could be used as positive or negative nanoparticle controls. The National Institute of Standards and Technology (NIST) has developed three gold nanoparticle (AuNP) reference materials (10, 30 and 60 nm). The genotoxicity of these nanoparticles was tested using HepG2 cells and calf-thymus DNA. DNA damage was assessed based on the specific and sensitive measurement of four oxidatively-modified DNA lesions (8-hydroxy-2´-deoxyguanosine, 8-hydroxy-2´-deoxyadenosine, (5´S)-8,5´-cyclo-2´-deoxyadenosine and (5´R)-8,5´-cyclo-2´-deoxyadenosine) using liquid chromatography/tandem mass spectrometry. Significantly elevated, dose-dependent DNA damage was not detected at concentrations up to 0.2 μg/ml, and free radicals were not detected using electron paramagnetic resonance spectroscopy. These data suggest that the NIST AuNPs could potentially serve as suitable negative-control nanoparticle reference materials for in vitro and in vivo genotoxicity studies. NIST AuNPs thus hold substantial promise for improving the reproducibility and reliability of nanoparticle genotoxicity studies.

  10. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen.

    PubMed

    Tan, Chaochao; Lu, Shijie; Wang, Yupeng; Zhu, Yan; Shi, Ting; Lin, Mingyue; Deng, Zhonghua; Wang, Zhu; Song, Nana; Li, Shuna; Yang, Pingting; Yang, Liyan; Liu, Yuanyuan; Chen, Zhiheng; Xu, Keqian

    2017-09-01

    The specific effects of long-term exposure to high air pollution on human health and biological remain unclear. To explore the adverse health effects as well as biological mechanisms and biomarkers for durative exposure to air pollution, 183 traffic policemen and 88 office policemen were enrolled in this study. The concentration of PM2.5 in both the traffic and office policemen's working environments were obtained. Detailed personal questionnaires were completed and levels of inflammation, oxidative stress and DNA damage markers of all participants were analyzed in this study. The average PM2.5 concentration of the intersections of main roads and the offices of control group were 132.4±48.9μg/m 3 and 50.80±38.6μg/m 3 , respectively. The traffic policemen, who stably exposed to at least 2 times higher PM2.5 in their work area as compared with the control group, have a median average duration of 7.00years, and average cumulative intersection duty time reached 8030h. No statistically significant differences in the levels of inflammation markers were observed between the traffic and office policemen. However, the DNA damage markers in traffic policemen shared significant positive correlation with cumulative intersection duty time and higher than those in the office policemen. Multiple linear regression analysis demonstrated that the increase of cumulative intersection duty time by 1h per day for one year was associated with the increase in 8-hydroxy-20-deoxyguanosine of 0.329% (95% CI: 0.249% to 0.409%), tail DNA of 0.051% (95% CI: 0.041% to 0.061%), micronucleus frequency of 0.036‰ (95% CI: 0.03‰ to 0.043‰), and a decrease in glutathione of 0.482% (95% CI: -0.652% to -0.313%). These findings suggest that long-term exposure to high air pollution could induce cumulative DNA damages, supporting the hypothesis that durative exposure to air pollution is associated with an increased risk of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Diseases Associated with Defective Responses to DNA Damage

    PubMed Central

    O’Driscoll, Mark

    2012-01-01

    Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways. PMID:23209155

  12. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  13. Zinc ion enhances GABA tea-mediated oxidative DNA damage.

    PubMed

    Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih

    2012-02-15

    GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.

  14. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  15. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less

  16. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy

    PubMed Central

    Mishra, Manish; Lillvis, John; Seyoum, Berhane; Kowluru, Renu A.

    2016-01-01

    Purpose In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. Methods Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. Results Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. Conclusions Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy. PMID:27494345

  17. Jatropha curcas leaf and bark fractions protect against ultraviolet radiation-B induced DNA damage in human peripheral blood lymphocytes.

