Science.gov

Sample records for inducing sterilizing immunity

  1. Steric-electronic effects in malarial peptides inducing sterile immunity

    SciTech Connect

    Moreno-Vranich, Armando; Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota

    Highlights: Black-Right-Pointing-Pointer Is it evident that the residues position are relevant regarding of {phi} angular value. Black-Right-Pointing-Pointer The geometry considered for detailing the alterations undergone by HABPs. Black-Right-Pointing-Pointer The inter planar interactions ruled by clashes between the atoms making them up. -- Abstract: Conserved Plasmodium falciparum high activity binding peptides' (HABPs) most relevant proteins involved in malaria parasite invasion are immunologically silent; critical binding residues must therefore be specifically replaced to render them highly immunogenic and protection-inducing. Such changes have a tremendous impact on these peptides' steric-electronic effects, such as modifications to peptide length peptide bonds and electronic orbitals' disposition,more » to allow a better fit into immune system MHCII molecules and better interaction with the TCR which might account for the final immunological outcome.« less

  2. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred

  4. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model

    PubMed Central

    Luukinen, Hanna; Vanha-aho, Leena-Maija; Svorjova, Aleksandra; Kantanen, Laura; Järvinen, Sampsa; Dufour, Eric; Rämet, Mika; Hytönen, Vesa Pekka

    2018-01-01

    ABSTRACT Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm) at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1), tumor necrosis factor α (tnfa) and nitric oxide synthase 2b (nos2b), whereas superoxide dismutase 2 (sod2) expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021). In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper. PMID:29208761

  5. Skin-draining lymph node priming is sufficient to induce sterile immunity against pre-erythrocytic malaria

    PubMed Central

    Obeid, Michel; Franetich, Jean-François; Lorthiois, Audrey; Gego, Audrey; Grüner, Anne Charlotte; Tefit, Maurel; Boucheix, Claude; Snounou, Georges; Mazier, Dominique

    2013-01-01

    The Plasmodium-infected hepatocyte has been considered necessary to prime the immune responses leading to sterile protection after vaccination with attenuated sporozoites. However, it has recently been demonstrated that priming also occurs in the skin. We wished to establish if sterile protection could be obtained in the absence of priming by infected hepatocytes. To this end, we developed a subcutaneous (s.c.) immunization protocol where few, possibly none, of the immunizing irradiated Plasmodium yoelii sporozoites infect hepatocytes, and also used CD81-deficient mice non-permissive to productive hepatocyte infections. We then compared and contrasted the patterns of priming with those obtained by intradermal immunization, where priming occurs in the liver. Using sterile immunity as a primary read-out, we exploited an inhibitor of T-cell migration, transgenic mice with conditional depletion of dendritic cells and adoptive transfers of draining lymph node-derived T cells, to provide evidence that responses leading to sterile immunity can be primed in the skin-draining lymph nodes with little, if any, contribution from the infected hepatocyte. PMID:23255300

  6. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    SciTech Connect

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Cifuentes, Gladys

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  8. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  9. Immunization with apical membrane antigen 1 confers sterile infection-blocking immunity against Plasmodium sporozoite challenge in a rodent model.

    PubMed

    Schussek, Sophie; Trieu, Angela; Apte, Simon H; Sidney, John; Sette, Alessandro; Doolan, Denise L

    2013-10-01

    Apical membrane antigen 1 (AMA-1) is a leading blood-stage malaria vaccine candidate. Consistent with a key role in erythrocytic invasion, AMA-1-specific antibodies have been implicated in AMA-1-induced protective immunity. AMA-1 is also expressed in sporozoites and in mature liver schizonts where it may be a target of protective cell-mediated immunity. Here, we demonstrate for the first time that immunization with AMA-1 can induce sterile infection-blocking immunity against Plasmodium sporozoite challenge in 80% of immunized mice. Significantly higher levels of gamma interferon (IFN-γ)/interleukin-2 (IL-2)/tumor necrosis factor (TNF) multifunctional T cells were noted in immunized mice than in control mice. We also report the first identification of minimal CD8(+) and CD4(+) T cell epitopes on Plasmodium yoelii AMA-1. These data establish AMA-1 as a target of both preerythrocytic- and erythrocytic-stage protective immune responses and validate vaccine approaches designed to induce both cellular and humoral immunity.

  10. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    DTIC Science & Technology

    2013-02-14

    immunization, was severe (Grade 3), preventing daily activities . Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum...administering a drug selectively active against blood stage parasites such as chloroquine [4,5]. While the immunological mechanisms underlying the...promoter sequence activated within the host cell. Alternatively, the genes are inserted into a viral vector, which efficiently transports the DNA into

  11. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    SciTech Connect

    Patarroyo, Manuel E., E-mail: mepatarr@gmail.com; Universidad Nacional de Colombia, Bogota; Moreno-Vranich, Armando

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles.more » These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.« less

  12. Surgical sterilization: an underutilized procedure for evaluating the merits of induced sterility

    USGS Publications Warehouse

    Kennelly, James J.; Converse, Kathryn A.

    1993-01-01

    Despite more than 4 decades of effort, development of effective wildlife damage control programs based on sterilization of target species has met with limited success. This is partly due to the fact that investigators have assumed, rather than empirically tested, whether the reproductive strategies of the target populations were vulnerable to the planned treatment. Equally important, methods selected to include sterility usually involve a chemical agent that can affect sociosexual behaviors of the nuisance population. In this report, we illustrate how surgically induced sterility circumvents both problems--how the concept without the potentially confounding secondary effects of a chemical. We assessed the merits of initiating research to develop a male chemosterilant for Norway rats, red-winged blackbirds, beaver, and Canada geese by inducing sterility surgically. The infidelity of many red-winged females to their polygynous territorial male was surprising and argued against searching for a male sterilant. On the other hand, beaver and Canada goose studies confirmed previous reports that both form par-bonds and are monogamous. Both should be vulnerable to a male chemosterilant approach, and research toward this goal is justified.

  13. Phi (Φ) and psi (Ψ) angles involved in malarial peptide bonds determine sterile protective immunity.

    PubMed

    Patarroyo, Manuel E; Moreno-Vranich, Armando; Bermúdez, Adriana

    2012-12-07

    Modified HABP (mHABP) regions interacting with HLA-DRβ1(∗) molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their Φ and Ψ torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by (1)H-NMR and superimposed into HLA-DRβ1(∗)-like Aotus monkey molecules; their phi (Φ) and psi (Ψ) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII(L)) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Development of Subunit Vaccines that Provide High Level Protection and Sterilizing Immunity Against Acute Inhalational Melioidosis.

    PubMed

    Burtnick, Mary N; Shaffer, Teresa L; Ross, Brittany N; Muruato, Laura A; Sbrana, Elena; DeShazer, David; Torres, Alfredo G; Brett, Paul J

    2017-11-06

    Burkholderia pseudomallei , the etiologic agent of melioidosis, causes severe disease in humans and animals. Diagnosis and treatment of melioidosis can be challenging and no licensed vaccines currently exist. Several studies have shown that this pathogen expresses a variety of structurally conserved protective antigens that include cell-surface polysaccharides and cell-associated/-secreted proteins. Based on this, such antigens have become important components of the subunit vaccine candidates that we are currently developing. In the present study, the 6-deoxyheptan capsular polysaccharide (CPS) from B. pseudomallei was purified, chemically activated and covalently linked to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce CPS-CRM197. Additionally, tandem nickel-cobalt affinity chromatography was used to prepare highly purified recombinant B. pseudomallei Hcp1 and TssM proteins. Immunization of C57BL/6 mice with CPS-CRM197 produced high-titer IgG and opsonizing antibody responses against the CPS component of the glycoconjugate while immunization with Hcp1 and TssM produced high titer IgG and robust IFN-γ secreting T cell responses against the proteins. Extending upon these studies, we found that when vaccinated with a combination of CPS-CRM197 plus Hcp1, 100% of the mice survived a lethal inhalational challenge of B. pseudomallei Remarkably, 70% of the survivors had no culturable bacteria in their lungs, livers or spleens indicating that the vaccine formulation had generated sterilizing immune responses. Collectively, these studies help to better establish surrogates of antigen-induced immunity against B. pseudomallei as well as provide valuable insights towards the development of a safe, affordable and effective melioidosis vaccine. Copyright © 2017 Burtnick et al.

  15. Sterile Immunity to Malaria after DNA Prime/Adenovirus Boost Immunization Is Associated with Effector Memory CD8+T Cells Targeting AMA1 Class I Epitopes

    PubMed Central

    Sedegah, Martha; Hollingdale, Michael R.; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Kim, Yohan; Peters, Bjoern; Sette, Alessandro; Huang, Jun; McGrath, Shannon; Abot, Esteban; Limbach, Keith; Shi, Meng; Soisson, Lorraine; Diggs, Carter; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E.; Villasante, Eileen; Richie, Thomas L.

    2014-01-01

    Background Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. Methodology/Principal Findings We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. Conclusions/Significance We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches

  16. Reactive Oxygen Species-Producing Myeloid Cells Act as a Bone Marrow Niche for Sterile Inflammation-Induced Reactive Granulopoiesis.

    PubMed

    Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E; Cheng, Tao; Luo, Hongbo R

    2017-04-01

    Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1 + myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1 + myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Reactive oxygen species-producing myeloid cells act as a bone marrow niche for sterile inflammation-induced reactive granulopoiesis

    PubMed Central

    Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E.; Cheng, Tao; Luo, Hongbo R.

    2017-01-01

    Summary Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. Here we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multi-photon intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced PTEN oxidation and deactivation leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in both infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. PMID:28235862

  18. A novel herbicide-inducible male sterility system.

    PubMed

    Zhang, Jinhui; Zhang, Wenlu; Yen, Yang; Long, Hai; Deng, Guangbing; Pan, Zhifen; Yu, Maoqun

    2010-11-01

    Heterosis is a phenomenon that first-generation offspring perform better than their parents. Conventional breeding methods have their shortcomings. It would be optimal to construct inducible male sterile plants. We developed a novel system for creating male sterile transgenic plants by downregulating the specific expression of the glyphosate tolerance CP4 EPSPS gene in male reproductive tissues. Transcriptional repression was achieved by manipulating DNA binding proteins with their specific corresponding sites. We transferred the CP4 EPSPS gene driven by a modified CaMV 35S promoter with three tetracycline operator copies in the vicinity of the TATA box and tetracycline repressor gene under the control of an anther-specific promoter Osg6B to Arabidopsis thaliana. As a result, we successfully obtained controllable transgenic plants: the whole plant could tolerate exposure of glyphosate but the male tissue was sensitive. The novel inducible male sterility system is applied and easy to handle, so it might be applicable to a wide range of crop plants. 2010 Society of Chemical Industry

  19. [Spontaneous and induced sterility by ethyl methanesulfonate (EMS) in Nigella damascena L].

    PubMed

    Gilot-Delhalle, J

    1976-01-01

    EMS-induced sterility could be very partially due to chromosomal aberrations appearing during male and female meiosis or even to mechanical abnormalities of the double fertilization. The sterility could be also related to diplontic origin (lethal factors or small deficiencies appearing in homozygous state on account of self-pollinization). Owing to our histological and genetical data, a female gametophytic origin could be mainly ascribed to EMS induced sterility. It could arise from a damage of the feeding function of the nucellus.

  20. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants.

    PubMed

    Khameneh, Hanif Javanmard; Ho, Adrian W S; Spreafico, Roberto; Derks, Heidi; Quek, Hazel Q Y; Mortellaro, Alessandra

    2017-01-01

    Despite a long history and extensive usage of insoluble aluminum salts (alum) as vaccine adjuvants, the molecular mechanisms underpinning Ag-specific immunity upon vaccination remain unclear. Dendritic cells (DCs) are crucial initiators of immune responses, but little is known about the molecular pathways used by DCs to sense alum and, in turn, activate T and B cells. In this article, we show that alum adjuvanticity requires IL-2 specifically released by DCs, even when T cell secretion of IL-2 is intact. We demonstrate that alum, as well as other sterile particulates, such as uric acid crystals, induces DCs to produce IL-2 following initiation of actin-mediated phagocytosis that leads to Src and Syk kinase activation, Ca 2+ mobilization, and calcineurin-dependent activation of NFAT, the master transcription factor regulating IL-2 expression. Using chimeric mice, we show that DC-derived IL-2 is required for maximal Ag-specific proliferation of CD4 + T cells and optimal humoral responses following alum-adjuvanted immunization. These data identify DC-derived IL-2 as a key mediator of alum adjuvanticity in vivo and the Src-Syk pathway as a potential leverage point in the rational design of novel adjuvants. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Plant Immunity Inducer Development and Application.

    PubMed

    Dewen, Qiu; Yijie, Dong; Yi, Zhang; Shupeng, Li; Fachao, Shi

    2017-05-01

    Plant immunity inducers represent a new and rapidly developing field in plant-protection research. In this paper, we discuss recent research on plant immunity inducers and their development and applications in China. Plant immunity inducers include plant immunity-inducing proteins, chitosan oligosaccharides, and microbial inducers. These compounds and microorganisms can trigger defense responses and confer disease resistance in plants. We also describe the mechanisms of plant immunity inducers and how they promote plant health. Furthermore, we summarize the current situation in plant immunity inducer development in China and the global marketplace. Finally, we also deeply analyze the development trends and application prospects of plant immunity inducers in environmental protection and food safety.

  2. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation.

    PubMed

    Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo

    2018-01-01

    High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia-reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation.

  3. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation

    PubMed Central

    Kim, Sook Young; Son, Myoungsun; Lee, Sang Eun; Park, In Ho; Kwak, Man Sup; Han, Myeonggil; Lee, Hyun Sook; Kim, Eun Sook; Kim, Jae-Young; Lee, Jong Eun; Choi, Ji Eun; Diamond, Betty; Shin, Jeon-Soo

    2018-01-01

    High-mobility group box 1 (HMGB1), a well-known danger-associated molecular pattern molecule, acts as a pro-inflammatory molecule when secreted by activated immune cells or released after necrotic cell damage. HMGB1 binds to immunogenic bacterial components and augments septic inflammation. In this study, we show how HMGB1 mediates complement activation, promoting sterile inflammation. We show that HMGB1 activates the classical pathway of complement system in an antibody-independent manner after binding to C1q. The C3a complement activation product in human plasma and C5b-9 membrane attack complexes on cell membrane surface are detected after the addition of HMGB1. In an acetaminophen (APAP)-induced hepatotoxicity model, APAP injection reduced HMGB1 levels and elevated C3 levels in C1q-deficient mouse serum samples, compared to that in wild-type (WT) mice. APAP-induced C3 consumption was inhibited by sRAGE treatment in WT mice. Moreover, in a mouse model of brain ischemia–reperfusion injury based on middle cerebral arterial occlusion, C5b-9 complexes were deposited on vessels where HMGB1 was accumulated, an effect that was suppressed upon HMGB1 neutralization. We propose that the HMGB1 released after cell necrosis and in ischemic condition can trigger the classical pathway of complement activation to exacerbate sterile inflammation. PMID:29696019

  4. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    PubMed

    Whitacre, David C; Espinosa, Diego A; Peters, Cory J; Jones, Joyce E; Tucker, Amy E; Peterson, Darrell L; Zavala, Fidel P; Milich, David R

    2015-01-01

    In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6)) and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  5. Radio-induced inherited sterility in Heliothis zea (Boddie)

    SciTech Connect

    Carpenter, J.E.

    1985-01-01

    Heliothis zea (Boddie) (Lepidoptera: Noctuidae) males and females were irradiated with substerilizing doses of radiation. These moths were inbred and outcrossed and observed for their ability to reproduce. The inherited deleterious effects resulting from the irradiated P/sub 1/ males were recorded for several generations. Larvae from both irradiated (10 krad) and normal parents were compared for their ability to survive under field conditions on whole-stage sweet corn and these results were compared with those from a laboratory study using meridic diet. Irradiated males and females and F/sub 1/ males from an irradiated (10 krad) male x normal female cross weremore » released in the field and in field cages and observed for their ability to search/attract and secure a mate. Females that had mated with normal and irradiated (10 krad) males were studied to determine the effect of different mating histories on the subsequent mating propensity of the females. A 10-krad dose of radiation induced deleterious effects which were inherited through the F/sub 2/ generation. These radiation-induced deleterious effects were similar to those reported in other species of Lepidoptera. The relationship between the survival of normal larvae and larvae from irradiated parents was similar under laboratory and field rearing conditions. Females mated to normal males and males irradiated with 10 krad had the same mating propensity and experienced the same intermating interval. These effects of substerilizing doses of radiation and inherited sterility on the reproductive ability and behavior of H. zea suggest that a great potential exists for population suppression.« less

  6. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants.

    PubMed

    Nizampatnam, Narasimha Rao; Doodhi, Harinath; Kalinati Narasimhan, Yamini; Mulpuri, Sujatha; Viswanathaswamy, Dinesh Kumar

    2009-03-01

    Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.

  7. Frequent inoculations with radiation attenuated sporozoite is essential for inducing sterile protection that correlates with a threshold level of Plasmodia liver-stage specific CD8+ T cells.

    PubMed

    Patel, Hardik; Yadav, Naveen; Parmar, Rajesh; Patel, Satish; Singh, Agam P; Shrivastava, Neeta; Dalai, Sarat K

    2017-07-01

    Whole sporozoite vaccine (WSV) is shown to induce sterile protection that targets Plasmodium liver-stage infection. There are many underlying issues associated with induction of effective sterile protracted protection. In this study, we have addressed how the alterations in successive vaccine regimen could possibly affect the induction of sterile protection. We have demonstrated that the pattern of vaccination with RAS (radiation attenuated sporozoites) induces varying degrees of protection among B6 mice. Animals receiving four successive doses generated 100% sterile protection. However, three successive doses, though with the same parasite inoculum as four doses, could induce sterile protection in ∼50% mice. Interestingly, mice immunized with the same 3 doses, but with longer gap, could not survive the challenge. We demonstrate that degree of protection correlates with the frequencies of IFN-γ + and multifunctional (IFN-γ + CD107a + ) CD8 + T EM cells present in liver. The failure to achieve protective threshold frequency of these cells in liver might make the host more vulnerable to parasite infection during infectious sporozoite challenge. Copyright © 2017. Published by Elsevier Inc.

  8. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders

    PubMed Central

    Ratajczak, Mariusz Z.; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as “sterile inflammation” when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms. PMID:29541038

  9. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders.

    PubMed

    Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.

  10. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  11. Alarmins MRP8 and MRP14 induce stress tolerance in phagocytes under sterile inflammatory conditions.

    PubMed

    Austermann, Judith; Friesenhagen, Judith; Fassl, Selina Kathleen; Petersen, Beatrix; Ortkras, Theresa; Burgmann, Johanna; Barczyk-Kahlert, Katarzyna; Faist, Eugen; Zedler, Siegfried; Pirr, Sabine; Rohde, Christian; Müller-Tidow, Carsten; von Köckritz-Blickwede, Maren; von Kaisenberg, Constantin S; Flohé, Stefanie B; Ulas, Thomas; Schultze, Joachim L; Roth, Johannes; Vogl, Thomas; Viemann, Dorothee

    2014-12-24

    Hyporesponsiveness by phagocytes is a well-known phenomenon in sepsis that is frequently induced by low-dose endotoxin stimulation of Toll-like receptor 4 (TLR4) but can also be found under sterile inflammatory conditions. We now demonstrate that the endogenous alarmins MRP8 and MRP14 induce phagocyte hyporesponsiveness via chromatin modifications in a TLR4-dependent manner that results in enhanced survival to septic shock in mice. During sterile inflammation, polytrauma and burn trauma patients initially present with high serum concentrations of myeloid-related proteins (MRPs). Human neonatal phagocytes are primed for hyporesponsiveness by increased peripartal MRP concentrations, which was confirmed in murine neonatal endotoxinemia in wild-type and MRP14(-/-) mice. Our data therefore indicate that alarmin-triggered phagocyte tolerance represents a regulatory mechanism for the susceptibility of neonates during systemic infections and sterile inflammation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Reversing Breast Cancer-Induced Immune Suppression

    DTIC Science & Technology

    2013-01-01

    MDSC use to facilitate immune suppression. Nrf2 protects cells against inflammation and is stabilized in response to inflammation , hypoxia, and... inflammation -induced and conventional MDSC transport of cystine. SASP has no effect on tumor growth, metastatic disease, MDSC accumulation, or MDSC...anti-tumor immunity. It has been demonstrated that inflammation enhances xC- expression on MDSC, but higher xC- expression does not enhance the

  13. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    NASA Astrophysics Data System (ADS)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  14. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  15. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation.

    PubMed

    Kovacs, Zsofia I; Kim, Saejeong; Jikaria, Neekita; Qureshi, Farhan; Milo, Blerta; Lewis, Bobbi K; Bresler, Michele; Burks, Scott R; Frank, Joseph A

    2017-01-03

    MRI-guided pulsed focused ultrasound (pFUS) combined with systemic infusion of ultrasound contrast agent microbubbles (MB) causes localized blood-brain barrier (BBB) disruption that is currently being advocated for increasing drug or gene delivery in neurological diseases. The mechanical acoustic cavitation effects of opening the BBB by low-intensity pFUS+MB, as evidenced by contrast-enhanced MRI, resulted in an immediate damage-associated molecular pattern (DAMP) response including elevations in heat-shock protein 70, IL-1, IL-18, and TNFα indicative of a sterile inflammatory response (SIR) in the parenchyma. Concurrent with DAMP presentation, significant elevations in proinflammatory, antiinflammatory, and trophic factors along with neurotrophic and neurogenesis factors were detected; these elevations lasted 24 h. Transcriptomic analysis of sonicated brain supported the proteomic findings and indicated that the SIR was facilitated through the induction of the NFκB pathway. Histological evaluation demonstrated increased albumin in the parenchyma that cleared by 24 h along with TUNEL + neurons, activated astrocytes, microglia, and increased cell adhesion molecules in the vasculature. Infusion of fluorescent beads 3 d before pFUS+MB revealed the infiltration of CD68 + macrophages at 6 d postsonication, as is consistent with an innate immune response. pFUS+MB is being considered as part of a noninvasive adjuvant treatment for malignancy or neurodegenerative diseases. These results demonstrate that pFUS+MB induces an SIR compatible with ischemia or mild traumatic brain injury. Further investigation will be required before this approach can be widely implemented in clinical trials.

  16. Reversing Breast Cancer-Induced Immune Suppression

    DTIC Science & Technology

    2014-01-01

    same oxidative radicals that MDSC use to facilitate immune suppression. Nrf2 protects cells against inflammation and is stabilized in response to... inflammation , hypoxia, and other factors that are known inducers of MDSC. Since Nrf2 regulates antioxidant response and apoptosis, I hypothesize that... inflammation -induced and conventional MDSC transport of cystine. SASP has no effect on tumor growth, metastatic disease, MDSC accumulation, or MDSC suppressive

  17. The sterile inflammatory response

    PubMed Central

    Rock, Kenneth L.; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime

    2015-01-01

    The acute inflammatory response is a double-edged sword. On the one hand it plays a key role in initial host defense particularly against many infections. On the other hand its aim is imprecise and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. While there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation – specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses. PMID:20307211

  18. Induced antiviral innate immunity in Drosophila.

    PubMed

    Lamiable, Olivier; Imler, Jean-Luc

    2014-08-01

    Immunity to viral infections in the model organism Drosophila melanogaster involves both RNA interference and additional induced responses. The latter include not only cellular mechanisms such as programmed cell death and autophagy, but also the induction of a large set of genes, some of which contribute to the control of viral replication and resistance to infection. This induced response to infection is complex and involves both virus-specific and cell-type specific mechanisms. We review here recent developments, from the sensing of viral infection to the induction of signaling pathways and production of antiviral effector molecules. Our current understanding, although still partial, validates the Drosophila model of antiviral induced immunity for insect pests and disease vectors, as well as for mammals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  20. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    NASA Astrophysics Data System (ADS)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  1. Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection.

    PubMed

    Lalancette-Hébert, Melanie; Faustino, Joel; Thammisetty, Sai Sampath; Chip, Sophorn; Vexler, Zinaida S; Kriz, Jasna

    2017-10-01

    Activation of microglial cells in response to brain injury and/or immune stimuli is associated with a marked induction of Toll-like receptors (TLRs). While in adult brain, the contribution of individual TLRs, including TLR2, in pathophysiological cascades has been well established, their role and spatial and temporal induction patterns in immature brain are far less understood. To examine whether infectious stimuli and sterile inflammatory stimuli trigger distinct TLR2-mediated innate immune responses, we used three models in postnatal day 9 (P9) mice, a model of infection induced by systemic endotoxin injection and two models of sterile inflammation, intra-cortical IL-1β injection and transient middle cerebral artery occlusion (tMCAO). We took advantage of a transgenic mouse model bearing the dual reporter system luciferase/GFP under transcriptional control of a murine TLR2 promoter (TLR2-luc-GFP) to visualize the TLR2 response in the living neonatal brain and then determined neuroinflammation, microglial activation and leukocyte infiltration. We show that in physiological postnatal brain development the in vivo TLR2-luc signal undergoes a marked ∼30-fold decline and temporal-spatial changes during the second and third postnatal weeks. We then show that while endotoxin robustly induces the in vivo TLR2-luc signal in the living brain and increases levels of several inflammatory cytokines and chemokines, the in vivo TLR2-luc signal is reduced after both IL-1β and tMCAO and the inflammatory response is muted. Immunofluorescence revealed that microglial cells are the predominant source of TLR2 production during postnatal brain development and in all three neonatal models studied. Flow cytometry revealed developmental changes in CD11b + /CD45 + and CD11b + /Ly6C + cell populations, involvement of cells of the monocyte lineage, but lack of Ly6G + neutrophils or CD3 + cells in acutely injured neonatal brains. Cumulatively, our results suggest distinct TLR2 induction

  2. A novel screen for genes associated with pheromone-induced sterility

    PubMed Central

    Camiletti, Alison L.; Percival-Smith, Anthony; Croft, Justin R.; Thompson, Graham J.

    2016-01-01

    For honey bee and other social insect colonies the ‘queen substance’ regulates colony reproduction rendering workers functionally sterile. The evolution of worker reproductive altruism is explained by inclusive fitness theory, but little is known of the genes involved or how they regulate the phenotypic expression of altruism. We previously showed that application of honeybee queen pheromone to virgin fruit flies suppresses fecundity. Here we exploit this finding to identify genes associated with the perception of an ovary-inhibiting social pheromone. Mutational and RNAi approaches in Drosophila reveal that the olfactory co-factor Orco together with receptors Or49b, Or56a and Or98a are potentially involved in the perception of queen pheromone and the suppression of fecundity. One of these, Or98a, is known to mediate female fly mating behaviour, and its predicted ligand is structurally similar to a methyl component of the queen pheromone. Our novel approach to finding genes associated with pheromone-induced sterility implies conserved reproductive regulation between social and pre-social orders, and further helps to identify candidate orthologues from the pheromone-responsive pathway that may regulate honeybee worker sterility. PMID:27786267

  3. Immunization with Cocktail of HIV-Derived Peptides in Montanide ISA-51 Is Immunogenic, but Causes Sterile Abscesses and Unacceptable Reactogenicity

    PubMed Central

    Graham, Barney S.; McElrath, M. Juliana; Keefer, Michael C.; Rybczyk, Kyle; Berger, David; Weinhold, Kent J.; Ottinger, Janet; Ferarri, Guido; Montefiori, David C.; Stablein, Don; Smith, Carol; Eldridge, John; Duerr, Ann; Fast, Pat; Haynes, Barton F.

    2010-01-01

    Background A peptide vaccine was produced containing B and T cell epitopes from the V3 and C4 Envelope domains of 4 subtype B HIV-1 isolates (MN, RF, CanO, & Ev91). The peptide mixture was formulated as an emulsion in incomplete Freund's adjuvant (IFA). Methods Low-risk, healthy adult subjects were enrolled in a randomized, placebo-controlled dose-escalation study, and selected using criteria specifying that 50% in each study group would be HLA-B7+. Immunizations were scheduled at 0, 1, and 6 months using a total peptide dose of 1 or 4 mg. Adaptive immune responses in16 vaccine recipients and two placebo recipients after the 2nd immunization were evaluated using neutralization assays of sera, as well as ELISpot and ICS assays of cryopreserved PBMCs to assess CD4 and CD8 T-cell responses. In addition, 51Cr release assays were performed on fresh PBMCs following 14-day stimulation with individual vaccine peptide antigens. Results 24 subjects were enrolled; 18 completed 2 injections. The study was prematurely terminated because 4 vaccinees developed prolonged pain and sterile abscess formation at the injection site-2 after dose 1, and 2 after dose 2. Two other subjects experienced severe systemic reactions consisting of headache, chills, nausea, and myalgia. Both reactions occurred after the second 4 mg dose. The immunogenicity assessments showed that 6/8 vaccinees at each dose level had detectable MN-specific neutralizing (NT) activity, and 2/7 HLA-B7+ vaccinees had classical CD8 CTL activity detected. However, using both ELISpot and ICS, 8/16 vaccinees (5/7 HLA-B7+) and 0/2 controls had detectable vaccine-specific CD8 T-cell responses. Subjects with moderate or severe systemic or local reactions tended to have more frequent T cell responses and higher antibody responses than those with mild or no reactions. Conclusions The severity of local responses related to the formulation of these four peptides in IFA is clinically unacceptable for continued development. Both

  4. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  5. A Single Vaccination with an Improved Nonspreading Rift Valley Fever Virus Vaccine Provides Sterile Immunity in Lambs

    PubMed Central

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J. M.; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 106.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine. PMID:24167574

  6. The backcross sterility technique

    Treesearch

    V. C. Mastro; A. Pellegrini-Toole

    1991-01-01

    The sterile insect technique (SIT) and the induced inherited (F1) sterility technique have been investigated for a number of lepidopterous pests, including the gypsy moths. Another technique, backcross sterility, which could potentially prove as or more useful for control of pest species has been developed for the control of only one lepidopteran...

  7. Sterility in male animals induced by injection of chemical agents into the vas deferens.

    PubMed

    Freeman, C; Coffey, D S

    1973-11-01

    This study was undertaken to develop a simple non-surgical technic for achieving male sterility. The method induces obstruction in the vas deferens by injecting sclerosing chemical agents through the skin of the scrotum directly into the vas. Previous success in rats using 95% ethanol have been reported. This sutdy used 95% ethanol, 10% silver nitrate, 36% acetic acid, 3.6% formaldehyde, 3% sodium tetradecyl sulfate, 5% sodium morrhuate, 5% potassium permanganate, 3.6% formaldehyde in 90% ethanol, and for controls .9% sodium chloride. 25 or 50 mcl of the agent being tested was injected into each vas deferens of mature Sprague-Dawley rats. 2 weeks after treatment the rats were exposed to continuous mating. All of the rats treated with ethanol, silver nitrate, acetic acid, formaldehyde, and sodium tetradecyl sulfate have remained sterile for 8 months. 33% of those treated with potassium permanganate and 67% of those treated with sodium morrhuate have remained fertile. When the experiment was repeated in dogs using 95% ethanol, 10% silver nitrate, or 3.6% formaldehyde in 90% ethanol (100 or 500 mcl injected through the skin of the scrotum) the same obstructing sclerosis was found and a reduction in size of the vas was visible for approximately 2 cm. No sperm granulomas were found either grossly or microscopically. The method has not be used in humans but injections of methylene blue dye in alcohol have been made in several human autopsy specimens. The dye was contained within the sheath of the vas and penetrated the full thickness of the wall of the vas. The method is believed to be suitable for humans, would avoid post-surgical hemorrhage and infection, would require less equipment, and more rapid accomplishment and lower cost would follow if paramedical personnel could be taught the procudre in less developed countries for mass voluntary sterilizations. The results appear to be permanent. Surgical reversibility has not be determined.

  8. Inhibiting Sterilization-Induced Oxidation of Large Molecule Therapeutics Packaged in Plastic Parenteral Vials.

    PubMed

    Vieregg, Jeffrey R; Martin, Steven J; Breeland, Adam P; Weikart, Christopher M; Tirrell, Matthew V

    2018-01-01

    For many years, glass has been the default material for parenteral packaging, but the development of advanced plastics such as cyclic olefin polymers and the rapidly increasing importance of biologic drugs have provided new choices, as well as more stringent performance requirements. In particular, many biologics must be stored at non-neutral pH, where glass is susceptible to hydrolysis, metal extraction, and delamination. Plastic containers are not susceptible to these problems, but suffer from higher gas permeability and a propensity for sterilization-induced radical generation, heightening the risk of oxidative damage to sensitive drugs. This study evaluates the properties of a hybrid material, SiOPlas™, in which an ultrathin multilayer coating is applied to the interior of cyclic olefin polymer containers via plasma-enhanced chemical vapor deposition. Our results show that the coating decreases oxygen permeation through the vial walls 33-fold compared to uncoated cyclic olefin polymers, which should allow for improved control of oxygen levels in sensitive formulations. We also measured degradation of two biologic drugs that are known to be sensitive to oxidation, teriparatide and erythropoietin, in gamma and electron beam sterilized SiOPlas™, glass, and uncoated cyclic olefin polymer vials. In both cases, solutions stored in SiOPlas™ vials did not show elevated susceptibility to oxidation compared to either glass or unsterilized controls. Taken together, these results suggest that hybrid materials such as SiOPlas™ are attractive choices for storing high-value biologic drugs. LAY ABSTRACT: One of the most important functions of parenteral drug containers is safeguarding their contents from damage, either chemical or physical. Glass has been the container material of choice for many years, but concerns over breakage and vulnerability to chemical attack at non-neutral pH have spurred the rise of advanced plastics as alternatives. Plastics solve many

  9. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    PubMed Central

    Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world’s most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1–induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1–induced male sterile wheat and is a valuable source of data for future research in SQ-1–induced wheat male sterility. PMID:25898130

  10. Sterile inflammation in acetaminophen-induced liver injury is mediated by Cot/tpl2.

    PubMed

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Angela M; Martín-Duce, Antonio; Velasco-Martín, Juan P; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-05-24

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.

