Science.gov

Sample records for induction heating stress

  1. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  2. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  3. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures.

  4. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  5. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  6. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  7. Molecular responses of Escherichia coli caused by heat stress and recombinant protein production during temperature induction.

    PubMed

    Valdez-Cruz, Norma A; Ramírez, Octavio T; Trujillo-Roldán, Mauricio A

    2011-01-01

    In a recent review, we discussed the extensively used temperature-inducible expression system, based on the pL and/or pR phage lambda promoters that are finely regulated by the thermo-labile cI857 repressor. In this system, an increase in temperature induces the heterologous protein production and activates the heat shock response, as well as the stringent and SOS responses. The same responses are activated just by the overproduction of recombinant protein. All such responses result in a metabolic burden to the cells, a decrease in the specific growth rate, and alterations in the central carbon metabolism. Altogether, these effects can alter the quantity and quality of the produced foreign protein. Here, we compare and discuss the transcription of selected genes, and the concomitant synthesis of heat-shock proteins (hsp) soon after thermal induction, in relation to the responses that occur in other expression systems that also trigger the heat-shock response.

  8. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  9. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna.

    PubMed

    Pauwels, K; Stoks, R; de Meester, L

    2005-07-01

    Although predation is a strong selection pressure, little is known about the molecular mechanisms to cope with predator stress. This is crucial to understanding of the mechanisms and constraints involved in the evolution of antipredator traits. We quantified the expression of heat-shock protein 60 (Hsp60), a potential marker for predator stress, in four clones of the water flea Daphnia magna, when exposed to fish kairomones. Expression of Hsp60 induction increased after 6 h and returned to base levels after 24 h of predator stress. This suggests that it is a costly transient mechanism to temporarily cope with novel predator stress, before other defences are induced. We found genetic variation in the fixed levels and in the fish-induced levels of Hsp60, which seemed to be linked to each clone's history of fish predation. Our data suggest that Hsp60 can be considered part of a multiple-trait antipredator defence strategy of Daphnia clones to cope with predator stress. PMID:16033558

  10. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  11. Quantification of the decay and re-induction of heat acclimation in dry-heat following 12 and 26 days without exposure to heat stress.

    PubMed

    Weller, Andrew S; Linnane, Denise M; Jonkman, Anna G; Daanen, Hein A M

    2007-12-01

    Compared with the induction of heat acclimation (HA), studies investigating the decay and re-induction of HA (RA) are relatively sparse and have yielded conflicting results. Therefore, 16 semi-nude men were acclimated to dry-heat by undertaking an exercise protocol in a hot chamber (dry-bulb temperature 46.1 +/- 0.1 degrees C; relative humidity 17.9 +/- 0.1%) on 10 consecutive days (HA1-10) in winter UK. Thereafter, the subjects were divided into two groups and re-exposed to the work-in-heat tests after 12 and 26 days until RA was attained (RA(12), n = 8; RA(26), n = 8). The exercise protocol consisted of 60 min of treadmill walking (1.53 m s(-1)) at an incline individually set to induce a rectal temperature (T (re)) of approximately 38.5 degrees C during HA1 (equating to 45 +/- 4% peak oxygen uptake), followed by 10 min of rest and 40 min of further treadmill exercise, the intensity of which was increased across HA to maintain T(re )at approximately 38.5 degrees C. T(re), mean skin temperature, heart rate and rate of total water loss measured at 60 min did not change after HA7, and HA was taken as the mean of the responses during HA8-10. For both groups, there was no decay in T(re) and for all measured variables RA was attained after 2 and 4 days in RA(12) and RA(26), respectively. It is concluded that once adaptation to heat has been attained, the time that individuals may spend in cooler conditions before returning to a hot environment could be as long as one month, without the need for extensive re-adaptation to heat. PMID:17891541

  12. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming.

    PubMed

    Bergmann, Nina; Winters, Gidon; Rauch, Gisep; Eizaguirre, Christophe; Gu, Jenny; Nelle, Peter; Fricke, Birgit; Reusch, Thorsten B H

    2010-07-01

    Summer heat waves have already resulted in mortality of coastal communities, including ecologically important seagrass meadows. Gene expression studies from controlled experiments can provide important insight as to how species/genotypes react to extreme events that will increase under global warming. In a common stress garden, we exposed three populations of eelgrass, Zostera marina, to extreme sea surface temperatures, simulating the 2003-European heat wave. Populations came from locations widely differing in their thermal regime, two northern European locations [Ebeltoft (Kattegat), Doverodde (Limfjord, Baltic Sea)], and one southern population from Gabicce Mare (Adriatic Sea), allowing to test for population specificity in the response to a realistic heat stress event. Eelgrass survival and growth as well as the expression of 12 stress associated candidate genes were assessed during and after the heat wave. Contrary to expectations, all populations suffered equally from 3 weeks of heat stress in terms of shoot loss. In contrast, populations markedly differed in multivariate measures of gene expression. While the gene expression profiles converged to pre-stress values directly after the heat wave, stress correlated genes were upregulated again 4 weeks later, in line with the observed delay in shoot loss. Target genes had to be selected based on functional knowledge in terrestrial plants, nevertheless, 10/12 genes were induced relative to the control treatment at least once during the heat wave in the fully marine plant Z. marina. This study underlines the importance of realistic stress and recovery scenarios in studying the impact of predicted climate change.

  13. Induction heating coupler and annealer

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor); Johnston, David F. (Inventor); Swaim, Robert J. (Inventor); Dinkins, James R. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece.

  14. Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle.