    PubMed

    Sundari, J; Selvaraj, R; Rajendra Prasad, N; Elumalai, R

    2013-11-01

    The present study is conducted to investigate the antioxidant potential of Jatropha curcas root bark extract (RB4 fraction) and leaf extract (L1 fraction), and to study their effects on UVB-radiation-induced DNA damage in cultured human blood lymphocytes. In this study, J. curcas showed strong antioxidant property in different free radical scavenging systems. Both the fractions effectively scavenged hydroxyl (OH), superoxide anion (O₂(·-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical cation (ABTS(·+)) in a concentration-dependent manner. The IC₅₀ (Inhibitory Concentration 50) values of J. curcas fractions were compared to standard ascorbic acid used in this study. The antioxidant potential of a compound was directly proportional to the photoprotective effect. In this study, human peripheral blood lymphocytes (HPBL) were exposed to UVB-radiation and there was an increase in comet attributes (% tail DNA, tail length, tail movement and Olive tail moment). Jatropha curcas RB4 fraction and L1 fraction treatment before UVB-irradiation significantly decreased the % tail DNA, tail length, tail moment and Olive tail moment in irradiated HPBL. These results suggested that J. curcas exhibited strong antioxidant property and RB4 and L1 fractions protected UVB-radiation-induced DNA damage in HPBL. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage.

    PubMed

    Paiva, Isabel; Pinho, Raquel; Pavlou, Maria Angeliki; Hennion, Magali; Wales, Pauline; Schütz, Anna-Lena; Rajput, Ashish; Szego, Éva M; Kerimoglu, Cemil; Gerhardt, Ellen; Rego, Ana Cristina; Fischer, André; Bonn, Stefan; Outeiro, Tiago F

    2017-06-15

    Alpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones. Our study aimed at evaluating the impact of wild-type (WT) and mutant A30P aSyn on gene expression, in a dopaminergic neuronal cell model, and decipher potential mechanisms underlying aSyn-mediated transcriptional deregulation. We performed gene expression analysis using RNA-sequencing in Lund Human Mesencephalic (LUHMES) cells expressing endogenous (control) or increased levels of WT or A30P aSyn. Compared to control cells, cells expressing both aSyn variants exhibited robust changes in the expression of several genes, including downregulation of major genes involved in DNA repair. WT aSyn, unlike A30P aSyn, promoted DNA damage and increased levels of phosphorylated p53. In dopaminergic neuronal cells, increased aSyn expression led to reduced levels of acetylated histone 3. Importantly, treatment with sodium butyrate, a histone deacetylase inhibitor (HDACi), rescued WT aSyn-induced DNA damage, possibly via upregulation of genes involved in DNA repair. Overall, our findings provide novel and compelling insight into the mechanisms associated with aSyn neurotoxicity in dopaminergic cells, which could be ameliorated with an HDACi. Future studies will be crucial to further validate these findings and to define novel possible targets for intervention in PD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and anticancer drug effectiveness

    PubMed Central

    McAdam, Elizabeth; Brem, Reto; Karran, Peter

    2016-01-01

    The relationship between sun exposure and non-melanoma skin cancer risk is well established. Solar ultraviolet radiation (UV; wavelengths 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 mn) component of solar UV radiation increases skin cancer risk is not understood. We demonstrate here that the contribution of UVA to the effects of UV radiation on cultured human cells is largely independent of its ability to damage DNA. Instead, the effects of UVA reflect the induction of oxidative stress that causes extensive protein oxidation. Because NER proteins are among those damaged, UVA irradiation inhibits NER and increases the cells’ susceptibility to mutation by UVB. NER inhibition is a common consequence of oxidative stress. Exposure to chemical oxidants, treatment with drugs that deplete cellular antioxidants, and interventions that interfere with glucose metabolism to disrupt the supply of cellular reducing power all inhibit NER. Tumor cells are often in a condition of oxidative stress and one effect of the NER inhibition that results from stress-induced protein oxidation is an increased sensitivity to the anticancer drug cisplatin. Statement of implication: Since NER is both a defence against cancer a significant determinant of cell survival after treatment with anticancer drugs, its attenuation by protein damage under conditions of oxidative-stress has implications for both cancer risk and for the effectiveness of anticancer therapy. PMID:27106867

  20. Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?

    PubMed

    Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio

    2010-02-01

    The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.