  11. Sterile Inflammation in Acetaminophen-induced Liver Injury Is Mediated by Cot/tpl2*

    PubMed Central

    Sanz-Garcia, Carlos; Ferrer-Mayorga, Gemma; González-Rodríguez, Águeda; Valverde, Ángela M.; Martín-Duce, Antonio; Velasco-Martín, Juan P.; Regadera, Javier; Fernández, Margarita; Alemany, Susana

    2013-01-01

    Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms. PMID:23572518

  12. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome.

    PubMed

    Liu, Hongzhan; Zhang, Gaisheng; Wang, Junsheng; Li, Jingjing; Song, Yulong; Qiao, Lin; Niu, Na; Wang, Junwei; Ma, Shoucai; Li, Lili

    2018-01-05

    Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.

  13. [Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E cytoplasm male sterility induced by environmental conditions].

    PubMed

    Elkonin, L A; Gerashchenkov, G A; Domanina, I V; Rozhnova, N A

    2015-03-01

    sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

  14. Hysteroscopic Sterilization

    MedlinePlus

    ... sterilization? Sterilization is a permanent form of birth control. What is tubal sterilization? Sterilization procedures for women are ... is quicker than from other types of sterilization. What are the risks of ... on for birth control. • There is a risk of injury to the ...

  15. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    PubMed

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  16. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1972-01-01

    Spacecraft sterilization is a vital factor in projects for the successful biological exploration of other planets. The microorganisms of major concern are the fungi and bacteria. Sterilization procedures are oriented toward the destruction of bacterial spores. Gaseous sterilants are examined, giving attention to formaldehyde, beta-propiolactone, ethylene oxide, and the chemistry of the bactericidal action of sterilants. Radiation has been seriously considered as another method for spacecraft sterilization. Dry heat sterilization is discussed together with the effects of ethylene oxide decontamination and dry heat sterilization on materials.

  18. Trimethoprim-Sulfamethoxazole Prophylaxis During Live Malaria Sporozoite Immunization Induces Long-Lived, Homologous, and Heterologous Protective Immunity Against Sporozoite Challenge.

    PubMed

    Hobbs, Charlotte V; Anderson, Charles; Neal, Jillian; Sahu, Tejram; Conteh, Solomon; Voza, Tatiana; Langhorne, Jean; Borkowsky, William; Duffy, Patrick E

    2017-01-01

    Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8 + T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Measles virus-induced suppression of immune responses.

    PubMed

    Griffin, Diane E

    2010-07-01

    Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.

  20. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2008-01-01

    cancers. 15. SUBJECT TERMS Radiation, Dendritic Cells , Cytokines, PSA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...radiation is more than a cytotoxic agent. Our recent study has shown that radiation modulates the immune system by affecting dendritic cell (DC...translate radiation-induced tumor cell death into generation of tumor immunity in the hope of optimizing therapy for localized and disseminated prostate

  1. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury

    SciTech Connect

    Williams, C. David; Antoine, Daniel J.; Shaw, Patrick J.

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1{beta} (IL-1{beta}), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1{beta} is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24more » h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1{beta} and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.« less

  2. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  3. Reversing Breast Cancer-Induced Immune Suppression

    DTIC Science & Technology

    2014-09-01

    Species MDSC: Myeloid-Derived Suppressor Cells PI: Propidium iodide xC-: System xC- xCT: Cystine/Glutamate Antiporter Project Summary Aim 1- In...animals may live longer due to enhanced resistance to metastasis. Resistance to metastasis requires a competent immune system [27]. Since Nrf2...Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, Mandik-Nayak L, Metz R, Ostrand

  4. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  5. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    PubMed

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (P<0.05); The levels of IgG2a increased obviously, whereas the levels of IgG1 subtype antibody conspicuous decreased, with a significant difference (P<0.05). Aa immunized group could induce body to produce a strong specific T-cell immune response, but Aa immunized+VAD group had a higher T cell proliferate response compared with Aa immunized+RD group, with a statistically significant difference (P<0.05); The expression of RANKL, IFN-γ and TNF-α supernatant increased, while the expression of IL-10 decreased (P<0.05). The lack of vitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  6. [Mechanisms of retroviral immunosuppressive domain-induced immune modulation].

    PubMed

    Blinov, V M; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2013-01-01

    Immunosuppressive domains (ISD) of viral envelope glycoproteins provide highly pathogenic phenotypes of various retroviruses. ISD interaction with immune cells leads to an inhibition of a response. In the 1980s it was shown that the fragment of ISD comprising of 17 amino acids (named CKS-17) is carrying out such immune modulation. However the underlying mechanisms were not known. The years of thorough research allowed to identify the regulation of Ras-Raf-MEK-MAPK and PI3K-AKT-mTOR cellular pathways as a result of ISD interaction with immune cells. By the way, this leads to decrease of secretion of stimulatory cytokines (e.g., IL-12) and increase of inhibitory, anti-inflammatory ones (e.g., IL-10). One of the receptor tyrosine kinases inducing signal in these pathways acts as the primary target of ISD while other key regulators--cAMP and diacylglycerol (DAG), act as secondary messengers of signal transduction. Immunosuppressive-like domains can be found not only in retroviruses; the presence of ISD within Ebola viral envelope glycoproteins caused extremely hard clinical course of virus-induced hemorrhagic fever. A number of retroviral-origin fragments encoding ISD can be found in the human genome. These regions are expressed in the placenta within genes of syncytins providing a tolerance of mother's immune system to an embryo. The present review is devoted to molecular aspects of retroviral ISD-induced modulation of host immune system.

  7. Intranasal Immunization with Nontypeable Haemophilus influenzae Outer Membrane Vesicles Induces Cross-Protective Immunity in Mice

    PubMed Central

    Roier, Sandro; Leitner, Deborah R.; Iwashkiw, Jeremy; Schild-Prüfert, Kristina; Feldman, Mario F.; Krohne, Georg; Reidl, Joachim; Schild, Stefan

    2012-01-01

    Abstract Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections. PMID:22880074

  8. Evaluation of humoral and cell-mediated inducible immunity to Haemophilus ducreyi in an animal model of chancroid.

    PubMed Central

    Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W

    1996-01-01

    To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391

  9. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  10. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  11. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  12. [Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene].

    PubMed

    Xu, Xinyun; Li, Xueyu; Liu, Yuefeng

    2014-12-01

    To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy, then provide the scientific basis for the mechanism of this disease. Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT), the animals were randomly divided into negative control, positive control and TCE treatment groups. Animals of these groups were administrated with olive oil, 2, 4-dinitrochlorobenzene (DNCB), and TCE, respectively, by intradermal injection. After TCE administration, rat peripheral blood samples were collected by flow cytometry to detect lymphocytes CD3⁺, CD4⁺, CD8⁺. Guinea pig peripheral blood samples were collected to detect the levels of IgG, IgA, IgM, C3, C4, and the spleens were taken out from guinea pigs after various treatment, mRNA expression of GATA3, T-bet, CTLA4 and Foxp3 in lymphocytes of guinea pig spleen was detected by real-time fluorescent PCR assay. Additionally, TCE allergic dermatitis patients were selected for the study, the peripheral blood samples were collected from the TCE patients group and control group, quantitative PCR was applied to detect mRNA expression of immune-related genes Foxp3, GATA3, CTLA4, T-bet. TCE induced obvious skin allergic reaction in guinea pigs, the sensitization rate was 83.3%, IgG levels in TCE group and positive control increased significantly. Additionally, mRNA expression levels of GATA3, T-bet, CTLA4 significantly elevated in TCE group and positive control, but Foxp3 mRNA levels decreased. The lymphocytes CD3⁺ ratio in TCE group and positive control of rats was higher than that in negative control, we found that there was no statistical difference of CD4⁺, CD8⁺, CD4⁺/CD8⁺ between TCE group and negative control of rats. The mRNA expression levels of Foxp3, GATA3, CTLA4 in TCE patients increased by 115%, 97%, 241%, respectively as compared with the control, T-bet levels decreased by 47%when compared with the

  13. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  14. Radiation-induced effects and the immune system in cancer.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.

  15. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    PubMed

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  16. The Role of Probiotics and Prebiotics in Inducing Gut Immunity

    PubMed Central

    Vieira, Angélica T.; Teixeira, Mauro M.; Martins, Flaviano S.

    2013-01-01

    The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms) and prebiotics (food components) have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics, and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota, and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri) and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp.) that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host. PMID:24376446

  17. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    PubMed

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions.

  18. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  20. Interferon-inducible effector mechanisms in cell-autonomous immunity

    PubMed Central

    MacMicking, John D.

    2014-01-01

    Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells — a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world. PMID:22531325

  1. Sterile technique

    MedlinePlus

    ... the crook of your elbow. Getting Your Supplies Ready To open a sterile pad or kit: Wash your hands with soap and running water for at least 1 minute. Wash the backs, palms, fingers, and between ...

  2. Postpartum Sterilization

    MedlinePlus

    ... a few hours or days following delivery. For women who have had a cesarean delivery, it is done right after the baby is born. How is postpartum sterilization performed? For women who have had a vaginal delivery, a small ...

  3. Sterile neutrinos

    SciTech Connect

    Kopp, J.; Machado, P. A. N., E-mail: pedro.machado@uam.es; Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid

    2016-06-21

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  4. Pulmonary arterial remodeling induced by a Th2 immune response

    PubMed Central

    Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele

    2008-01-01

    Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220

  5. Hypercholesterolemia induces T cell expansion in humanized immune mice.

    PubMed

    Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira

    2018-06-01

    Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.

  6. Radiation-induced immune responses: mechanisms and therapeutic perspectives.

    PubMed

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok; Ahn, G-One

    2016-09-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field.

  7. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    PubMed

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    PubMed

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  9. [Cytological study of radiation induced alterations in cytoplasmic factors controlling male sterility]. Progress report, 1971--1973

    SciTech Connect

    None

    1973-01-01

    Progress is reported on studies of cytoplasmic factors controlling male sterility in plants. Results are reported from cytological comparisons of fertile selections from gamma -irradiated corn with male steriles, mainliners, and restored steriles, in which no consistent differences in cytoplasmic constituents were observed. Results of cytological and genetic studies on mutants of Neurospora crassa, petunia, tobacco, sorghum, sugar beets, Vicia faba, and several gymnosperms are summarized. The relationship between male, sterility of plants and their susceptibility to virus and fungus infections was also studied. (CH)

  10. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis.

    PubMed

    Bergqvist, Viktoria; Hertervig, Erik; Gedeon, Peter; Kopljar, Marija; Griph, Håkan; Kinhult, Sara; Carneiro, Ana; Marsal, Jan

    2017-05-01

    Immune checkpoint inhibitors (ICPI), such as ipilimumab [anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibody] and nivolumab or pembrolizumab [anti-programmed cell death protein-1 (PD-1) antibodies], improve survival in several cancer types. Since inhibition of CTLA-4 or PD-1 leads to non-selective activation of the immune system, immune-related adverse events (irAEs) are frequent. Enterocolitis is a common irAE, currently managed with corticosteroids and, if necessary, anti-tumor necrosis factor-α therapy. Such a regimen carries a risk of serious side-effects including infections, and may potentially imply impaired antitumor effects. Vedolizumab is an anti-integrin α4β7 antibody with gut-specific immunosuppressive effects, approved for Crohn's disease and ulcerative colitis. We report a case series of seven patients with metastatic melanoma or lung cancer, treated with vedolizumab off-label for ipilimumab- or nivolumab-induced enterocolitis, from June 2014 through October 2016. Clinical, laboratory, endoscopic, and histologic data were analyzed. Patients initially received corticosteroids but were steroid-dependent and/or partially refractory. One patient was administered infliximab but was refractory. The median time from onset of enterocolitis to start of vedolizumab therapy was 79 days. Following vedolizumab therapy, all patients but one experienced steroid-free enterocolitis remission, with normalized fecal calprotectin. This was achieved after a median of 56 days from vedolizumab start, without any vedolizumab-related side-effects noted. The patient in whom vedolizumab was not successful, due to active ulcerative colitis, received vedolizumab prophylactically. This is the first case series to suggest that vedolizumab is an effective and well-tolerated therapeutic for steroid-dependent or partially refractory ICPI-induced enterocolitis. A larger prospective study to evaluate vedolizumab in this indication is warranted.

  11. MAMPs and MIMPs: proposed classifications for inducers of innate immunity.

    PubMed

    Mackey, David; McFall, Aidan J

    2006-09-01

    Plants encode a sophisticated innate immune system. Resistance against potential pathogens often relies on active responses. Prerequisite to the induction of defences is recognition of the pathogenic threat. Significant advances have been made in our understanding of the non-self molecules that are recognized by plants and the means by which plants perceive them. Established terms describing these recognition events, including microbe-associated molecular pattern (MAMP), MAMP-receptor, effector, and resistance (R) protein, need clarification to represent our current knowledge adequately. In this review we propose criteria to classify inducers of plant defence as either MAMPs or microbe-induced molecular patterns (MIMPs). We refine the definition of MAMP to mean a molecular sequence or structure in ANY pathogen-derived molecule that is perceived via direct interaction with a host defence receptor. MIMPs are modifications of host-derived molecules that are induced by an intrinsic activity of a pathogen-derived effector and are perceived by a host defence receptor. MAMP-receptors have previously been classified separately from R-proteins as a discrete class of surveillance molecules. However, MAMP-receptors and R-proteins cannot be distinguished on the basis of their protein structures or their induced responses. We propose that MAMP-receptors and MIMP-receptors are each a subset of R-proteins. Although our review is based on examples from plant pathogens and plants, the principles discussed might prove applicable to other organisms.

  12. Immunizations, neonatal hyperbilirubinemia and animal-induced injuries.

    PubMed

    Bennett, Sean R; Brennan, Beth; Bernstein, Henry H

    2007-08-01

    To report recent research findings and new recommendations on immunizations, neonatal hyperbilirubinemia, and animal-induced injuries. Vaccines against rotavirus and human papilloma virus have entered clinical use. Varicella outbreaks among previously vaccinated children have prompted the recommendation for a two-dose varicella vaccine series. Broader coverage for influenza vaccination is now recommended in the US and Canada. Diagnosis and treatment of neonatal hyperbilirubinemia uses population and hour-based norms for total serum bilirubin and assessment of risk factors. Delayed cord clamping is not apparently a risk factor for jaundice but warrants more study. Universal predischarge screening shows promise but is not yet officially recommended. New treatments for hyperbilirubinemia are being evaluated. Dogs are the chief cause of animal bites in children and the largest reservoir for rabies worldwide. In North America and Europe, cats and wild animals cause most human rabies. Postexposure prophylaxis should follow region-appropriate guidelines. New vaccines are available against rotavirus and human papilloma virus. Changes have been made to official immunization recommendations. Appropriate vaccine use can reduce the pediatric disease burden further. Hyperbilirubinemia is the subject of ongoing study, which may lead to improved diagnosis and treatment protocols and reduce the incidence of acute bilirubin encephalopathy. The best tool for rabies prevention after an animal bite is prompt postexposure prophylaxis.

  13. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    PubMed Central

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  14. Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression

    PubMed Central

    Kalkavan, Halime; Sharma, Piyush; Kasper, Stefan; Helfrich, Iris; Pandyra, Aleksandra A.; Gassa, Asmae; Virchow, Isabel; Flatz, Lukas; Brandenburg, Tim; Namineni, Sukumar; Heikenwalder, Mathias; Höchst, Bastian; Knolle, Percy A.; Wollmann, Guido; von Laer, Dorothee; Drexler, Ingo; Rathbun, Jessica; Cannon, Paula M.; Scheu, Stefanie; Bauer, Jens; Chauhan, Jagat; Häussinger, Dieter; Willimsky, Gerald; Löhning, Max; Schadendorf, Dirk; Brandau, Sven; Schuler, Martin; Lang, Philipp A.; Lang, Karl S.

    2017-01-01

    Immune-mediated effector molecules can limit cancer growth, but lack of sustained immune activation in the tumour microenvironment restricts antitumour immunity. New therapeutic approaches that induce a strong and prolonged immune activation would represent a major immunotherapeutic advance. Here we show that the arenaviruses lymphocytic choriomeningitis virus (LCMV) and the clinically used Junin virus vaccine (Candid#1) preferentially replicate in tumour cells in a variety of murine and human cancer models. Viral replication leads to prolonged local immune activation, rapid regression of localized and metastatic cancers, and long-term disease control. Mechanistically, LCMV induces antitumour immunity, which depends on the recruitment of interferon-producing Ly6C+ monocytes and additionally enhances tumour-specific CD8+ T cells. In comparison with other clinically evaluated oncolytic viruses and to PD-1 blockade, LCMV treatment shows promising antitumoural benefits. In conclusion, therapeutically administered arenavirus replicates in cancer cells and induces tumour regression by enhancing local immune responses. PMID:28248314

  15. Inducible Sterilization of Zebrafish by Disruption of Primordial Germ Cell Migration

    PubMed Central

    Wong, Ten-Tsao; Collodi, Paul

    2013-01-01

    During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock. PMID:23826390

  16. Immunizations, neonatal jaundice, and animal-induced injuries.

    PubMed

    Morris, Shaine A; Bernstein, Henry H

    2004-08-01

    Published studies during the past year about three topics important to the pediatric clinician-- immunizations, neonatal jaundice, and animal-induced injuries-are concisely reviewed. Recent updates regarding vaccines including the questionable link with autism, implementation of universal influenza vaccination for young children, the efficacy of pneumococcal vaccine against invasive disease, and new information on pertussis, varicella, hepatitis A, hepatitis B, measles, and rotavirus vaccination are discussed. No association between measles/mumps/rubella vaccine or thimerosal-containing pertussis vaccine and autism is evident. Universal influenza vaccination for children 6 to 23 months of age will be recommended for the 2004-2005 flu season, and this implementation should reduce significant school absenteeism as well as complications seen last year including encephalopathy, seizures, respiratory failure, and pneumonia. Pneumococcal vaccine significantly reduces rates of invasive pneumococcal vaccine in healthy and HIV-infected children, although it does not appear to greatly affect otitis media rates. A reduction in post-vaccine febrile seizures appears to be present since the introduction of acellular pertussis vaccine. Multiple outbreaks in varicella have been reported since the introduction of the varicella vaccine, and a booster vaccination may be necessary in the future. Methods for detecting and preventing severe neonatal hyperbilirubinemia are reviewed, as well as anticipated recommendations from the American Academy of Pediatrics for the detection and management of hyperbilirubinemia. High bilirubin levels in preterm infants may result in hearing dysfunction and developmental impairment. The American Academy of Pediatrics has recommended a higher level of monitoring for newborn jaundice and treatment of hyperbilirubinemia in an effort to prevent kernicterus and sequelae from elevated bilirubin levels, including post-discharge follow-up appointment by day 3

  17. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response.

    PubMed

    Sandhu, J S; Krasnyanski, S F; Domier, L L; Korban, S S; Osadjan, M D; Buetow, D E

    2000-04-01

    Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.

  18. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A vaccine targeting mutant IDH1 induces antitumour immunity.

    PubMed

    Schumacher, Theresa; Bunse, Lukas; Pusch, Stefan; Sahm, Felix; Wiestler, Benedikt; Quandt, Jasmin; Menn, Oliver; Osswald, Matthias; Oezen, Iris; Ott, Martina; Keil, Melanie; Balß, Jörg; Rauschenbach, Katharina; Grabowska, Agnieszka K; Vogler, Isabel; Diekmann, Jan; Trautwein, Nico; Eichmüller, Stefan B; Okun, Jürgen; Stevanović, Stefan; Riemer, Angelika B; Sahin, Ugur; Friese, Manuel A; Beckhove, Philipp; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-08-21

    Monoallelic point mutations of isocitrate dehydrogenase type 1 (IDH1) are an early and defining event in the development of a subgroup of gliomas and other types of tumour. They almost uniformly occur in the critical arginine residue (Arg 132) in the catalytic pocket, resulting in a neomorphic enzymatic function, production of the oncometabolite 2-hydroxyglutarate (2-HG), genomic hypermethylation, genetic instability and malignant transformation. More than 70% of diffuse grade II and grade III gliomas carry the most frequent mutation, IDH1(R132H) (ref. 3). From an immunological perspective, IDH1(R132H) represents a potential target for immunotherapy as it is a tumour-specific potential neoantigen with high uniformity and penetrance expressed in all tumour cells. Here we demonstrate that IDH1(R132H) contains an immunogenic epitope suitable for mutation-specific vaccination. Peptides encompassing the mutated region are presented on major histocompatibility complexes (MHC) class II and induce mutation-specific CD4(+) T-helper-1 (TH1) responses. CD4(+) TH1 cells and antibodies spontaneously occurring in patients with IDH1(R132H)-mutated gliomas specifically recognize IDH1(R132H). Peptide vaccination of mice devoid of mouse MHC and transgenic for human MHC class I and II with IDH1(R132H) p123-142 results in an effective MHC class II-restricted mutation-specific antitumour immune response and control of pre-established syngeneic IDH1(R132H)-expressing tumours in a CD4(+) T-cell-dependent manner. As IDH1(R132H) is present in all tumour cells of these slow-growing gliomas, a mutation-specific anti-IDH1(R132H) vaccine may represent a viable novel therapeutic strategy for IDH1(R132H)-mutated tumours.

  20. Immunization

    MedlinePlus

    ... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...

  1. Does a monovalent inactivated human rotavirus vaccine induce heterotypic immunity?

    PubMed Central

    Jiang, Baoming; Wang, Yuhuan; Glass, Roger I.

    2013-01-01

    There is substantial evidence for broad cross-reactive immunity and heterotypic protection among human rotavirus strains in children with natural infection or with monovalent Rotarix vaccination. In this commentary, we addressed this same topic by testing sera of guinea pigs and gnotobiotic piglets that were intramuscularly immunized with an inactivated human rotavirus vaccine and also demonstrated a broad cross-protective immunity among human rotavirus strains. Our findings from a single human strain in animal studies bode well for a low cost and efficacious inactivated vaccine to protect children against rotavirus disease throughout the world. PMID:23744507

  2. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    PubMed Central

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  3. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel Therapeutic Formulation

    PubMed Central

    Almeida, Freya M Freyre; Blanco, Aracelys; Trujillo, Heidy; Hernández, Dunia; García, Daymir; Alba, José S; Abad, Matilde López; Merino, Nelson; Lobaina, Yadira

    2016-01-01

    ABSTRACT The development of therapeutic vaccines against chronic hepatitis B requires the capacity of the formulation to subvert a tolerated immune response as well as the evaluation of histopathological damage resulting from the treatment. In the present study, the dynamicity of induced immune response to hepatitis B surface antigen (HBsAg) was evaluated in transgenic mice that constitutively express the HBsAg gene (HBsAg-tg mice). After immunization with a vaccine candidate containing both surface (HBsAg) and core (HBcAg) antigens of hepatitis B virus (HBV), the effect of vaccination on clearance of circulating HBsAg and the potential histological alterations were examined. Transgenic (tg) and non-transgenic (Ntg) mice were immunized by intranasal (IN) and subcutaneous (SC) routes simultaneously. A control group received phosphate-buffered saline (PBS) by IN route and aluminum by SC route. Positive responses, at both humoral and cellular levels, were obtained after five immunizations in HBsAg-tg mice. Such responses were delayed and of lower intensity in tg mice, compared to vaccinated Ntg mice. Serum IgG response was characterized by a similar IgG subclass pattern. Even when HBsAg-specific CD8+ T cell responses were clearly detectable by gamma-interferon ELISPOT assay, histopathological alterations were not detected in any organ, including the liver and kidneys. Our study demonstrated, that it is possible to subvert the immune tolerance against HBsAg in tg mice, opening a window for new studies to optimize the schedule, dose, and formulation to improve the immune response to the therapeutic vaccine candidate. These results can be considered a safety proof to support clinical developments for the formulation under study. How to cite this article Freyre FM, Blanco A, Trujillo H, Hernández D, García D, Alba JS, Lopez M, Merino N, Lobaina Y, Aguilar JC. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel

  4. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats.

    PubMed

    Sundareswaran, Loganathan; Srinivasan, Sakthivel; Wankhar, Wankupar; Sheeladevi, Rathinasamy

    Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 10 9  cells/ml) were injected intraperitoneally. Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  5. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    PubMed

    Abraham, David; Hess, Jessica A; Mejia, Rojelio; Nolan, Thomas J; Lok, James B; Lustigman, Sara; Nutman, Thomas B

    2011-10-19

    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Intestinal infection with Trichinella spiralis induces distinct, regional immune responses

    PubMed Central

    Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.

    2013-01-01

    The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441

  7. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility.

    PubMed

    Li, Haitao; Li, Juanjuan; Zhao, Bo; Wang, Jing; Yi, Licong; Liu, Chao; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-01-01

    Identification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production. Here we report the first proposed application of a herbicide-resistant cultivar in hybrid production, using a CIMS system based on identifying four TBM-resistant mutants in Brassica napus. Genetic analysis indicated that the TBM resistance was controlled by a single dominant nuclear gene. An in vitro enzyme activity assay for acetohydroxyacid synthase (AHAS) suggested that the herbicide resistance is caused by a gain-of-function mutation in a copy of AHAS genes. Comparative sequencing of the mutants and wild type BnaA.AHAS.a coding sequences identified a C-to-T transition at either position 535 or 536 from the translation start site, which resulted in a substitution of proline with serine or leucine at position 197 according to the Arabidopsis thaliana protein sequence. An allele-specific dCAPS marker developed from the C536T variation co-segregated with the herbicide resistance. Transgenic A. thaliana plants expressing BnaA.ahas3.a conferred herbicide resistance, which confirmed that the P197 substitution in BnaA.AHAS.a was responsible for the herbicide resistance. Moreover, the TBM-resistant lines maintain normal male fertility under TBM treatment and can be of practical value in hybrid seed production using CIMS.

  8. Traumatic brain injury-induced alterations in peripheral immunity.

    PubMed

    Schwulst, Steven J; Trahanas, Diane M; Saber, Rana; Perlman, Harris

    2013-11-01

    The complex alterations that occur in peripheral immunity after traumatic brain injury (TBI) have been poorly characterized to date. The purpose of this study was to determine the temporal changes in the peripheral immune response after TBI in a murine model of closed head injury. C57Bl/6 mice underwent closed head injury via a weight drop technique (n = 5) versus sham injury (n = 3) per time point. Blood, spleen, and thymus were collected, and immune phenotype, cytokine expression, and antibody production were determined via flow cytometry and multiplex immunoassays at 1, 3, 7, 14, 30, and 60 days after injury. TBI results in acute and chronic changes in both the innate and adaptive immune response. TBI resulted in a striking loss of thymocytes as early as 3 days after injury (2.1 × 10 TBI vs. 5.6 × 10 sham, p = 0.001). Similarly, blood monocyte counts were markedly diminished as early as 24 hours after TBI (372 per deciliter TBI vs. 1359 per deciliter sham, p = 0.002) and remained suppressed throughout the first month after injury. At 60 days after injury, monocytes were polarized toward an anti-inflammatory (M2) phenotype. TBI also resulted in diminished interleukin 12 expression from Day 14 after injury throughout the remainder of the observation period. TBI results in temporal changes in both the peripheral and the central immune systems culminating in an overall immune suppressed phenotype and anti-inflammatory milieu.

  9. Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

    PubMed

    Levashova, Zoia; Backer, Marina; Backer, Joseph M; Blankenberg, Francis G

    2009-12-01

    Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of sterile soft-tissue inflammation induced by intramuscular injection of turpentine. Anesthetized adult male Swiss-Webster mice received a 20-microL intramuscular injection of turpentine into the right thigh. At 4, 7, or 10 d later, groups of 3-5 mice were injected via the tail vein with 50 microg of either scVEGF that had been site specifically labeled with Cy5.5 (scVEGF/Cy) or inactivated scVEGF/Cy (inVEGF/Cy) and then examined by fluorescence imaging. At 3, 4, 6, 7, 9, 10, or 12 d, additional groups of 3-5 mice were injected via the tail vein with 74-111 MBq of (99m)Tc-scVEGF (or (99m)Tc-inVEGF) and then examined by SPECT imaging. On days 3 through 10, both forms of scVEGF (scVEGF/Cy and (99m)Tc-scVEGF) showed significantly higher uptake (P < 0.05) in the right (abscessed) thigh than in the contralateral thigh (and higher uptake than the inactivated tracer). Peak uptake occurred on day 7 (3.67 +/- 1.79 [ratio of uptake in abscessed thigh to uptake in normal thigh, mean +/- SD] and 0.72 +/- 0.01 for scVEGF/Cy and inVEGF/Cy, respectively, and 3.49 +/- 1.22 and 1.04 +/- 0.41 for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively) and slowly decreased thereafter. Autoradiography revealed peak tracer uptake in the thick irregular angiogenic rim of the abscess cavity on day 9 (5.83 x 10(-7) +/- 9.22 x 10(-8) and 5.85 x 10(-8) +/- 5.95 x 10(-8) percentage injected dose per pixel for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively); in comparison, a thin circumscribed rim of uptake was seen with (99m)Tc-inVEGF. Immunostaining revealed that VEGFR-2 (VEGF receptor) colocalized with CD31 (endothelial cell marker) at all time points in the

  10. Musculoskeletal and rheumatic diseases induced by immune checkpoint inhibitors: a review of the literature.

    PubMed

    Benfaremo, Devis; Manfredi, Lucia; Luchetti, Michele Maria; Gabrielli, Armando

    2018-05-08

    Immune checkpoint inhibitors are a new promising class of antitumor drugs that have been associated to a number of immune-related adverse events (AEs), including musculoskeletal and rheumatic disease. We searched Medline reviewing reports of musculoskeletal and rheumatic AEs induced by immune checkpoint inhibitors. Several musculoskeletal and rheumatic AEs associated with immune checkpoint inhibitors treatment are reported in literature. In particular, arthralgia and myalgia were the most common reported AEs, whereas the prevalence of arthritis, myositis and vasculitis is less characterized and mainly reported in case series and case reports. Other occasionally described AEs are sicca syndrome, polymyalgia rheumatica, systemic lupus erythematosus and sarcoidosis. Newly induced musculoskeletal and rheumatic diseases are a frequent adverse event associated with immune checkpoint inhibitors treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Do entheogen-induced mystical experiences boost the immune system? Psychedelics, peak experiences, and wellness.

    PubMed

    Roberts, T B

    1999-01-01

    Daily events that boost the immune system (as indicated by levels of salivary immunoglobulin A), some instances of spontaneous remission, and mystical experiences seem to share a similar cluster of thoughts, feelings, moods, perceptions, and behaviors. Entheogens--psychedelic drugs used in a religious context--can also produce mystical experiences (peak experiences, states of unitive consciousness, intense primary religious experiences) with the same cluster of effects. When this happens, is it also possible that such entheogen-induced mystical experiences strengthen the immune system? Might spontaneous remissions occur more frequently under such conditions? This article advances the so called "Emxis hypothesis"--that entheogen-induced mystical experiences influence the immune system.

  12. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  13. Interaction Between 2 Nutraceutical Treatments and Host Immune Status in the Pediatric Critical Illness Stress-Induced Immune Suppression Comparative Effectiveness Trial.

    PubMed

    Carcillo, Joseph A; Dean, J Michael; Holubkov, Richard; Berger, John; Meert, Kathleen L; Anand, Kanwaljeet J S; Zimmerman, Jerry J; Newth, Christopher J L; Harrison, Rick; Burr, Jeri; Willson, Douglas F; Nicholson, Carol; Bell, Michael J; Berg, Robert A; Shanley, Thomas P; Heidemann, Sabrina M; Dalton, Heidi; Jenkins, Tammara L; Doctor, Allan; Webster, Angie; Tamburro, Robert F

    2017-11-01

    The pediatric Critical Illness Stress-induced Immune Suppression (CRISIS) trial compared the effectiveness of 2 nutraceutical supplementation strategies and found no difference in the development of nosocomial infection and sepsis in the overall population. We performed an exploratory post hoc analysis of interaction between nutraceutical treatments and host immune status related to the development of nosocomial infection/sepsis. Children from the CRISIS trial were analyzed according to 3 admission immune status categories marked by decreasing immune competence: immune competent without lymphopenia, immune competent with lymphopenia, and previously immunocompromised. The comparative effectiveness of the 2 treatments was analyzed for interaction with immune status category. There were 134 immune-competent children without lymphopenia, 79 previously immune-competent children with lymphopenia, and 27 immunocompromised children who received 1 of the 2 treatments. A significant interaction was found between treatment arms and immune status on the time to development of nosocomial infection and sepsis ( P < .05) and on the rate of nosocomial infection and sepsis per 100 patient days ( P < .05). Whey protein treatment protected immune-competent patients without lymphopenia from infection and sepsis, both nutraceutical strategies were equivalent in immune-competent patients with lymphopenia, and zinc, selenium, glutamine, and metoclopramide treatment protected immunocompromised patients from infection and sepsis. The science of immune nutrition is more complex than previously thought. Future trial design should consider immune status at the time of trial entry because differential effects of nutraceuticals may be related to this patient characteristic.

  14. Tumor-induced perturbations of cytokines and immune cell networks.

    PubMed

    Burkholder, Brett; Huang, Ren-Yu; Burgess, Rob; Luo, Shuhong; Jones, Valerie Sloane; Zhang, Wenji; Lv, Zhi-Qiang; Gao, Chang-Yu; Wang, Bao-Ling; Zhang, Yu-Ming; Huang, Ruo-Pan

    2014-04-01

    Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  16. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression.