    PubMed

    Shibaguchi, Tsubasa; Sugiura, Takao; Fujitsu, Takanori; Nomura, Takumi; Yoshihara, Toshinori; Naito, Hisashi; Yoshioka, Toshitada; Ogura, Akihiko; Ohira, Yoshinobu

    2016-07-01

    The effects of icing or heat stress on the regeneration of injured soleus muscle were investigated in male Wistar rats. Bupivacaine was injected into soleus muscles bilaterally to induce muscle injury. Icing (0 °C, 20 min) was carried out immediately after the injury. Heat stress (42 °C, 30 min) was applied every other day during 2-14 days after the bupivacaine injection. Injury-related increase in collagen deposition was promoted by icing. However, the level of collagen deposition in heat-stressed animals was maintained at control levels throughout the experimental period and was significantly lower than that in icing-treated animals at 15 and 28 days after bupivacaine injection. Furthermore, the recovery of muscle mass, protein content, and muscle fiber size of injured soleus toward control levels was partially facilitated by heat stress. These results suggest that, compared with icing, heat stress may be a beneficial treatment for successful muscle regeneration at least by reducing fibrosis. PMID:26759024

  15. In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress.

    PubMed

    Asthir, Bavita; Bhatia, Surekha

    2014-01-01

    The mechanism imparting thermotolerance by gibberellic acid (GA3) and abscisic acid (ABA) is still unresolved using either spraying technique or in vitro conditions. Alternative way of studying these effects under near in vivo conditions is through the use of liquid culturing technique. Effects of GA3 and ABA (100 μM) on sucrose metabolism (invertase and sucrose synthase) and aminotransferases (GOT and GPT) in relation to starch and protein accumulation were studied in detached panicles of three wheat (Triticum aestivum L.) cultivars PBW 343, C 306 (heat tolerant) and WH 542 (heat susceptible) cultured in a liquid medium. Ears were subjected to heat shock treatment (45 °C for 2 h) and then maintained at 25 °C for 5 days. Heat shock treatment resulted in a significant decline in starch content but caused a marked build -up of total free sugars and protein content in grains of all cultivars. However, activities of acid and neutral invertases increased only in tolerant cultivars but reduced in susceptible cultivar. Following treatment with GA3 contents of starch and free sugars increased in grains maintained at 25 °C but free sugar content decreased in stressed grains compared to control. ABA application showed inhibitory effect on starch accumulation under normal temperature but was promotory under stress conditions. Concomitantly, soluble protein content also increased in conjunction with an increase in the activities of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT). Apparently, the wheat grain responds to heat shock mediated disruption of carbon metabolism by a compensatory effect on nitrogen metabolism. GA3 stimulated grain sink activity both under stress and non stress condition while ABA was promotory only under stress condition. PMID:24426056

  16. Stress and Distortion Evolution During Induction Case Hardening of Tube

    NASA Astrophysics Data System (ADS)

    Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Ferguson, Lynn; Li, Zhichao

    2013-07-01

    Simulation of stresses during heat treatment relates usually to furnace heating. Induction heating provides a very different evolution of temperature in the part and therefore different stresses. This may be positive for service properties or negative, reducing component strength or even causing cracks. A method of coupled simulation between electromagnetic, thermal, structural, stress, and deformation phenomena during induction tube hardening is described. Commercial software package ELTA is used to calculate the power density distribution in the load resulting from the induction heating process. The program DANTE is used to predict temperature distribution, phase transformations, stress state, and deformation during heating and quenching. Analyses of stress and deformation evolution were made on a simple case of induction hardening of external (1st case) and internal (2nd case) surfaces of a thick-walled tubular body.

  17. Channel catfish hemoglobin genes: identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress.

    PubMed

    Feng, Jianbin; Liu, Shikai; Wang, Xiuli; Wang, Ruijia; Zhang, Jiaren; Jiang, Yanliang; Li, Chao; Kaltenboeck, Ludmilla; Li, Jiale; Liu, Zhanjiang

    2014-03-01

    Hemoglobins transport oxygen from gill to inner organs in fish, and this process is affected by temperature, one of the major environmental factors for fish. The hemoglobin gene clusters have been well studied in humans and several model fish species, but remain largely unknown in catfish. Here, eight α- and six β-hemoglobin genes were identified and characterized in channel catfish. Genomic synteny analysis showed that these hemoglobin genes were separated into two unlinked clusters, the MN cluster containing six α- and six β-hemoglobin genes, and the LA cluster consisting of two α-hemoglobin genes. Channel catfish hemoglobin genes were ubiquitously expressed in all the 10 tested tissues from healthy fish, but exhibited higher expression level in spleen, head kidney, and trunk kidney. In response to heat stress, hemoglobin genes, especially MN Hbα4, MN Hbα5, MN Hbα6, MN Hbβ4, MN Hbβ5, MN Hbβ6, LA Hbα1, and LA Hbα2, presumably the embryonic hemoglobin genes, were drastically up-regulated in the gill and head kidney of heat-tolerant fishes, but not in these tissues of the heat-intolerant fish, suggesting the importance of the embryonic hemoglobin genes in coping with the low oxygen conditions under heat stress.

  18. Electron heating in inductive discharges

    NASA Astrophysics Data System (ADS)

    Hagelaar, Gerjan

    2009-10-01

    Radio-frequency inductive discharges are used to sustain plasma in negative ion sources for neutral beam injection [W. Kraus et al 2002 Rev. Sci. Instrum. 73, 1096] currently under development for the ITER fusion experiment. To accompany the experimental development, a comprehensive numerical model is being developed, describing the main physical principles of these sources self-consistently: inductive coupling and electron heating in the source drivers, magnetised plasma transport in the source body, negative ion extraction across a magnetic filter, low-density neutral flow and depletion by the plasma, chemistry of negative ion creation in the volume and at the surface, etc. In this presentation we discuss the principles and modelling of the inductive electron heating in these sources. In particular, we propose a simple method to describe the anomalous skin effect through a fluid equation for electron momentum including a viscosity term with an effective viscosity coefficient. We also discuss the effects of the static and radio-frequency magnetic fields on the inductive coupling and the consequences for the plasma properties.

  19. Inductance of rf-wave-heated plasmas.

    PubMed

    Farshi, E; Todo, Y

    2003-03-14

    The inductance of rf-wave-heated plasmas is derived. This inductance represents the inductance of fast electrons located in a plateau during their acceleration due to electric field or deceleration due to collisions and electric field. This inductance has been calculated for small electric fields from the two-dimensional Fokker-Planck equation as the flux crossing the surface of critical energy mv(2)(ph)/2 in the velocity space. The new expression may be important for radio-frequency current drive ramp-up, current drive efficiency, current profile control, and so on in tokamaks. This inductance may be incorporated into transport codes that study plasma heating by rf waves.