  1. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-Replication

    DTIC Science & Technology

    2005-04-01

    with 50’C SCE (1 M sorbitol, 0.1 M Na Antcdc6p becomes undetectable within 30 mi after galac- citrate , and 10 mM EDTA). Lyticase was added to a final...and then placed in SCEM + lyticase [1 M sorbitol, decrease in colony-forming units after 3 h in galactose. In 0.1 M Na citrate , 10 mM EDTA, 5% j3...nocodazole, exposed to 20 /g/ml of the DNA damag- sponse triggered by rereplication. The nearly complete con- ing agent phleomycin, and examined by

  2. Evaluation of DNA damage in flight personnel by Comet assay.

    PubMed

    Cavallo, Delia; Tomao, Paola; Marinaccio, Alessandro; Perniconi, Barbara; Setini, Andrea; Palmi, Silvana; Iavicoli, Sergio

    2002-04-26

    There have been some suggestions that air-crew are at a higher-than-normal risk of developing cancer, since they are exposed to potential genotoxic factors. These include cosmic radiations, airborne pollutants such as the combustion products of jet propulsion, ozone, and electromagnetic fields. We used the Comet assay to investigate DNA damage in flight personnel with the aim of assessing potential health hazards in this occupational category. We studied 40 civil air-crew members who had been flying long-haul routes for at least 5 years, and compared them with a homogeneous control group of 40 healthy male ground staff. The Comet assay, or single-cell gel electrophoresis (SCGE), detects DNA single- and double-strand breaks (DSBs) and alkali-labile lesions in individual cells, and is a powerful and sensitive technique for detecting genetic damage induced by different genotoxic agents. Taking into consideration occupational risk and possible confounding factors, this assay showed a small increase, that did not reach statistical significance, of DNA damage in long-haul crew members compared to controls, indicating a lack of evident genotoxic effects. An association, although again not statistically significant, was found between reduced DNA damage and use of protective drugs (antioxidants).

  3. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  4. Detection of damaged DNA bases by DNA glycosylase enzymes.

    PubMed

    Friedman, Joshua I; Stivers, James T

    2010-06-22

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.

  5. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  6. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma

  7. Incision of trivalent chromium [Cr(III)]-induced DNA damage by Bacillus caldotenax UvrABC endonuclease.

    PubMed

    O'Brien, Travis J; Jiang, Guohui; Chun, Gina; Mandel, H George; Westphal, Craig S; Kahen, Kaveh; Montaser, Akbar; States, J Christopher; Patierno, Steven R

    2006-11-07

    Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.

  8. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure.

    PubMed

    Sharma, Madhu; Chadha, Pooja

    2017-07-01

    The detection of a possible DNA damaging effect of 4-nonylphenol (NP) after subchronic exposure and repair after cessation of exposure to Channa punctatus is the aim of the present study. Channa punctatus was exposed to different concentrations (0.15 mg/l, 0.10 mg/l, and 0.07 mg/l) of NP along with positive control (ethanol) and negative control (water) for 90 d and after that allowed to recover for 30 d. Comet assay and micronucleus assay were used for the determination of DNA damage and repair by using blood cells. The effect was seen after 30, 60, and 90 d of exposure. Time- and dose-dependent increase in DNA damage was found as revealed by both the end points studied. Evident recovery was observed after 30 d of cessation of exposure. Blood cells were successfully appeared to achieve the restoration of DNA integrity. Hence, the study aimed to improve the knowledge of the genetic hazard to fish associated with NP exposure and provide a wide scope to discover the efficiency of DNA repair system in C. punctatus.

  9. Requirement of the Saccharomyces cerevisiae APN1 Gene for the Repair of Mitochondrial DNA Alkylation Damage

    PubMed Central

    Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.

    2010-01-01

    The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988

  10. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  11. DNA damage protective effect of honey-sweetened cashew apple nectar in Drosophila melanogaster

    PubMed Central

    da Silva, Robson Alves; Dihl, Rafael Rodrigues; Dias, Lucas Pinheiro; Costa, Maiane Papke; de Abreu, Bianca Regina Ribas; Cunha, Kênya Silva; Lehmann, Mauricio