    PubMed

    Chen, Lingling; Qiu, Xiangting; Wang, Xinhua; He, Jian

    2017-05-20

    Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  18. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin.

  19. Cytological study of radiation induced alterations in cytoplasmic factors controlling male sterility in corn. Progress report, February 28, 1975--December 1, 1975

    SciTech Connect

    Edwardson, J.R.

    1975-01-01

    Progress is reported on the following research projects: cytoplasmic constituents of the embryo of various gymnosperms and angiosperms; cytoplasmic male sterility in corn; modification of cytoplasmic sterility factors using gamma radiation, EMS, and ethidium bromide; selection for sterile, blight-resistant corn plants; electron microscopy study of abnormal mitochondria in cytoplasm of corn; cytoplasmic male sterility in Petunia; non-Mendelian variegation in Petunia and Nicotiana; graft transmission of cytoplasmic male sterility; cytoplasmic male sterility in Vicia faba; and studies on Blakeslee's I virus in Datura. (HLW)

  20. Interval Female Sterilization.

    PubMed

    Stuart, Gretchen S; Ramesh, Shanthi S

    2018-01-01

    Female sterilization is relied on by nearly one in three women aged 35-44 years in the United States. Sterilization procedures are among the most common procedures that obstetrician-gynecologists perform. The most frequent sterilization procedures include postpartum tubal ligation, laparoscopic tubal disruption or salpingectomy, and hysteroscopic tubal occlusion. The informed consent process for sterilization is crucial and requires shared decision-making between the patient and the health care provider. Counseling should include the specific risks and benefits of the specific surgical approaches. Additionally, women should be counseled on the alternatives to sterilization, including intrauterine contraceptives and subdermal contraceptive implants. Complications, including unplanned pregnancy after successful female sterilization, are rare. The objectives of this Clinical Expert Series are to describe the epidemiology of female sterilization, access to postpartum sterilization, advances in interval sterilization techniques, and clinical considerations in caring for women requesting sterilization.

  1. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  2. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  3. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  4. Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    PubMed Central

    Hewitson, James P.; Filbey, Kara J.; Esser-von Bieren, Julia; Camberis, Mali; Schwartz, Christian; Murray, Janice; Reynolds, Lisa A.; Blair, Natalie; Robertson, Elaine; Harcus, Yvonne; Boon, Louis; Huang, Stanley Ching-Cheng; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Voehringer, David; Le Gros, Graham; Harris, Nicola; Maizels, Rick M.

    2015-01-01

    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations. PMID:25816012

  5. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2006-01-01

    TNFR I (p55-/-) and TNFR II (p75-/-), both on the C57/ BL6 background. McBride, William H. W81XWH-04-1-0126 5 0 20 40 60 80 100 WT p55 p75 MHC II...not shown). The major ‘brake’ on the development of immunity by DCs seems therefore 0 100 200 300 400 500 600 700 non-immunized C57/ Bl6 C57/ Bl6 -10Gy...with 10Gy or not and transduced with AdMART prior to injection into WT C57/ Bl6 mice (5x105 DCs/mouse). 7 days later splenocytes were harvested, re

  6. Immune Responses in Rhinovirus-Induced Asthma Exacerbations.

    PubMed

    Steinke, John W; Borish, Larry

    2016-11-01

    Acute asthma exacerbations are responsible for urgent care visits and hospitalizations; they interfere with school and work productivity, thereby driving much of the morbidity and mortality associated with asthma. Approximately 80 to 85 % of asthma exacerbations in children, adolescents, and less frequently adults are associated with viral upper respiratory tract viral infections, and rhinovirus (RV) accounts for ∼60-70 % of these virus-associated exacerbations. Evidence suggests that it is not the virus itself but the nature of the immune response to RV that drives this untoward response. In particular, evidence supports the concept that RV acts to exacerbate an ongoing allergic inflammatory response to environmental allergens present at the time of the infection. The interaction of the ongoing IgE- and T cell-mediated response to allergen superimposed on the innate and adaptive immune responses to the virus and how this leads to triggering of an asthma exacerbation is discussed.

  7. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    PubMed

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  8. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    PubMed Central

    Zhong, Hong; Ma, Minjuan

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction. PMID:29484304

  9. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  10. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  12. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization.

    PubMed

    Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G

    2001-09-01

    Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.

  13. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    PubMed Central

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  14. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  15. Strain-Specific Protective Effect of the Immunity Induced by Live Malarial Sporozoites under Chloroquine Cover

    PubMed Central

    Wijayalath, Wathsala; Cheesman, Sandra; Tanabe, Kazuyuki; Handunnetti, Shiroma; Carter, Richard; Pathirana, Sisira

    2012-01-01

    The efficacy of a whole-sporozoite malaria vaccine would partly be determined by the strain-specificity of the protective responses against malarial sporozoites and liver-stage parasites. Evidence from previous reports were inconsistent, where some studies have shown that the protective immunity induced by irradiated or live sporozoites in rodents or humans were cross-protective and in others strain-specific. In the present work, we have studied the strain-specificity of live sporozoite-induced immunity using two genetically and immunologically different strains of Plasmodium cynomolgi, Pc746 and PcCeylon, in toque monkeys. Two groups of monkeys were immunized against live sporozoites of either the Pc746 (n = 5), or the PcCeylon (n = 4) strain, by the bites of 2–4 sporozoite-infected Anopheles tessellates mosquitoes per monkey under concurrent treatments with chloroquine and primaquine to abrogate detectable blood infections. Subsequently, a group of non-immunized monkeys (n = 4), and the two groups of immunized monkeys were challenged with a mixture of sporozoites of the two strains by the bites of 2–5 infective mosquitoes from each strain per monkey. In order to determine the strain-specificity of the protective immunity, the proportions of parasites of the two strains in the challenge infections were quantified using an allele quantification assay, Pyrosequencing™, based on a single nucleotide polymorphism (SNP) in the parasites’ circumsporozoite protein gene. The Pyrosequencing™ data showed that a significant reduction of parasites of the immunizing strain in each group of strain-specifically immunized monkeys had occurred, indicating a stronger killing effect on parasites of the immunizing strain. Thus, the protective immunity developed following a single, live sporozoite/chloroquine immunization, acted specifically against the immunizing strain and was, therefore, strain-specific. As our experiment does not allow us to determine the

  16. Chitosan-induced antiviral activity and innate immunity in plants.

    PubMed

    Iriti, Marcello; Varoni, Elena Maria

    2015-02-01

    Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

  17. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    PubMed

    Adnan, Sama; Reeves, R Keith; Gillis, Jacqueline; Wong, Fay E; Yu, Yi; Camp, Jeremy V; Li, Qingsheng; Connole, Michelle; Li, Yuan; Piatak, Michael; Lifson, Jeffrey D; Li, Wenjun; Keele, Brandon F; Kozlowski, Pamela A; Desrosiers, Ronald C; Haase, Ashley T; Johnson, R Paul

    2016-12-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  18. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease

    PubMed Central

    Lennon, Vanda A.; Ermilov, Leonid G.; Szurszewski, Joseph H.; Vernino, Steven

    2003-01-01

    Neuronal nicotinic AChRs (nAChRs) are implicated in the pathogenesis of diverse neurological disorders and in the regulation of small-cell lung carcinoma growth. Twelve subunits have been identified in vertebrates, and mutations of one are recognized in a rare form of human epilepsy. Mice with genetically manipulated neuronal nAChR subunits exhibit behavioral or autonomic phenotypes. Here, we report the first model of an acquired neuronal nAChR disorder and evidence for its pertinence to paraneoplastic neurological autoimmunity. Rabbits immunized once with recombinant α3 subunit (residues 1–205) develop profound gastrointestinal hypomotility, dilated pupils with impaired light response, and grossly distended bladders. As in patients with idiopathic and paraneoplastic autoimmune autonomic neuropathy, the severity parallels serum levels of ganglionic nAChR autoantibody. Failure of neurotransmission through abdominal sympathetic ganglia, with retention of neuronal viability, confirms that the disorder is a postsynaptic channelopathy. In addition, we found ganglionic nAChR protein in small-cell carcinoma lines, identifying this cancer as a potential initiator of ganglionic nAChR autoimmunity. The data support our hypothesis that immune responses driven by distinct neuronal nAChR subtypes expressed in small-cell carcinomas account for several lung cancer–related paraneoplastic disorders affecting cholinergic systems, including autoimmune autonomic neuropathy, seizures, dementia, and movement disorders. PMID:12639997

  19. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  20. Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines.

    PubMed

    Goh, Jorming; Niksirat, Negin; Campbell, Kristin L

    2014-01-01

    Observational research suggests that exercise may reduce the risk of breast cancer and improve survival. One proposed mechanism for the protective effect of aerobic exercise related to cancer risk and outcomes, but has not been examined definitively, is the immune response to aerobic exercise. Two prevailing paradigms are proposed. The first considers the host immune response as modifiable by aerobic exercise training. This exercise-modulated immune-tumor crosstalk in the mammary microenvironment may alter the balance between tumor initiation and progression versus tumor suppression. The second paradigm considers the beneficial role of exercise-induced, skeletal muscle-derived cytokines, termed "myokines". These myokines exert endocrine-like effects on multiple organs, including the mammary glands. In this systematic review, we i) define the role of macrophages and T-cells in breast cancer initiation and progression; ii) address the two paradigms that support exercise-induced immunomodulation; iii) systematically assessed the literature for exercise intervention that assessed biomarkers relevant to both paradigms in human intervention trials of aerobic exercise training, in healthy women and women with breast cancer; iv) incorporated pre-clinical animal studies and non-RCTs for background discussion of putative mechanisms, through which aerobic exercise training modulates the immunological crosstalk, or the myokine-tumor interaction in the tumor microenvironment; and v) speculated on the potential biomarkers and mechanisms that define an exercise-induced, anti-tumor "signature", with a view toward developing relevant biomarkers for future aerobic exercise intervention trials.

  1. Infection-Induced Interaction between the Mosquito Circulatory and Immune Systems

    PubMed Central

    King, Jonas G.; Hillyer, Julián F.

    2012-01-01

    Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems. PMID:23209421

  2. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor

    PubMed Central

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-01-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  3. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    PubMed

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  4. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice.

    PubMed

    Inoue, Shigeaki; Suzuki-Utsunomiya, Kyoko; Komori, Yukako; Kamijo, Akemi; Yumura, Isao; Tanabe, Koudai; Miyawaki, Ayumi; Koga, Kunimasa

    2013-12-01

    Non-sterilized fish waste containing fish bones was fermented using combined starter cultures of film-forming yeast (Candida ethanolica) and lactic acid bacteria (LAB; Lactobacillus casei and Lactobacillus rhamnosus) in order to obtain a liquefied fermented broth without spoiling. During the entire fermentation, the number of LAB cells was maintained at a high level (6 × 10(8)-5 × 10(7) cells/ml). Although the number of general bacteria was 10(6)cell/ml after adding non-sterilized fish biomass, its growth was suppressed to be 1-3 × 10(4) cells/ml. The entire biomass had completely liquefied and the fermented broth contained all 20 α-amino acids composed of protein and also various kinds of minerals in abundance. The weight of mice group fed the fermented broth content feed (sample feed) for 31 days significantly increased compared with that fed no broth feed (control feed) (21.37 g vs 20.76 g (p < 0.05). No abnormal behavior and appearance were observed. All internal organs (the heart, the liver, the lung, the intestines, and the spleen) of both groups were confirmed to be normal by visual observation. In peripheral blood, the percentages of NK cells and CD8+ T cells of the mice in the sample feed group increased significantly relative to those in the control feed group (NK cells: 19% vs 11%, CD8+ T cells: 9% vs 5%, p < 0.05). In the spleen, the percentage of NK cells in the sample feed group also increased significantly compared to that in the control feed group (p < 0.05). The fermented fish biomass is expected to be effective for innate and adaptive immunity and thus fit for animal feed. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    PubMed Central

    Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna

    2017-01-01

    Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are

  6. Histological changes induced by CO2 laser microprobe specially designed for root canal sterilization: in vivo study.

    PubMed

    Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R

    1998-10-01

    Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.

  7. Acute symptomatic hypocalcemia from immune checkpoint therapy-induced hypoparathyroidism.

    PubMed

    Win, Myint Aung; Thein, Kyaw Zin; Qdaisat, Aiham; Yeung, Sai-Ching Jim

    2017-07-01

    Ipilimumab (a monoclonal antibody against CTLA-4) and nivolumab (a humanized antibody against PD-1) target these immune checkpoint pathways and are used for treatment of melanoma and an increasing number of other cancers. However, they may cause immune-related adverse effects (IRAEs). Although many endocrinopathies are known to be IRAEs, primary hypoparathyroidism with severe hypocalcemia has never been reported. This is the first case of hypoparathyroidism as an IRAE presenting to an Emergency Department with acute hypocalcemia. A 73-year-old man with metastatic melanoma presented to the Emergency Department for the chief complaints of imbalance, general muscle weakness, abdominal pain and tingling in extremities. He had wide spread metastasis, and begun immunotherapy with concurrent ipilimumab and nivolumab 1.5months ago. At presentation, he had ataxia, paresthesia in the hands and feet, and abdominal cramping. Magnetic resonance imaging of the brain was unremarkable. He was found to be hypocalcemic with undetectable plasma parathyroid hormone. He was admitted for treatment of symptomatic hypocalcemia and was diagnosed with primary hypoparathyroidism. Shortly afterwards, he had thyrotoxicosis manifesting as tachycardia and anxiety, followed by development of primary hypothyroidism. At 4months after the Emergency Department visit, his parathyroid function and thyroid function had not recovered, and required continued thyroid hormone replacement and calcium and vitamin D treatment for hypocalcemia. Primary hypoparathyroidism caused by ipilimumab and nivolumab may acute manifest with severe symptomatic hypocalcemia. Emergency care providers should be aware of hypoparathyroidism as a new IRAE in this new era of immuno-oncology. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Immunization of mice with baculovirus-derived recombinant SV40 large tumour antigen induces protective tumour immunity to a lethal challenge with SV40-transformed cells.

    PubMed Central

    Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C

    1993-01-01

    In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059

  10. Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity.

    PubMed

    Magpantay, F M G; Domenech DE Cellès, M; Rohani, P; King, A A

    2016-06-01

    The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In particular, major questions surround the nature, degree and durability of vaccine protection. To address these questions, we used mechanistic transmission models to examine regional time series incidence data from Italy in the period immediately following the introduction of acellular pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of vaccine immunity, or some combination of these. Across the range of well-supported models, the nature and duration of vaccine protection, the age profile of incidence and the range of projected epidemiological futures differ substantially, underscoring the importance of the remaining unknowns. We identify key data gaps: sources of data that can supply the information needed to eliminate these remaining uncertainties.

  11. Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity

    PubMed Central

    MAGPANTAY, F. M. G.; DE CELLÉS, M. DOMENECH; ROHANI, P.; KING, A. A.

    2016-01-01

    SUMMARY The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In particular, major questions surround the nature, degree and durability of vaccine protection. To address these questions, we used mechanistic transmission models to examine regional time series incidence data from Italy in the period immediately following the introduction of acellular pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of vaccine immunity, or some combination of these. Across the range of well-supported models, the nature and duration of vaccine protection, the age profile of incidence and the range of projected epidemiological futures differ substantially, underscoring the importance of the remaining unknowns. We identify key data gaps: sources of data that can supply the information needed to eliminate these remaining uncertainties. PMID:26337864

  12. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice.

    PubMed

    Lin, Ruqin; Zhu, Bo; Zhang, Yiduo; Bai, Yang; Zhi, Fachao; Long, Beiguo; Li, Yawen; Wu, Yuhua; Wu, Xianbo; Fan, Hongying

    2017-04-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic uremic syndrome in humans. Due to the risks associated with antibiotic treatment against EHEC O157:H7 infection, vaccines represent a promising method for prevention of EHEC O157:H7 infection. Therefore, we constructed the novel bivalent antigen EspA-Tir-M as a candidate EHEC O157:H7 subunit vaccine. We then evaluated the immunogenicity of this novel EHEC O157:H7 subunit vaccine. Immune responses to the fusion protein administered by intranasal and subcutaneous routes were compared in mice. Results showed higher levels of specific mucosal and systemic antibody responses induced by intranasal as compared to subcutaneous immunization. Intranasal immunization enhanced the concentration of interleukin-4, interleukin-10, and interferon-γ, while subcutaneous immunization enhanced only the latter two. In addition, intranasal immunization protected against EHEC O157:H7 colonization and infection in mice at a rate of 90%.Histopathological analysis revealed that vaccination reduced colon damage, especially when administered intranasally. In contrast, subcutaneous immunization elicited a weak immune response and exhibited a low protection rate. These findings demonstrate that intranasal immunization with the fusion protein induces both humoral and cellular immune (Th1/Th2) responses in mice. The novel EspA-Tir-M novel fusion protein therefore represents a promising subunit vaccine against EHEC O157:H7 infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sterilizing the Poor

    ERIC Educational Resources Information Center

    Rothman, Sheila M.

    1977-01-01

    Suggests that freedom for the middle classes may mean vulnerability for the poor. The enthusiasm for sterilization may be so intense as to deprive the poor of their right not to be sterilized. (Author/AM)

  14. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    PubMed

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.

  16. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections.

    PubMed

    Lasfar, Ahmed; Zloza, Andrew; de la Torre, Andrew; Cohen-Solal, Karine A

    2016-01-01

    IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent.

  17. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  18. Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu.

    PubMed

    Mohanty, Kartik; Saha, Asim; Pal, Smarajit; Mallick, Palash; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya

    2007-07-01

    Our goal is to apply an anti-idiotype (Id) antibody based vaccine approach for the treatment of Her-2/neu-positive human cancer. Amplification and/or over-expression of Her-2/neu occur in multiple human malignancies and are associated with poor prognosis. Her-2/neu proto-oncogene is a suitable target for cancer immunotherapy. We have developed and characterized a murine monoclonal anti-Id antibody, 6D12 that mimics a specific epitope of Her-2/neu and can be used as a surrogate antigen for Her-2/neu. In this study, the efficacy of 6D12 as a tumor vaccine was evaluated in a murine tumor model. Immunization of immunocompetent C57BL/6 mice with 6D12 conjugated to keyhole limpet hemocyanin and mixed with Freund's adjuvant or 6D12 combined with the adjuvant QS21 induced anti-6D12 as well as anti-Her-2/neu immunity. Her-2/neu-positive human breast carcinoma cells, SK-BR-3 reacted with immunized mice sera as determined by ELISA and flow cytometry. Flow cytometry analysis also demonstrated strong reactivity of immunized mice sera with human Her-2/neu transfected EL4 cells (EL4-Her-2), but no reactivity with nontransfected parental EL4 cells. Antibody dependent cellular cytotoxicity against EL4-Her-2 cells was also observed in presence of immune sera. Mice immunized with 6D12 were protected against a challenge with lethal doses of EL4-Her-2 cells, whereas no protection was observed against parental EL4 cells or when mice were immunized with an unrelated anti-Id antibody and challenged with EL4-Her-2 cells. These data suggest that anti-Id 6D12 vaccine can induce protective Her-2/neu specific antitumor immunity and may serve as a potential network antigen for the treatment of patients with Her-2/neu-positive tumors.

  19. Sterilization for Women and Men

    MedlinePlus

    f AQ FREQUENTLY ASKED QUESTIONS FAQ011 CONTRACEPTION Sterilization for Women and Men • What is sterilization? • How does tubal occlusion work to prevent pregnancy? • How effective is female sterilization? • Does female sterilization ...

  20. Immune complex-induced human monocyte procoagulant activity. I. a rapid unidirectional lymphocyte-instructed pathway.

    PubMed

    Schwartz, B S; Edgington, T S

    1981-09-01

    It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune

  1. ISO radiation sterilization standards

    NASA Astrophysics Data System (ADS)

    Lambert, Byron J.; Hansen, Joyce M.

    1998-06-01

    This presentation provides an overview of the current status of the ISO radiation sterilization standards. The ISO standards are voluntary standards which detail both the validation and routine control of the sterilization process. ISO 11137 was approved in 1994 and published in 1995. When reviewing the standard you will note that less than 20% of the standard is devoted to requirements and the remainder is guidance on how to comply with the requirements. Future standards developments in radiation sterilization are being focused on providing additional guidance. The guidance that is currently provided in informative annexes of ISO 11137 includes: device/packaging materials, dose setting methods, and dosimeters and dose measurement, currently, there are four Technical Reports being developed to provide additional guidance: 1. AAMI Draft TIR, "Radiation Sterilization Material Qualification" 2. ISO TR 13409-1996, "Sterilization of health care products — Radiation sterilization — Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches" 3. ISO Draft TR, "Sterilization of health care products — Radiation sterilization Selection of a sterilization dose for a single production batch" li]4. ISO Draft TR, "Sterilization of health care products — Radiation sterilization-Product Families, Plans for Sampling and Frequency of Dose Audits."

  2. Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence.

    PubMed

    Yang, Junyuan; Martcheva, Maia; Wang, Lin

    2015-10-01

    Vaccination is the most effective method of preventing the spread of infectious diseases. For many diseases, vaccine-induced immunity is not life long and the duration of immunity is not always fixed. In this paper, we propose an SIVS model taking the waning of vaccine-induced immunity and general nonlinear incidence into consideration. Our analysis shows that the model exhibits global threshold dynamics in the sense that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable implying the disease dies out; while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable indicating that the disease persists. This global threshold result indicates that if the vaccination coverage rate is below a critical value, then the disease always persists and only if the vaccination coverage rate is above the critical value, the disease can be eradicated. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.

    PubMed

    Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka

    2017-02-07

    Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.

  4. Steroid-induced femoral head osteonecrosis in immune thrombocytopenia treatment with osteochondral autograft transplantation.

    PubMed

    Fotopoulos, Vasileios Ch; Mouzopoulos, George; Floros, Themistoklis; Tzurbakis, Matthaios

    2015-09-01

    Osteonecrosis of the femoral head is a devastating complication of steroid administration and has rarely been observed in the treatment of immune thrombocytopenia. The treatment of osteochondral defects in advanced stages of avascular necrosis (AVN), characterized by collapse of the subchondral bone, remains an unsolved burden in orthopedic surgery. In this report, we present a case of a 19-year-old female that was admitted in the Emergency Department with walking disability and painful hip joint movement due to steroid-induced femoral head osteonecrosis. Two years before she was diagnosed with immune thrombocytopenia, for which she received pulse steroid therapy with high dose of dexamethasone and underwent a splenectomy. This case report is the first to describe the use of osteochondral autograft transplantation as a treatment of steroid-induced AVN of the femoral head due to immune thrombocytopenia at the age of 19 years with very good clinical and radiological results 3 years postoperatively.

  5. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    SciTech Connect

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes,more » its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.« less

  6. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    USDA-ARS?s Scientific Manuscript database

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and very little is known about fungal molecular responses to bacteria, a...

  7. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development.

    PubMed

    Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V

    2010-09-01

    Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.

  8. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  9. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs a and burs ß), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. ...

  10. Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials.

    PubMed

    Saif, M; Hafez, H; Nabeel, A I

    2013-01-01

    Highly active samarium doped zinc oxide self-cleaning and biocidal surfaces (x mol% Sm(3+)/ZnO where x=0, 1, 2 and 4 mol%) with crystalline porous structures were synthesized by hydrothermal method. Sm(3+)/ZnO thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopic (EDS), UV-visible diffuse reflectance and fluorescence (FL) spectroscopy. The combination between doping and hydrothermal treatments significantly altered the morphology of ZnO into rod and plate-like nanoshapes structure and enhanced its absorption and emission of ultraviolet radiation. The photo-activity in term of quantitative determination of the active oxidative species (()OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results showed that, the hydrothermally treated 2.0 mol% Sm(3+)/ZnO film (S2) is the highly active one. The optical, structural, morphology and photo-activity properties of the highly active thin film (S2) make it promising surface for self-cleaning and sterilizing applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Community deworming alleviates geohelminth-induced immune hyporesponsiveness

    PubMed Central

    Wammes, Linda J.; Hamid, Firdaus; May, Linda; Kaisar, Maria M. M.; Prasetyani-Gieseler, Margaretta A.; Djuardi, Yenny; Wibowo, Heri; Kruize, Yvonne C. M.; Verweij, Jaco J.; Tsonaka, Roula; Houwing-Duistermaat, Jeanine J.; Sartono, Erliyani; Luty, Adrian J. F.; Supali, Taniawati; Yazdanbakhsh, Maria

    2016-01-01

    In cross-sectional studies, chronic helminth infections have been associated with immunological hyporesponsiveness that can affect responses to unrelated antigens. To study the immunological effects of deworming, we conducted a cluster-randomized, double-blind, placebo-controlled trial in Indonesia and assigned 954 households to receive albendazole or placebo once every 3 mo for 2 y. Helminth-specific and nonspecific whole-blood cytokine responses were assessed in 1,059 subjects of all ages, whereas phenotyping of regulatory molecules was undertaken in 121 school-aged children. All measurements were performed before and at 9 and 21 mo after initiation of treatment. Anthelmintic treatment resulted in significant increases in proinflammatory cytokine responses to Plasmodium falciparum-infected red blood cells (PfRBCs) and mitogen, with the largest effect on TNF responses to PfRBCs at 9 mo—estimate [95% confidence interval], 0.37 [0.21–0.53], P value over time (Ptime) < 0.0001. Although the frequency of regulatory T cells did not change after treatment, there was a significant decline in the expression of the inhibitory molecule cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on CD4+ T cells of albendazole-treated individuals, –0.060 [–0.107 to –0.013] and –0.057 [–0.105 to –0.008] at 9 and 21 mo, respectively; Ptime = 0.017. This trial shows the capacity of helminths to up-regulate inhibitory molecules and to suppress proinflammatory immune responses in humans. This could help to explain the inferior immunological responses to vaccines and lower prevalence of inflammatory diseases in low- compared with high-income countries. PMID:27791067

  12. Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity.

    PubMed

    Machlenkin, Arthur; Goldberger, Ofir; Tirosh, Boaz; Paz, Adrian; Volovitz, Ilan; Bar-Haim, Erez; Lee, Sung-Hyung; Vadai, Ezra; Tzehoval, Esther; Eisenbach, Lea

    2005-07-01

    Cryotherapy of localized prostate, renal, and hepatic primary tumors and metastases is considered a minimally invasive treatment demonstrating a low complication rate in comparison with conventional surgery. The main drawback of cryotherapy is that it has no systemic effect on distant metastases. We investigated whether intratumoral injections of dendritic cells following cryotherapy of local tumors (cryoimmunotherapy) provides an improved approach to cancer treatment, combining local tumor destruction and systemic anticancer immunity. The 3LL murine Lewis lung carcinoma clone D122 and the ovalbumin-transfected B16 melanoma clone MO5 served as models for spontaneous metastasis. The antimetastatic effect of cryoimmunotherapy was assessed in the lung carcinoma model by monitoring mouse survival, lung weight, and induction of tumor-specific CTLs. The mechanism of cryoimmunotherapy was elucidated in the melanoma model using adoptive transfer of T cell receptor transgenic OT-I CTLs into the tumor-bearing mice, and analysis of Th1/Th2 responses by intracellular cytokine staining in CD4 and CD8 cells. Cryoimmunotherapy caused robust and tumor-specific CTL responses, increased Th1 responses, significantly prolonged survival and dramatically reduced lung metastasis. Although intratumor administration of dendritic cells alone increased the proliferation rate of CD8 cells, only cryoimmunotherapy resulted in the generation of effector memory cells. Furthermore, cryoimmunotherapyprotected mice that had survived primary MO5 tumors from rechallenge with parental tumors. These results present cryoimmunotherapy as a novel approach for systemic treatment of cancer. We envisage that cryotherapy of tumors combined with subsequent in situ immunotherapy by autologous unmodified immature dendritic cells can be applied in practice.

  13. Comparison of selected canine vaccines for their ability to induce protective immunity against canine parvovirus infection.

    PubMed

    Larson, L J; Schultz, R D

    1997-04-01

    To compare the ability of 6 commercially available multicomponent canine vaccines to stimulate antibody production in pups with variable amounts of maternally derived canine parvovirus (CPV) antibody and to induce protective immunity against challenge exposure. Sixty-three 5- to 6-week-old Beagle pups with passively acquired CPV antibody titer between 1: 20 and 1:320. 9 pups were assigned to each of 6 vaccine groups and 1 control group. Eight pups in each group were inoculated with vaccine or saline solution twice, with 3 weeks between administrations. The ninth pup served as an uninoculated contact control. Serum samples were obtained weekly and tested for CPV antibody by hemagglutination-inhibition assay. All pups were challenge exposed with virulent CPV-2a and CPV-2b at 14 to 15 weeks of age. 3 of the vaccines failed to provide protective immunity against challenge exposure because all pups in these groups became infected and most died. A fourth vaccine protected against death, but not infection and disease. Two of the 6 vaccines induced an immune response that was protective against infection and disease. Substantial differences existed among commercial vaccines available in 1994 in their ability to immunize pups with maternally derived CPV antibody. These differences caused many vaccinated pups to be susceptible to CPV disease for variable periods because some vaccines failed to immunize. Importantly, all 4 of the vaccines that performed poorly have recently been replaced by more effective products so that the 6 vaccines now perform similarly.

  14. Sterile neutrinos in cosmology

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.

    2017-11-01

    Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate ∼3.5 keV X-ray line detections consistent with the decay of a ∼7 keV sterile neutrino dark matter particle.

  15. Fecundity compensation and tolerance to a sterilizing pathogen in Daphnia.

    PubMed

    Vale, P F; Little, T J

    2012-09-01

    Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  16. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  17. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  18. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens.

    PubMed

    Khoso, Pervez Ahmed; Pan, Tingru; Wan, Na; Yang, Zijiang; Liu, Ci; Li, Shu

    2017-05-01

    The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.

  19. Immune mechanisms induced by an HSV-1 mutant strain: Discrepancy analysis of the immune system gene profile in comparison with a wild-type strain.

    PubMed

    Zhang, Xiaolong; Jiang, Quanlong; Xu, Xingli; Wang, Yongrong; Liu, Lei; Lian, Yaru; Li, Hao; Wang, Lichun; Zhang, Ying; Jiang, Guorun; Zeng, Jieyuan; Zhang, Han; Han, Jing-Dong Jackie; Li, Qihan

    2018-04-25

    Herpes simplex virus is a prevalent pathogen of humans of various age groups. The fact that no prophylactic or therapeutic vaccine is currently available suggests a significant need to further investigate the immune mechanisms induced by the virus and various vaccine candidates. We previously generated an HSV-1 mutant strain, M3, with partial deletions in ul7, ul41 and LAT that produced an attenuated phenotype in mice. In the present study, we performed a comparative analysis to characterize the immune responses induced by M3 versus wild-type HSV-1 in a mouse model. Infection with wild-type HSV-1 triggered an inflammatory-dominated response and adaptive immunity suppression and was accompanied by severe pathological damage. In contrast, infection with M3 induced a systematic immune response involving full activation of both innate and adaptive immunity and was accompanied by no obvious pathological changes. Furthermore, the immune response induced by M3 protected mice from lethal challenge with wild-type strains of HSV-1 and restrained virus proliferation and impaired latency. These data are useful for further HSV-1 vaccine development using a mutant strain construction strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens.

    PubMed

    Pors, Susanne E; Pedersen, Ida J; Skjerning, Ragnhild Bager; Thøfner, Ida C N; Persson, Gry; Bojesen, Anders M

    2016-11-15

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dendritic cell-tumor coculturing vaccine can induce antitumor immunity through both NK and CTL interaction.

    PubMed

    Kim, K D; Choi, S C; Kim, A; Choe, Y K; Choe, I S; Lim, J S

    2001-11-01

    Immunization of dendritic cells (DC) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL) that are responsible for protection and regression. We show here that immunization with bone marrow-derived DC cocultured with tumor cells can induce a protective immunity against challenges to viable tumor cells. In this study, we further investigated the mechanism by which the antitumor activity was induced. Immunization of mice with DC cocultured with murine colon carcinoma. CT-26 cells, augmented CTL activity against the tumor cells. Concomitantly, an increase in natural killer (NK) cell activity was also detected in the same mice. When DC were fixed with paraformaldehyde prior to coculturing with tumor cells, most of the CTL and NK cell activity diminished, indicating that DC are involved in the process of presenting the tumor antigen(s) to CTL. NK cell depletion in vivo produced markedly low tumor-specific CTL activity responsible for tumor prevention. In addition, RT-PCR analysis confirmed the high expression of INF-gamma mRNA in splenocytes after vaccination with DC cocultured with tumors, but low expression in splenocytes from NK-depleted mice. Most importantly, the tumor protective effect rendered to DC by the coculturing with CT-26 cells was not observed in NK-depleted mice, which suggests that DC can induce an antitumor immune response by enhancing NK cell-dependent CTL activation. Collectively, our results indicate that NK cells are required during the priming of cytotoxic T-cell response by DC-based tumor vaccine and seem to delineate a mechanism by which DC vaccine can provide the desired immunity.

  2. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  3. A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats.

    PubMed

    Grieves, Jessica L; Yin, Zhiwei; Garcia-Sastre, Adolfo; Mena, Ignacio; Peeples, Mark E; Risman, Heidi P; Federman, Hannah; Sandoval, Marvin J; Durbin, Russell K; Durbin, Joan E

    2018-05-17

    Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection. Copyright © 2018. Published by Elsevier Ltd.