  20. Protecting Yourself from Heat Stress

    MedlinePlus

    ... Contact NIOSH NIOSH Fast Facts: Protecting Yourself from Heat Stress Language: English Español (Spanish) Kreyol Haitien (Haitian ... as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body ...

  1. Stress and heat flow

    SciTech Connect

    Lachenbrunch, A.H.; McGarr, A.

    1990-01-01

    As the Pacific plate slides northward past the North American plate along the San Andreas fault, the frictional stress that resists plate motion there is overcome to cause earthquakes. However, the frictional heating predicted for the process has never been detected. Thus, in spite of its importance to an understanding of both plate motion and earthquakes, the size of this frictional stress is still uncertain, even in order of magnitude.

  2. Features of heat stress control

    SciTech Connect

    Bernard, T.E. )

    1989-08-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat.

  3. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  4. The expression and induction of heat shock proteins in molluscs.

    PubMed

    Liu, Dongwu; Chen, Zhiwei

    2013-05-01

    Living cells respond to stress stimuli by triggering rapid changes in the protein profiles, and the induction of heat shock proteins (HSPs) plays an important part in this process. HSPs, mainly acting as molecular chaperones, are constitutively expressed in cells and involved in protein folding, assembly, degradation, and intracellular localization. The overexpression of HSPs represents a ubiquitous molecular mechanism to cope with stress. Compared to vertebrates, molluscs have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis. HSPs may play an important role in the survival strategy of molluscs during the biphasic life stages. Since aquatic environments are highly dynamic, molluscs may be subject to a variety of sources of stress and HSPs might play a more important role in the adaptation of these animals. Moreover, the mechanisms of stress tolerance in molluscs can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. The cDNA of HSPs has been cloned from some molluscs, and HSPs can be induced by heat stress, hypoxia, heavy metal contamination, and aestivation, etc. The expression of HSPs was detected in the neuroendocrine system, mollusc development, and reproductive process. Furthermore, the induction of HSPs is related with the phosphorylation of stress-activated p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs) in molluscs.

  5. ER stress: Autophagy induction, inhibition and selection

    PubMed Central

    Rashid, Harun-Or; Yadav, Raj Kumar; Kim, Hyung-Ryong; Chae, Han-Jung

    2015-01-01

    An accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to stress conditions. To mitigate such circumstances, stressed cells activate a homeostatic intracellular signaling network cumulatively called the unfolded protein response (UPR), which orchestrates the recuperation of ER function. Macroautophagy (hereafter autophagy), an intracellular lysosome-mediated bulk degradation pathway for recycling and eliminating wornout proteins, protein aggregates, and damaged organelles, has also emerged as an essential protective mechanism during ER stress. These 2 systems are dynamically interconnected, and recent investigations have revealed that ER stress can either stimulate or inhibit autophagy. However, the stress-associated molecular cues that control the changeover switch between induction and inhibition of autophagy are largely obscure. This review summarizes the crosstalk between ER stress and autophagy and their signaling networks mainly in mammalian-based systems. Additionally, we highlight current knowledge on selective autophagy and its connection to ER stress. PMID:26389781

  6. Induction Heating of Planetesimals in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, W.

    2011-01-01

    Induction heating is a process originally proposed by Sonett et al. to explain thermal processing of asteroids, some of which were heated to temperatures >1000 K in the solar nebula. In the scenario of Sonett et al., the asteroids were heated during the Sun's T Tauri phase by a dense, fully-ionized solar wind. In their view an asteroid exposed to such a wind would "see” a motional electric field E=-v/c x B, where v is the wind velocity and B is the magnetic field in the wind's rest frame. If correct, the resulting electric polarization of the asteroidal material would produce electrical currents and heating via Ohmic dissipation. We revisit the induction heating mechanism to assess its possible relevance to planetesimals in weakly-ionized protoplanetary disks, where large magnetic fields of 0.1-1 G are predicted on a variety of grounds. Due to the high densities of these disks, we adopt a fluid approach for the plasma. We point out that E=-v/c x B is strictly speaking the electric field far from a planetesimal, where the plasma streams freely. At the planetesimal surface, viscous forces in a shear layer bring the plasma to rest and the motional electric field vanishes. We show that there is nevertheless a nonvanishing electric field produced indirectly via magnetic field perturbations in the shear layer. We calculate these perturbations by solving the equations of nonideal MHD, including Ohmic dissipation, the Hall effect, and ambipolar diffusion. We use these results to find the electric field in- and outside a planetesimal and give quantitative estimates of the rates of heating by Ohmic dissipation, viscous dissipation, and energy dissipation associated with ambipolar diffusion.

  7. Verification and validation for induction heating

    SciTech Connect

    Lam, Kin; Tippetts, Trevor B; Allen, David W

    2008-01-01

    Truchas is a software package being developed at LANL within the Telluride project for predicting the complex physical processes in metal alloy casting. The software was designed to be massively parallel, multi-material, multi-physics, and to run on 3D, fully unstructured meshes. This work describes a Verification and Validation assessment of Truchas for simulating the induction heating phase of a casting process. We used existing data from a simple experiment involving the induction heating of a graphite cylinder, as graphite is a common material used for mold assemblies. Because we do not have complete knowledge of all the conditions and properties in this experiment (as is the case in many other experiments), we performed a parameter sensitivity study, modeled the uncertainties of the most sensitive parameters, and quantified how these uncertainties propagate to the Truchas output response. A verification analysis produced estimates of the numerical error of the Truchas solution to our computational model. The outputs from Truchas runs with randomly sampled parameter values were used for the validation study.

  8. Induction heat treatment as a means of increasing production

    SciTech Connect

    Golovin, G.F.; Shamov, A.N.

    1988-01-01

    The economic effectiveness of induction heat treatment was determined by a number of factors, including: saving energy and resources by substituting surface hardening for bulk or casehardening, improving labor productivity by process automation and including induction heat treatment equipment in the production line. Induction heating was found to be quick, does not require protection from oxidation, makes it possible to mechanize and automate the production process, and improves stabilization properties after annealing.