    2016-01-01

    Abstract Fruits and derivatives, such as juices, are complex mixtures of chemicals, some of which may have mutagenic and/or carcinogenic potential, while others may have antimutagenic and/or anticancer activities. The modulating effects of honey-sweetened cashew apple nectar (HSCAN), on somatic mutation and recombination induced by ethyl methanesulfonate (EMS) and mitomycin C (MMC) were evaluated with the wing spot test in Drosophila melanogaster using co- and post-treatment protocols. Additionally, the antimutagenic activity of two HSCAN components, cashew apple pulp and honey, in MMC-induced DNA damage was also investigated. HSCAN reduced the mutagenic activity of both EMS and MMC in the co-treatment protocol, but had a co-mutagenic effect when post-administered. Similar results were also observed with honey on MMC mutagenic activity. Cashew apple pulp was effective in exerting protective or enhancing effects on the MMC mutagenicity, depending on the administration protocol and concentration used. Overall, these results indicate that HSCAN, cashew apple and honey seem capable of modulating not only the events that precede the induced DNA damages, but also the Drosophila DNA repair processes involved in the correction of EMS and MMC-induced damages. PMID:27560988

  12. A-Type Lamins Maintain the Positional Stability of DNA Damage Repair Foci in Mammalian Nuclei

    PubMed Central

    Mahen, Robert; Hattori, Hiroyoshi; Lee, Miyoung; Sharma, Pooja; Jeyasekharan, Anand D.; Venkitaraman, Ashok R.

    2013-01-01

    A-type lamins encoded by LMNA form a structural fibrillar meshwork within the mammalian nucleus. How this nuclear organization may influence the execution of biological processes involving DNA transactions remains unclear. Here, we characterize changes in the dynamics and biochemical interactions of lamin A/C after DNA damage. We find that DNA breakage reduces the mobility of nucleoplasmic GFP-lamin A throughout the nucleus as measured by dynamic fluorescence imaging and spectroscopy in living cells, suggestive of incorporation into stable macromolecular complexes, but does not induce the focal accumulation of GFP-lamin A at damage sites. Using a proximity ligation assay and biochemical analyses, we show that lamin A engages chromatin via histone H2AX and its phosphorylated form (γH2AX) induced by DNA damage, and that these interactions are enhanced after DNA damage. Finally, we use three-dimensional time-lapse imaging to show that LMNA inactivation significantly reduces the positional stability of DNA repair foci in living cells. This defect is partially rescued by the stable expression of GFP-lamin A. Thus collectively, our findings suggest that the dynamic structural meshwork formed by A-type lamins anchors sites of DNA repair in mammalian nuclei, providing fresh insight into the control of DNA transactions by nuclear structural organization. PMID:23658700

  13. DNA damage response in monozygotic twins discordant for smoking habits.

    PubMed

    Marcon, Francesca; Carotti, Daniela; Andreoli, Cristina; Siniscalchi, Ester; Leopardi, Paola; Caiola, Stefania; Biffoni, Mauro; Zijno, Andrea; Medda, Emanuela; Nisticò, Lorenza; Rossi, Sabrina; Crebelli, Riccardo

    2013-03-01

    Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated. In this investigation, a population of 22 couples of monozygotic twins with discordant smoking habits was selected with the aim of evaluating the influence of tobacco smoke on individual response to DNA damage. The study design virtually eliminated the contribution of genetic heterogeneity to the intra-pair variation in DNA damage response, and thus any difference in the end-points investigated could directly be attributed to the non-shared environment experienced by co-twins, which included as main factor cigarette smoke exposure. Peripheral lymphocytes of study subjects were challenged ex vivo with γ-rays, and the induction, processing, fixation of DNA damage evaluated through multiple approaches. Folate status of study subjects was considered significant covariate since it is affected by smoking habits and can influence radiosensitivity. Similar responses were elicited by γ-rays in co-twins for all the end-points analysed, despite their discordant smoking habits. Folate status did not modify DNA damage response, even though a combined effect of smoking habits, low-plasma folic acid level, and ionising radiation was observed on apoptosis. A possible modulation of DNA damage response by duration and intensity of tobacco smoke exposure was suggested by Comet assay and micronucleus data, but the effect was quantitatively limited. Overall, the results obtained indicate that differences in smoking habits do not contribute to a large extent to inter-individual variability in the response to radiation-induced DNA damage observed in healthy human populations.

  14. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans.

    PubMed

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2006-07-01

    Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Fifty-one men and women aged 18-70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138-550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dysfunction also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected.

  15. Unrepaired clustered DNA lesions induce chromosome breakage in human cells

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Chen, David J.