  4. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level

    PubMed Central

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas

    2016-01-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  5. Retinal laser burn (RLB) induced neuropathy leads to substance P dependent loss of ocular immune privilege

    PubMed Central

    Lucas, Kenyatta; Karamichos, Dimitris; Mathew, Rose; Zieske, James D.; Stein-Streilein, Joan

    2012-01-01

    Inflammation in the eye is tightly regulated by multiple mechanisms that together contribute to ocular immune privilege. Many studies have shown that it is very difficult to abrogate the immune privileged mechanism called anterior chamber associated immune deviation (ACAID). Previously, we showed that retinal laser burn (RLB) to one eye abrogated immune privilege (ACAID) bilaterally for an extended period of time. In an effort to explain the inflammation in the non-burned eye, we postulated that neuronal signals initiated inflammation in the contralateral eye. Here, we test the role of substance P, a neuroinflamatory peptide, in RLB-induced loss of ACAID. Histological examination of the retina with and without RLB revealed an increase of the substance P-inducible neurokinin 1 receptor (NK1-R) in the retina of first, the burned eye, and then the contralateral eye. Specific antagonists for NK1-R, given locally with antigen within 24h, but not 3,5, or 7 days post RLB treatment, prevented the bilateral loss of ACAID. Substance P Knockout (KO) mice retained their ability to develop ACAID post RLB. These data support the postulate that substance P transmits early inflammatory signals from the RLB eye to the contralateral eye to induce changes to ocular immune privilege and has a central role in the bilateral loss of ACAID. The possibility is raised that blocking of the substance P pathway with NK1-R antagonists post ocular trauma may prevent unwanted and perhaps extended consequences of trauma-induced inflammation in the eye. PMID:22745377

  6. Mechanisms Of Hypoxia-Induced Immune Escape In Cancer And Their Regulation By Nitric Oxide.

    PubMed

    Graham, Charles; Barsoum, Ivraym; Kim, Judy; Black, Madison; Siemens, Robert D

    2015-08-01

    The acquired ability of tumour cells to avoid destruction by immune effector mechanisms (immune escape) is important for malignant progression. Also associated with malignant progression is tumour hypoxia, which induces aggressive phenotypes such as invasion, metastasis and drug resistance in cancer cells. Our studies revealed that hypoxia contributes to escape from innate immunity by increasing tumour cell expression of the metalloproteinase ADAM10 in a manner dependent on accumulation of the alpha subunit of the transcription factor hypoxia-inducible factor-1 (HIF-1α). Increased ADAM10 expression leads to shedding of the NK cell-activating ligand, MICA, from the surface of tumour cells, thereby resulting in resistance to NK cell-mediated lysis. Our more recent studies demonstrated that hypoxia, also via HIF-1α accumulation, increases the expression of the inhibitory co-stimulatory ligand PD-L1 on tumour cells. Elevated PD-L1 expression leads to escape from adaptive immunity via increased apoptosis of CD8 + cytotoxic T lymphocytes. Accumulating evidence indicates that hypoxia-induced acquisition of malignant phenotypes, including immune escape, is in part due to impaired nitric oxide (NO)-mediated activation of cGMP signalling and that restoration of cGMP signalling prevents such hypoxic responses. We have shown that NO/cGMP signalling inhibits hypoxia-induced malignant phenotypes likely in part by interfering with HIF-1α accumulation via a mechanism involving calpain. These findings indicate that activation of NO/cGMP signalling may have useful applications in cancer therapy. Copyright © 2015. Published by Elsevier B.V.

  7. Non-Mendelian Female Sterility in DROSOPHILA MELANOGASTER: Influence of Aging and Thermic Treatments. III. Cumulative Effects Induced by These Factors

    PubMed Central

    Bucheton, Alain

    1979-01-01

    Crosses between various strains of Drosophila melanogaster may give rise to a female sterility of non-Mendelian determination. Reduced fertility is observed in females, known as SF females, bred from crosses between females of "reactive" strains and males of "inducer" strains. The reduced fertility of the SF females is the result of an interaction between an extrachromosomal property, the reactivity, and a chromosomal factor, I. The extrachromosomal property varies considerably in its ability to reduce fertility. The fertility reduction of the SF females corresponds to what is known as the reactivity level of their reactive mothers. Two nongenetic factors can modify the level of reactivity: aging and temperature. The action of aging is cumulative. When the flies of a reactive strain are submitted at each generation to the action of this factor, the level of reactivity of this strain is gradually modified. The modifications induced are reversible. Indeed, when such a modified strain is returned to standard breeding conditions, the reactivity returns progressively to its initial level. The effect of thermic treatments also seems to be cumulative and reversible. PMID:121289

  8. Sterilization of endoscopic instruments.

    PubMed

    Sabnis, Ravindra B; Bhattu, Amit; Vijaykumar, Mohankumar

    2014-03-01

    Sterilization of endoscopic instruments is an important but often ignored topic. The purpose of this article is to review the current literature on the sterilization of endoscopic instruments and elaborate on the appropriate sterilization practices. Autoclaving is an economic and excellent method of sterilizing the instruments that are not heat sensitive. Heat sensitive instruments may get damaged with hot sterilization methods. Several new endoscopic instruments such as flexible ureteroscopes, chip on tip endoscopes, are added in urologists armamentarium. Many of these instruments are heat sensitive and hence alternative efficacious methods of sterilization are necessary. Although ethylene oxide and hydrogen peroxide are excellent methods of sterilization, they have some drawbacks. Gamma irradiation is mainly for disposable items. Various chemical agents are widely used even though they achieve high-level disinfection rather than sterilization. This article reviews various methods of endoscopic instrument sterilization with their advantages and drawbacks. If appropriate sterilization methods are adopted, then it not only will protect patients from procedure-related infections but prevent hypersensitive allergic reactions. It will also protect instruments from damage and increase its longevity.

  9. Role of immune cells in obesity induced low grade inflammation and insulin resistance.

    PubMed

    Asghar, Ambreen; Sheikh, Nadeem

    2017-05-01

    The frequency of obesity is enormously growing worldwide. Obesity results when energy intake exceeds, energy expenditure. Excess adiposity is a major risk factor in the progress of various metabolic disorders accounting insulin resistance, hypertension, Type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovarian disease and several types of cancers. Obesity is characterized by pro-inflammatory condition in which hypertrophied adipose tissue along with immune cells contribute to increase the level of pro-inflammatory cytokines. Immune cells are the key players in inducing low grade chronic inflammation in obesity and are main factor responsible for pathogenesis of insulin resistance resulting Type 2 diabetes. The current review is aimed to investigate the mechanism of pro-inflammatory responses and insulin resistance involving immune cells and their products in obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses.

    PubMed

    Shoda, Lisl Km; Battista, Christina; Siler, Scott Q; Pisetsky, David S; Watkins, Paul B; Howell, Brett A

    2017-01-01

    Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.

  11. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  12. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  13. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    PubMed

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  14. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression

    PubMed Central

    LU, WANLU; LU, LIBING; FENG, YUN; CHEN, JIAO; LI, YAN; KONG, XIANGLI; CHEN, SIXIU; LI, XIAOYU; CHEN, QIANMING; ZHANG, PING

    2013-01-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8+ T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment PMID:23761816

  15. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    PubMed Central

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping

    2017-01-01

    received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. PMID:28148801

  16. Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses.

    PubMed

    Nicholas, Benjamin L; Brennan, F R; Martinez-Torrecuadrada, J L; Casal, J I; Hamilton, W D; Wakelin, D

    2002-06-21

    NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.

  17. Old and new facts about hyperthermia-induced modulations of the immune system.

    PubMed

    Frey, Benjamin; Weiss, Eva-Maria; Rubner, Yvonne; Wunderlich, Roland; Ott, Oliver J; Sauer, Rolf; Fietkau, Rainer; Gaipl, Udo S

    2012-01-01

    Hyperthermia (HT) is a potent sensitiser for radiotherapy (RT) and chemotherapy (CT) and has been proven to modulate directly or indirectly cells of the innate and adaptive immune system. We will focus in this article on how anti-tumour immunity can be induced by HT. In contrast to some in vitro assays, in vivo examinations showed that natural killer cells and phagocytes like granulocytes are directly activated against the tumour by HT. Since heat also activates dendritic cells (DCs), HT should be combined with further death stimuli (RT, CT or immune therapy) to allocate tumour antigen, derived from, for example, necrotic tumour cells, for uptake by DCs. We will outline that induction of immunogenic tumour cells and direct tumour cell killing by HT in combination with other therapies contributes to immune activation against the tumour. Studies will be presented showing that non-beneficial effects of HT on immune cells are mostly timely restricted. A special focus is set on immune activation mediated by extracellular present heat shock proteins (HSPs) carrying tumour antigens and further danger signals released by dying tumour cells. Local HT treatment in addition to further stress stimuli exerts abscopal effects and might be considered as in situ tumour vaccination. An increased natural killer (NK) cell activity, lymphocyte infiltration and HSP-mediated induction of immunogenic tumour cells have been observed in patients. Treatments with the addition of HT therefore can be considered as a personalised cancer treatment approach by specifically activating the immune system against the individual unique tumour.

  18. Tetranychus urticae mites do not mount an induced immune response against bacteria

    PubMed Central

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E.; Zélé, Flore; Riga, Maria; Leitão, Alexandre B.; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara

    2017-01-01

    The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila. Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae. This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei. We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum. Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. PMID:28592670

  19. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    PubMed

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  20. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    PubMed

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  1. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    PubMed

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  2. Inducible factors with antimicrobial activity after immune challenge in the haemolymph of Red Palm Weevil (Insecta).

    PubMed

    Mastore, Maristella; Binda Rossetti, Simona; Giovannardi, Stefano; Scarì, Giorgio; Brivio, Maurizio F

    2015-05-01

    Insects are capable of innate immune responses elicited after microbial infection. In this process, the receptor-mediated recognition of foreign bodies and the subsequent activation of immunocompetent cells lead to the synthesis ex novo of a peptide pool with antimicrobial activity. We investigated the inducible immune response of a coleopteran, Rhynchophorus ferrugineus, challenged with both Gram-negative and Gram-positive bacteria. After immunization, we evaluated the presence of antimicrobial peptides using either biochemical analyses or microbiological techniques. The antimicrobial properties of the newly synthesized protein pool, detectable in haemolymph fractions of low molecular mass, showed strong antibacterial activity against various bacterial strains (Escherichia coli, Pseudomonas sp. OX1, Bacillus subtilis and Micrococcus luteus). In addition to the preliminary study of the mechanism of action of the pool of antimicrobial peptides, we also investigated its effects on bacterial cell walls by means of fluorescence microscopy and scanning electron microscopy. The data suggest that the main effects seem to be directed at destabilizing and damaging the bacterial wall. This study provides data that help us to understand some aspects of the inducible innate immunity in a system model that lacks anticipatory responses. However, the weevil has finely tuned its defensive strategies to counteract effectively microbial infection. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Monitor for Sterilization Procedures

    DTIC Science & Technology

    2001-10-25

    were tested using ampules of Bacillus stearothermophilus spores commercially manufactured by Barnstead/Thermolyne for testing sterilization procedures...Monitor for Sterilization Procedures F. Cleary1,2, H.-Y. Mason2, C. Estes2, A. Duncan2, W. Ellis, Jr.2 and L. Powers2 1Moses Brown High School...accurate determination of the efficacy of sterilization procedures is demonstrated using a hand-held instrument based on the intrinsic fluorescence of

  4. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis.

    PubMed

    Dong, Jie; Ma, Qiang

    2018-01-01

    T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type

  5. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    PubMed

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.

  6. [Regret of female sterilization].

    PubMed

    Öhman, Malin Charlotta; Andersen, Lars Franch

    2015-11-16

    Regret of sterilization is inversely correlated to age at the time of sterilization. The minimum age for legal sterilization in Denmark has recently been lowered to 18 years. In Denmark surgical refertilization has almost completely been replaced by in vitro fertilization (IVF). In recent literature pregnancy results after surgical refertilization are easily comparable to IVF. Refertilization may in some cases be advantageous to IVF treatment. Women requesting reversal of sterilization should be offered individualized evaluation and differentiated treatment. It is recommended that surgical refertilization is performed at very few centres.

  7. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  8. Effects of serostatus and gender on the HRV-16-induced local immune response.

    PubMed

    Koch, Rebecca M; Kox, Matthijs; Pickkers, Peter; de Jonge, Marien I

    2016-07-29

    The "experimental cold model" is widely used to investigate effects of HRV infection. However, effects of serostatus and gender on the HRV-induced immune response have not been clarified. 40 healthy seropositive and seronegative (1:1) male and female (1:1) subjects were inoculated with HRV-16. HRV infection increased viral load in nasal wash, which tended to be more pronounced in seronegative subjects. Furthermore, HRV infection increased levels of IP-10, IL-6, and IL-10 and leukocyte numbers in nasal wash of seronegative, but not of seropositive subjects. No differences in any of the parameters were found between both sexes. The HRV-induced local immune response is diminished in seropositive subjects compared with seronegative subjects, while gender does not influence this response. These results have important implications for the design of future experimental cold studies: seronegative subjects, from both sexes can be included. Copyright © 2016. Published by Elsevier Ltd.

  9. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.

    PubMed

    Allen, Aideen C; Mills, Kingston H G

    2014-10-01

    Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.

  10. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity

    PubMed Central

    Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee

    2016-01-01

    The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231

  11. Experimental Vaccine Induces Th1-driven Immune Responses and Resistance to Neisseria gonorrhoeae Infection in a Murine Model

    PubMed Central

    Liu, Yingru; Hammer, Laura A.; Liu, Wensheng; Hobbs, Marcia M.; Zielke, Ryszard A.; Sikora, Aleksandra E.; Jerse, Ann E.; Egilmez, Nejat K.; Russell, Michael W.

    2017-01-01

    Female mice were immunized intravaginally with gonococcal outer membrane vesicles (OMV) plus microencapsulated IL-12, and challenged using an established model of genital infection with Neisseria gonorrhoeae. Whereas sham-immunized and control animals cleared the infection in 10–13 days, those immunized with OMV plus IL-12 cleared infection with homologous gonococcal strains in 6–9 days. Significant protection was also seen after challenge with antigenically distinct strains of N. gonorrhoeae, and protective anamnestic immunity persisted for at least 6 months after immunization. Serum and vaginal IgG and IgA antibodies were generated against antigens expressed by homologous and heterologous strains. Iliac lymph node CD4+ T cells secreted IFNγ, but not IL-4, in response to immunization, and produced IL-17 in response to challenge regardless of immunization. Antigens recognized by immunized mouse serum included several shared between gonococcal strains, including two identified by immunoproteomics approaches as EF-Tu and PotF3. Experiments with immunodeficient mice showed that protective immunity depended upon IFNγ and B cells, presumably to generate antibodies. The results demonstrated that immunity to gonococcal infection can be induced by immunization with a non-living gonococcal antigen, and suggest that efforts to develop a human vaccine should focus on strategies to generate Th1-driven immune responses in the genital tract. PMID:28272393

  12. Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization.

    PubMed

    Liu, Zhen; Liu, Xianjun; Ran, Xiang; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-11-01

    Permanent male sterilization has been recognized as useful tools for the development of neuter experimental animals and fattening livestock, as well as efficient control of pet overpopulation. Traditional routes such as surgical ways, chemical injections, and anti-fertility vaccines have addressed these crucial problems with idea outcomes. However, these routes usually bring out serious pain and infection towards animals, as well as induce long-term adverse reaction and immune suppression. Thus, a convenient, but non-surgical strategy for male sterilization under a mild manner is highly desirable. Here, for the first time, we demonstrate a novel platform for male sterilization by using single-layer WO2.72 nanosheets as smart photo-responsive sterilants. Upon a 980 nm irradiation, these nanoagents can possess intrinsic NIR-induced hyperthermia and sensitize the formation of singlet oxygen due to the cooperation of photothermal and photodynamic effects. Mechanism of cellular injury can be attributed to the denaturation of protein and apoptosis-related death. Moreover, long-term toxicity and possible metabolism route after testicular injection are discussed, indicating the neglectable systemic toxicity and high bio-compatibility of our nanoagents. Overall, our strategy can extremely overcome the shortcomings in various routine routes and suggest the new biological application of nanomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cytological study of radiation induced alterations in cytoplasmic factors controlling male sterility in corn. Progress report, February 28, 1973--December 1, 1973

    SciTech Connect

    Edwardson, J.R.

    1973-01-01

    Cytoplasmic male sterile accessions, other than T-type, are being backcrossed to adapted maintainer and restorer inbred corn lines. Fertile selections from gamma -irradiated T-type corn continue to exhibit resistance to infection by race-T of Helminthosporium maydis in field and greenhouse tests. Cytological comparisons of these fertile selections and T-sterile, maintainer, and restorer lines are continuing. Dominant male sterility and its suppression in S-cytoplasm corn is being investigated. lnduction of cytoplasmic male sterility in normal cytoplasm corn and suppression of susceptibility to Helminthosporium maydis infection in T cytoplasm corn is being attempted with chemical mutagens. Consistent differences in cytoplasmic inclusions inmore » sterile and maintainer Vicia faba were observed. Consistent differences in mitochondria were observed in cytological comparisons of normal and sterile corn. These abnormal mitochondria and non-Mendelian plastid abnormalities in corn, sorghum, tobacco, and petunia will be used in studying the fertilization process. Investigations of the properties of Datura Q-virus are near completion. Cytological and serological studies indicate the Q-virus is a strain of tobacco streak virus. Graft-transmission of cytoplasmic male sterility is being attempted in sunflower. (auth)« less

  14. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Partmore » II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 22θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2, and the LSND and MiniBooNE allowed regions are

  15. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  16. Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells

    NASA Astrophysics Data System (ADS)

    Tomić, Sergej; Kokol, Vanja; Mihajlović, Dušan; Mirčić, Aleksandar; Čolić, Miodrag

    2016-08-01

    Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4+T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4+CD25hiFoxP3hi regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.

  17. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    PubMed

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  18. Keyhole limpet hemocyanin induces innate immunity via Syk and Erk phosphorylation

    PubMed Central

    Yasuda, Kyoko; Ushio, Hideki

    2016-01-01

    Hemocyanin is an extracellular respiratory protein containing copper in hemolymph of invertebrates, such as Mollusk and Arthropod. Keyhole limpet hemocyanin (KLH) is one of hemocyanins and has many years of experience for vaccine developments and immunological studies in mammals including human. However, the association between KLH and the immune systems, especially the innate immune systems, remains poorly understood. The aim of this study is to clarify the direct effects of KLH on the innate immune systems. KLH activated an inflammation-related transcription factor NF-κB as much as lipopolysaccharide (LPS) in a human monocytic leukemia THP-1 reporter cell line. We have found that the KLH-induced NF-κB activation is partially involved in a spleen tyrosine kinase (Syk) pathway. We have also successfully revealed that an extracellular signal-regulated kinase (Erk), a member of mitogen-activated protein kinases, is located in an upstream of NF-κB activation induced by KLH. Furthermore, a Syk phosphorylation inhibitor partially suppressed the Erk activation in KLH-stimulated THP-1. These results suggest that both Syk and Erk associate with the KLH-induced NF-κB activation in the human monocyte. PMID:27822175

  19. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    PubMed

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(P<0.05). Similar findings were also observed in interferon-α/β-receptor-deficient A129 mice. In both these immunocompromised animal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  20. Effect of Phlebodium Decumanum on the Immune Response Induced by Training in Sedentary University Students

    PubMed Central

    Gonzalez-Jurado, Jose A.; Pradas, Francisco; Molina, Edgardo S.; de Teresa, Carlos

    2011-01-01

    Exercise training is considered a good model to provoke different degrees of immune dysfunction affecting physical performance and some physiological responses related to oxidative stress and low grade inflammation. Phlebodium decumanum is a polypodiaceae may induce shown immunomodulating effects, specifically directed to the release of proinflammatory cytokines by macrophages in response to various stimuli, as reported different in vitro studies. The aim of this study was to evaluate the modulating effect of phlebodium decumanum, on the immune response induced by physical exercise. Thirty-one subjects (males only) were randomly divided into two groups: Group PD (n = 18); age: 22.1 ± 1.81, weight 74.21 ± 8.74 kg) that was treated with phlebodium decumanum; Group P (n = 13); age: 22.5 ± 1.63, weight 78 ± 12.5 kg) that was treated with a placebo. Before and after one month training program performed by both groups (three times a week), the following performance parameters and immune response variables were measured: Dynamic Maximum Force; Interval-Training; Tennis test; pro-inflammatory (TNF , IL6) and anti-inflammatory (TNFα-IIrs, IL1-ra) cytokines levels. Data were statistically analyzed with Mann- Whitney U test and Wilcoxon paired test (p < 0.05). Statistically significant differences were recorded within groups before and after the training program. PD group showed a significant improvement in the performance parameters (Strength Muscle Test: dorsal: p < 0.002; deltoids: p < 0.03; and pectorals: p < 0.07; Interval Training: p < 0.06; Tennis Test: p < 0.02). Cytokine levels resulted in a more positive profile in the PD group rather than in the P group, in which higher levels of IL-6 (p < 0.02) and a reduction of TNF-IIrs (p < 0.003) and IL1-ra (p < 0.03) were recorded. In this study the use of phlebodium decumanum demonstrated beneficial effects in the modulation of the immune response during physical performance. Key points Practicing sport or physical

  1. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    PubMed

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  2. Reversibility of female sterilization.

    PubMed

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  3. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs.

    PubMed

    Lin, Xu'ai; Xiao, Guohui; Luo, Dongjiao; Kong, Liangliang; Chen, Xu; Sun, Dexter; Yan, Jie

    2016-10-14

    Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis.

  4. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.

  5. Endogenous Molecules Induced by a Pathogen-Associated Molecular Pattern (PAMP) Elicit Innate Immunity in Shrimp

    PubMed Central

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Kitikiew, Suwaree; Li, Hui-Fang; Bai, Jia-Chin; Tseng, Kuei-Chi; Lin, Bo-Wei; Liu, Po-Chun; Shi, Yin-Ze; Kuo, Yi-Hsuan; Chang, Yu-Hsuan

    2014-01-01

    Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), β-1,3-glucan (βG) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, βG, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-β, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-β, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-β, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity. PMID:25517999

  6. Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model.

    PubMed

    Park, Jisang; Seo, Ki-Weon; Kim, Sae-Hae; Lee, Ha-Yan; Kim, Bumseok; Lim, Chae Woong; Kim, Jin-Hee; Yoo, Han Sang; Jang, Yong-Suk

    2015-05-15

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and severe economic loss in the swine industry has been caused by the infection. Therefore, the development of an effective vaccine against the bacteria is necessary. ApxII toxin, among several virulence factors expressed by the bacteria, is considered to be a promising vaccine candidate because ApxII toxin not only accompanies cytotoxic and hemolytic activities, but is also expressed in all 15 serotypes of bacteria except serotypes 10 and 14. In this study, we identified the peptide ligand capable of targeting the ligand-conjugated ApxIIA #5 fragment antigen to nasopharynx-associated lymphoid tissue. It was found that nasal immunization with ligand-conjugated ApxIIA #5 induced efficient mucosal and systemic immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. More importantly, the nasal immunization induced protective immunity against nasal challenge infection of the bacteria, which was confirmed by histopathological studies and bacterial clearance after challenge infection. Collectively, we confirmed that the ligand capable of targeting the ligand-conjugated antigen to nasopharynx-associated lymphoid tissue can be used as an effective nasal vaccine adjuvant to induce protective immunity against A. pleuropneumoniae infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants.

    PubMed

    Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao

    2015-03-01

    Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.

  8. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  10. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  11. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  12. Interleukin-17-Induced Protein Lipocalin 2 Is Dispensable for Immunity to Oral Candidiasis

    PubMed Central

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J.; Siebenlist, Ulrich; Chan, Yvonne R.

    2014-01-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2−/− mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA−/− or Act1−/− mice). However, Lcn2−/− mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis. PMID:24343647

  13. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity

    PubMed Central

    Cao, K; Wang, G; Li, W; Zhang, L; Wang, R; Huang, Y; Du, L; Jiang, J; Wu, C; He, X; Roberts, A I; Li, F; Rabson, A B; Wang, Y; Shi, Y

    2015-01-01

    The poor efficacy of the in vivo anti-tumor immune response has been partially attributed to ineffective T-cell responses mounted against the tumor. Fas-FasL-dependent activation-induced cell death (AICD) of T cells is believed to be a major contributor to compromised anti-tumor immunity. The molecular mechanisms of AICD are well-investigated, yet the possibility of regulating AICD for cancer therapy remains to be explored. In this study, we show that histone deacetylase inhibitors (HDACIs) can inhibit apoptosis of CD4+ T cells within the tumor, thereby enhancing anti-tumor immune responses and suppressing melanoma growth. This inhibitory effect is specific for AICD through suppressing NFAT1-regulated FasL expression on activated CD4+ T cells. In gld/gld mice with mutation in FasL, the beneficial effect of HDACIs on AICD of infiltrating CD4+ T cells is not seen, confirming the critical role of FasL regulation in the anti-tumor effect of HDACIs. Importantly, we found that the co-administration of HDACIs and anti-CTLA4 could further enhance the infiltration of CD4+ T cells and achieve a synergistic therapeutic effect on tumor. Therefore, our study demonstrates that the modulation of AICD of tumor-infiltrating CD4+ T cells using HDACIs can enhance anti-tumor immune responses, uncovering a novel mechanism underlying the anti-tumor effect of HDACIs. PMID:25745993

  14. IFN-λ: A New Inducer of Local Immunity against Cancer and Infections

    PubMed Central

    Lasfar, Ahmed; Zloza, Andrew; de la Torre, Andrew; Cohen-Solal, Karine A.

    2016-01-01

    IFN-λ is the newly established type III IFN with unique immunomodulatory functions. In contrast to the IFN-α/β family and to some extent IFN-γ, IFN-λ is apparently acting in specific areas of the body to activate resident immune cells and induces a local immunity, instrumental in preventing particular infections and also keeping transformed cells under control. Mucosal areas of lung and gastrointestinal tracts are now under scrutiny to elucidate the immune mechanisms triggered by IFN-λ and leading to viral protection. New evidence also indicates the crucial role of IFN-λ in promoting innate immunity in solid cancer models. Based on its unique biological activities among the IFN system, new immunotherapeutic approaches are now emerging for the treatment of cancer, infection, and autoimmune diseases. In the present review, we highlight the recent advances of IFN-λ immunomodulatory functions. We also discuss the perspectives of IFN-λ as a therapeutic agent. PMID:28018361

  15. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.

    PubMed

    Cecchini, Nicolás M; Jung, Ho Won; Engle, Nancy L; Tschaplinski, Timothy J; Greenberg, Jean T

    2015-04-01

    Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.

  16. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet‐induced obesity

    PubMed Central

    Zlotnikov, Nataliya; Javid, Ashkan; Ahmed, Mijhgan; Eshghi, Azad; Tang, Tian Tian; Arya, Anoop; Bansal, Anil; Matar, Fatima; Parikh, Maitry; Ebady, Rhodaba; Koh, Adeline; Gupta, Nupur; Song, Peng; Zhang, Yang; Newbigging, Susan; Wormser, Gary P.; Schwartz, Ira; Inman, Robert; Glogauer, Michael

    2016-01-01

    Abstract Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high‐fat diet‐induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil‐ and macrophage‐based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi‐infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high‐fat diet, toll‐like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow‐derived macrophages from obese, B. burgdorferi‐infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice. PMID:27794208

  17. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    PubMed

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  18. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    PubMed Central

    Paz, M. L.; Leoni, J.

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504

  19. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet-induced obesity.

    PubMed

    Zlotnikov, Nataliya; Javid, Ashkan; Ahmed, Mijhgan; Eshghi, Azad; Tang, Tian Tian; Arya, Anoop; Bansal, Anil; Matar, Fatima; Parikh, Maitry; Ebady, Rhodaba; Koh, Adeline; Gupta, Nupur; Song, Peng; Zhang, Yang; Newbigging, Susan; Wormser, Gary P; Schwartz, Ira; Inman, Robert; Glogauer, Michael; Moriarty, Tara J

    2017-05-01

    Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high-fat diet-induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil- and macrophage-based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi-infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high-fat diet, toll-like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow-derived macrophages from obese, B. burgdorferi-infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  20. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus].

    PubMed

    Liu, Yan-zheng; Zhou, Ling; Wang, Qi; Ye, Shu-qing; Li, Hong-xia; Zeng, Yi

    2004-09-01

    HIV-1 DNA vaccine and recombinant adeno-associated virus (rAAV) expressing gagV3 gene of HIV-1 subtype B were constructed and BALB/c mice were immunized by vaccination regimen consisting of consecutive priming with DNA vaccine and boosting with rAAV vaccine; the CTL and antibody response were detected and compared with those induced by DNA vaccine or rAAV vaccine separately. HIV-1 subtype B gagV3 gene was inserted into the polyclonal site of plasmid pCI-neo, DNA vaccine pCI-gagV3 was thereby constructed; pCI-gagV3 was transfected into p815 cells, G-418-resistant cells were obtained through screening transfected cells with G418, the expression of HIV-1 antigen in G-418-resistant cells was detected by EIA; BALB/c mice were immunized with pCI-gagV3 and the immune response was tested; BALB/c mouse immunized with pCI-gagV3 and combined with rAAV expressing the same gagV3 genes were tested for antibody level in sera by EIA method and cytotoxicity response by LDH method. pCI-gagV3 could express HIV-1 gene in p815 cells; pCI-gagV3 could induce HIV-1 specific humoral and cell-mediated immune response in BALB/c mice. The HIV-1 specific antibody level was 1/20; when the ratio of effector cells: target cells was 50:1, the average specific cytotoxicity was 41.7%; there was no evident increase in the antibody level induced by pCI-gagV3 combined with rAAV, but there was increase in CTL response, the average specific cytotoxicity was 61.3% when effector cells: target cells ratio was 50:1. HIV-1 specific cytotoxicity in BALB/c mice can be increased by immunization of BALB/c mice with DNA vaccine combined with rAAV vaccine.

  1. Complete Freund's adjuvant induces experimental autoimmune myocarditis by enhancing IL-6 production during initiation of the immune response.

    PubMed

    Fontes, Jillian A; Barin, Jobert G; Talor, Monica V; Stickel, Natalie; Schaub, Julie; Rose, Noel R; Čiháková, Daniela

    2017-06-01

    Complete Freund's Adjuvant (CFA) emulsified with an antigen is a widely used method to induce autoimmune disease in animal models, yet the contribution of CFA to the immune response is not well understood. We compared the effectiveness of CFA with Incomplete Freund's Adjuvant (IFA) or TiterMax Gold Adjuvant (TMax) in experimental autoimmune myocarditis (EAM) in male mice. EAM was induced in A/J, BALB/c, and IL6KO BALB/c male mice by injection of the myocarditogenic peptide in CFA, IFA, or TMax on days 0 and 7. EAM severity was analyzed by histology on day 21. In addition, specific flow cytometry outcomes were evaluated on day 21. Only mice immunized with CFA and myocarditogenic peptide on both days 0 and 7 developed substantial myocarditis as measured by histology. We observed a significantly increased level of IL6 in the spleen 3 days after CFA immunization. In the spleen and heart on day 21, there was an expansion of myeloid cells in CFA-immunized mice, as compared to IFA or TMax-immunized animals. Recombinant IL-6 at the time of IFA immunization partially restored susceptibility of the mice to EAM. We also treated EAM-resistant IL-6 knockout mice with recombinant IL-6 around the time of the first immunization, on days -1 to 2, completely restoring disease susceptibility, showing that the requirement for IL-6 coincides with primary immunization. Examining APC populations in the lymph node draining the immunization site evidenced the contribution of IL-6 to the CFA-dependence of EAM was through controlling local dendritic cell (DC) trafficking. CFA used with myocarditogenic peptide twice is required to induce EAM in both A/J and Balb/c mice. Although IFA and TiterMax induce antibody responses, only CFA preferentially induced autoantigen-specific responses. CFA expands monocytes in the heart and in the spleen. IL-6 signaling is required during short window around primary immunization to induce EAM. In addition, IL-6 deficient mice resistance to EAM could be

  2. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree.

    PubMed

    Schmoeckel, Katrin; Mrochen, Daniel M; Hühn, Jochen; Pötschke, Christian; Bröker, Barbara M

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen "overload" by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness.

  3. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree

    PubMed Central

    Hühn, Jochen; Pötschke, Christian

    2018-01-01

    Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen “overload” by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness. PMID:29415028

  4. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  5. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    PubMed

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Active immunity induced by passive IgG post-exposure protection against ricin.

    PubMed

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W; Hu, Wei-Gang

    2014-01-21

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab')2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab')2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab')2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab')2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  7. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    PubMed Central

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W.; Hu, Wei-Gang

    2014-01-01

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’)2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’)2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’)2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab’)2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection. PMID:24451844

  8. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    PubMed

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation

    PubMed Central

    Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou

    2014-01-01

    IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361

  10. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses.

    PubMed

    Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R

    2015-04-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.

  11. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells.

    PubMed

    Lacoste, A; De Cian, M C; Cueff, A; Poulet, S A

    2001-10-01

    Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various alpha- and beta-adrenoceptor agonists and antagonists. Results show that NA and alpha-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the alpha-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca(2+)-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that alpha-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca(2+)-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.