  9. The Chlamydomonas heat stress response.

    PubMed

    Schroda, Michael; Hemme, Dorothea; Mühlhaus, Timo

    2015-05-01

    Heat waves occurring at increased frequency as a consequence of global warming jeopardize crop yield safety. One way to encounter this problem is to genetically engineer crop plants toward increased thermotolerance. To identify entry points for genetic engineering, a thorough understanding of how plant cells perceive heat stress and respond to it is required. Using the unicellular green alga Chlamydomonas reinhardtii as a model system to study the fundamental mechanisms of the plant heat stress response has several advantages. Most prominent among them is the suitability of Chlamydomonas for studying stress responses system-wide and in a time-resolved manner under controlled conditions. Here we review current knowledge on how heat is sensed and signaled to trigger temporally and functionally grouped sub-responses termed response elements to prevent damage and to maintain cellular homeostasis in plant cells.

  10. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  11. Thermoelastoplastic and residual stress analysis during induction hardening of steel

    SciTech Connect

    Jahanian, S.

    1995-12-01

    A theoretical model was developed to predict the thermoelastoplastic and residual stresses developed in a round steel bar during induction hardening. For numerical analysis, a quasi-static, uncoupled thermoelastoplastic solution based on the hyperbolic sine law of Tien and Richmond was formulated. The properties of the material were assumed to be temperature dependent. The phase transformation was considered in the numerical calculation, and the results were compared with the case where phase transformation is avoided. The cylinder was heated rapidly; once the temperature of the outer surface exceeded the transformation temperature, the cylinder was rapidly cooled. Accordingly, in the numerical calculation, only the area at the vicinity of the outer surface was assumed to transform to martensite. The results showed that the compressive residual stresses at the vicinity of the outer surface were considerably higher than the tensile stresses at the center.

  12. A dynamic model for the simulation of induction heating devices

    SciTech Connect

    Nerg, J.; Tolsa, K.; Silventoinen, P.; Partanen, J.; Pyrhoenen, J.

    1999-09-01

    Induction heating is an efficient, easily controlled method for the heating of electrically conductive objects in processes such as metal hardening or annealing. Here, a simulation procedure designed for the dynamic analysis of induction heating systems is described. The procedure starts from the FEM based evaluation of the load impedance. This, as a function of the heating time is transferred to the dynamic model describing the whole induction heating device, i.e., the power supply, its control system, the load and the impedance matching circuit. With the developed model the start-up of the heating process as well as quick transients, e.g., fault situations can be examined. The applicability of the model was tested in the design of the induction heating installation developed for the annealing of aluminium plates. Temperature error less than 5% has been achieved.

  13. Thermal magnetic characteristic for high frequency induction heating analysis

    NASA Astrophysics Data System (ADS)

    Arita, Hideaki; Todaka, Takashi; Enokizono, Masato

    2002-05-01

    This paper presents results of finite element analysis of induction heating problems considering temperature dependence of material characteristics. In this analysis, we have used the three dimensional finite element method in order to correctly express the induction heating coil's shapes and to make clear its effects on temperature distributions. The heat conducting problem and the eddy current problem are coupled and solved by using step-by-step calculations.

  14. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  15. A Calculation Method of Induction Heating Processes in Magnetic Metals

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    Various phenomena in induction heating of magnetic metals are investigated by using a multi-physics simulation method. A new theoretical treatment of kHz frequency magnetic permeability including the hysteresis characteristics is proposed to calculate the induction heating (IH) processes in magnetic metals. The complex phenomena of skin effects, heat emission, resistivity and magnetization in the heated metals are investigated, where the devised methods are applicable to various magnetic investigations. An estimation method is proposed as the retarded-trace method for analyzing the time dependent B-H characteristics.

  16. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  17. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    SciTech Connect

    Menzel, Raymond L.; Roberge, Wayne G. E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  18. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.

    PubMed

    Crombie, Timothy A; Tang, Lanlan; Choe, Keith P; Julian, David

    2016-07-15

    It has long been recognized that simultaneous exposure to heat stress and oxidative stress shows a synergistic interaction that reduces organismal fitness, but relatively little is known about the mechanisms underlying this interaction. We investigated the role of molecular stress responses in driving this synergistic interaction using the nematode Caenorhabditis elegans To induce oxidative stress, we used the pro-oxidant compounds acrylamide, paraquat and juglone. As expected, we found that heat stress and oxidative stress interact synergistically to reduce survival. Compared with exposure to each stressor alone, during simultaneous sublethal exposure to heat stress and oxidative stress the normal induction of key oxidative-stress response (OxSR) genes was generally inhibited, whereas the induction of key heat-shock response (HSR) genes was not. Genetically activating the SKN-1-dependent OxSR increased a marker for protein aggregation and decreased whole-worm survival during heat stress alone, with the latter being independent of HSF-1. In contrast, compared with wild-type worms, inactivating the HSR by HSF-1 knockdown, which would be expected to decrease basal heat shock protein expression, increased survival during oxidative stress alone. Taken together, these data suggest that, in C. elegans, the HSR and OxSR cannot be simultaneously activated to the same extent that each can be activated during a single stressor exposure. We conclude that the observed synergistic reduction in survival during combined exposure to heat stress and oxidative stress is due, at least in part, to inhibition of the OxSR during activation of the HSR.

  19. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  20. Synthesis of Multiwall Carbon Nanotubes by Inductive Heating CCVD

    NASA Technical Reports Server (NTRS)

    Biris, A. R.; Biris, A. S.; Lupu, D.; Trigwell, S.; Rahman, Z. U.; Aldea, N.; Marginean, P.

    2005-01-01

    The CCVD syntheses of MWCNTs from acetylene on Fe:Co:CaCO 3 and Fe:Co:CaO were performed using two different methods of heating: outer furnace and inductive heating. The comparative analysis of the MWCNTs obtained by the two methods show that the tubes grown in inductive heating have smaller diameters (5-25 nm), with fewer walls and aspect ratio of the order of hundreds. The ratio of outer to inner diameter (od/id) is ranging between 2 and 2.5. Inductively assisted CCVD is a very attractive method because of the major advantages that it presents, like low energetic consumption, thinner, well crystallized and more uniform tubes.

  1. Numerical modeling in induction heating for axisymmetric geometries

    SciTech Connect

    Chaboudez, C.; Glardon, R.; Mari, D.; Clain, S.; Rappaz, J.; Swierkosz, M.