    2011-01-01

    Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720

  16. Close encounters for the first time: Helicase interactions with DNA damage.

    PubMed

    Khan, Irfan; Sommers, Joshua A; Brosh, Robert M

    2015-09-01

    DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism. Published by Elsevier B.V.

  17. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    PubMed

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  18. DNA-targeted 2-nitroimidazoles: studies of the influence of the phenanthridine-linked nitroimidazoles, 2-NLP-3 and 2-NLP-4, on DNA damage induced by ionizing radiation.

    PubMed

    Buchko, Garry W; Weinfeld, Michael

    2002-09-01

    The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine by a 3- and 4-carbon linker, respectively. Previous in vitro assays showed both compounds to be 10-100 times more efficient as hypoxic cell radiosensitizers (based on external drug concentrations) than the untargeted 2-nitroimidazole radiosensitizer, misonidazole (Cowan et al., Radiat. Res. 127, 81-89, 1991). Here we have used a (32)P postlabeling assay and 5'-end-labeled oligonucleotide assay to compare the radiation-induced DNA damage generated in the presence of 2-NLP-3, 2-NLP-4, phenanthridine and misonidazole. After irradiation of the DNA under anoxic conditions, we observed a significantly greater level of 3'-phosphoglycolate DNA damage in the presence of 2-NLP-3 or 2-NLP-4 compared to irradiation of the DNA in the presence of misonidazole. This may account at least in part for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole. Of the two nitroimidazole-linked phenanthridines, the better in vitro radiosensitizer, 2-NLP-4, generated more 3'-phosphoglycolate in DNA than did 2-NLP-3. At all concentrations, phenanthridine had little effect on the levels of DNA damage, suggesting that the enhanced radiosensitization displayed by 2-NLP-3 and 2-NLP-4 is due to the localization of the 2-nitroimidazole to the DNA by the phenanthridine substituent and not to radiosensitization by the phenanthridine moiety itself.

  19. α-Lipoic acid attenuates transplacental nicotine-induced germ cell and oxidative DNA damage in adult mice.

    PubMed

    Anto, Santo K; Koyada, Naresh; Khan, Sabbir; Jena, Gopabandhu

    2016-11-01

    Smoking during pregnancy is associated with numerous fetal and developmental complications and reproductive dysfunctions in the offspring. Nicotine is one of the key chemicals of tobacco responsible for addiction. The present study was aimed to investigate the protective role of α-lipoic acid (ALA) during the transplacental nicotine-induced germ cell and DNA damage in the offspring of Swiss mice. Pregnant mice were treated with nicotine (20 mg/kg/day) in drinking water from 10 to 20 days of gestation period, and ALA (120 mg/kg/day) was administered orally for the same period. Endpoint of evaluation includes general observations at delivery and throughout the study, litter weight and size, sperm count and sperm head morphology, while structural damages and protein expression were assessed by histology and immunohistochemistry, respectively. Maternal nicotine exposure led to decreased growth rate, litter and testicular weight, testosterone level, 3β-HSD expression and sperm count as well as increased sperm head abnormalities, micronucleus frequency and 8-oxo-dG positive cells, and the effects have been restored by ALA supplementation. The present study clearly demonstrated that ALA ameliorates nicotine-associated oxidative stress, DNA damage and testicular toxicity in the offspring by improving steroidogenesis, spermatogenesis and sperm count.

  20. Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response.

    PubMed

    Salton, Maayan; Lerenthal, Yaniv; Wang, Shih-Ya; Chen, David J; Shiloh, Yosef

    2010-04-15

    The DNA damage response (DDR) is a complex signaling network that is induced by DNA lesions and vigorously activated by double strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which phosphorylates key players in its various branches. SFPQ (PSF) and NONO (p54) are nuclear proteins that interact with each other and have diverse roles in nucleic acids metabolism. The SFPQ/NONO heterodimer was previously found to enhance DNA strand break rejoining in vitro. Our attention was drawn to these two proteins as they interact with the nuclear matrix protein Matrin 3 (MATR3), which we found to be a novel ATM target. We asked whether SFPQ and NONO too are involved in the DSB response. Proteins that function at the early phase of this response are often recruited to the damaged sites. We observed rapid recruitment of SFPQ/NONO to sites of DNA damage induced by laser microbeam. In MATR3 knockdown cells SFPQ/NONO retention at DNA damage sites was prolonged. SFPQ and MATR3 depletion led to abnormal accumulation of cells at the S-phase of the cell cycle following treatment with the radiomimetic chemical neocarzinostatin. Notably, proteins involved in DSB repair via nonhomologous end-joining co-immunoprecipitated with NONO; SFPQ depletion delayed DSB repair. Collectively the data suggest that SFPQ, NONO and MATR3 are involved in the early stage of the DSB response, setting the scene for DSB repair.