  12. Simulating sterilization, vaccination, and test-and-remove as brucellosis control measures in bison

    USGS Publications Warehouse

    Ebinger, M.; Cross, P.; Wallen, Rick; White, P.J.; Treanor, John

    2011-01-01

    Brucella abortus, the causative agent of bovine brucellosis, infects wildlife, cattle, and humans worldwide, but management of the disease is often hindered by the logistics of controlling its prevalence in wildlife reservoirs. We used an individually based epidemiological model to assess the relative efficacies of three management interventions (sterilization, vaccination, and test-and-remove). The model was parameterized with demographic and epidemiological data from bison in Yellowstone National Park, USA. Sterilization and test-and-remove were most successful at reducing seroprevalence when they were targeted at young seropositive animals, which are the most likely age and sex category to be infectious. However, these approaches also required the most effort to implement. Vaccination was less effective (even with a perfect vaccine) but also required less effort to implement. For the treatment efforts we explored (50–100 individuals per year or 2.5–5% of the female population), sterilization had little impact upon the bison population growth rate when selectively applied. The population growth rate usually increased by year 25 due to the reduced number of Brucella-induced abortions. Initial declines in seroprevalence followed by rapid increases (>15% increase in 5 years) occurred in 3–13% of simulations with sterilization and test-and-remove, but not vaccination. We believe this is due to the interaction of superspreading events and the loss of herd immunity in the later stages of control efforts as disease prevalence declines. Sterilization provided a mechanism for achieving large disease reductions while simultaneously limiting population growth, which may be advantageous in some management scenarios. However, the field effort required to find the small segment of the population that is infectious rather than susceptible or recovered will likely limit the utility of this approach in many free-ranging wildlife populations. Nevertheless, we encourage

  13. Immune deficiency as a risk factor in Epstein-Barr virus-induced malignant diseases.

    PubMed Central

    Purtilo, D T; Okano, M; Grierson, H L

    1990-01-01

    Epstein-Barr virus (EBV) is a ubiquitous DNA virus that normally infects silently, establishing lifelong latency. Substantial empirical observations support the view that immunodeficiency is permissive in EBV-induced lymphoproliferative diseases (LPD). Primary immune deficient patients such as those with X-linked lymphoproliferative disease and individuals with acquired immune deficiency secondary to immunosuppressive drugs for organ transplantation or individuals infected with human immunodeficiency virus are also at very high risk for lethal LPD. The importance of immunodeficiency and EBV in the development of head and neck carcinomas and uterine cervical carcinoma is less clear. Methods are available for detecting immunodeficiency and EBV genome and thus preventive strategies are being developed to preclude LPD from occurring. PMID:2176975

  14. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs)

    PubMed Central

    Ipcho, Simon; Sundelin, Thomas; Erbs, Gitte; Kistler, H. Corby; Newman, Mari-Anne; Olsson, Stefan

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals. PMID:27172188

  15. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  16. Prevention of psychological stress-induced immune suppression by aged garlic extract.

    PubMed

    Kyo, E; Uda, N; Ushijima, M; Kasuga, S; Itakura, Y

    1999-11-01

    We determined the effect of Aged Garlic Extract (AGE) on damage caused to immune function by a psychological stress using a communication box. After four days of a psychological stress, a decrease in spleen weight and spleen cells was observed in the psychological stress-exposed mice as compared normal mice (non-stress). AGE significantly prevented the decreases in spleen weight and cells. Additionally, AGE significantly prevented the reduction of hemolytic plaque-forming-cells in spleen cells and anti-SRBC antibody titer in serum caused by this psychological stress. Moreover, a reduction in NK activities was observed in the psychological stress-exposed mice as compared with normal mice (non-stress), whereas NK activities in the AGE administered mice were almost the same as normal mice (non-stress). These results indicate that psychological stress qualitatively and quantitatively impairs immune function, and that AGE is extremely useful for preventing psychologically-induced damage.

  17. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    PubMed Central

    Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J.

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species. PMID:29581962

  18. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis.

    PubMed

    Bach, Horacio; Richard-Greenblatt, Melissa; Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  19. Comparative effects of carrier proteins on vaccine-induced immune response.

    PubMed

    Knuf, Markus; Kowalzik, Frank; Kieninger, Dorothee

    2011-07-12

    The efficacy of vaccines against major encapsulated bacterial pathogens -Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b (Hib) - has been significantly enhanced by conjugating the respective polysaccharides with different carrier proteins: diphtheria toxoid; non-toxic cross-reactive material of diphtheria toxin(197), tetanus toxoid, N. meningitidis outer membrane protein, and non-typeable H. influenzae-derived protein D. Hib, meningococcal, and pneumococcal conjugate vaccines have shown good safety and immunogenicity profiles regardless of the carrier protein used, although data are conflicting as to which carrier protein is the most immunogenic. Coadministration of conjugate vaccines bearing the same carrier protein has the potential for inducing either positive or negative effects on vaccine immunogenicity (immune interference). Clinical studies on the coadministration of conjugate vaccines reveal conflicting data with respect to immune interference and vaccine efficacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  1. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    PubMed

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  2. [Sterilization and eugenics].

    PubMed

    Shasha, Shaul M

    2011-04-01

    The term "eugenics" was coined by Francis Galton in 1883 and was defined as the science of the improvement of the human race by better breeding. "Positive eugenics" referred to methods of encouraging the "most fit" to reproduce more often, while "negative eugenics" was related to ways of discouraging or preventing the "less fit" from reproducing by birth control and sterilization. Many western countries adopted eugenics programs including Britain, Canada, Norway, Australia, Switzerland and others. In Sweden more then 62,000 "unfits" were forcibly sterilized. Many states in the U.S.A. had adopted marriage laws with eugenics criteria including forced sterilization. Approximately 64,000 individuals were sterilized. Eugenics considerations also lay behind the adoption of the Immigration Restriction Act of 1924. The Largest plan on eugenics was adopted by the Nazi regime in Germany. Hundreds of thousands of people, who were viewed as being "unfit", were forcibly sterilized by different methods: Surgical sterilization or castration with severe complications and high mortality rates. X-ray irradiation. The method was suggested by Brack, and tested by Schuman using prisoners in Block No. 10 in Auschwitz and Birkenau. Experiments were also performed by Brack on prisoners using the "window method". "Klauberg method"--injection of irritating materials into the uterus. Experiments were conducted using the plant Caladium Seguinum which was believed to have sterilization and castration properties.

  3. Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma.

    PubMed

    Park, Jun Ho; Kim, Jong Won; Lee, Chang-Min; Kim, Yeong Dae; Chung, Sung Woon; Jung, In Duk; Noh, Kyung Tae; Park, Jin Wook; Heo, Deok Rim; Shin, Yong Kyoo; Seo, Jong Keun; Park, Yeong-Min

    2012-05-01

    Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

  4. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection.

    PubMed

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro; Lasa, Iñigo; Valle, Jaione

    2014-03-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.

  5. Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity

    PubMed Central

    2010-01-01

    Background Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFκB for the rapid expression of immunity genes. Methods 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. Results We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. Conclusions Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response. PMID:20105294

  6. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection.

    PubMed

    Lopez, Pamela Aranda; Denny, Mark; Hartmann, Ann-Kathrin; Alflen, Astrid; Probst, Hans Christian; von Stebut, Esther; Tenzer, Stefan; Schild, Hansjörg; Stassen, Michael; Langguth, Peter; Radsak, Markus P

    2017-09-01

    Transcutaneous immunization (TCI) is a novel vaccination strategy utilizing the skin associated lymphatic tissue to induce immune responses. TCI using a cytotoxic T lymphocyte (CTL) epitope and the Toll-like receptor 7 (TLR7) agonist imiquimod mounts strong CTL responses by activation and maturation of skin-derived dendritic cells (DCs) and their migration to lymph nodes. However, TCI based on the commercial formulation Aldara only induces transient CTL responses that needs further improvement for the induction of durable therapeutic immune responses. Therefore we aimed to develop a novel imiquimod solid nanoemulsion (IMI-Sol) for TCI with superior vaccination properties suited to induce high quality T cell responses for enhanced protection against infections. TCI was performed by applying a MHC class I or II restricted epitope along with IMI-Sol or Aldara (each containing 5% Imiquimod) on the shaved dorsum of C57BL/6, IL-1R, Myd88, Tlr7 or Ccr7 deficient mice. T cell responses as well as DC migration upon TCI were subsequently analyzed by flow cytometry. To determine in vivo efficacy of TCI induced immune responses, CTL responses and frequency of peptide specific T cells were evaluated on day 8 or 35 post vaccination and protection in a lymphocytic choriomeningitis virus (LCMV) infection model was assessed. TCI with the imiquimod formulation IMI-Sol displayed equal skin penetration of imiquimod compared to Aldara, but elicited superior CD8 + as well as CD4 + T cell responses. The induction of T-cell responses induced by IMI-Sol TCI was dependent on the TLR7/MyD88 pathway and independent of IL-1R. IMI-Sol TCI activated skin-derived DCs in skin-draining lymph nodes more efficiently compared to Aldara leading to enhanced protection in a LCMV infection model. Our data demonstrate that IMI-Sol TCI can overcome current limitations of previous imiquimod based TCI approaches opening new perspectives for transcutaneous vaccination strategies and allowing the use of this

  7. The Necrosome Promotes Pancreas Oncogenesis via CXCL1 and Mincle Induced Immune Suppression

    PubMed Central

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H.; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P.; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-01-01

    Neoplastic pancreatic epithelial cells are widely believed to die via Caspase 8-dependant apoptotic cell death and chemotherapy is thought to further promote tumor apoptosis1. Conversely, disruption of apoptosis is a basic modality cancer cells exploit for survival2,3. However, the role of necroptosis, or programmed necrosis, in pancreatic ductal adenocarcinoma (PDA) is uncertain. There are a multitude of potential inducers of necroptosis in PDA including ligation of TNFR1, CD95, TRAIL receptors, Toll-like receptors, ROS, and Chemotherapeutics4,5. Here we report that the principal components of the necrosome, RIP1 and RIP3, are highly expressed in PDA and are further upregulated by chemotherapy. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo RIP3 deletion or RIP1 inhibition was protective against oncogenic progression and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumor microenvironment (TME) associated with intact RIP1/RIP3 signaling was in-part contingent on necroptosis-induced CXCL1 expression whereas CXCL1 blockade was protective against PDA. Moreover, we found that cytoplasmic SAP130 was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle – its cognate receptor – was upregulated in tumor-infiltrating myeloid cells. Mincle ligation by SAP130 promoted oncogenesis whereas Mincle deletion was protective and phenocopied the immunogenic reprogramming of the TME characteristic of RIP3 deletion. Cellular depletion experiments suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects in the context of RIP3 or Mincle deletion. As such, T cells which are dispensable to PDA progression in hosts with intact RIP3 or Mincle signaling become reprogrammed into indispensable mediators of anti-tumor immunity in absence of RIP3 or Mincle. Our work

  8. Food irradiation and sterilization

    NASA Astrophysics Data System (ADS)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  9. Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control

    PubMed Central

    Bolton, Kirsty J.; McCaw, James M.; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  10. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control.

    PubMed

    Bolton, Kirsty J; McCaw, James M; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  11. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. Copyright © 2017 American Society for Microbiology.

  12. Electrophoresis of phosphoglycerate kinase-2 to determine testicular damage induced by ethylene glycol monomethyl ether and sterility associated with chromosomal abnormality.

    PubMed

    Koizumi, A; Hamade, N; Arai, M; Takatoku, M; Yasuhiko, W; Tsukada, M; Kamiyama, S

    1990-01-01

    Phosphoglycerate kinase (PGK, EC 2.7.2.3), which is expressed specifically in sperm and spermatids, is an enzyme in the Embden-Meyerhof pathway that converts glucose to pyruvate. We developed an electrophoresis method to determine relative PGK-2 quantity and applied it to evaluate spermatogenesis activity. In the ethylene glycol monomethyl ether (EGME)-induced testicular toxicity, relative PGK-2 quantity had not decreased until 4 weeks of exposure. Mean relative PGK-2 quantities, defined as PGK-2 quantity over PGK-1 quantity in a pooled spleen sample (+/- SD) were: 1.43 +/- 0.32 for control animals (N = 10); 1.67 +/- 0.24 for the group exposed at 500 mg/kg for 5 days (N = 6); 1.85 +/- 0.58 for the group exposed at 500 mg/kg for 2 weeks (N = 6); 0.09 +/- 0.06 for the group exposed at 500 mg/kg for 4 weeks (N = 6); not detectable in animals exposed at 500 mg/kg for 5 weeks (N = 7); 0.208 +/- 0.103 for the group exposed at 250 mg/kg for 5 weeks (N = 6); and 1.35 +/- 0.38 for the group exposed at 125 mg/kg for 5 weeks (N = 6). These relative quantities showed a good correlation with sperm/spermatid counts (r = 0.823, p less than 0.01) and histological findings. These findings suggest that EGME has toxicity on primary spermatocytes and spermatogonia. In the case of sterility associated with a chromosomal abnormality (chromosomal translocation between chromosome X and 16), relative PGK-2 quantity was not detected in any of the seven adult (12 weeks of age) mice, although many primary spermatocytes were detected by histological examination.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. [Legal statutes on sterilization].

    PubMed

    Zupancic, K

    1980-01-01

    Sterilization in Yugoslavia is no population policy measure. Decision about the birth of children is free, a private problem of any individual, a basic right guaranteed by the Constitution. However, according to certain laws in Slovenia and Croatia, sterilization is allowed as a family planning method in persons over 35 year old. Only exceptionally can sterilization be applied in persons younger than 35 years: according to the Slovenian law, in cases when a person lacks the capacity of reasoning and also when there are medical indications, and according to the Croatian law, when there are medical and eugenic reasons (if the child is supposed to be born with negative congenital properties).

  14. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. DAMPs as mediators of sterile inflammation in aging-related pathologies.

    PubMed

    Feldman, Noa; Rotter-Maskowitz, Aviva; Okun, Eitan

    2015-11-01

    Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Euflammation attenuates peripheral inflammation-induced neuroinflammation and mitigates immune-to-brain signaling.

    PubMed

    Liu, Xiaoyu; Nemeth, Daniel P; Tarr, Andrew J; Belevych, Natalya; Syed, Zunera W; Wang, Yufen; Ismail, Ahmad S; Reed, Nathaniel S; Sheridan, John F; Yajnik, Akul R; Disabato, Damon J; Zhu, Ling; Quan, Ning

    2016-05-01

    Peripheral inflammation can trigger a number of neuroinflammatory events in the CNS, such as activation of microglia and increases of proinflammatory cytokines. We have previously identified an interesting phenomenon, termed "euflammation", which can be induced by repeated subthreshold infectious challenges. Euflammation causes innate immune alterations without overt neuroimmune activation. In the current study, we examined the protective effect of euflammation against peripheral inflammation-induced neuroinflammation and the underlying mechanisms. When Escherichia coli or lipopolysaccharide (LPS) was injected inside or outside the euflammation induction locus (EIL), sickness behavior, global microglial activation, proinflammatory cytokine production in the brain, expression of endothelial cyclooxygenase II and induction of c-fos expression in the paraventricular nucleus of the hypothalamus were all attenuated in the euflammatory mice compared with those in the control unprimed mice. Euflammation also modulated innate immunity outside the EIL by upregulating receptors for pathogen-associated molecular patterns in spleen cells. In addition, euflammation attenuated CNS activation in response to an intra-airpouch (outside the EIL) injection of LPS without suppressing the cytokine expression in the airpouch. Collectively, our study demonstrates that signaling of peripheral inflammation to the CNS is modulated dynamically by peripheral inflammatory kinetics. Specifically, euflammation can offer effective protection against both bacterial infection and endotoxin induced neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity

    PubMed Central

    Zaheer, R S; Wiehler, S; Hudy, M H; Traves, S L; Pelikan, J B; Leigh, R; Proud, D

    2014-01-01

    Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule. PMID:24448099

  18. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation.

    PubMed

    Bonnefoy, Francis; Perruche, Sylvain; Couturier, Mélanie; Sedrati, Abdeslem; Sun, Yunwei; Tiberghien, Pierre; Gaugler, Béatrice; Saas, Philippe

    2011-05-15

    Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.

  19. Specific Humoral Immune Response Induced by Propionibacterium acnes Can Prevent Actinobacillus pleuropneumoniae Infection in Mice

    PubMed Central

    Yang, Feng; Ma, Qiuyue; Huang, Jing; Ji, Qun; Zhai, Ruidong; Wang, Lei; Wang, Yu; Li, Linxi; Sun, Changjiang; Feng, Xin; Han, Wenyu

    2014-01-01

    Porcine contagious pleuropneumonia, caused by Actinobacillus pleuropneumoniae, has a major impact on economics, ecology, and animal welfare in the pig-rearing industry. Propionibacterium acnes, a facultative anaerobic Gram-positive corynebacterium, exists widely in normal healthy adult animals. We have shown previously that P. acnes can prevent A. pleuropneumoniae infections in mice and pigs. To elucidate the mechanism of this effect and to identify novel A. pleuropneumoniae vaccines, the role of anti-P. acnes antibodies in preventing infection was analyzed by indirect immunofluorescence and opsonophagocytosis assays in vitro. The role of the specific humoral immune response induced by P. acnes was confirmed in a B cell depletion mouse model. The survival rates of mice challenged with A. pleuropneumoniae exhibited a highly significant positive rank correlation with the levels of anti-P. acnes antibodies. The specific antibodies induced by P. acnes had the ability to combine with A. pleuropneumoniae and increase opsonization of A. pleuropneumoniae for phagocytosis. Furthermore, analysis in the murine B cell depletion model confirmed that the humoral immune response induced by P. acnes played an important role in resistance to A. pleuropneumoniae infection. In this study, we further elucidated the reasons that P. acnes can prevent A. pleuropneumoniae infection, which provides useful evidence for the development of heterologous vaccines for the control of porcine contagious pleuropneumonia. PMID:24429068

  20. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    NASA Astrophysics Data System (ADS)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  1. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  2. HLA-DR allele reading register shifting is associated with immunity induced by SERA peptide analogues.

    PubMed

    Salazar, Luz Mary; Bermúdez, Adriana; Patarroyo, Manuel E

    2008-07-18

    SERA protein is a leading candidate molecule to be included in an antimalarial vaccine. Conserved high activity binding peptides (HABP) binding to red blood cells (RBC) have been identified in this protein. One of them (6762) localising in the 18-kDa C-terminal fragment was used to induce protective immunity with negative result. Critical RBC binding residues (assessed by glycine-analogue scanning) were replaced by others having the same mass, volume and surface but different polarity, rendering some of them immunogenic as assessed by antibody production against the parasite or its proteins and protection-inducing against challenge with a highly infectious Aotus monkey-adapted Plasmodium falciparum strain. A shift in binding to purified HLA-DR allelic molecules from the same haplotype and in their reading register was found, suggesting that modified molecules had adopted a different (1)H NMR 3D structure allowing a better fit into the MHCII-pept-TCR complex, thereby representing a new mechanism for inducing immune protection.

  3. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity

    PubMed Central

    Ma, Yunzhe; Tao, Wenqian; Krebs, Shelly J.; Sutton, William F.; Haigwood, Nancy L.; Gill, Harvinder S.

    2014-01-01

    Purpose The objective of this study is to evaluate the feasibility of using coated microneedles to deliver vaccines into the oral cavity to induce systemic and mucosal immune responses. Method Microneedles were coated with sulforhodamine, ovalbumin and two HIV antigens. Coated microneedles were inserted into the inner lower lip and dorsal surface of the tongue of rabbits. Histology was used to confirm microneedle insertion, and systemic and mucosal immune responses were characterized by measuring antigen-specific immunoglobulin G (IgG) in serum and immunoglobulin A (IgA) in saliva, respectively. Results Histological evaluation of tissues shows that coated microneedles can penetrate the lip and tongue to deliver coatings. Using ovalbumin as a model antigen it was found that the lip and the tongue are equally immunogenic sites for vaccination. Importantly, both sites also induced a significant (p < 0.05) secretory IgA in saliva compared to pre-immune saliva. Microneedle-based oral cavity vaccination was also compared to the intramuscular route using two HIV antigens, a virus-like particle and a DNA vaccine. Microneedle-based delivery to the oral cavity and the intramuscular route exhibited similar (p > 0.05) yet significant (p < 0.05) levels of antigen-specific IgG in serum. However, only the microneedle-based oral cavity vaccination group stimulated a significantly higher (p < 0.05) antigen-specific IgA response in saliva, but not intramuscular injection. Conclusion In conclusion, this study provides a novel method using microneedles to induce systemic IgG and secretory IgA in saliva, and could offer a versatile technique for oral mucosal vaccination. PMID:24623480

  4. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  5. Contraception Update: Sterilization.

    PubMed

    Antell, Karen; Deshmukh, Prium; Brown, Elizabeth J

    2017-11-01

    Female sterilization procedures include postpartum partial salpingectomy via cesarean or minilaparotomy incision, interval laparoscopic procedures, or hysteroscopic placement of microinserts. Rates of failure and serious complications are low and comparable among the various methods. A hysteroscopic procedure requires a 3-month confirmatory hysterosalpingogram before it is considered effective for contraception. Hysteroscopic sterilization has been shown to be associated with a higher reoperation rate than laparoscopic procedures. For male sterilization, vasectomy is a noninvasive and highly effective method. Vasectomy is an outpatient procedure performed under local anesthesia. The procedure requires confirmation of azoospermia with a semen analysis 8 to 16 weeks after the procedure. Patients who are considering sterilization should be counseled about all the available options and the permanent nature of such procedures. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  6. Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice.

    PubMed

    Homma, S; Toda, G; Gong, J; Kufe, D; Ohno, T

    2001-11-01

    The prevention of recurrence of hepatocellular carcinoma (HCC) after treatment is very important for improvement of the prognosis of HCC patients. Dendritic cells (DCs) are potent antigen-presenting cells that can prime naive T cells to induce a primary immune response. We attempted to induce preventive antitumor immunity against HCC by immunizing BALB/c mice with fusions of DCs and HCC cells. Murine bone marrow-derived DCs and a murine HCC cell line. BNL cells, were fused by treatment with 50% polyethyleneglvcol (PEG). Fusion efficacy was assessed by the analysis of fusions of BNL cells stained with red fluorescent dye and DCs stained with green fluorescent dye. Mice injected intravenously with DC/BNL fusions were challenged by BNL cell inoculation. About 30% of the PEG-treated non-adherent cells with both fluorescences were considered to be fusion cells. The cell fraction of DC/BNL fusions showed phenotypes of DCs, MHC class II, CD80, CD86, and intercellular adhesion molecule (ICAM)-1, which were not expressed on BNL cells. Mice immunized with the fusions were protected against the inoculation of BNL tumor cells, whereas injection with a mixture of DCs and BNL cells not treated with PEG did not provide significant resistance against BNL cell inoculation. Splenocytes from DC/BNL fusion-immunized mice showed lytic activity against BNL cells. These results demonstrate that immunization with fusions of DCs and HCC cells is capable of inducing preventive antitumor immunity against HCC.

  7. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract.

    PubMed

    Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S

    2016-09-01

    Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.

  8. Sterilization and its consequences.

    PubMed

    Hendrix, N W; Chauhan, S P; Morrison, J C

    1999-12-01

    The purpose of this review is to analyze critically the two techniques of sterilization (bilateral tubal ligation [BTL] and vasectomy) so that a physician may provide informed consent about methods of sterilization. A MEDLINE search and extensive review of published literature dating back to 1966 was undertaken to compare preoperative counseling, operative procedures, postoperative complications, procedure-related costs, psychosocial consequences, and feasibility of reversal between BTL and a vasectomy. Compared with a vasectomy, BTL is 20 times more likely to have major complications, 10 to 37 times more likely to fail, and cost three times as much. Moreover, the procedure-related mortality, although rare, is 12 times higher with sterilization of the woman than of the man. Despite these advantages, 300,000 more BTLs were done in 1987 than vasectomies. In 1987, there were 976,000 sterilizations (65 percent BTLs and 35 percent vasectomies) with an overall cost of $1.8 billion. Over $260 million could have been saved if equal numbers of vasectomies and BTLs had been performed, or more than $800 million if 80 percent had been vasectomies, as was the case in 1971. The safest, most efficacious, and least expensive method of sterilization is vasectomy. For these reasons, physicians should recommend vasectomy when providing counseling on sterilization, despite the popularity of BTL. Obstetricians & Gynecologists, Family Physicians After completion of this article, the reader will be able to predict the failure rates and likelihood of successful reversal of tubal ligation and vasectomy; to recall the difference in cost between the two sterilization procedures, and to describe the short-term and long-term complications associated with each of the two methods of sterilization.

  9. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  10. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    SciTech Connect

    Tong Tiezhu; Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070; Fan Huiying

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immunemore » response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.« less

  11. Influenza Virus-Like Particles Containing M2 Induce Broadly Cross Protective Immunity

    PubMed Central

    Song, Jae-Min; Wang, Bao-Zhong; Park, Kyoung-Mi; Van Rooijen, Nico; Quan, Fu-Shi; Kim, Min-Chul; Jin, Hyun-Tak; Pekosz, Andrew; Compans, Richard W.; Kang, Sang-Moo

    2011-01-01

    Background Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health. Methodology/Principal Findings To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms. Conclusions/Significance These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines. PMID:21267073

  12. Immunization with Live Human Rhinovirus (HRV) 16 Induces Protection in Cotton Rats against HRV14 Infection.

    PubMed

    Patel, Mira C; Pletneva, Lioubov M; Boukhvalova, Marina S; Vogel, Stefanie N; Kajon, Adriana E; Blanco, Jorge C G

    2017-01-01

    Human rhinoviruses (HRVs) are the main cause of cold-like illnesses, and currently no vaccine or antiviral therapies against HRVs are available to prevent or mitigate HRV infection. There are more than 150 antigenically heterogeneous HRV serotypes, with ∼90 HRVs belonging to major group species A and B. Development of small animal models that are susceptible to infection with major group HRVs would be beneficial for vaccine research. Previously, we showed that the cotton rat ( Sigmodon hispidus ) is semi-permissive to HRV16 (major group, species HRV-A virus) infection, replicating in the upper and lower respiratory tracts with measurable pathology, mucus production, and expression of inflammatory mediators. Herein, we report that intranasal infection of cotton rats with HRV14 (major group, species HRV-B virus) results in isolation of infectious virus from the nose and lung. Similar to HRV16, intramuscular immunization with live HRV14 induces homologous protection that correlated with high levels of serum neutralizing antibodies. Vaccination and challenge experiments with HRV14 and HRV16 to evaluate the development of cross-protective immunity demonstrate that intramuscular immunization with live HRV16 significantly protects animals against HRV14 challenge. Determination of the immunological mechanisms involved in heterologous protection and further characterization of infection with other major HRV serotypes in the cotton rat could enhance the robustness of the model to define heterotypic relationships between this diverse group of viruses and thereby increase its potential for development of a multi-serotype HRV vaccine.

  13. Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.

    PubMed

    Rohde, T; MacLean, D A; Pedersen, B K

    1998-06-01

    The ability of lymphocytes to proliferate and generate lymphokine activated killer (LAK) cell activity in vitro is dependent on glutamine. In relation to intense exercise the lymphocyte concentration, the proliferative response, the natural killer and LAK cell activity, and the plasma glutamine concentration decline. It has been hypothesized that in relation to physical activity a lack of glutamine may temporarily affect the function of the immune system. The purpose of this study was to examine the influence of glutamine supplementation on exercise-induced immune changes. In a randomized cross-over placebo-controlled study, eight healthy male subjects performed three bouts of ergometer bicycle exercise lasting 60, 45, and 30 min at 75% of their VO2max separated by 2 h of rest. The arterial plasma glutamine concentration declined from 508 +/- 35 (pre-exercise) to 402 +/- 38 microM (2 h after the last exercise bout) in the placebo trial and was maintained above pre-exercise levels in the glutamine supplementation trial. The numbers of circulating lymphocytes and the phytohemagglutinin-stimulated lymphocyte proliferative response declined 2 h after, respectively, during each bout of exercise, whereas the LAK cell activity declined 2 h after the third bout. Glutamine supplementation in vivo, given in the described doses at the specific times, did not influence these changes. The present study does not appear to support the hypothesis that those aspects of postexercise immune changes studied are caused by decreased plasma glutamine concentrations.

  14. Immunization with Live Human Rhinovirus (HRV) 16 Induces Protection in Cotton Rats against HRV14 Infection

    PubMed Central

    Patel, Mira C.; Pletneva, Lioubov M.; Boukhvalova, Marina S.; Vogel, Stefanie N.; Kajon, Adriana E.; Blanco, Jorge C. G.

    2017-01-01

    Human rhinoviruses (HRVs) are the main cause of cold-like illnesses, and currently no vaccine or antiviral therapies against HRVs are available to prevent or mitigate HRV infection. There are more than 150 antigenically heterogeneous HRV serotypes, with ∼90 HRVs belonging to major group species A and B. Development of small animal models that are susceptible to infection with major group HRVs would be beneficial for vaccine research. Previously, we showed that the cotton rat (Sigmodon hispidus) is semi-permissive to HRV16 (major group, species HRV-A virus) infection, replicating in the upper and lower respiratory tracts with measurable pathology, mucus production, and expression of inflammatory mediators. Herein, we report that intranasal infection of cotton rats with HRV14 (major group, species HRV-B virus) results in isolation of infectious virus from the nose and lung. Similar to HRV16, intramuscular immunization with live HRV14 induces homologous protection that correlated with high levels of serum neutralizing antibodies. Vaccination and challenge experiments with HRV14 and HRV16 to evaluate the development of cross-protective immunity demonstrate that intramuscular immunization with live HRV16 significantly protects animals against HRV14 challenge. Determination of the immunological mechanisms involved in heterologous protection and further characterization of infection with other major HRV serotypes in the cotton rat could enhance the robustness of the model to define heterotypic relationships between this diverse group of viruses and thereby increase its potential for development of a multi-serotype HRV vaccine. PMID:28912760

  15. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo

    PubMed Central

    Lei, Runhong; Zhao, Tuo; Li, Qiang; Wang, Xiao; Ma, Hong; Deng, Yulin

    2015-01-01

    Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3+CD4−CD8+ T-cells in the thymus and the proportion of CD3+CD4+CD8− T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation. PMID:26633364

  16. Immunization of mice with LRP4 induces myasthenia similar to MuSK-associated myasthenia gravis.

    PubMed

    Mori, Shuuichi; Motohashi, Norio; Takashima, Rumi; Kishi, Masahiko; Nishimune, Hiroshi; Shigemoto, Kazuhiro

    2017-11-01

    Since the first report of experimental animal models of myasthenia gravis (MG) with autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), there have not been any major reports replicating the pathogenicity of anti-LRP4 antibodies (Abs). Recent clinical studies have cast doubt on the specificity and pathogenicity of anti-LRP4 antibodies for MG, highlighting the need for further research. In this study, we purified antigens corresponding to the extracellular region of human LRP4 stably expressed with chaperones in 293 cells and used these antigens to immunize female A/J mice. Immunization with LRP4 protein caused mice to develop myasthenia having similar electrophysiological and histological features as are observed in MG patients with circulating Abs against muscle-specific kinase (MuSK). Our results clearly demonstrate that active immunization of mice with LRP4 proteins causes myasthenia similar to the MG induced by anti-MuSK Abs. Further experimental and clinical studies are required to prove the pathogenicity of anti-LRP4 Abs in MG patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Dendritic Cells Pulsed with Leukemia Cell-Derived Exosomes More Efficiently Induce Antileukemic Immunities

    PubMed Central

    Wei, Wei; Shen, Chang; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Hao, Siguo

    2014-01-01

    Dendritic cells (DCs) and tumor cell-derived exosomes have been used to develop antitumor vaccines. However, the biological properties and antileukemic effects of leukemia cell-derived exosomes (LEXs) are not well described. In this study, the biological properties and induction of antileukemic immunity of LEXs were investigated using transmission electron microscopy, western blot analysis, cytotoxicity assays, and animal studies. Similar to other tumor cells, leukemia cells release exosomes. Exosomes derived from K562 leukemia cells (LEXK562) are membrane-bound vesicles with diameters of approximately 50–100 μm and harbor adhesion molecules (e.g., intercellular adhesion molecule-1) and immunologically associated molecules (e.g., heat shock protein 70). In cytotoxicity assays and animal studies, LEXs-pulsed DCs induced an antileukemic cytotoxic T-lymphocyte immune response and antileukemic immunity more effectively than did LEXs and non-pulsed DCs (P<0.05). Therefore, LEXs may harbor antigens and immunological molecules associated with leukemia cells. As such, LEX-based vaccines may be a promising strategy for prolonging disease-free survival in patients with leukemia after chemotherapy or hematopoietic stem cell transplantation. PMID:24622345

  18. Species-Specific Immunity Induced by Infection with Entamoeba histolytica and Entamoeba moshkovskii in Mice

    PubMed Central

    Shimokawa, Chikako; Culleton, Richard; Imai, Takashi; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Kobayashi, Seiki; Hisaeda, Hajime; Hamano, Shinjiro

    2013-01-01

    Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections. PMID:24312397

  19. Sterilization: A Review and Update.

    PubMed

    Moss, Chailee; Isley, Michelle M

    2015-12-01

    Sterilization is a frequently used method of contraception. Female sterilization is performed 3 times more frequently than male sterilization, and it can be performed immediately postpartum or as an interval procedure. Methods include mechanical occlusion, coagulation, or tubal excision. Female sterilization can be performed using an abdominal approach, or via laparoscopy or hysteroscopy. When an abdominal approach or laparoscopy is used, sterilization occurs immediately. When hysteroscopy is used, tubal occlusion occurs over time, and additional testing is needed to confirm tubal occlusion. Comprehensive counseling about sterilization should include discussion about male sterilization (vasectomy) and long-acting reversible contraceptive methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A recombinant chimeric Ad5/3 vector expressing a multi-stage Plasmodium antigen induces protective immunity in mice using heterologous prime-boost immunization regimens1

    PubMed Central

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T.; Blackwell, Jerry; Moreno, Alberto

    2016-01-01

    An ideal malaria vaccine should target several stages of the parasite life cycle and induce anti-parasite and anti-disease immunity. We have reported a Plasmodium yoelii chimeric multi-stage recombinant protein (PyLPC/RMC), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1). This chimeric protein elicits protective immunity, mediated by CD4+ T cells and neutralizing antibodies. However, experimental evidence from pre-erythrocytic vaccine candidates and irradiated sporozoites has shown that CD8+ T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8+ T cell responses. The human adenovirus serotype 5 (Ad5) has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing antibodies in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing antibodies. Furthermore, we implemented heterologous adenovirus/protein immunization regimens which include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrate that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299

  1. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hysteroscopic Tubal Sterilization

    PubMed Central

    McMartin, K

    2013-01-01

    Background Hysteroscopic tubal sterilization is a minimally invasive alternative to laparoscopic tubal ligation for women who want permanent contraception. The procedures involves non-surgical placement of permanent microinserts into both fallopian tubes. Patients must use alternative contraception for at least 3 months postprocedure until tubal occlusion is confirmed. Compared to tubal ligation, potential advantages of the hysteroscopic procedure are that it can be performed in 10 minutes in an office setting without the use of general or even local anesthesia. Objective The objective of this analysis was to determine the effectiveness and safety of hysteroscopic tubal sterilization compared with tubal ligation for permanent female sterilization. Data Sources A standard systematic literature search was conducted for studies published from January 1, 2008, until December 11, 2012. Review Methods Observational studies, randomized controlled trials (RCTs), systematic reviews and meta-analyses with 1 month or more of follow-up were examined. Outcomes included failure/pregnancy rates, adverse events, and patient satisfaction. Results No RCTs were identified. Two systematic reviews covered 22 observational studies of hysteroscopic sterilization. Only 1 (N = 93) of these 22 studies compared hysteroscopic sterilization to laparoscopic tubal ligation. Two other noncomparative case series not included in the systematic reviews were also identified. In the absence of comparative studies, data on tubal ligation were derived for this analysis from the CREST study, a large, multicentre, prospective, noncomparative observational study in the United States (GRADE low). Overall, hysteroscopic sterilization is associated with lower pregnancy rates and lower complication rates compared to tubal ligation. No deaths have been reported for hysteroscopic sterilization. Limitations A lack of long-term follow-up for hysteroscopic sterilization and a paucity of studies that directly

  3. Immune-Complexed Adenovirus Induce AIM2-Mediated Pyroptosis in Human Dendritic Cells

    PubMed Central

    Eichholz, Karsten; Bru, Thierry; Tran, Thi Thu Phuong; Fernandes, Paulo; Mennechet, Franck J. D.; Manel, Nicolas; Alves, Paula; Perreau, Matthieu

    2016-01-01

    Human adenoviruses (HAdVs) are nonenveloped proteinaceous particles containing a linear double-stranded DNA genome. HAdVs cause a spectrum of pathologies in all populations regardless of health standards. Following repeat exposure to multiple HAdV types, we develop robust and long-lived humoral and cellular immune responses that provide life-long protection from de novo infections and persistent HAdV. How HAdVs, anti-HAdV antibodies and antigen presenting cells (APCs) interact to influence infection is still incompletely understood. In our study, we used physical, pharmacological, biochemical, fluorescence and electron microscopy, molecular and cell biology approaches to dissect the impact of immune-complexed HAdV (IC-HAdV) on human monocyte-derived dendritic cells (MoDCs). We show that IC-HAdV generate stabilized complexes of ~200 nm that are efficiently internalized by, and aggregate in, MoDCs. By comparing IC-HAdV, IC-empty capsid, IC-Ad2ts1 (a HAdV-C2 impaired in endosomal escape due to a mutation that impacts protease encapsidation) and IC-AdL40Q (a HAdV-C5 impaired in endosomal escape due to a mutation in protein VI), we demonstrate that protein VI-dependent endosomal escape is required for the HAdV genome to engage the DNA pattern recognition receptor AIM2 (absent in melanoma 2). AIM2 engagement induces pyroptotic MoDC death via ASC (apoptosis-associated speck protein containing a caspase activation/recruitment domain) aggregation, inflammasome formation, caspase 1 activation, and IL-1β and gasdermin D (GSDMD) cleavage. Our study provides mechanistic insight into how humoral immunity initiates an innate immune response to HAdV-C5 in human professional APCs. PMID:27636895

  4. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists' perspective.