    1997-01-01

    Induction heating is widely used in today`s industry, in operations such as metal hardening, preheating for forging operations, or brazing. It is a complex process, involving both electromagnetic and thermal phenomena. Since the design and the investigation of an induction heating system usually relies upon a series of tedious, expensive and long experiments, numerical simulation can be a valuable help in this field. This paper deals with numerical simulation of induction heating for axisymmetric geometries. A mathematical model is presented, together with a numerical scheme based on the Finite Element Method. A numerical simulation code was implemented using the model presented in this paper. A comparison between results given by the code and experimental measurements is provided.

  2. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  3. Wireless induction heating in a microfluidic device for cell lysis.

    PubMed

    Baek, Seung-ki; Min, Junghong; Park, Jung-Hwan

    2010-04-01

    A wireless induction heating system in a microfluidic device was devised for cell lysis to extract DNA and RNA from Escherichia coli. The thermal responses of nickel, iron and copper heating units were studied by applying an alternating magnetic field as a function of geometry of unit, strength of magnetic field, and kind of metal. Heating units were prepared by cutting metal film using a fiber laser, and the units were integrated into a microchannel system using a soft lithographic process. Variation and distribution of temperature on the surface of the heating units was observed using a thermographic camera and temperature labels. The amount of protein released from E. coli by thermal lysis was determined by protein concentration measurement. Hemoglobin released from red blood cells was observed using colorimetric intensity measurement. Extracted DNA was quantified by real-time polymerase chain reaction, and the profile was compared with that of a positive control of ultrasonically disrupted E. coli. The stability of RNA extracted by induction heating was quantified by the measurement of 23S/16S rRNA ratio and comparison with that by normal RNA extraction kit as a gold standard. A solid-shaped nickel structure was selected as the induction heating element in the microfluidic device because of the relatively small influence of geometries and faster thermal response.The amount of protein extracted from E. coli and hemoglobin released from red blood cells by induction heating of the nickel unit in the microfluidic device was proportional to the strength of the applied magnetic field. The lysis of E. coli by induction heating was as effective as lysis of DNA by the ultrasonication method because the threshold cycle values of the sample were compatible with those of the positive control as measured by ultrasonication. Thermal lysis of E. coli by induction heating represents a reasonable alternative to a commercial RNA extraction method as shown by the comparative

  4. Magnetic induction heating of FeCr nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Olivera, J.; Soto-Armañanzas, J.

    2012-06-01

    In this work the thermal effects of magnetic induction heating in (FeCr)73.5Si13.5Cu1B9Nb3 amorphous and nanocrystalline wires were analyzed. A single piece of wire was immersed in a glass capillary filled with water and subjected to an ac magnetic field (frequency, 320 kHz). The initial temperature rise enabled the determination of the effective Specific Absorption Rate (SAR). Maximum SAR values are achieved for those samples displaying high magnetic susceptibility, where the eddy current losses dominate the induction heating behavior. Moreover, the amorphous sample with Curie temperature around room temperature displays characteristic features of self-regulated hyperthermia.

  5. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  6. Viscous effects on motion and heating of electrons in inductively coupled plasma reactors

    SciTech Connect

    Chang, C.H.; Bose, D.

    1999-10-01

    A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor.

  7. Graphene synthesis via magnetic inductive heating of copper substrates.

    PubMed

    Piner, Richard; Li, Huifeng; Kong, Xianghua; Tao, Li; Kholmanov, Iskandar N; Ji, Hengxing; Lee, Wi Hyoung; Suk, Ji Won; Ye, Jongpil; Hao, Yufeng; Chen, Shanshan; Magnuson, Carl W; Ismach, Ariel F; Akinwande, Deji; Ruoff, Rodney S

    2013-09-24

    Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed. PMID:23930903

  8. Graphene synthesis via magnetic inductive heating of copper substrates.

    PubMed

    Piner, Richard; Li, Huifeng; Kong, Xianghua; Tao, Li; Kholmanov, Iskandar N; Ji, Hengxing; Lee, Wi Hyoung; Suk, Ji Won; Ye, Jongpil; Hao, Yufeng; Chen, Shanshan; Magnuson, Carl W; Ismach, Ariel F; Akinwande, Deji; Ruoff, Rodney S

    2013-09-24

    Scaling graphene growth using an oven to heat large substrates becomes less energy efficient as system size is increased. We report a route to graphene synthesis in which radio frequency (RF) magnetic fields inductively heat metal foils, yielding graphene of quality comparable to or higher than that of current chemical vapor deposition techniques. RF induction heating allows for rapid temperature ramp up/down, with great potential for large scale and rapid manufacturing of graphene with much better energy efficiency. Back-gated field effect transistors on a SiO2/Si substrate showed carrier mobility up to ∼14 000 cm(2) V(-1) s(-1) measured under ambient conditions. Many advantages of RF heating are outlined, and some fundamental aspects of this approach are discussed.

  9. Optimum Construction of Heating Coil for Domestic Induction Cooker

    NASA Astrophysics Data System (ADS)

    Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai

    2010-10-01

    The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.

  10. A validated model for induction heating of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Saunders, Robert N.; Boyd, James G.; Hartl, Darren J.; Brown, Jonathan K.; Calkins, Frederick T.; Lagoudas, Dimitris C.

    2016-04-01

    Shape memory alloy (SMA) actuators deliver high forces while being compact and reliable, making them ideal for consideration in aerospace applications. One disadvantage of these thermally driven actuators is their slow cyclic time response compared to conventional actuators. Induction heating has recently been proposed to quickly heat SMA components. However efforts to date have been purely empirical. The present work approachs this problem in a computational manner by developing a finite element model of induction heating in which the time-harmonic electromagnetic equations are solved for the Joule heat power field, the energy equation is solved for the temperature field, and the linear momentum equations are solved to find the stress, displacement, and internal state variable fields. The combined model was implemented in Abaqus using a Python script approach and applied to SMA torque tube and beam actuators. The model has also been used to examine magnetic flux concentrators to improve the induction systems performance. Induction heating experiments were performed using the SMA torque tube, and the model agreed well with the experiments.