  1. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    PubMed

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  2. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  3. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    PubMed

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. XRN2 Links Transcription Termination to DNA Damage and Replication Stress

    PubMed Central

    Patidar, Praveen L.; Motea, Edward A.; Dang, Tuyen T.; Manley, James L.

    2016-01-01

    XRN2 is a 5’-3’ exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability. PMID:27437695

  5. XRN2 Links Transcription Termination to DNA Damage and Replication Stress.

    PubMed

    Morales, Julio C; Richard, Patricia; Patidar, Praveen L; Motea, Edward A; Dang, Tuyen T; Manley, James L; Boothman, David A

    2016-07-01

    XRN2 is a 5'-3' exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability.

  6. Ambient Particulate Matter Induces Oxidative Dna Damage in Lung Epithelial Cells.

    PubMed

    Knaapen, A M; Schins, R P; Steinfartz, Y; Doris, H; Dunemann, L; Borm, P J

    2000-01-01

    Although epidemiological studies have established a correlation between PMIO levels and acute cardiovascular and respiratory complications, hardly any data is available on possible chronic effects such as cancer. The purpose of this study was to investigate the production of free radicals by ambient particulate matter (TSP) and to link these data to oxidative DNA damage in lung epithelial cells. In line with previous findings on PMIO, supercoiled plasmid DNA was depleted by JSP as well as JSP supernatant (p < .001), and this effect was reduced in the presence of mannitol (5 mM). Using electron spin resonance (ESR) and the spin trap dimethyl-1-pyrroline N-oxide (DMPO) we were able to show that hydroxy/radicals ('OH) are formed from both JSP and JSP supernatant. The DMPO-OH signal was completely abrogated when TSP was preincubated with deferoxamine (5 mM), showing the importance of iron and other soluble metals in this process. Atomic absorption spectroscopy (AAS) analysis of the TSP supernatant showed the presence of soluble Fe, V, and Ni (respectively 253.0, 14.7, and 76.0 µ/g insoluble TSP). To investigate the biological significance of OH formation by TSP, 8-hydroxydeoxyguanosine (8-oxodC) was measured in a rat type II cell line by immunocytochemistry. The formation of this hydroxyl-radical-specific DNA adduct was increased twofold (p < .01) after incubation with TSP supernatants, and this effect was inhibited by deferoxamine (p < .01). In summary, our results provide direct evidence that ambient particulate matter generates hydroxyI radicals in acellular systems. Furthermore, we showed that these particulates induce the hydroxyl-radical-specific DNA lesion 8-oxodC in lung target cells via an iron-mediated mechanism.

  7. Detection on emamectin benzoate-induced apoptosis and DNA damage in Spodoptera frugiperda Sf-9 cell line.

    PubMed

    Wu, Xiwei; Zhang, Lei; Yang, Chao; Zong, Mimi; Huang, Qingchun; Tao, Liming

    2016-01-01

    Emamectin benzoate (EMB), an important macrocyclic lactone insecticide that belongs to the avermectin family and possesses excellent potency in controlling pests, is non-carcinogenic and non-mutagenic conducted in rats and mice, but EMB-induced cytotoxicity and genotoxicity in arthropod insect have been seldom reported yet. In the present paper, we quantified the cytotoxicity of EMB through the detections on cell viability, DNA damage, and cell apoptosis in Spodoptera frugiperda Sf-9 cells in vitro. The results showed that EMB caused a concentration- and time-dependent reduction on the viability of Sf-9 cells, and the median inhibitory concentrations (IC50) were 3.34μM at 72h of exposure. The dual acridine orange/ethidium bromide staining showed that exposure to EMB induced a significant time- and concentration-dependent increase on cell apoptosis. The alkaline comet assay revealed that EMB induced significant increases on single-strand DNA breaks, and the percentage of γH2AX-positive cells represented a time- and concentration-dependent formation of DNA double-strand breaks in Sf-9 cells. Interestingly, the similar cytotoxic actions of EMB also went for the human cancerous HeLa cells as a control cell group. Data demonstrated the potential cytotoxic effect of EMB on Sf-9 cells that was significantly greater than the effect of hydrogen peroxide at the same concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells.