    PubMed

    Karamchandani, Dipti M; Chetty, Runjan

    2018-04-27

    Immune checkpoint inhibitors (CPIs) are a relatively new class of 'miracle' dugs that have revolutionised the treatment and prognosis of some advanced-stage malignancies, and have increased the survival rates significantly. This class of drugs includes cytotoxic T lymphocyte antigen-4 inhibitors such as ipilimumab; programmed cell death protein-1 inhibitors such as nivolumab, pembrolizumab and avelumab; and programmed cell death protein ligand-1 inhibitors such as atezolizumab. These drugs stimulate the immune system by blocking the coinhibitory receptors on the T cells and lead to antitumoural response. However, a flip side of these novel drugs is immune-related adverse events (irAEs), secondary to immune-mediated process due to disrupted self-tolerance. The irAEs in the gastrointestinal (GI) tract/liver may result in diarrhoea, colitis or hepatitis. An accurate diagnosis of CPI-induced colitis and/or hepatitis is essential for optimal patient management. As we anticipate greater use of these drugs in the future given the significant clinical response, pathologists need to be aware of the spectrum of histological findings that may be encountered in GI and/or liver biopsies received from these patients, as well as differentiate them from its histopathological mimics. This present review discusses the clinical features, detailed histopathological features, management and the differential diagnosis of the luminal GI and hepatic irAEs that may be encountered secondary to CPI therapy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  6. The nature of immunity to Snyder-Theilen fibrosarcoma virus induced tumors in cats.

    PubMed

    Johnson, L; Pedersen, N C; Theilen, G H

    1985-07-01

    Snyder-Theilen fibrosarcoma virus (ST-FeSV) induced tumors evoked a vigorous immune response in adolescent cats. The response was characterized histologically by a lymphoid and histiocytic cell infiltrate beginning around the 9th day post inoculation. Hyperemia edema, hemorrhage, and necrosis of the tumors occurred shortly thereafter. Gross regression of the tumors commenced around the 15th day. Viable fibrosarcoma cells could be recovered as almost pure cultures from tumors biopsied on the 9th day. Biopsies taken between days 9 and 15 contained progressively fewer tumor cells and increasing numbers of lymphoid cells, histiocytes, giant cells, and normal fibroblasts. Tumor cells in such mixed cultures did not replicate as fast as normal and died out within 7 to 14 days. Viable tumor cells were not recovered from biopsies taken after day 15. Fibrosarcoma regression was associated with the appearance of tumor cell specific cytotoxic lymphocytes and antibodies in the blood. Cell mediated immunity, as determined by a chromium release assay, consisted of both antibody dependent and independent mechanisms. Fluorescent and complement dependent cytolytic antibodies were detected in the blood at the same time as cytotoxic lymphocytes, but persisted after regression. In a preliminary experiment, serum from tumor regressor cats was injected into susceptible kittens, and the kittens were then challenged with ST-FeSV transformed fibroblasts or whole FeSV. Immune serum did not prevent the appearance of initial growth of tumors, but did slow their subsequent growth and increased the rate of regression. Immune serum had a much more dramatic inhibitory effect on the accompanying retrovirus infection.

  7. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses.

    PubMed

    Ferraro, Bernadette; Cisper, Neil J; Talbott, Kendra T; Philipson-Weiner, Lindsey; Lucke, Colleen E; Khan, Amir S; Sardesai, Niranjan Y; Weiner, David B

    2011-01-01

    Prostate cancer (PCa) remains a significant public health problem. Current treatment modalities for PCa can be useful, but may be accompanied by deleterious side effects and often do not confer long-term control. Accordingly, additional modalities, such as immunotherapy, may represent an important approach for PCa treatment. The identification of tissue-specific antigens engenders PCa an attractive target for immunotherapeutic approaches. Delivery of DNA vaccines with electroporation has shown promising results for prophylactic and therapeutic targets in a variety of species including humans. Application of this technology for PCa immunotherapy strategies has been limited to single antigen and epitope targets. We sought to test the hypothesis that a broader collection of antigens would improve the breadth and effectiveness of a PCa immune therapy approach. We therefore developed highly optimized DNA vaccines encoding prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) as a dual antigen approach to immune therapy of PCa. PSA-and PSMA-specific cellular immunogenicity was evaluated in a mouse model for co-delivery and single antigen vaccination. Mice received 2 immunizations spaced 2 weeks apart and immunogenicity was evaluated 1 week after the second vaccination. Both the PSA and PSMA vaccines induced robust antigen-specific IFNγ responses by ELISpot. Further characterization of cellular immunogenicity by flow cytometry indicated strong antigen-specific TNFα production by CD4+ T cells and IFNγ and IL-2 secretion by both CD4+ and CD8+ T cells. There was also a strong humoral response as determined by PSA-specific seroconversion. These data support further study of this novel approach to immune therapy of PCa.

  8. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    PubMed

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Loss of Roquin induces early death and immune deregulation but not autoimmunity.

    PubMed

    Bertossi, Arianna; Aichinger, Martin; Sansonetti, Paola; Lech, Maciej; Neff, Frauke; Pal, Martin; Wunderlich, F Thomas; Anders, Hans-Joachim; Klein, Ludger; Schmidt-Supprian, Marc

    2011-08-29

    The substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In this study, we demonstrate that tissue-specific ablation of Roquin in T or B cells, in the entire hematopoietic system, or in epithelial cells of transplanted thymi did not cause autoimmunity. Loss of Roquin induced elevated expression of ICOS through T cell-intrinsic and -extrinsic mechanisms, which itself was not sufficient to break self-tolerance. Instead, ablation of Roquin in the hematopoietic system caused defined changes in immune homeostasis, including the expansion of macrophages, eosinophils, and T cell subsets, most dramatically CD8 effector-like T cells, through cell-autonomous and nonautonomous mechanisms. Germline Roquin deficiency led to perinatal lethality, which was partially rescued on the genetic background of an outbred strain. However, not even complete absence of Roquin resulted in overt self-reactivity, suggesting that the sanroque mutation induces autoimmunity through an as yet unknown mechanism. © 2011 Bertossi et al.

  10. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity

    PubMed Central

    Shalapour, Shabnam; Lin, Xue-Jia; Bastian, Ingmar N.; Brain, John; Burt, Alastair D.; Aksenov, Alexander A.; Vrbanac, Alison F.; Li, Weihua; Perkins, Andres; Matsutani, Takaji; Zhong, Zhenyu; Dhar, Debanjan; Navas-Molina, Jose A.; Xu, Jun; Loomba, Rohit; Downes, Michael; Yu, Ruth T.; Evans, Ronald M.; Dorrestein, Pieter C.; Knight, Rob; Benner, Christopher; Anstee, Quentin M.; Karin, Michael

    2018-01-01

    The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA+) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8+ T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8+ T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA+ cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8+ T-lymphocyte activation as a tumour-promoting mechanism. PMID:29144460

  11. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    PubMed

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  12. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    SciTech Connect

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}mmore » or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.« less

  13. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    PubMed

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  14. Atomic description of the immune complex involved in heparin-induced thrombocytopenia

    DOE PAGES

    Cai, Zheng; Yarovoi, Serge V.; Zhu, Zhiqiang; ...

    2015-09-22

    Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by immune complexes containing platelet factor 4 (PF4), antibodies to PF4 and heparin or cellular glycosaminoglycans (GAGs). Here we solve the crystal structures of the: (1) PF4 tetramer/fondaparinux complex, (2) PF4 tetramer/KKO-Fab complex (a murine monoclonal HIT-like antibody) and (3) PF4 monomer/RTO-Fab complex (a non-HIT anti-PF4 monoclonal antibody). Fondaparinux binds to the ‘closed’ end of the PF4 tetramer and stabilizes its conformation. This interaction in turn stabilizes the epitope for KKO on the ‘open’ end of the tetramer. Fondaparinux and KKO thereby collaborate to ‘stabilize’ the ternary pathogenic immune complex. Bindingmore » of RTO to PF4 monomers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet activation and platelet aggregation in vitro, and thrombus progression in vivo. Lastly, the atomic structures provide a basis to develop new diagnostics and non-anticoagulant therapeutics for HIT.« less

  15. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  16. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  17. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance.

    PubMed

    Chang, Yi-Hsuan; Yan, Hao-Zhi; Liou, Ruey-Fen

    2015-02-01

    The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  18. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens1

    PubMed Central

    Tatsis, Nia; Lasaro, Marcio O.; Lin, Shih-Wen; Xiang, Zhi Q.; Zhou, Dongming; DiMenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J.; Silvestri, Guido; Ertl, Hildegund C.; Betts, Michael R.

    2009-01-01

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with pre-existing neutralizing antibodies against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee derived Ad (AdC) vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the AdC vectors induced higher T and B cell responses than repeated immunizations with the AdHu5 vector especially in AdHu5-pre-exposed macaques. PMID:19414814

  19. Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens.

    PubMed

    Tatsis, Nia; Lasaro, Marcio O; Lin, Shih-Wen; Haut, Larissa H; Xiang, Zhi Q; Zhou, Dongming; Dimenna, Lauren; Li, Hua; Bian, Ang; Abdulla, Sarah; Li, Yan; Giles-Davis, Wynetta; Engram, Jessica; Ratcliffe, Sarah J; Silvestri, Guido; Ertl, Hildegund C; Betts, Michael R

    2009-05-15

    In the phase IIb STEP trial an HIV-1 vaccine based on adenovirus (Ad) vectors of the human serotype 5 (AdHu5) not only failed to induce protection but also increased susceptibility to HIV-1 infection in individuals with preexisting neutralizing Abs against AdHu5. The mechanisms underlying the increased HIV-1 acquisition rates have not yet been elucidated. Furthermore, it remains unclear if the lack of the vaccine's efficacy reflects a failure of the concept of T cell-mediated protection against HIV-1 or a product failure of the vaccine. Here, we compared two vaccine regimens based on sequential use of AdHu5 vectors or two different chimpanzee-derived Ad vectors in rhesus macaques that were AdHu5 seropositive or seronegative at the onset of vaccination. Our results show that heterologous booster immunizations with the chimpanzee-derived Ad vectors induced higher T and B cell responses than did repeated immunizations with the AdHu5 vector, especially in AdHu5-preexposed macaques.

  20. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  1. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    PubMed

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization.

    PubMed

    Yigang, X U; Yijing, L I

    2008-05-01

    Lactobacillus casei ATCC 393 was selected as a bacterial carrier for the development of mucosal vaccine against porcine parvovirus (PPV) infection. The PPV major structural polypeptide VP2 was used as the model parvovirus antigen. Two inducible expression systems, namely pPG611.1 of the cell-surface expression system and pPG612.1 of the secretion expression system based on the xylose operon promoter were used to express the VP2 protein. The immunogenicity of recombinant strains producing VP2 protein in two cellular locations, cell-surface exposed and secreted, was compared to each other by immunizing mice through the intragastric administration. The two types of constructs were able to induce strong specific immune responses against VP2 via intragastric administration and maximum titres of IgA and IgG were attained on days 46 post oral immunization, while the highest antibody levels were obtained with the strain producing the VP2 protein in extracellular milieu. The induced antibodies demonstrated neutralizing effects on PPV infection.

  3. Immunosuppression in Early Postnatal Days Induces Persistent and Allergen-Specific Immune Tolerance to Asthma in Adult Mice

    PubMed Central

    Chen, Yan; Zhang, Jin; Lu, Yong; Wang, Libo

    2015-01-01

    Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma. PMID:25860995

  4. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    PubMed

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. IKKβ-induced inflammation impacts the kinetics but not the magnitude of the immune response to a viral vector

    PubMed Central

    Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.

    2012-01-01

    Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279

  6. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    PubMed Central

    Wang, Ze-Yu; Xing, Yun; Liu, Bin; Lu, Lei; Huang, Xiao; Ge, Chi-Yu; Yao, Wen-Jun; Xu, Mao-Lei; Gao, Zhen-Qiu; Cao, Rong-Yue; Wu, Jie; Li, Tai-Ming

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection. PMID:22464650

  7. Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen.

    PubMed

    Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya

    2006-08-01

    In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.

  8. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2.

    PubMed

    Xu, Ying; Yang, Enzhuo; Huang, Qi; Ni, Wenwen; Kong, Cong; Liu, Guoyuan; Li, Guanghua; Su, Haibo; Wang, Honghai

    2015-06-01

    Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are related proteins exclusive to Mycobacteria that play diverse roles in modulating critical innate immune pathways. In this study, we observed that the PPE57 protein is associated with the cell wall and is exposed on the cell surface. PPE57 enhances Mycobacterium spp. entering into macrophages and plays a role in macrophage phagocytosis. To explore the underlying mechanism, we demonstrated that PPE57 is able to recognise Toll-like receptor 2 (TLR2) and further induce macrophage activation by augmenting the expression of several cell surface molecules (CD40, CD80, CD86 and MHC class II) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) within macrophages. These molecules are involved in the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signalling pathways. We demonstrated that PPE57 effectively polarises T cells to secrete interferon (IFN)-γ and IL-2 and to up-regulate CXCR3 expression in vivo and in vitro, suggesting that this protein may contribute to Th1 polarisation during the immune response. Moreover, recombinant Bacillus Calmette-Guérin (BCG) over-expressing PPE57 could provide better protective efficacy against Mycobacterium tuberculosis challenge compared with BCG. Taken together, our data provides several pieces of evidence that PPE57 may regulate innate and adaptive immunity by interacting with TLR2. These findings indicate that PPE57 protein is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. PPE57 is located on the cell surface and enhances mycobacterium entry into macrophage. PPE57 interacts directly with TLR2 on macrophages. PPE57 plays a key role in the activation of macrophages in a TLR2-dependent manner. PPE57 induces a Th1 immune response via TLR2-mediated macrophage functions. Recombinant BCG over-expressing PPE57 could improve protective efficacy against M. tuberculosis.

  9. Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses.

    PubMed

    Debbink, Kari; Lindesmith, Lisa C; Donaldson, Eric F; Swanstrom, Jesica; Baric, Ralph S

    2014-07-01

    There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the

  10. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice.

    PubMed

    Di Scala, Marianna; Otano, Itziar; Gil-Fariña, Irene; Vanrell, Lucia; Hommel, Mirja; Olagüe, Cristina; Vales, Africa; Galarraga, Miguel; Guembe, Laura; Ortiz de Solorzano, Carlos; Ghosh, Indrajit; Maini, Mala K; Prieto, Jesús; González-Aseguinolaza, Gloria

    2016-10-01

    In chronic hepatitis B (CHB), failure to control hepatitis B virus (HBV) is associated with T cell dysfunction. HBV transgenic mice mirror many features of the human disease, including T cell unresponsiveness, and thus represent an appropriate model in which to test novel therapeutic strategies. To date, the tolerant state of CD8(+) T cells in these animals could be altered only by strong immunogens or by immunization with HBV antigen-pulsed dendritic cells; however, the effectors induced were unable to suppress viral gene expression or replication. Because of the known stimulatory properties of alpha interferon (IFN-α) and interleukin-15 (IL-15), this study explored the therapeutic potential of liver-directed gene transfer of these cytokines in a murine model of CHB using adeno-associated virus (AAV) delivery. This combination not only resulted in a reduction in the viral load in the liver and the induction of an antibody response but also gave rise to functional and specific CD8(+) immunity. Furthermore, when splenic and intrahepatic lymphocytes from IFN-α- and IL-15-treated animals were transferred to new HBV carriers, partial antiviral immunity was achieved. In contrast to previous observations made using either cytokine alone, markedly attenuated PD-L1 induction in hepatic tissue was observed upon coadministration. An initial study with CHB patient samples also gave promising results. Hence, we demonstrated synergy between two stimulating cytokines, IL-15 and IFN-α, which, given together, constitute a potent approach to significantly enhance the CD8(+) T cell response in a state of immune hyporesponsiveness. Such an approach may be useful for treating chronic viral infections and neoplastic conditions. With 350 million people affected worldwide and 600,000 annual deaths due to HBV-induced liver cirrhosis and/or hepatocellular carcinoma, chronic hepatitis B (CHB) is a major health problem. However, current treatment options are costly and not very effective

  11. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis.

    PubMed

    Singh, Vishal; Yeoh, Beng San; Chassaing, Benoit; Zhang, Benyue; Saha, Piu; Xiao, Xia; Awasthi, Deepika; Shashidharamurthy, Rangaiah; Dikshit, Madhu; Gewirtz, Andrew; Vijay-Kumar, Matam

    2016-07-01

    Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout ( Lcn2 KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10 KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2 KO mice with or without antibiotics. Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2 KO mice exhibited elevated levels of entA -expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2 KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2 KO mice, via cohousing, resulted in severe colitis in Il-10 KO mice. Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.

  12. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  13. Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs.

    PubMed

    Takeyama, Natsumi; Yuki, Yoshikazu; Tokuhara, Daisuke; Oroku, Kazuki; Mejima, Mio; Kurokawa, Shiho; Kuroda, Masaharu; Kodama, Toshiaki; Nagai, Shinya; Ueda, Susumu; Kiyono, Hiroshi

    2015-09-22

    Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in both neonatal and weaned pigs. Because the cholera toxin B subunit (CTB) has a high level of amino acid identity to the ETEC heat-labile toxin (LT) B-subunit (LTB), we selected MucoRice-CTB as a vaccine candidate against ETEC-induced pig diarrhea. When pregnant sows were orally immunized with MucoRice-CTB, increased amounts of antigen-specific IgG and IgA were produced in their sera. CTB-specific IgG was secreted in the colostrum and transferred passively to the sera of suckling piglets. IgA antibodies in the colostrum and milk remained high with a booster dose after farrowing. Additionally, when weaned minipigs were orally immunized with MucoRice-CTB, production of CTB-specific intestinal SIgA, as well as systemic IgG and IgA, was induced. To evaluate the cross-protective effect of MucoRice-CTB against ETEC diarrhea, intestinal loop assay with ETEC was conducted. The fluid volume accumulated in the loops of minipigs immunized with MucoRice-CTB was significantly lower than that in control minipigs, indicating that MucoRice-CTB-induced cross-reactive immunity could protect weaned pigs from diarrhea caused by ETEC. MucoRice-CTB could be a candidate oral vaccine for inducing both passive and active immunity to protect both suckling and weaned piglets from ETEC diarrhea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response

    PubMed Central

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-01-01

    Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600

  15. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  16. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  17. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  18. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    PubMed Central

    Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten

    2018-01-01

    Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic

  19. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.

    PubMed

    Ulusoy, Canan; Çavuş, Filiz; Yılmaz, Vuslat; Tüzün, Erdem

    2017-07-01

    Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.

  20. Sterile neutrino dark matter production

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry

    2017-10-01

    Sterile neutrinos provide active neutrinos with masses and mixing, and hence is one of the well-motivated candidate for dark matter. We discuss the sterile neutrino production mechanisms operating in the early Universe and show that additional scalar coupled to sterile neutrino can significantly change the situation, making moderate sterile-neutrino mixing and small sterile neutrino masses consistent with current cosmological and astrophysical bounds. Further searches for a narrow line in galactic X-rays and even direct searches for keV-scale sterile neutrinos in particle physics experiments can probe the suggested setup.

  1. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  2. Anisakis simplex: from Obscure Infectious Worm to Inducer of Immune Hypersensitivity

    PubMed Central

    Audicana, M. Teresa; Kennedy, Malcolm W.

    2008-01-01

    Summary: Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites (“gastroallergic anisakiasis”), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive. PMID:18400801

  3. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    PubMed

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  4. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  5. Photodynamic therapy can induce non-specific protective immunity against a bacterial infection

    NASA Astrophysics Data System (ADS)

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Kinoshita, Manabu; Morimoto, Yuji; Hamblin, Michael R.

    2012-03-01

    Photodynamic therapy (PDT) for cancer is known to induce an immune response against the tumor, in addition to its well-known direct cell-killing and vascular destructive effects. PDT is becoming increasingly used as a therapy for localized infections. However there has not to date been a convincing report of an immune response being generated against a microbial pathogen after PDT in an animal model. We have studied PDT as a therapy for bacterial arthritis caused by Staphylococcus aureus infection in the mouse knee. We had previously found that PDT of an infection caused by injection of MRSA (5X107 CFU) into the mouse knee followed 3 days later by 1 μg of Photofrin and 635- nm diode laser illumination with a range of fluences within 5 minutes, gave a biphasic dose response. The greatest reduction of MRSA CFU was seen with a fluence of 20 J/cm2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. We then tested the hypothesis that the host immune response mediated by neutrophils was responsible for most of the beneficial antibacterial effect. We used bioluminescence imaging of luciferase expressing bacteria to follow the progress of the infection in real time. We found similar results using intra-articular methylene blue and red light, and more importantly, that carrying out PDT of the noninfected joint and subsequently injecting bacteria after PDT led to a significant protection from infection. Taken together with substantial data from studies using blocking antibodies we believe that the pre-conditioning PDT regimen recruits and stimulates neutrophils into the infected joint which can then destroy bacteria that are subsequently injected and prevent infection.

  6. Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells.

    PubMed

    Jia, Lingling; Shan, Kai; Pan, Li-Long; Feng, Ninghan; Lv, Zhuwu; Sun, Yajun; Li, Jiahong; Wu, Chengfei; Zhang, Hao; Chen, Wei; Diana, Julien; Sun, Jia; Chen, Yong Q

    2017-01-01

    Recent evidence indicates that indigenous Clostridium species induce colonic regulatory T cells (Tregs), and gut lymphocytes are able to migrate to pancreatic islets in an inflammatory environment. Thus, we speculate that supplementation with the well-characterized probiotics Clostridium butyricum CGMCC0313.1 (CB0313.1) may induce pancreatic Tregs and consequently inhibit the diabetes incidence in non-obese diabetic (NOD) mice. CB0313.1 was administered daily to female NOD mice from 3 to 45 weeks of age. The control group received an equal volume of sterile water. Fasting glucose was measured twice a week. Pyrosequencing of the gut microbiota and flow cytometry of mesenteric lymph node (MLN), pancreatic lymph node (PLN), pancreatic and splenic immune cells were performed to investigate the effect of CB0313.1 treatment. Early oral administration of CB0313.1 mitigated insulitis, delayed the onset of diabetes, and improved energy metabolic dysfunction. Protection may involve increased Tregs, rebalanced Th1/Th2/Th17 cells and changes to a less proinflammatory immunological milieu in the gut, PLN, and pancreas. An increase of α4β7 + (the gut homing receptor) Tregs in the PLN suggests that the mechanism may involve increased migration of gut-primed Tregs to the pancreas. Furthermore, 16S rRNA gene sequencing revealed that CB0313.1 enhanced the Firmicutes/Bacteroidetes ratio, enriched Clostridium -subgroups and butyrate-producing bacteria subgroups. Our results provide the basis for future clinical investigations in preventing type 1 diabetes by oral CB0313.1 administration.

  7. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    PubMed Central

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  8. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity

    PubMed Central

    Swimm, Alyson; Giver, Cynthia R.; Harris, Wayne A. C.; Laval, Julie; Napier, Brooke A.; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R. Mark; Weiss, David S.; Tirouvanziam, Rabindra; Waller, Edmund K.; Kalman, Daniel

    2015-01-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics “emergency hematopoiesis,” a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens. PMID:25822986

  10. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity.

    PubMed

    Napier, Ruth J; Norris, Brian A; Swimm, Alyson; Giver, Cynthia R; Harris, Wayne A C; Laval, Julie; Napier, Brooke A; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R Mark; Weiss, David S; Tirouvanziam, Rabindra; Waller, Edmund K; Kalman, Daniel

    2015-03-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.

  11. Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation

    PubMed Central

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Huang, Liyi; Morimoto, Yuji; Kinoshita, Manabu; Yoshihara, Yasuo; Nemoto, Koichi; Shinomiya, Nariyoshi; Seki, Suhji; Hamblin, Michael R.

    2012-01-01

    Background Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. Methodology/Principal Findings In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. Conclusions/Significance This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT. PMID:22761911

  12. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  13. Vaccination with dendritic cells pulsed with hepatitis C pseudo particles induces specific immune responses in mice

    PubMed Central

    Weigand, Kilian; Voigt, Franziska; Encke, Jens; Hoyler, Birgit; Stremmel, Wolfgang; Eisenbach, Christoph

    2012-01-01

    AIM: To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS: We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole “viral surface” induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS: Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION: Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further. PMID:22371638

  14. Mechanistic studies of systemic immune responses induced by laser-nanotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Zhou, Feifan; Henderson, Brock; Vasquez, Bailey; Liu, Hong; Hode, Tomas; Nordquist, Robert E.

    2014-02-01

    With the help of the specific absorption spectrum of carbon nanotubes, we achieved selective photothermal tumor cell destruction, particularly using a near-infrared laser to reduce potential damage to untargeted tissues. Combined with immunological stimulation, using a novel adjuvant, we also observed the anti-tumor immune responses when treating animal tumors using the laser-nano treatment. In fact, the local application of laser-nano-immunotherapy appeared to result in a systemic curative effect. In our mechanistic study, we found that the laser-nano-immuno treatment can activate antigen-presenting cells, such as dendritic cells (DCs). More importantly, the uptake and presentation of antigens by these antigen presenting cells were significantly enhanced, as shown by the strong binding of tumor cells and DCs as well as the proliferation of T cells caused by the DCs after the DCs had been incubated with laser-nano-immuno treated tumors. These cellular observations provide evidence that a systemic anti-tumor immune response was induced by the combination of laser and nanotechnology.

  15. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  16. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal

    PubMed Central

    Wu, Guoxin; Swanson, Michael; Talla, Aarthi; Graham, Donald; Strizki, Julie; Gorman, Daniel; Barnard, Richard J.O.; Blair, Wade; Søgaard, Ole S.; Tolstrup, Martin; Østergaard, Lars; Rasmussen, Thomas A.; Sekaly, Rafick-Pierre; Archin, Nancie M.; Hazuda, Daria J.; Howell, Bonnie J.

    2017-01-01

    Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein induction following treatment with LRAs. Importantly, we demonstrate that clinical administration of histone deacetylase inhibitors (HDACis; vorinostat and panobinostat) induced HIV gag p24, and ex vivo stimulation produced sufficient viral antigen to elicit immune-mediated cell killing using anti-gp120/CD3 bispecific antibody. These findings extend beyond classical nucleic acid endpoints, which are confounded by the predominance of mutated, defective proviruses and, of paramount importance, enable assessment of cells making HIV protein that can now be targeted by immunological approaches. PMID:28814661

  17. Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses.

    PubMed

    Zeelenberg, Ingrid S; Ostrowski, Matias; Krumeich, Sophie; Bobrie, Angélique; Jancic, Carolina; Boissonnas, Alexandre; Delcayre, Alain; Le Pecq, Jean-Bernard; Combadière, Béhazine; Amigorena, Sebastian; Théry, Clotilde

    2008-02-15

    Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor antigens by dendritic cells). The modes of tumor antigen capture by dendritic cells in vivo remain unclear. Here we examine the immunogenicity of the same model antigen secreted by live tumors either in association with membrane vesicles (exosomes) or as a soluble protein. We have artificially addressed the antigen to secreted vesicles by coupling it to the factor VIII-like C1C2 domain of milk fat globule epidermal growth factor-factor VIII (MFG-E8)/lactadherin. We show that murine fibrosarcoma tumor cells that secrete vesicle-bound antigen grow slower than tumors that secrete soluble antigen in immunocompetent, but not in immunodeficient, host mice. This growth difference is due to the induction of a more potent antigen-specific antitumor immune response in vivo by the vesicle-bound than by the soluble antigen. Finally, in vivo secretion of the vesicle-bound antigen either by tumors or by vaccination with naked DNA protects against soluble antigen-secreting tumors. We conclude that the mode of secretion can determine the immunogenicity of tumor antigens and that manipulation of the mode of antigen secretion may be used to optimize antitumor vaccination protocols.

  18. Vinpocetine Inhibited the CpG Oligodeoxynucleotide-induced Immune Response in Plasmacytoid Dendritic Cells.

    PubMed

    Feng, Xungang; Wang, Yuzhong; Hao, Yanlei; Ma, Qun; Dai, Jun; Liang, Zhibo; Liu, Yantao; Li, Xiangyuan; Song, Yan; Si, Chuanping

    2017-04-01

    Plasmacytoid dendritic cells (pDCs) exert dual roles in immune responses through inducing inflammation and maintaining immune tolerance. A switch of pDC phenotype from pro-inflammation to tolerance has therapeutic promise in the treatment of autoimmune diseases. Vinpocetine, a vasoactive vinca alkaloid extracted from the periwinkle plant, has recently emerged as an immunomodulatory agent. In this study, we evaluated the effect of vinpocetine on phenotype of pDCs isolated from C57BL/6 mice and explored its possible mechanism. Our data showed that vinpocetine significantly downregulated the expression of CD40, CD80, and CD86 on pDCs and increased the expression of translocator protein (TSPO), the specific receptor of vinpocetine, in pDCs. Vinpocetine significantly inhibited the Toll-like receptor 9 signaling pathway and reduced the secretion of related cytokines in pDCs through TSPO. Furthermore, viability of pDCs was significantly promoted by vinpocetine. These findings imply that vinpocetine serves as an immunomodulatory agent for pDCs and may be applied for the treatment of pDCs-related autoimmune diseases.