  11. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  12. Induction of Oxidative Stress in Kidney

    PubMed Central

    Ozbek, Emin

    2012-01-01

    Oxidative stress has a critical role in the pathophysiology of several kidney diseases, and many complications of these diseases are mediated by oxidative stress, oxidative stress-related mediators, and inflammation. Several systemic diseases such as hypertension, diabetes mellitus, and hypercholesterolemia; infection; antibiotics, chemotherapeutics, and radiocontrast agents; and environmental toxins, occupational chemicals, radiation, smoking, as well as alcohol consumption induce oxidative stress in kidney. We searched the literature using PubMed, MEDLINE, and Google scholar with “oxidative stress, reactive oxygen species, oxygen free radicals, kidney, renal injury, nephropathy, nephrotoxicity, and induction”. The literature search included only articles written in English language. Letters or case reports were excluded. Scientific relevance, for clinical studies target populations, and study design, for basic science studies full coverage of main topics, are eligibility criteria for articles used in this paper. PMID:22577546

  13. Human cardiovascular responses to passive heat stress.

    PubMed

    Crandall, Craig G; Wilson, Thad E

    2015-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur.

  14. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  15. Induction heating apparatus and methods of operation thereof

    SciTech Connect

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  16. Induction Hardening vs Conventional Hardening of a Heat Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Leitner, Harald; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2014-11-01

    This study focuses on the comparison of mechanical and microstructural properties of induction and conventionally heat-treated steels in the as-quenched state. The investigated steel is a heat treatable 42CrMo4 steel. In order to characterize the mechanical properties, tensile tests and Vickers hardness tests are performed. The yield strength and hardness of the induction hardened condition turn out to be slightly lower compared to the conventionally hardened one. Light optical and scanning electron microscopy show no differences in the martensitic structure of the induction and conventionally hardened condition. However, electron back scatter diffraction investigations reveal a smaller block size within the conventionally hardened specimen. Carbon mappings by electron probe micro analysis show a homogenous carbon concentration in the conventionally hardened and a non-uniform distribution in the induction-hardened case. The segregation of the carbon exhibits line-type features in the induction hardened condition, lowering the total amount of carbon in the matrix. Therefore, the carbon content in the matrix of the conventionally hardened condition is slightly higher, which causes a smaller block size. The smaller block size is believed to be the reason for the higher hardness and yield strength.

  17. Satellite III non-coding RNAs show distinct and stress-specific patterns of induction

    SciTech Connect

    Sengupta, Sonali; Parihar, Rashmi; Ganesh, Subramaniam

    2009-04-24

    The heat shock response in human cells is associated with the transcription of satellite III repeats (SatIII) located in the 9q12 locus. Upon induction, the SatIII transcripts remain associated with the locus and recruit several transcription and splicing factors to form the nuclear stress bodies (nSBs). The nSBs are thought to modulate epigenetic changes during the heat shock response. We demonstrate here that the nSBs are induced by a variety of stressors and show stress-specific patterns of induction. While the transcription factor HSF1 is required for the induction of SatIII locus by the stressors tested, its specific role in the transcriptional process appears to be stress dependent. Our results suggest the existence of multiple transcriptional loci for the SatIII transcripts and that their activation might depend upon the type of stressors. Thus, induction of SatIII transcripts appears to be a generic response to a variety of stress conditions.

  18. Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens.

    PubMed

    Yahav, S; Shamay, A; Horev, G; Bar-Ilan, D; Genina, O; Friedman-Einat, M

    1997-10-01

    The role of heat shock proteins (HSP) in the protection of cells from heat stress is well established. However, very little is known about their contribution to thermotolerance in the complexity of a whole homeotherm animal. Here we report on the analysis of protein synthesis in lung and heart muscle tissues of broiler chickens following exposure to high ambient temperature. Half of the flock was treated by an early age exposure to heat (conditioning), to improve thermotolerance. In contrast to what has been expected, lower levels of HSP induction was observed in the treated chickens. We suggest that 1) the induction of HSP in the heart and lung tissues of the whole animal correlates with the body temperature and 2) HSP response does not represent a part of the long-term mechanism that is evoked by the early age conditioning. PMID:9316120

  19. Inductions Buffer Nurses' Job Stress, Health, and Organizational Commitment.

    PubMed

    Kamau, Caroline; Medisauskaite, Asta; Lopes, Barbara

    2015-01-01

    Nurses suffer disproportionate levels of stress and are at risk of sickness-absence and turnover intentions, but there is a lack of research clarifying preventions. This study investigated the impact of inductions (job preparation courses) about mental health for nurses' job stress, general health, and organizational commitment. Data from 6,656 nurses were analyzed using structural equation modeling (SEM), showing that mental health inductions increase nurses' job satisfaction, which reduces their occupational stress and improves their health. SEM showed that these occupational health benefits increase the nurses' commitment to the organization. Job satisfaction (feeling valued, rewarded) also had a direct effect on nurses' intentions to continue working for the organization. Mental health inductions are therefore beneficial beyond job performance: they increase occupational health in the nursing profession.

  20. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  1. TORO II simulations of induction heating in ferromagnetic materials

    SciTech Connect

    Adkins, D.R.; Gartling, D.K.; Kelley, J.B.; Kahle, P.M.

    1997-09-01

    TORO II is a finite element computer program that is used in the simulation of electric and magnetic fields. This code, which was developed at Sandia National Laboratories, has been coupled with a finite element thermal code, COYOTE II, to predict temperature profiles in inductively heated parts. The development of an effective technique to account for the nonlinear behavior of the magnetic permeability in ferromagnetic parts is one of the more difficult aspects of solving induction heating problems. In the TORO II code, nonlinear, spatially varying magnetic permeability is approximated by an effective permeability on an element-by-element basis that effectively provides the same energy deposition that is produced when the true permeability is used. This approximation has been found to give an accurate estimate of the volumetric heating distribution in the part, and predicted temperature distributions have been experimentally verified using a medium carbon steel and a 10kW industrial induction heating unit. Work on the model was funded through a Cooperative Research and Development Agreement (CRADA) between the Department of Energy and General Motors` Delphi Saginaw Steering Systems.