    PubMed

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2'-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    PubMed Central

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  10. Enhanced expression of the DNA damage-inducible gene DIN7 results in increased mutagenesis of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed

    Koprowski, P; Fikus, M U; Dzierzbicki, P; Mieczkowski, P; Lazowska, J; Ciesla, Z

    2003-08-01

    We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.

  11. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  12. DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.

    PubMed

    Suji, G; Sivakami, S

    2007-11-01

    Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.

  13. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    PubMed

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  14. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  15. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown butmore » our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.« less

  16. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  17. Emamectin benzoate induces ROS-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cells.

    PubMed

    Luan, Shaorong; Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Xu, Zhikang; Lang, Jialin; Huang, Qingchun

    2017-08-01

    Emamectin benzoate (EMB), a novel macrocyclic lactone insecticide, possesses high efficacy and beneficial selective toxicity in agriculture, but so far the EMB-induced cytotoxic action in arthropod insect remains unclear. The present studies were carried out to characterize the property of EMB on the induction of reactive oxygen species (ROS)-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cell model. Following the exposure to EMB at 2.5, 5, 10 or 15 μM, the cells changed to be round, suspended and aggregated, and the decline of cell proliferating ability and cell viability was positively related with the exposure time. Median inhibitory concentration (IC 50 ) of EMB on cell viability was 3.72 μM during 72 h exposure. Apoptosis was induced in 29.8% (24 h) and 39.5% (48 h) of the cells by EMB at 15 μM, showing chromatin condensation in nuclei. The content of ROS in the cells increased rapidly as the concentration of EMB increased, and the pre-incubation of the cells with vitamin E significantly reduced the ROS accumulation. In the treatment of 15 μM EMB, the migrated cell nucleus with DNA strand breaks appeared a teardrop, pear-shaped, or large fan-like tail, and 63.1% of γH2AX-positive cells contained more than four foci, accompanying with high expression level of caspase-3 in time-dependent manner, which consequently led to cell apoptotic death. These evidences in ROS-mediated DNA damage and cell apoptosis induced by EMB may be helpful for deep understanding the cytotoxic action of EMB based on cell model. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    PubMed

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    PubMed

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evaluation of imazethapyr-induced DNA oxidative damage by alkaline Endo III- and Fpg-modified single-cell gel electrophoresis assay in Hypsiboas pulchellus tadpoles (Anura, Hylidae).

    PubMed

    Pérez-Iglesias, Juan Manuel; Ruiz de Arcaute, Celeste; Natale, Guillermo S; Soloneski, S; Larramendy, Marcelo L

    2017-08-01

    Imazethapyr (IMZT) is a selective postemergent herbicide with residual action. Available data analyzing its effects in aquatic vertebrates are scarce. In previous studies, we demonstrated that IMZT induces lesions into the DNA of Hypsiboas pulchellus tadpoles using the single-cell gel electrophoresis (SCGE) assay as a biomarker for genotoxicity. Currently, this assay can be modified by including incubation with lesion-specific endonucleases, e.g., endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which detect oxidized pyrimidine and purine bases, respectively. The aim of this study was to evaluate the role of oxidative stress in the genotoxic damage in circulating blood cells of H. pulchellus tadpoles exposed to the IMZT-based Pivot H ® formulation (10.59% IMZT) at a concentration equivalent to 25% of the LC 50 (96h) value (0.39mg/L IMZT) during 48 and 96h. Our results demonstrate that the herbicide induces oxidative DNA damage on H. pulchellus tadpoles at purines bases but not at pyrimidines. Our findings represent the first evidence of oxidative damage caused by IMZT on anuran DNA using the alkaline restriction enzyme-modified SCGE assay. Copyright © 2017 Elsevier Inc. All rights reserved.