  19. Aggregated Recombinant Human Interferon Beta Induces Antibodies but No Memory in Immune-Tolerant Transgenic Mice

    PubMed Central

    Sauerborn, Melody; Gilli, Francesca; Brinks, Vera; Schellekens, Huub; Jiskoot, Wim

    2010-01-01

    ABSTRACT Purpose To study the influence of protein aggregation on the immunogenicity of recombinant human interferon beta (rhIFNβ) in wild-type mice and transgenic, immune-tolerant mice, and to evaluate the induction of immunological memory. Methods RhIFNβ-1b and three rhIFNβ-1a preparations with different aggregate levels were injected intraperitoneally in mice 15× during 3 weeks, and the mice were rechallenged with rhIFNβ-1a. The formation of binding (BABs) and neutralizing antibodies (NABs) was monitored. Results Bulk rhIFNβ-1a contained large, mainly non-covalent aggregates and stressed rhIFNβ-1a mainly covalent, homogeneous (ca. 100 nm) aggregates. Reformulated rhIFNβ-1a was essentially aggregate-free. All products induced BABs and NABs in wild-type mice. Immunogenicity in the transgenic mice was product dependent. RhIFNβ-1b showed the highest and reformulated rhIFNβ-1a the lowest immunogenicity. In contrast with wild-type mice, transgenic mice did not show NABs, nor did they respond to the rechallenge. Conclusions The immunogenicity of the products in transgenic mice, unlike in wild-type mice, varied. In the transgenic mice, neither NABs nor immunological memory developed. The immunogenicity of rhIFNβ in a model reflecting the human immune system depends on the presence and the characteristics of aggregates. PMID:20499141

  20. Demodex canis targets TLRs to evade host immunity and induce canine demodicosis.

    PubMed

    Kumari, P; Nigam, R; Choudhury, S; Singh, S K; Yadav, B; Kumar, D; Garg, S K

    2018-03-01

    Widespread incidence of Demodex mites throughout the mammalian class and occasional serious and fatal outcomes in dogs warrant an insight into the host-parasite interface especially. Therefore, this study was aimed to unravel the interplay between innate immune response and canine demodicosis. The dogs diagnosed to have natural clinical demodicosis were allocated into two groups; dogs with localized demodicosis (LD) and with generalized demodicosis (GD). The expression of toll-like receptors (TLRs) 2, 4 and 6 genes in peripheral blood mononuclear cells of these dogs was quantified by real-time PCR. Significantly increased TLR2 gene expression, while significantly diminished TLR4 and TLR6 gene expressions were observed in demodicosed dogs (LD and GD) as compared with the healthy ones. Even the expression of TLR2 gene was found to differ significantly between the dogs with LD and GD. Therefore, it can be inferred that clinical demodicosis in dogs is coupled with an up-regulation of TLR2 and down-regulation of TLR4 and TLR6 gene expressions. Overexpression of TLR2 gene might be responsible for Demodex-induced clinical manifestations, while TLR4 and TLR6 gene down-regulations could be the paramount strategy of Demodex mites to elude the host-immune interface. © 2017 John Wiley & Sons Ltd.

  1. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed

    Pecaut, Michael J; Mao, Xiao Wen; Bellinger, Denise L; Jonscher, Karen R; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Mohney, Robert P; Gridley, Daila S

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.

  2. Attenuation of Cocaine-Induced Locomotor Activity in Male and Female Mice by Active Immunization

    PubMed Central

    Kosten, Therese A.; Shen, Xiaoyun Y.; Kinsey, Berma M.; Kosten, Thomas R.; Orson, Frank M.

    2014-01-01

    Background and objectives Immunotherapy for drug addiction is being investigated in several laboratories but most studies are conducted in animals of one sex. Yet, women show heightened immune responses and are more likely to develop autoimmune diseases than men. The purpose of this study was to compare the effects of an active anti-cocaine vaccine, succinyl-norcocaine conjugated to keyhole limpet hemocyanin, for its ability to elicit antibodies and alter cocaine-induced ambulatory activity in male versus female mice. Methods Male and female BALB/c mice were vaccinated (n=44) or served as non-vaccinated controls (n=34). Three weeks after initial vaccination, a booster was given. Ambulatory activity induced by cocaine (20 mg/kg) was assessed at 7-wk and plasma obtained at 8-wk to assess antibody levels. Results High antibody titers were produced in mice of both sexes. The vaccine reduced ambulatory activity cocaine-induced but this effect was greater in female compared to male mice. Discussion and conclusions The efficacy of this anti-cocaine vaccine is demonstrated in mice of both sexes but its functional consequences are greater in females than males. Scientific significance Results point to the importance of testing animals of both sexes in studies of immunotherapies for addiction. PMID:25251469

  3. Attenuation of cocaine-induced locomotor activity in male and female mice by active immunization.

    PubMed

    Kosten, Therese A; Shen, Xiaoyun Y; Kinsey, Berma M; Kosten, Thomas R; Orson, Frank M

    2014-01-01

    Immunotherapy for drug addiction is being investigated in several laboratories but most studies are conducted in animals of one sex. Yet, women show heightened immune responses and are more likely to develop autoimmune diseases than men. The purpose of this study was to compare the effects of an active anti-cocaine vaccine, succinyl-norcocaine conjugated to keyhole limpet hemocyanin, for its ability to elicit antibodies and alter cocaine-induced ambulatory activity in male versus female mice. Male and female BALB/c mice were vaccinated (n = 44) or served as non-vaccinated controls (n = 34). Three weeks after initial vaccination, a booster was given. Ambulatory activity induced by cocaine (20 mg/kg) was assessed at 7 weeks and plasma obtained at 8 weeks to assess antibody levels. High antibody titers were produced in mice of both sexes. The vaccine reduced ambulatory activity cocaine-induced but this effect was greater in female compared to male mice. The efficacy of this anti-cocaine vaccine is demonstrated in mice of both sexes but its functional consequences are greater in females than males. Results point to the importance of testing animals of both sexes in studies of immunotherapies for addiction. © American Academy of Addiction Psychiatry.

  4. Urea-Induced Unfolding of the Immunity Protein Im9 Monitored by spFRET

    PubMed Central

    Tezuka-Kawakami, Tomoko; Gell, Chris; Brockwell, David J.; Radford, Sheena E.; Smith, D. Alastair

    2006-01-01

    We have studied the urea-induced unfolding of the E colicin immunity protein Im9 using diffusion single-pair fluorescence resonance energy transfer. Detailed examination of the proximity ratio of the native and denatured molecules over a wide range of urea concentrations suggests that the conformational properties of both species are denaturant-dependent. Whereas native molecules become gradually more expanded as urea concentration increases, denatured molecules show a dramatic dependence of the relationship between proximity ratio and denaturant concentration, consistent with substantial compaction of the denatured ensemble at low denaturant concentrations. Analysis of the widths of the proximity ratio distributions for each state suggests that whereas the native state ensemble is relatively narrow and homogeneous, the denatured state may possess heterogeneity in mildly denaturing conditions. PMID:16798813

  5. Leishmania infantum FML pulsed-dendritic cells induce a protective immune response in murine visceral leishmaniasis.

    PubMed

    Foroughi-Parvar, Faeze; Hatam, Gholam-Reza; Sarkari, Bahador; Kamali-Sarvestani, Eskandar

    2015-01-01

    To investigate the efficacy of FML loaded dendritic cells (DCs) in protection against visceral leishmaniasis. Mice were immunized with FML- or soluble Leishmania antigen-loaded DCs as well as FML or soluble Leishmania antigen in saponin and challenged with parasite. The levels of cytokines before and after challenge were detected by ELISA. Parasite burden (total Leishman-Donovan unit) was determined after parasite challenge. FML-saponin induced the highest IFN-γ/IL-4 ratio among vaccinated groups, though this ratio was higher in FML-loaded DCs group subsequent to challenge with Leishmania infantum. Moreover, the greatest reduction in parasite number was detected in mice vaccinated with FML-loaded DCs compared with phosphate-buffered saline-treated mice (p = 0.002). FML-loaded DCs are one of the promising tools for protection against murine visceral leishmaniasis.

  6. [Effects of Jianpi Qinghua Decoctions on immune inflammatory injury in adriamycin-induced nephropathic rats MA].

    PubMed

    Ma, Xiao-Hong; He, Li-Qun

    2014-01-01

    To investigate the effects of Jianpi Qinghua Decoctions on the inflammation injury mediated by the cellular immunity in the focal segmental glomurular Sclerosis (FSGS) nephropathy rats. The FSGS nephropathy rat model was established by the method of intravenous injection of Adriamycin after the removal of one kidney. After the treatment of Jianpi Qinghua Decoctions, the blood, spleen and kidney samples of each rat were collected for the detection of splenocytes CD4+/CD8+ ratio, renal tubulointerstitial fibronectin (FN) mRNA, Col III mRNA, and the expression levels of TNF-alpha and IL6. The treatment of Jianpi Qinghua Decoctions decreased the levels of CD4+/CD8+, tubulointerstitial FN mRNA, Col III mRNA, TNF-alpha and IL6 significantly in FSGS nephropathy rats. Jianpi Qinghua Decoctions could improve renal FSGS damage in adriamycin-induced nephropathy rats.

  7. Metronomic chemotherapy: A potent macerator of cancer by inducing angiogenesis suppression and antitumor immune activation.

    PubMed

    Biziota, Eirini; Mavroeidis, Leonidas; Hatzimichael, Eleftheria; Pappas, Periklis

    2017-08-01

    Metronomic chemotherapy is a low dosing treatment strategy that attracts growing scientific and clinical interest. It refers to dense and uninterrupted administration of low doses of chemotherapeutic agents (without prolonged drug free intervals) over extended periods of time. Cancer chemotherapy is conventionally given in cycles of maximum tolerated doses (MTD) with the aim of inducing maximum cancer cell apoptosis. In contrast, the primary target of metronomic chemotherapy is the tumor's neovasculature. This is relevant to the emerging concept that tumors exist in a complex microenvironment of cancer cells, stromal cells and supporting vessels. In addition to its anti-angiogenetic properties, metronomic chemotherapy halts tumor growth by activating anti-tumor immunity, thus decreasing the acquired resistance to conventional chemotherapy. Herein, we present a review of the literature that provides a scientific basis for the merits of chemotherapy when administered on a metronomic schedule. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    PubMed

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  9. Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice.

    PubMed

    Deslauriers, Jessica; van Wijngaarde, Myrthe; Geyer, Mark A; Powell, Susan; Risbrough, Victoria B

    2017-04-14

    The prevalence of posttraumatic stress disorder (PTSD) is high in the armed services, with a rate up to 20%. Multiple studies have associated markers of inflammatory signaling prior to trauma with increased risk of PTSD, suggesting a potential role of the immune system in the development of this psychiatric disorder. One question that arises is if "priming" the immune system before acute trauma alters the stress response and increases enduring effects of trauma. We investigated the time course of inflammatory response to predator stress, a robust stressor that induces enduring PTSD-like behaviors, and the modulation of these effects via prior immune activation with the bacterial endotoxin, lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist. Mice exposed to predator stress exhibited decreased pro-/anti-inflammatory balance in the brain 6h after stress, suggesting that predator exposure acutely suppressed the immune system by increasing anti-inflammatory cytokines levels. Acute immune activation with LPS before a single predator stress did not alter the enduring avoidance behavior in stressed mice. Our findings suggest that acute inflammation, at least via TLR4 activation, is not sufficient to increase susceptibility for PTSD-like behaviors in this model. Future studies will examine if chronic inflammation is required to induce similar immune changes to those observed in PTSD patients in this model. Published by Elsevier B.V.

  10. Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Ljubicic, A.; Longhin, A.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.

    2015-06-01

    The OPERA experiment, exposed to the CERN to Gran Sasso ν μ beam, collected data from 2008 to 2012. Four oscillated ν τ Charged Current interaction candidates have been detected in appearance mode, which are consistent with ν μ → ν τ oscillations at the atmospheric Δ m 2 within the "standard" three-neutrino framework. In this paper, the OPERA ν τ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.

  11. Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction

    PubMed Central

    Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian

    2014-01-01

    Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2. Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species. PMID:24618260

  12. Food antigen-induced immune responses in Crohn's disease patients and experimental colitis mice.

    PubMed

    Kawaguchi, Takaaki; Mori, Maiko; Saito, Keiko; Suga, Yasuyo; Hashimoto, Masaki; Sako, Minako; Yoshimura, Naoki; Uo, Michihide; Danjo, Keiko; Ikenoue, Yuka; Oomura, Kaori; Shinozaki, Junko; Mitsui, Akira; Kajiura, Takayuki; Suzuki, Manabu; Takazoe, Masakazu

    2015-04-01

    In Crohn's disease (CD), the involvement of food antigens in immune responses remains unclear. The objective of this study was to detect immune responses against food antigens in CD patients and examine the mechanism in a mouse model of colitis. We enrolled 98 CD patients, 50 ulcerative colitis patients, and 52 healthy controls (HCs) to compare the levels of serum immunoglobulin (Ig)Gs against 88 foods. The presence of serum IgGs against foods was also examined in interleukin (IL)-10 knockout (KO) mice in which CD4(+) T cell activation by antigenic food protein was assessed. Mice transferred with IL-10 KO cells received diets with or without food antigens, and the development of colitis was evaluated. The prevalence of IgGs against various foods, especially vegetables, grains, and nuts, was significantly higher in CD patients than in HCs. Similarly, the prevalence of IgGs against food proteins was higher in IL-10 KO mice than in BALB/c mice. Beta-conglycinin, identified as an antigenic food proteins in IL-10 KO mice, induced CD4(+) T cell production of interferon-γ and IL-17 through dendritic cell antigen presentation. Elimination of the food antigens ameliorated the development of colitis in mice without altering the composition of their intestinal microbiota. In CD colitis mice, intestinal inflammation via CD4(+) T cell hyperactivation was induced by food antigens associated with high serum IgG levels and was ameliorated by the elimination of food antigens. This disrupted immunological tolerance to food antigen, which might act as an exacerbating factor, remains to be elucidated in CD patients.

  13. Malaria Infections Do Not Compromise Vaccine-Induced Immunity against Tuberculosis in Mice

    PubMed Central

    Parra, Marcela; Derrick, Steven C.; Yang, Amy; Tian, JinHua; Kolibab, Kristopher; Oakley, Miranda; Perera, Liyanage P.; Jacobs, William R.; Kumar, Sanjai; Morris, Sheldon L.

    2011-01-01

    Background Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. Principal Findings Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. Conclusions Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the

  14. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon).

    PubMed

    Bowers, E Keith; Smith, Rebecca A; Hodges, Christine J; Zimmerman, Laura M; Thompson, Charles F; Sakaluk, Scott K

    2012-07-22

    The reproductive costs associated with the upregulation of immunity have been well-documented and constitute a fundamental trade-off between reproduction and self-maintenance. However, recent experimental work suggests that parents may increase their reproductive effort following immunostimulation as a form of terminal parental investment as prospects for future reproduction decline. We tested the trade-off and terminal investment hypotheses in a wild population of house wrens (Troglodytes aedon) by challenging the immune system of breeding females with lipopolysaccharide, a potent but non-lethal antigen. Immunized females showed no evidence of reproductive costs; instead, they produced offspring of higher phenotypic quality, but in a sex-specific manner. Relative to control offspring, sons of immunized females had increased body mass and their sisters exhibited higher cutaneous immune responsiveness to phytohaemagglutinin injection, constituting an adaptive strategy of sex-biased allocation by immune-challenged females to enhance the reproductive value of their offspring. Thus, our results are consistent with the terminal investment hypothesis, and suggest that maternal immunization can induce pronounced transgenerational effects on offspring phenotypes.

  15. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice

    PubMed Central

    Merianos, Demetri J.; Tiblad, Eleonor; Santore, Matthew T.; Todorow, Carlyn A.; Laje, Pablo; Endo, Masayuki; Zoltick, Philip W.; Flake, Alan W.

    2009-01-01

    The lack of fetal immune responses to foreign antigens, i.e., fetal immunologic tolerance, is the most compelling rationale for prenatal stem cell and gene therapy. However, the frequency of engraftment following in utero hematopoietic cell transplantation (IUHCT) in the murine model is reduced in allogeneic, compared with congenic, recipients. This observation supports the existence of an immune barrier to fetal transplantation and challenges the classic assumptions of fetal tolerance. Here, we present evidence that supports the presence of an adaptive immune response in murine recipients of IUHCT that failed to maintain engraftment. However, when IUHCT recipients were fostered by surrogate mothers, they all maintained long-term chimerism. Furthermore, we have demonstrated that the cells responsible for rejection of the graft were recipient in origin. Our observations suggest a mechanism by which IUHCT-dependent sensitization of the maternal immune system and the subsequent transmission of maternal alloantibodies to pups through breast milk induces a postnatal adaptive immune response in the recipient, which, in turn, results in the ablation of engraftment after IUHCT. Finally, we showed that non-fostered pups that maintained their chimerism had higher levels of Tregs as well as a more suppressive Treg phenotype than their non-chimeric, non-fostered siblings. This study resolves the apparent contradiction of induction of an adaptive immune response in the pre-immune fetus and confirms the potential of actively acquired tolerance to facilitate prenatal therapeutic applications. PMID:19652363

  16. Schistosoma mansoni: is acquired immunity induced by highly x-irradiated cercariae dependent on the size of the challenging dose

    SciTech Connect

    Hsue, S.Y.; Hsue, H.F.; Osborne, J.W.

    1982-04-01

    A high degree of immunity, as shown by a 91% reduction of the number of worms recovered was found in five groups of mice that were immunized five times with highly X-irradiated cercariae and then challenged with 10, 20, 50, 100, or 500 normal Schistosoma mansoni cercariae. The results indicated that there were no significant differences in worm reduction in immunized mice challenged with different numbers of cercariae; consequently the immunity induced by this immunization method did not appear to be challenge-dose-dependent. However, the results also showed that when immunized mice were challenged with 500, 100, 50, 20, and 10more » cercariae, 0, 13, 26, 56, and 68%, respectively, of the experimental animals were free of worms. Thus, the percentage of worm-negative cases increased as the number of challenge cercariae decreased. When viewed in this manner, the acquired immunity may be considered challenge-dose-dependent as well. If this method of vaccination is used for schistosomiasis control, we may anticipate that in both hypo- and hyperendemic areas, the intensity of infection and the severity of the disease will be reduced owing to a reduction in worms burdens, and in hypoendemic areas, there will be a number of worm-free cases.« less

  17. Lipopolysaccharide-induced innate immune factors in the bottlenose dolphin (Tursiops truncatus) detected in expression sequence tag analysis.

    PubMed

    Ohishi, Kazue; Shishido, Reiko; Iwata, Yasunao; Saitoh, Masafumi; Takenaka, Ryota; Ohtsu, Dai; Okutsu, Kenji; Maruyama, Tadashi

    2011-11-01

    EST analysis based on the megaclone-megasorting method was performed using leukocytes from the bottlenose dolphin (Tursiops truncatus) with or without LPS stimulation. A total of 849 upregulated and 384 downregulated EST clones were sequenced, annotated, and functionally classified. Ferritin heavy peptide I was the most abundant upregulated transcript, suggesting that LPS stimulation induced high production of reactive oxygen species, which were sequestered in ferritin. Among the immune factors, the transcripts coding for an IL-1Ra, homologs to bovine serum amyloid A3, and canine intercellular adhesion molecule-1 were highly expressed. Markedly downregulated transcripts of immune factors were those for homologs of calcium-binding proteins belonging to the S100 family, S100A12, S100A8, and S100A6. Time-course experiments on the expression of some immune factors including IL-1Ra suggested that these factors interact and control cetacean innate immunity. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  18. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity.

    PubMed

    Caddell, Daniel F; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C

    2015-05-05

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21 , recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas , and confers robust resistance to X. oryzae pv. oryzae ( Xoo ). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21 . Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression.

  19. Lipopolysaccharide and Concanavalin A Differentially Induce the Expression of Immune Response Genes in Caprine Monocyte Derived Macrophages.

    PubMed

    Walia, Vishakh; Kumar, Rohit; Mitra, Abhijit

    2015-01-01

    Monocyte derived macrophages (MDMs), as an in vitro model in pathogen challenge studies, are generally induced with lipopolysaccharide (LPS) and concanavalin A (ConA) to assay cellular immunity. General immune responses to LPS and ConA have been studied in a wide range of species, but similar studies are limited to goats. In the present study, caprine MDMs were induced with LPS and ConA and the expression profile of immune response (IR) genes, namely, Tumor Necrosis Factor Alpha (TNFA), Interferon Gamma (IFNG), Interleukin 2 (IL2), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interleukin 10 (IL10), Transforming Growth Factor Beta (TGFB), Natural Resistance-Associated Macrophage Protein-1 (NRAMP1), inducible nitric oxide synthase (NOS2), and caspase1 (CASP1) were studied to compare the potential of LPS and ConA in initiating immune responses in goat macrophages. Real Time quantitative PCR (RT-qPCR) analysis revealed that both LPS and ConA caused an upregulation (p < 0.05) of GMCSF, TGFB1, IL10, and IFNG and down-regulation of NRAMP1. TNFA and IL2, and NOS2 were upregulated (p < 0.05) by ConA and LPS, respectively. Whereas, the expression of CASP1 remain unaltered. Comparatively, the effect of ConA was more pronounced (p < 0.05) in regulating the expression of IR genes suggesting its suitability for studying the general immune responses in caprine MDM.

  20. Toxoplasma gondii Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective Immune Response against T. gondii Infection

    PubMed Central

    Aline, Fleur; Bout, Daniel; Amigorena, Sébastian; Roingeard, Philippe; Dimier-Poisson, Isabelle

    2004-01-01

    It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens. PMID:15213158

  1. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis.

    PubMed

    de Almeida, José Roberto Fogaça; Jannuzzi, Grasielle Pereira; Kaihami, Gilberto Hideo; Breda, Leandro Carvalho Dantas; Ferreira, Karen Spadari; de Almeida, Sandro Rogério

    2018-03-08

    Sporothrix brasiliensis is the most virulent fungus of the Sporothrix complex and is the main species recovered in the sporotrichosis zoonotic hyperendemic area in Rio de Janeiro. A vaccine against S. brasiliensis could improve the current sporotrichosis situation. Here, we show 3 peptides from S. brasiliensis immunogenic proteins that have a higher likelihood for engaging MHC-class II molecules. We investigated the efficiency of the peptides as vaccines for preventing subcutaneous sporotrichosis. In this study, we observed a decrease in lesion diameters in peptide-immunized mice, showing that the peptides could induce a protective immune response against subcutaneous sporotrichosis. ZR8 peptide is from the GP70 protein, the main antigen of the Sporothrix complex, and was the best potential vaccine candidate by increasing CD4 + T cells and higher levels of IFN-γ, IL-17A and IL-1β characterizing a strong cellular immune response. This immune environment induced a higher number of neutrophils in lesions that are associated with fungus clearance. These results indicated that the ZR8 peptide induces a protective immune response against subcutaneous sporotrichosis and is a vaccine candidate against S. brasiliensis infection.

  2. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    PubMed Central

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  3. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity

    PubMed Central

    Caddell, Daniel F.; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C.

    2016-01-01

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21, recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas, and confers robust resistance to X. oryzae pv. oryzae (Xoo). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21. Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression. PMID:27525297

  4. Continuous sterilization of plumbing systems

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Moyers, C. V.; Wright, E. E., Jr.

    1979-01-01

    Continuous sterilization of plumbing, such as in hospitals, clinics, and biological testing laboratories is possible with ethylene oxide/Freon 12 (ETO/F-12) humidifier developed for sterilization of potable water systems.

  5. Sterilization surgery - making a decision

    MedlinePlus

    ... medlineplus.gov/ency/article/002138.htm Sterilization surgery - making a decision To use the sharing features on this page, ... about all the options available to you before making the decision to have a sterilization procedure. Alternative Names Deciding ...

  6. Sterile Neutrinos and Seesaws

    SciTech Connect

    Lincoln, Don

    Time and again, the study of neutrinos has confounded scientists. One very peculiar property of neutrinos is that only neutrinos with a specific spin configuration have been observed. In this video, Fermilab’s Dr. Don Lincoln talks about this and lays out the possibility that other types of neutrinos might exist, called right handed or sterile neutrinos.

  7. Sterilization of Native Americans

    ERIC Educational Resources Information Center

    Dillingham, Brint

    1977-01-01

    The U.S. State Department's Agency for International Development (AID) is spending more than $143 million this year for population control measures in over 70 nations around the world and it is estimated that as much as $10 million was spent in one year for surgical sterilization procedures. (JC)

  8. Heat sterilization of wood

    Treesearch

    Xiping Wang

    2010-01-01

    Two important questions should be considered in heat sterilizing solid wood materials: First, what temperature–time regime is required to kill a particular pest? Second, how much time is required to heat the center of any wood configuration to the kill temperature? The entomology research on the first question has facilitated the development of international standards...

  9. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs.

    PubMed

    Mizukami, Yoshihisa; Abe, Tomoyuki; Shibata, Hiroaki; Makimura, Yukitoshi; Fujishiro, Shuh-hei; Yanase, Kimihide; Hishikawa, Shuji; Kobayashi, Eiji; Hanazono, Yutaka

    2014-01-01

    Recent studies have revealed negligible immunogenicity of induced pluripotent stem (iPS) cells in syngeneic mice and in autologous monkeys. Therefore, human iPS cells would not elicit immune responses in the autologous setting. However, given that human leukocyte antigen (HLA)-matched allogeneic iPS cells would likely be used for medical applications, a more faithful model system is needed to reflect HLA-matched allogeneic settings. Here we examined whether iPS cells induce immune responses in the swine leukocyte antigen (SLA)-matched setting. iPS cells were generated from the SLA-defined C1 strain of Clawn miniature swine, which were confirmed to develop teratomas in mice, and transplanted into the testes (n = 4) and ovary (n = 1) of C1 pigs. No teratomas were found in pigs on 47 to 125 days after transplantation. A Mixed lymphocyte reaction revealed that T-cell responses to the transplanted MHC-matched (C1) iPS cells were significantly lower compared to allogeneic cells. The humoral immune responses were also attenuated in the C1-to-C1 setting. More importantly, even MHC-matched iPS cells were susceptible to innate immunity, NK cells and serum complement. iPS cells lacked the expression of SLA class I and sialic acids. The in vitro cytotoxic assay showed that C1 iPS cells were targeted by NK cells and serum complement of C1. In vivo, the C1 iPS cells developed larger teratomas in NK-deficient NOG (T-B-NK-) mice (n = 10) than in NK-competent NOD/SCID (T-B-NK+) mice (n = 8) (p<0.01). In addition, C1 iPS cell failed to form teratomas after incubation with the porcine complement-active serum. Taken together, MHC-matched iPS cells can attenuate cellular and humoral immune responses, but still susceptible to innate immunity in pigs.

  10. Short-term stress experienced at time of immunization induces a long-lasting increase in immunologic memory.

    PubMed

    Dhabhar, Firdaus S; Viswanathan, Kavitha

    2005-09-01

    It would be extremely beneficial if one could harness natural, endogenous, health-promoting defense mechanisms to fight disease and restore health. The psychophysiological stress response is the most underappreciated of nature's survival mechanisms. We show that acute stress experienced before primary immunization induces a long-lasting increase in immunity. Compared with controls, mice restrained for 2.5 h before primary immunization with keyhole limpet hemocyanin (KLH) show a significantly enhanced immune response when reexposed to KLH 9 mo later. This immunoenhancement is mediated by an increase in numbers of memory and effector helper T cells in sentinel lymph nodes at the time of primary immunization. Further analyses show that the early stress-induced increase in T cell memory may stimulate the robust increase in infiltrating lymphocyte and macrophage numbers observed months later at a novel site of antigen reexposure. Enhanced leukocyte infiltration may be driven by increased levels of the type 1 cytokines, IL-2 and IFN-gamma, and TNF-alpha, observed at the site of antigen reexposure in animals that had been stressed at the time of primary immunization. In contrast, no differences were observed in type 2 cytokines, IL-4 or IL-5. Given the importance of inducing long-lasting increases in immunologic memory during vaccination, we suggest that the neuroendocrine stress response is nature's adjuvant that could be psychologically and/or pharmacologically manipulated to safely increase vaccine efficacy. These studies introduce the novel concept that a psychophysiological stress response is nature's fundamental survival mechanism that could be therapeutically harnessed to augment immune function during vaccination, wound healing, or infection.

  11. Cellular immune reaction in the pancreas is induced by constitutively active IκB kinase‐2

    PubMed Central

    Aleksic, Tamara; Baumann, Bernd; Wagner, Martin; Adler, Guido; Wirth, Thomas

    2007-01-01

    Background Activation of the nuclear factor κB (NF‐κB) system is a major event in acute and chronic inflammatory processes. NF‐κB cascades are comprised of IκB kinases, IκBs and NF‐κB dimers. Little is known of the individual roles of these proteins in organ specific inflammation. The aim of the present study was to analyse the consequences of ectopic IκB kinase‐2 (IKK2) activation in the pancreas of mice. Methods Transgenic mice were generated using an inducible genetic system (tet system) to conditionally overexpress a gain of function mutant of IKK2 (tetO‐IKK2‐EE) in the pancreas. To achieve transgene expression in the pancreas, these animals were crossed with CMV‐rtTA mice that are known to express the rtTA protein in the pancreas. Results In these double transgenic animals, doxycycline treatment induced expression of IKK2‐EE (IKK2CA) in pancreatic acinar cells resulting in moderate activation of the IκB kinase complex, as measured by the immune complex kinase assay, and up to 200‐fold activation of the transgene expression cassette, as detected by luciferase assay. IKK2CA expression in the pancreas had a mosaic appearance. Ectopic IKK2CA mostly activated the classical NF‐κB pathway. The activation level of the NF‐κB cascade induced by IKK2CA was considerably lower compared with that observed after supramaximal caerulein stimulation but still led to the formation of leucocyte infiltrates first observed after 4 weeks of doxycycline stimulation with a maximum after 8–12 weeks. The infiltrates were mainly composed of B lymphocytes and macrophages. Increased mRNA levels of tumour necrosis factor α and RANTES were detected in pancreatic acinar cells. However, only minor damage to pancreatic tissue was observed. A combination of supramaximal caerulein stimulation with induction of IKK2CA caused increased tissue damage compared with either IKK2CA or caerulein alone. Conclusions Our observations suggest that the role of IKK2

  12. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  13. Failure of orally administered attenuated goose parvovirus strain B to induce a humoral immune response in adult geese.

    PubMed

    Kisary, J; Kelemen, M

    1981-01-01

    Two-month-old geese responded with the production of virus neutralising antibodies against virulent goose parvovirus strain B administered either per os or intramuscularly. They were shedding the virus within a short period after exposure. Humoral immune response in geese of the same age was induced by the attenuated goose parvovirus strain B only by intramuscular injection but not with per os administration.

  14. Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors.

    PubMed

    Zhou, Pengfei; L'italien, Lawrence; Hodges, Douglas; Schebye, Xiao Min

    2007-12-01

    Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.

  15. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    SciTech Connect

    Ribeiro, Ruy M

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating thatmore » immune activation and T cell prolifeation are key factors in AIDS pathogenesis.« less

  16. Oral Immunization with Recombinant Lactobacillus acidophilus Expressing the Adhesin Hp0410 of Helicobacter pylori Induces Mucosal and Systemic Immune Responses

    PubMed Central

    Hongying, Fan; Xianbo, Wu; Fang, Yu; Yang, Bai

    2014-01-01

    Helicobacter pylori infection is relatively common worldwide and is closely related to gastric mucosa-associated lymphoid tissue (MALT) lymphoma, chronic gastritis, and stomach ulcers. Therefore, a safe and effective method for preventing H. pylori infection is urgently needed. Given that developing an effective vaccine against H. pylori is one of the best alternatives, H. pylori adhesin Hp0410 was expressed in the food-grade bacterium Lactobacillus acidophilus. The recombinant live bacterial vaccine was then used to orally vaccinate mice, and the immunoprotective effects of Hp0410-producing strains were investigated. H. pylori colonization in the stomach of mice immunized with the recombinant L. acidophilus was significantly reduced, in comparison with that in control groups. Furthermore, mucosal secretory IgA antibodies were elicited in the mucosal tissue of mice immunized with the recombinant bacteria, and specific anti-Hp0410 IgG responses were also detected in mouse serum. There was a significant increase in the level of protection against gastric Helicobacter infection following a challenge with H. pylori Sydney strain 1 (SS1). Our results collectively indicate that adhesin Hp0410 is a promising candidate vaccine antigen, and recombinant L. acidophilus expressing Hp0410 is likely to constitute an effective, low-cost, live bacterial vaccine against H. pylori. PMID:24285819

  17. Protective immunity against H7N3 highly pathogenic avian influenza induced following inoculation of chickens with H7 low pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In the poultry industry, live virus vaccines are used to induce immunity against numerous respiratory pathogens. These are typically lower virulent forms of virus which are limited in replication and pathology, but induce mucosal, humoral, and cellular immunity. Because of the potential for revers...