  2. Heat Stress in Older Adults

    MedlinePlus

    ... well as young people to sudden changes in temperature. They are more likely to have a chronic ... that impair the body's ability to regulate its temperature or that inhibit perspiration. Heat Stroke Heat stroke ...

  3. Induction heating and operator exposure to electromagnetic fields.

    PubMed

    Stuchly, M A; Lecuyer, D W

    1985-11-01

    Alternating magnetic fields are used in industry for induction heating of metals and semiconductors. Relatively high power, typically of a few to a few hundred of kW is used, and a frequency of operation ranges from 60 Hz to a few tens of MHz. A survey of the magnetic field strengths to which the operators are exposed has shown that these exposures are, in many instances, high compared with recommended exposure limits.

  4. Mechanisms of orthostatic intolerance during heat stress.

    PubMed

    Schlader, Zachary J; Wilson, Thad E; Crandall, Craig G

    2016-04-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. PMID:26723547

  5. Drivers and barriers to heat stress resilience.

    PubMed

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. PMID:27432732

  6. Extraordinary induction heating effect near the first order Curie transition

    NASA Astrophysics Data System (ADS)

    Barati, M. R.; Selomulya, C.; Sandeman, K. G.; Suzuki, K.

    2014-10-01

    While materials with a 1st order Curie transition (TC) are known for the magnetic cooling effect due to the reversibility of their large entropy change, they also have a great potential as a candidate material for induction heating where a large loss power is required under a limited alternating magnetic field. We have carried out a proof-of-concept study on the induction heating effect in 1st order ferromagnetic materials where the temperature is self-regulated at TC. LaFe11.57Si1.43H1.75, a well-known magnetocaloric material, was employed in this study because TC of this compound (319 K) resides in the ideal temperature range for hyperthermia treatment of cancerous cells. It is found that the hysteresis loss of LaFe11.57Si1.43H1.75 increases dramatically near TC due to the magnetic phase coexistence associated with the 1st order magnetic transition. The spontaneous magnetization (Ms) shows a very abrupt decrease from 110 Am2kg-1 at 316 K to zero at 319 K. This large Ms immediately below TC along with the enhanced irreversibility of the hysteresis curve result in a specific absorption rate as large as 0.5 kWg-1 under a field of 8.8 kAm-1 at 279 kHz. This value is nearly an order of magnitude larger than that observed under the same condition for conventional iron oxide-based materials. Moreover, the large heating effect is self-regulated at the 1st order TC (319 K). This proof-of-concept study shows that the extraordinary heating effect near the 1st order Curie point opens up a novel alloy design strategy for large, self-regulated induction heating.

  7. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  8. Induction of the cellular stress response in Chironomus (Diptera)

    SciTech Connect

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.; Day, K.E.; Robinson, R.D.; Solomon, K.R.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shock and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.

  9. Heat-treatment by using induction heating on the Minsk Tractor Plant

    SciTech Connect

    Kosmovich, L.S.; Baranov, V.S.; Koshelenkov, K.N.; Fel'dman, L.Ya.

    1988-01-01

    The Minsk Tractor Plant uses a technique for hardening preceded by induction heating for more than 50% of its heat-treated parts made from 45, 40Kh, 38KhGs, and 33KhS steels. The majority of parts undergo heat-treatment on the machining lines. This method made it possible to develop and put into service an automatic device for strainless hardening of strips in the forced conditions. Improving and introducing this new technological process, equipment, and fittings for heat treatment by induction heating was found to increase the life of the tractor parts, reduce labor costs for their manufacture as well as increase savings in electricity and rolled materials.

  10. Protective clothing and heat stress.

    PubMed

    Holmér, I

    1995-01-01

    The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the icl-index for the fabric layers. The icl-index is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation.

  11. Protective clothing and heat stress.

    PubMed

    Holmér, I

    1995-01-01

    The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the icl-index for the fabric layers. The icl-index is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation. PMID:7875118

  12. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  13. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  14. Computer simulation of residual stresses/distortion and structural change in the course of scanning induction hardening

    SciTech Connect

    Ikuta, F.; Arimoto, K.; Inoue, T.

    1996-12-31

    Simulated results of structural change, residual stresses and distortion are presented for carbon steel cylinder in the scanning-type induction hardening process by a CAE system {open_quotes}HEARTS (HEAt tReaTment Simulation system){close_quotes}. The system HEARTS has been developed to simulate heat treatment processes based on {open_quotes}metallo-thermo-mechanics{close_quotes} available for describing the coupling effect between metallurgical change due to phase transformation, temperature and inelastic stress/strain. A steel cylinder is treated as an axisymmetric model with scanning internal heat generation and convection boundary. The results under different scanning velocity and magnitude of the heat source from induction coil are compared with experimental data of distortions, volume fraction of metallic phases as well as residual stresses.

  15. Physical Aspects of Magnetic Induction Heating in Hyperthermia.

    NASA Astrophysics Data System (ADS)

    Wang, Mann-Tchao

    The technical aspects of the heating of a deep -seated lung tumor by electromagnetic induction have been explored by means of a theoretical model. It was found that frequencies up to 30 MHz can be used without significant losses in magnetic field depth penetration. Steady-state temperature solutions to the bio-heat equation are presented for the heating of a thorax model consisting of a spherical tumor embedded in lung tissue which is layered by muscle and fatty tissue. Analytical solutions are presented for each of the tissue regions along with their numerical evaluations over a range of physical characteristics, including surface cooling effects. A strong dependence of tumor temperature on size and blood perfusion rate is shown to exist and can be used to optimize treatment parameters. Tendencies of the chest muscles and overlaying fatty tissue to overheat, particularly in the case of an obese patient, are discussed along with the alleviating influence of surface cooling. Healthy lung tissue, on the other hand, is shown to be safe from any significant damage in such a heating situation. Transient times required for tumors to achieve thermal equilibrium are computed and shown to depend strongly on tumor size and, to a lesser extent, on blood perfusion rate. The overall results obtained from the model are compared with available clinical data and are found to be in line with those observations. The design and construction of an apparatus which can produce the required induction fields is described. The device consists of a single-turn induction coil with a resonant capacitor and two coupling capacitors. It can be tuned for any patient to represent a 50 ohm matched load at 13.56 MHz. The design is carefully balanced for minimum interference with the thermocouple thermometer, making it possible to make measurements while the radio frequency power is turned on.