  18. Bifidobacterium breve alters immune function and ameliorates DSS-induced inflammation in weanling rats.

    PubMed

    Izumi, Hirohisa; Minegishi, Mario; Sato, Yohei; Shimizu, Takashi; Sekine, Kazunori; Takase, Mitsunori

    2015-10-01

    Bifidobacterium breve M-16V (M16V) is a probiotic bacterial strain with a long tradition of use in neonatal intensive care units in some countries. Previous study showed that the effects of M16V administration on gene expression were greater during the weaning period than in the neonatal period and were greater in the colon than in the small intestine and spleen, suggesting that M16V has anti-inflammatory effects. In this study, we evaluated the effects of inflammation during the weaning period and the effects of M16V on normal and inflammatory conditions. From postnatal day (PD) 21 to 34, weanling rats were administered of 2.5 × 10(9) of M16V daily, and colitis was induced by administration of 2% dextran sulfate sodium from PD28 to 35. Colitis severity, immune function, and microbiota were investigated. Colitis caused a reduction in body weight gain, colon shortening, poor nutritional status, anemia, changes in blood and spleen lymphocyte populations, spleen T-cell malfunctions, and alterations in colon microbiota. M16V administration improved some but not all of the changes induced by colitis. M16V could suppress inflammation and, therefore, can be considered a safe strain to use not only during the neonatal period but also the weaning period.

  19. Levofloxacin-Induced Acute Immune-Mediated Thrombocytopenia of Rapid-Onset.

    PubMed

    Shih, Andrew W; Lam, Andy S; Warkentin, Theodore E

    2018-04-01

    Drug-induced immune thrombocytopenia (D-ITP) typically occurs after the patient has been receiving the implicated drug for at least 1 week, due to newly forming drug-dependent antibodies ("typical-onset" D-ITP). A "rapid-onset" form of D-ITP can occur when previous sensitization has occurred, where antibodies have thus already been formed, and a precipitous platelet count fall occurs upon reexposure. Typical-onset D-ITP has been reported after levofloxacin, but the rapid-onset form with a well-documented previous exposure has not been described. We report a 76-year-old male treated with levofloxacin for acute exacerbation of chronic obstructive pulmonary disease. After a single 750 mg oral dose of levofloxacin, his platelet count fell from 187 to 5 × 10 9 /L (nadir) over 4 days. Other causes of thrombocytopenia were ruled out. He had received a previous course of levofloxacin 6 months earlier. Discontinuation of levofloxacin and treatment with intravenous immunoglobulin and dexamethasone resulted in platelet count recovery. Levofloxacin-dependent antibodies were not detectable, consistent with the known low sensitivity of laboratory tests for drug-dependent antibodies, presumably indicating antibodies against levofloxacin metabolites, as is indirectly supported by the abrupt but relatively slow platelet count decline observed. This case illustrates a rapid-onset presentation of levofloxacin-induced D-ITP in the setting of previous drug exposure.

  20. Imperfect vaccine-induced immunity and whooping cough transmission to infants.

    PubMed

    Lavine, Jennie; Broutin, Hélène; Harvill, Eric T; Bjørnstad, Ottar N

    2010-12-10

    Whooping cough, caused by B. pertussis and B. parapertussis, has increased in incidence throughout much of the developed world since the 1980s despite high vaccine coverage, causing an increased risk of infection in infants who have substantial disease-induced mortality. Duration of immunity and epidemically significant routes of transmission across age groups remain unclear and deserve further investigation to inform vaccination strategies to better control pertussis burden. The authors analyze age- and species-specific whooping cough tests and vaccine histories in Massachusetts from 1990 to 2008. On average, the disease-free duration is 10.5 years. However, it has been decreasing over time, possibly due to a rising force of infection through increased circulation. Despite the importance of teenage cases during epidemics, wavelet analyses suggest that they are not the most important source of transmission to infants. In addition, the data indicate that the B. pertussis vaccine is not protective against disease induced by B. parapertussis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2016-06-01

    The main focus of this study is evaluation of radioprotective efficacy of silymarin, a flavonolignan, against γ-radiation-induced damage to hematological, vital organs (liver and intestine), and immune system. Survival studies revealed that silymarin (administered orally for 3 days) provided maximum protection (67%) at 70 mg/kg body weight (b.wt.) against lethal 9 Gy γ-irradiation (dose reduction factor = 1.27). The study revealed significant (p < 0.05) changes in levels of catalase (12.57 ± 2.58 to 30.24 ± 4.89 units), glutathione peroxidase (6.23 ± 2.95 to 13.26 ± 1.36 µg of reduced glutathione consumed/min/mg protein), glutathione reductase (0.25 ± 5.6 to 11.65 ± 2.83 pM NADPH consumed/min/mg protein), and superoxide dismutase (11.74 ± 0.2 to 16.09 ± 3.47 SOD U/mg of protein) activity at 30th day. Silymarin pretreated irradiated group exhibited increased proliferation in erythrocyte count (1.76 ± 0.41 × 10(6) to 9.25 ± 0.24 × 10(6) ), hemoglobin (2.15 ± 0.48g/dL to 14.77 ± 0.25g/dL), hematocrit (4.55 ± 0.24% to 37.22 ± 0.21%), and total leucocyte count (1.4 ± 0.15 × 10(6) to 8.31 ± 0.47 × 10(6) ) as compared with radiation control group on 15th day. An increase in CD4:CD8 ratio was witnessed (0.2-1%) at 30th day time interval using flow cytometry. Silymarin also countered radiation-induced decrease (p < 0.05) in regulatory T-cells (Tregs ) (11.23% in radiation group at 7th day versus 0.1% in pretreated silymarin irradiated group at 15th day). The results of this study indicate that flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity and might prove useful in management of nuclear and radiological emergencies. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 641-654, 2016. © 2014 Wiley Periodicals, Inc.

  2. Immunity in the spleen and blood of mice immunized with irradiated Toxoplasma gondii tachyzoites.

    PubMed

    Zorgi, Nahiara Esteves; Galisteo, Andrés Jimenez; Sato, Maria Notomi; do Nascimento, Nanci; de Andrade, Heitor Franco

    2016-08-01

    Toxoplasma gondii infection induces a strong and long-lasting immune response that is able to prevent most reinfections but allows tissue cysts. Irradiated, sterilized T. gondii tachyzoites are an interesting vaccine, and they induce immunity that is similar to infection, but without cysts. In this study, we evaluated the cellular immune response in the blood and spleen of mice immunized with this preparation by mouth (v.o.) or intraperitoneally (i.p.) and analyzed the protection after challenge with viable parasites. BALB/c mice were immunized with three i.p. or v.o. doses of irradiated T. gondii tachyzoites. Oral challenge with ten cysts of the ME-49 or VEG strain at 90 days after the last dose resulted in high levels of protection with low parasite burden in the immunized animals. There were higher levels of specific IgG, IgA and IgM antibodies in the serum, and the i.p. immunized mice had higher levels of the high-affinity IgG and IgM antibodies than the orally immunized mice, which had more high-affinity IgA antibodies. B cells (CD19(+)), plasma cells (CD138(+)) and the CD4(+) and CD8(+) T cell populations were increased in both the blood and spleen. Cells from the spleen of the i.p. immunized mice also showed antigen-induced production of interleukin-10 (IL-10), interferon gamma (IFN-γ) and interleukin 4 (IL-4). The CD4(+) T cells, B cells and likely CD8(+) T cells from the spleens of the i.p. immunized mice proliferated with a specific antigen. The protection was correlated with the spleen and blood CD8(+) T cell, high-affinity IgG and IgM and antigen-induced IL-10 and IL-4 production. Immunization with irradiated T. gondii tachyzoites induces an immune response that is mediated by B cells and CD4(+) and CD8(+) T cells, with increased humoral and cellular immune responses that are necessary for host protection after infection. The vaccine is similar to natural infection, but free of tissue cysts; this immunity restrains infection at challenge and can be an

  3. 21 CFR 880.6850 - Sterilization wrap.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sterilization wrap. 880.6850 Section 880.6850 Food... § 880.6850 Sterilization wrap. (a) Identification. A sterilization wrap (pack, sterilization wrapper... sterilized by a health care provider. It is intended to allow sterilization of the enclosed medical device...

  4. Overexpression of Interleukin-7 Extends the Humoral Immune Response Induced by Rabies Vaccination.

    PubMed

    Li, Yingying; Zhou, Ming; Luo, Zhaochen; Zhang, Yachun; Cui, Min; Chen, Huanchun; Fu, Zhen F; Zhao, Ling

    2017-04-01

    Rabies continues to present a public health threat in most countries of the world. The most efficient way to prevent and control rabies is to implement vaccination programs for domestic animals. However, traditional inactivated vaccines used in animals are costly and have relatively low efficiency, which impedes their extensive use in developing countries. There is, therefore, an urgent need to develop single-dose and long-lasting rabies vaccines. However, little information is available regarding the mechanisms underlying immunological memory, which can broaden humoral responses following rabies vaccination. In this study, a recombinant rabies virus (RABV) that expressed murine interleukin-7 (IL-7), referred to here as rLBNSE-IL-7, was constructed, and its effectiveness was evaluated in a mouse model. rLBNSE-IL-7 induced higher rates of T follicular helper (Tfh) cells and germinal center (GC) B cells from draining lymph nodes (LNs) than the parent virus rLBNSE. Interestingly, rLBNSE-IL-7 improved the percentages of long-lived memory B cells (Bmem) in the draining LNs and plasma cells (PCs) in the bone marrow (BM) for up to 360 days postimmunization (dpi). As a result of the presence of the long-lived PCs, it also generated prolonged virus-neutralizing antibodies (VNAs), resulting in better protection against a lethal challenge than that seen with rLBNSE. Moreover, consistent with the increased numbers of Bmem and PCs after a boost with rLBNSE, rLBNSE-IL-7-immunized mice promptly produced a more potent secondary anti-RABV neutralizing antibody response than rLBNSE-immunized mice. Overall, our data suggest that overexpressing IL-7 improved the induction of long-lasting primary and secondary antibody responses post-RABV immunization. IMPORTANCE Extending humoral immune responses using adjuvants is an important method to develop long-lasting and efficient vaccines against rabies. However, little information is currently available regarding prolonged immunological

  5. Sex-specific consequences of an induced immune response on reproduction in a moth.

    PubMed

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  6. Outpatient laparoscopic sterilization.

    PubMed

    Hamid Arshat; Yuliawiratman

    1981-03-01

    This is a report on a pilot study conducted in Malaysia of outpatient sterilization utilizing laparoscopic technique under local anesthesia and sedation. The preliminary report based on 305 patients is presented with emphasis on the advantages and possible weaknesses of such procedure. Sterilization is performed in the Family Planning Specialist Center, Maternity Hospital. Patients are motivated towards sterilization during the immediate postpartum period in the Maternity Hospital and are counseled regarding the actual procedure. The mean age of the 305 patients was 32.08 years; the mean gravidity was 4.92; and the mean parity was 4.57. The majority of the patients came from the lower social strata with low educational attainment and low income. 253 cases of sterilizations were performed by laparoscopic procedures and 43 cases by minilaparotomy. In 9 cases difficulty was encountered with laparoscopy and subsequently the minilaparotomy was used. The majority of cases seemed to tolerate the sedation and local anesthesia fairly well and without much complaint of pain. Only a very small number of patients complained of pain particularly at the time when the Fallope or Lay rings were applied to the fallopian tubes. The overall complication rate was 14 (4.9%) and of these mild wound sepsis accounted for 6 (1.96%). Most of the wound sepsis was very mild and healed very quickly on daily dressing. No cases of pelvic sepsis were reported. There were 3 cases of uterine perforation by the uterine elevator. There were 2 cases where the fallopian tubes were traumatized and some degree of bleeding occurred. The bleeding was easily controlled by applying another Fallope ring. 2 patients had vomiting during the laparoscopic procedure. There were 7 cases of failed sterilization. 6 of the cases were performed by a trainee registrar in obstetrics and gynecology. The last was performed by a specialist gynecologist. Most of the failures were due to wrong application of rings. The cost

  7. Glutaminase-containing microvesicles from HIV-1-infected macrophages and immune-activated microglia induce neurotoxicity.

    PubMed

    Wu, Beiqing; Huang, Yunlong; Braun, Alexander L; Tong, Zenghan; Zhao, Runze; Li, Yuju; Liu, Fang; Zheng, Jialin C

    2015-11-06

    HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate. MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs. These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.

  8. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed Central

    Mao, Xiao Wen; Bellinger, Denise L.; Jonscher, Karen R.; Stodieck, Louis S.; Ferguson, Virginia L.; Bateman, Ted A.; Mohney, Robert P.; Gridley, Daila S.

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function. PMID:28542224

  9. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    PubMed

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Role of Dendritic Cells in the Immune Response Induced by Mouse Mammary Tumor Virus Superantigen

    PubMed Central

    Baribaud, Frédéric; Maillard, Ivan; Vacheron, Sonia; Brocker, Thomas; Diggelmann, Heidi; Acha-Orbea, Hans

    1999-01-01

    After mouse mammary tumor virus (MMTV) infection, B lymphocytes present a superantigen (Sag) and receive help from the unlimited number of CD4+ T cells expressing Sag-specific T-cell receptor Vβ elements. The infected B cells divide and differentiate, similarly to what occurs in classical B-cell responses. The amplification of Sag-reactive T cells can be considered a primary immune response. Since B cells are usually not efficient in the activation of naive T cells, we addressed the question of whether professional antigen-presenting cells such as dendritic cells (DCs) are responsible for T-cell priming. We show here, using MMTV(SIM), a viral isolate which requires major histocompatibility complex class II I-E expression to induce a strong Sag response in vivo, that transgenic mice expressing I-E exclusively on DCs (I-EαDC tg) reveal a strong Sag response. This Sag response was dependent on the presence of B cells, as indicated by the absence of stimulation in I-EαDC tg mice lacking B cells (I-EαDC tg μMT−/−), even if these B cells lack I-E expression. Furthermore, the involvement of either residual transgene expression by B cells or transfer of I-E from DCs to B cells was excluded by the use of mixed bone marrow chimeras. Our results indicate that after priming by DCs in the context of I-E, the MMTV(SIM) Sag can be recognized on the surface of B cells in the context of I-A. The most likely physiological relevance of the lowering of the antigen threshold required for T-cell/B-cell collaboration after DC priming is to allow B cells with a low affinity for antigen to receive T-cell help in a primary immune response. PMID:10482591

  11. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    PubMed Central

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  12. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    PubMed

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  13. The potential of immunostimulatory CpG DNA for inducing immunity against genital herpes: opportunities and challenges.

    PubMed

    Harandi, Ali M

    2004-07-01

    Herpes simplex virus type 2 (HSV-2) invades human genital tract mucosa and following local replications can be rapidly transmitted via peripheral nerve axons to the sacral ganglia where it can establish latency. Reactivation of the latent viral reservoir results in recurrent ulcers in the genital region. Innate immunity, the first line of defence during both primary and recurrent genital herpes infections, is crucial during the period of acute infection to limit early virus replication and to facilitate the development of an appropriate specific acquired immunity. Recent developments in immunology reveal that the mammalian innate immune systems use Toll-like receptor (TLR) to specifically sense evolutionary conserved molecules such as bacterial DNA in pathogens. Recently, local-vaginal delivery of CpG containing oligodeoxynucleotide (ODN), a synthetic mimic of bacterial DNA, holds substantial promise as a strong inducer of innate immunity against genital herpes infections in the animal models of the disease. These preclinical observations provide a scientific ground work for introduction of this novel intervention strategy to clinic. This review aims to highlight recent developments and future challenges in use of immunostimulatory CpG ODN for inducing immunity against genital herpes infection and disease.

  14. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida).

    PubMed

    Mastore, Maristella; Arizza, Vincenzo; Manachini, Barbara; Brivio, Maurizio F

    2015-12-01

    Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  15. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.

    PubMed

    Sui, Yongjun; Zhu, Qing; Gagnon, Susan; Dzutsev, Amiran; Terabe, Masaki; Vaccari, Monica; Venzon, David; Klinman, Dennis; Strober, Warren; Kelsall, Brian; Franchini, Genoveffa; Belyakov, Igor M; Berzofsky, Jay A

    2010-05-25

    Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.

  16. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Yan; Zhang, Aili; He, Kun; Liu, Ping; Xu, Lisa X.

    2016-06-01

    Achieving control of metastatic disease is a long-sought goal in cancer therapy. Treatments that encourage a patient’s own immune system are bringing new hopes in reaching such a goal. In clinic, local hyperthermia and cryoablation have been explored to induce anti-tumor immune responses against tumors. We have also developed a novel therapeutic modality of cryo-thermal treatment by alternating liquid nitrogen (LN2) cooling and radio frequency (RF) heating, and better therapeutic effect was achieved in treating metastatic cancer in animal model. In this study, we investigated the mechanism of systemic immune response elicited by cryo-thermal therapy. In the 4T1 murine mammary carcinoma model, we found that local cryo-thermal therapy resulted in a considerable reduction of distant lung metastases, and improved long-term survival. Moreover, results of tumor re-challenge experiments indicated generation of a strong tumor-specific immune memory after the local treatment of primary tumors. Our further study indicated that cryo-thermal therapy caused an elevated extracellular release of Hsp70. Subsequently, Hsp70 induced differentiation of MDSCs into mature DCs, contributing to the relief of MDSCs-mediated immunosuppression and ultimately the activation of strong anti-tumor immune response. Our findings reveal new insight into the mechanism of robust therapeutic effects of cryo-thermal therapy against metastatic cancers.

  17. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    PubMed Central

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  18. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes

    PubMed Central

    LÓPEZ, B; AGUILAR, D; OROZCO, H; BURGER, M; ESPITIA, C; RITACCO, V; BARRERA, L; KREMER, K; HERNANDEZ-PANDO, R; HUYGEN, K; VAN SOOLINGEN, D

    2003-01-01

    In the last decade, an unprecedented genetic diversity has been disclosed among Mycobacterium tuberculosis strains found worldwide. However, well-conserved genotypes seem to prevail in areas with high incidence of tuberculosis. As this may be related to selective advantages, such as advanced mechanisms to circumvent [M. bovis Bacille Calmette–Guerin (BCG)-induced] host defence mechanisms, we investigated the influence of strain diversity on the course of experimental disease. Twelve M. tuberculosis strains, representing four major genotype families found worldwide today, and the laboratory strain H37Rv were each used to infect BALB/c mice by direct intratracheal injection. Compared with H37Rv, infections with Beijng strains were characterized by extensive pneumonia, early but ephemeral tumour necrosis factor-alpha (TNF-α) and inducible isoform of nitric oxide synthetase (iNOS) expression, and significantly higher earlier mortality. Conversely, Canetti strains induced limited pneumonia, sustained TNF-α and iNOS expression in lungs, and almost 100% survival. Strains of the Somali and the Haarlem genotype families displayed less homogeneous, intermediate rates of survival. Previous BCG vaccination protected less effectively against infection with Beijing strains than against the H37Rv strain. In conclusion, genetically different M. tuberculosis strains evoked markedly different immunopathological events. Bacteria with the Beijing genotype, highly prevalent in Asia and the former USSR, elicited a non-protective immune response in mice and were the most virulent. Future immunological research, particularly on candidate vaccines, should include a broad spectrum of M. tuberculosis genotypes rather than a few laboratory strains. PMID:12823275

  19. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    PubMed

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p < 0.05) following the immunization and after challenging with Leishmania major. Interleukin 4 values were decreased in all immunized groups, but only in DNA vaccine cocktail and single-gene vaccination with pc-LACK there were statistical differences with control groups (p > 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  20. Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice.

    PubMed

    Mulder, Cornelis K; Dong, Yun; Brugghe, Humphrey F; Timmermans, Hans A M; Tilstra, Wichard; Westdijk, Janny; van Riet, Elly; van Steeg, Harry; Hoogerhout, Peter; Eisel, Ulrich L M

    2016-01-01

    Soluble oligomeric (misfolded) species of amyloid-β (Aβ) are the main mediators of toxicity in Alzheimer's disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against Aβ is a promising disease modifying strategy. However, eliciting an immune response against Aβ in general may interfere with its biological function and was shown to cause unwanted side-effects. Therefore, we have developed a novel experimental vaccine based on conformational neo-epitopes that are exposed in the misfolded oligomeric Aβ, inducing a specific antibody response. Here we investigate the protective effects of the experimental vaccine against oligomeric Aβ1-42-induced neuronal fiber loss in vivo. C57BL/6 mice were immunized or mock-immunized. Antibody responses were measured by enzyme-linked immunosorbent assay. Next, mice received a stereotactic injection of oligomeric Aβ1-42 into the nucleus basalis of Meynert (NBM) on one side of the brain (lesion side), and scrambled Aβ1-42 peptide in the contralateral NBM (control side). The densities of choline acetyltransferase-stained cholinergic fibers origination from the NBM were measured in the parietal neocortex postmortem. The percentage of fiber loss in the lesion side was determined relative to the control side of the brain. Immunized responders (79%) showed 23% less cholinergic fiber loss (p = 0.01) relative to mock-immunized mice. Moreover, fiber loss in immunized responders correlated negatively with the measured antibody responses (R2 = 0.29, p = 0.02). These results may provide a lead towards a (prophylactic) vaccine to prevent or at least attenuate (early onset) AD symptoms.

  1. Uropathogenic E. coli Induce Different Immune Response in Testicular and Peritoneal Macrophages: Implications for Testicular Immune Privilege

    PubMed Central

    Bhushan, Sudhanshu; Hossain, Hamid; Lu, Yongning; Geisler, Andreas; Tchatalbachev, Svetlin; Mikulski, Zbigniew; Schuler, Gerhard; Klug, Jörg; Pilatz, Adrian; Wagenlehner, Florian; Chakraborty, Trinad; Meinhardt, Andreas

    2011-01-01

    Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E. coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT) signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM (IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated) and TM (IL-1β, IL-6 upregulated). In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α). Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells. PMID:22164293

  2. Sterile neutrinos and RK

    NASA Astrophysics Data System (ADS)

    Vicente, A.

    2013-07-01

    We consider an enhancement in the violation of lepton flavour universality in light meson decays arising from modified Wlν couplings in the standard model minimally extended by sterile neutrinos. Due to the presence of additional mixings between the active neutrinos and the new sterile states, the deviation from unitarity of the leptonic mixing matrix intervening in charged currents might lead to a tree-level enhancement of RP = Γ(P → ev)/Γ(P → μν), with P = K, π. These enhancements are illustrated in the case of the inverse seesaw, showing that one can saturate the current experimental bounds on ΔrK (and Δrπ), while in agreement with the different experimental and observational constraints.

  3. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations.

    PubMed

    Ramirez, Karol; Niraula, Anzela; Sheridan, John F

    2016-01-01

    Psychosocial stress is associated with altered immunity, anxiety, and depression. Repeated social defeat (RSD), a model of social stress, triggers egress of inflammatory myeloid progenitor cells (MPCs; CD11b(+)/Ly6C(hi)) that traffic to the brain, promoting anxiety-like behavior. In parallel, RSD enhances neuroinflammatory signaling and long-lasting social avoidant behavior. Lorazepam and clonazepam are routinely prescribed anxiolytics that act by enhancing GABAergic activity in the brain. Besides binding to the central benzodiazepine binding site (CBBS) in the central nervous system (CNS), lorazepam binds to the translocator protein (TSPO) with high affinity causing immunomodulation. Clonazepam targets the CBBS and has low affinity for the TSPO. Here the aims were to determine if lorazepam and clonazepam would: (1) prevent stress-induced peripheral and central inflammatory responses, and (2) block anxiety and social avoidance behavior in mice subjected to RSD. C57/BL6 mice were divided into experimental groups, and treated with either lorazepam (0.10mg/kg), clonazepam (0.25mg/kg) or vehicle (0.9% NaCl). Behavioral data and tissues were collected the morning after the last cycle of RSD. Lorazepam and clonazepam were effective in attenuating mRNA expression of CRH in the hypothalamus and corticosterone in plasma in mice subjected to RSD. Both drugs blocked stress-induced levels of IL-6 in plasma. Lorazepam and clonazepam had different effects on stress-induced enhancement of myelopoiesis and inhibited trafficking of monocytes and granulocytes in circulation. Furthermore, lorazepam, but not clonazepam, inhibited splenomegaly and the production of pro-inflammatory cytokines in the spleen following RSD. Additionally, lorazepam and clonazepam, blocked stress-induced accumulation of macrophages (CD11b(+)/CD45(high)) in the CNS. In a similar manner, both lorazepam and clonazepam prevented neuroinflammatory signaling and reversed anxiety-like and depressive-like behavior

  4. GABAergic modulation with classical benzodiazepines prevent stress-induced neuro-immune dysregulation and behavioral alterations

    PubMed Central

    Ramirez, Karol; Niraula, Anzela; Sheridan, John F.

    2015-01-01

    Objective Psychosocial stress is associated with altered immunity, anxiety, and depression. Repeated social defeat (RSD), a model of social stress, triggers egress of inflammatory myeloid progenitor cells (MPCs; CD11b+ /Ly6Chi) that traffic to the brain, promoting anxiety-like behavior. In parallel, RSD enhances neuroinflammatory signaling and long-lasting social avoidant behavior. Lorazepam and clonazepam are routinely prescribed anxiolytics that act by enhancing GABAergic activity in the brain. Besides binding to the central benzodiazepine binding site (CBBS) in the central nervous system (CNS), lorazepam binds to the translocator protein (TSPO) with high affinity causing immunomodulation. Clonazepam targets the CBBS and has low affinity for the TSPO. Here the aims were to determine if lorazepam and clonazepam would: 1) prevent stress-induced peripheral and central inflammatory responses, and 2) block anxiety and social avoidance behavior in mice subjected to RSD. Methods C57/BL6 mice were divided into experimental groups, and treated with either lorazepam (0.10mg/kg), clonazepam (0.25 mg/kg) or vehicle (0.9%NaCl). Behavioral data and tissues were collected the morning after the last cycle of RSD. Results Lorazepam and clonazepam were effective in attenuating mRNA expression of CRH in the hypothalamus and corticosterone in plasma in mice subjected to RSD. Both drugs blocked stress-induced levels of IL-6 in plasma. Lorazepam and clonazepam had different effects on stress-induced enhancement of myelopoiesis and inhibited trafficking of monocytes and granulocytes in circulation. Furthermore, lorazepam, but not clonazepam, inhibited splenomegaly and the production of pro-inflammatory cytokines in the spleen following RSD. Additionally, lorazepam and clonazepam, blocked stress-induced accumulation of macrophages (CD11b+/CD45high) in the CNS. In a similar manner, both lorazepam and clonazepam prevented neuroinflammatory signaling and reversed anxiety-like and

  5. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    PubMed

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies.

    PubMed

    Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H

    2013-08-01

    Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune

  7. Lactose in Human Breast Milk an Inducer of Innate Immunity with Implications for a Role in Intestinal Homeostasis

    PubMed Central

    Printz, Gordana; Yoshio, Hiroyuki; Alvelius, Gunvor; Lagercrantz, Hugo; Strömberg, Roger; Jörnvall, Hans; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2013-01-01

    Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant. PMID:23326523

  8. Sterilization by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Moreira, Adir José; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Zambon, Luis da Silva; da Silva, Mônica Valero; Verdonck, Patrick Bernard

    2004-07-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  9. Immune Protection against Trypanosoma cruzi Induced by TcVac4 in a Canine Model

    PubMed Central

    Aparicio-Burgos, José E.; Zepeda-Escobar, José A.; de Oca-Jimenez, Roberto Montes; Estrada-Franco, José G.; Barbabosa-Pliego, Alberto; Ochoa-García, Laucel; Alejandre-Aguilar, Ricardo; Rivas, Nancy; Peñuelas-Rivas, Giovanna; Val-Arreola, Margarita; Gupta, Shivali; Salazar-García, Felix; Garg, Nisha J.; Vázquez-Chagoyán, Juan C.

    2015-01-01

    Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines. PMID:25853654

  10. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model.

    PubMed

    Aparicio-Burgos, José E; Zepeda-Escobar, José A; de Oca-Jimenez, Roberto Montes; Estrada-Franco, José G; Barbabosa-Pliego, Alberto; Ochoa-García, Laucel; Alejandre-Aguilar, Ricardo; Rivas, Nancy; Peñuelas-Rivas, Giovanna; Val-Arreola, Margarita; Gupta, Shivali; Salazar-García, Felix; Garg, Nisha J; Vázquez-Chagoyán, Juan C

    2015-04-01

    Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines.

  11. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    PubMed

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Immunizations with chimeric hepatitis B virus-like particles to induce potential anti-hepatitis C virus neutralizing antibodies.

    PubMed

    Vietheer, Patricia T K; Boo, Irene; Drummer, Heidi E; Netter, Hans-Jürgen

    2007-01-01

    Virus-like particles (VLPs) are highly immunogenic and proven to induce protective immunity. The small surface antigen (HBsAg-S) of hepatitis B virus (HBV) self-assembles into VLPs and its use as a vaccine results in protective antiviral immunity against HBV infections. Chimeric HBsAg-S proteins carrying foreign epitopes allow particle formation and have the ability to induce anti-foreign humoral and cellular immune responses. The insertion of the hypervariable region 1 (HVR1) sequence derived from the envelope protein 2 (E2) of hepatitis C virus (HCV) into the major antigenic site of HBsAg-S ('a'-determinant) resulted in the formation of highly immunogenic VLPs that retained the antigenicity of the inserted HVR1 sequence. BALB/c mice were immunized with chimeric VLPs, which resulted in antisera with anti-HCV activity. The antisera were able to immunoprecipitate native HCV envelope complexes (E1E2) containing homologous or heterologous HVR1 sequences. HCV E1E2 pseudotyped HIV-1 particles (HCVpp) were used to measure entry into HuH-7 target cells in the presence or absence of antisera that were raised against chimeric VLPs. Anti-HVR1 VLP sera interfered with entry of entry-competent HCVpps containing either homologous or heterologous HVR1 sequences. Also, immunizations with chimeric VLPs induced antisurface antigen (HBsAg) antibodies, indicating that HBV-specific antigenicity and immunogenicity of the 'a'-determinant region is retained. A multivalent vaccine against different pathogens based on the HBsAg delivery platform should be possible. We hypothesize that custom design of VLPs with an appropriate set of HCV-neutralizing epitopes will induce antibodies that would serve to decrease the viral load at the initial infecting inoculum.

  13. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    PubMed

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Mucosal Immunization with High-Mobility Group Box 1 in Chitosan Enhances DNA Vaccine-Induced Protection against Coxsackievirus B3-Induced Myocarditis

    PubMed Central

    Wang, Maowei; Yue, Yan; Dong, Chunsheng; Li, Xiaoyun; Xu, Wei

    2013-01-01

    Coxsackievirus B3 (CVB3), a small single-stranded RNA virus, belongs to the Picornaviridae family. Its infection is the most common cause of myocarditis, with no vaccine available. Gastrointestinal mucosa is the major entry port for CVB3; therefore, the induction of local immunity in mucosal tissues may help control initial viral infections and alleviate subsequent myocardial injury. Here we evaluated the ability of high-mobility group box 1 (HMGB1) encapsulated in chitosan particles to enhance the mucosal immune responses induced by the CVB3-specific mucosal DNA vaccine chitosan-pVP1. Mice were intranasally coimmunized with 4 doses of chitosan-pHMGB1 and chitosan-pVP1 plasmids, at 2-week intervals, and were challenged with CVB3 4 weeks after the last immunization. Compared with chitosan-pVP1 immunization alone, coimmunization with chitosan-pHMGB1 significantly (P < 0.05) enhanced CVB3-specific fecal secretory IgA levels and promoted mucosal T cell immune responses. In accordance, reduced severity of myocarditis was observed in coimmunized mice, as evidenced by significantly (P < 0.05) reduced viral loads, decreased myocardial injury, and increased survival rates. Flow cytometric analysis indicated that HMGB1 enhanced dendritic cell (DC) recruitment to mesenteric lymph nodes and promoted DC maturation, which might partly account for its mucosal adjuvant effect. This strategy may represent a promising approach to candidate vaccines against CVB3-induced myocarditis. PMID:24027262

  15. Chronic orthostatic and antiorthostatic restraint induce neuroendocrine, immune and neurophysiological disorders in rats

    NASA Astrophysics Data System (ADS)

    Assenmacher, I.; Mekaouche, M.; Maurel, D.; Barbanel, G.; Givalois, L.; Boissin, J.; Malaval, F.; Ixart, G.

    The tail-cast suspension rat model has been developed in ground laboratories interested in space physiology for extensive study of mechanisms causing the pathophysiological syndrome associated with space flights. We used individually-caged male rats to explore the effects of acute and chronic (7d) orthostatic restraint (OR) and head-down anti-orthostatic restraint (AOR) on a series of physiological variables. The acute restraint study showed that (1) the installation of the OR device induced an acute reaction for 2 days, with a substantial rise in ACTH (x2) and CORT (x6), and that (2) the head-down tilt from OR to AOR induced (i) within 10 min and lasting 60 min a 2-fold rise in the intra-cerebro-ventricular pressure (Picv) monitored with an icv telemetric recording system, which receded to normal between 60 and 120 min; and (ii) within 30 min a short-lived 4-fold rise in plasma ACTH and CORT levels. Chronic OR induced (1) the suppression of the diurnal ACTH/CORT rhythm, with increased mean levels, especially for ACTH, (2) a degraded circadian locomotor activity rhythm manifested by a significant reduction in the spectral power of the 24h periodicity and a concomitant emergence of shorter (ultradian) periodicities, (3) an associated, but less pronounced alteration of the diurnal rhythm in body temperature; and (4) a marked increase in baseline plasma levels of IL-1β and an increased reactivity in cytokine release following an E. coli endotoxin (LPS) challenge. AOR induced (1) a similar obliteration of the circadian ACTH/CORT rhythm, (2) the loss of close correlation between ACTH and CORT, (3) a generalized increase in baseline plasma IL-1β levels and (4) more extensive degradation of the arcadian periodicity for both locomotor activity and, to a lesser extent, body temperature, replaced by dominant spectral powers for ultradian periodicities (3 to 10h). In conclusion, both experimental paradigms — but AOR more than OR — caused a blockade of the arcadian

  16. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    PubMed

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  17. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    PubMed

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  18. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month