  16. Effect of Quenching Rate on Distortion and Residual Stresses During Induction Hardening of a Full-Float Truck Axle Shaft

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Ferguson, B. Lynn; Nemkov, Valentin; Goldstein, Robert; Jackowski, John; Fett, Greg

    2014-12-01

    Computer simulation is used to predict the residual stresses and distortion of a full-float truck axle shaft that has been induction scan hardened. Flux2D® is used to model the electromagnetic behavior and the power distributions inside the axle shaft in terms of time. The power distributions are imported and mapped into DANTE® model for thermal, phase transformation, and stress analysis. The truck axle shaft has three main geometrical regions: the flange/filet, the shaft, and the spline. Both induction heating and spray quenching processes have significant effect on the quenching results: distortion and residual stress distributions. In this study, the effects of spray quenching severity on residual stresses and distortion are investigated using modeling. The spray quenching rate can be adjusted by spray nozzle design, ratio of polymer solution, and quenchant flow rate. Different quenching rates are modeled by assigning different heat transfer coefficients as thermal boundary conditions during spray quenching. In this paper, three heat transfer coefficients, 5, 12, and 25 kW/(m2 °C), are applied while keeping all other conditions constant. With the understanding of effects of heating and quenching on residual stresses and distortion of induction hardened parts, the induction hardening process can be optimized for improved part performance.

  17. Heat shock protein induction and induced thermal tolerance are independent in adult salamanders.

    PubMed

    Easton, D P; Rutledge, P S; Spotila, J R

    1987-02-01

    Ectothermic vertebrates become thermally tolerant (heat hardened) after exposure to heat shock. Eukaryotic cells show a similar response. Cellular thermal tolerance is correlated with the induction of heat shock proteins (hsps). We have investigated the relationship between heat hardening in salamanders and the induction of hsps in the tissues of these organisms. Although the synthesis of hsps can be induced in these animals by sublethal heat shocks, conditions required for hsp induction and heat hardening often do not coincide. We conclude that induced thermal tolerance in adult salamanders is independent of hsp induction in their tissues. PMID:3559509

  18. Inductively heated plasma waste treatment for energy recovery.

    PubMed

    Herdrich, G; Schmalzriedt, S; Laufer, R; Dropmann, M; Gabrielli, R

    2014-08-01

    An assessment of a decentralized inductively heated plasma waste treatment system for energy recovery has been done. The modular miniaturized high enthalpy plasma source IPG6 is a reference for the system and has been qualified for inert but also chemically aggressive gas compositions. An identification and review of applications were undertaken. Niches of high environmental and societal importance are considered: hospital waste (threshold countries), shipboard waste and marine litter. The wastes are reviewed deriving relevant parameter for a system analysis aiming for the derivation of energy production and efficiencies. The system analysis shows advantageous constellation due to the wastes' energy leading to self-feeding systems.

  19. Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article

    SciTech Connect

    Jankowski, Todd A; Johnson, Debra P; Jurney, James D; Freer, Jerry E; Dougherty, Lisa M; Stout, Stephen A

    2009-01-01

    The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.

  20. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho/sup 0/ strain) were used to assess the role of O/sub 2/, mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho/sup 0/ yeast grown and heat shocked in either the presence or absence of O/sub 2/ are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O/sub 2/, mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes.

  1. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  2. Collisionless electron heating in periodic arrays of inductively coupled plasmas

    SciTech Connect

    Czarnetzki, U.; Tarnev, Kh.

    2014-12-15

    A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.

  3. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    NASA Astrophysics Data System (ADS)

    Atherton, L. J.; Martin, R. W.

    1988-09-01

    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.

  4. SIGNAL MEDIATORS AT INDUCTION OF HEAT RESISTANCE OF WHEAT PLANTLETS BY SHORT-TERM HEATING.

    PubMed

    Karpets, Yu V; Kolupaev, Yu E; Yastreb, T O

    2015-01-01

    The effects of functional interplay of calcium ions, reactive oxygen species (ROS) and nitric oxide (NO) in the cells of wheat plantlets roots (Triticum aestivum L.) at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 degrees C during 1 minute) have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium), lanthanum chloride (blocker of calcium channels of various types) and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C). The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate) and NO-synthase (N(G)-nitro-L-arginine methyl ester--L-NAME), and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea). These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets' heat resistance, invoked by hardening heating. The conclusion on calcium's role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made. PMID:27025064

  5. Stress response and virulence of heat-stressed Campylobacter jejuni.

    PubMed

    Klančnik, Anja; Vučković, Darinka; Jamnik, Polona; Abram, Maja; Možina, Sonja Smole

    2014-01-01

    Thermotolerant Campylobacter spp. frequently cause bacterial gastroenteritis in humans commonly infected through the consumption of undercooked poultry meat. We examined Campylobacter jejuni heat-stress responses in vitro after exposure to 48°C and 55°C. The in vivo modulation of its pathogenicity was also investigated using BALB/c mice intravenously infected with stressed C. jejuni. Regardless of the bacterial growth phase, the culturability and viability of C. jejuni in vitro was reduced after exposure to 55°C. This correlated with the altered protein profile and decreased virulence properties observed in vivo. Heat stress at 48°C elicited the transition to more resistant bacterial forms, independent of morphological changes or the appearance of shorter spiral and coccoid cells. This treatment did not cause marked changes in bacterial virulence properties in vivo. These results indicated that the characteristics and pathogenicity of C. jejuni in response to heat stress are temperature dependent. Further studies on the responses of C. jejuni to stresses used during food processing, as well as the modulation of its virulence, are important for a better understanding of its contamination and infective cycle, and will, thus, contribute to improved safety in the food production chain.

  6. Defect characterisation based on heat diffusion using induction thermography testing.

    PubMed

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  7. Defect characterisation based on heat diffusion using induction thermography testing

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  8. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  9. Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate Symbiodinium.

    PubMed

    Aihara, Yusuke; Takahashi, Shunichi; Minagawa, Jun

    2016-05-01

    Increases in seawater temperature impair photosynthesis (photoinhibition) in the symbiotic dinoflagellate Symbiodinium within cnidarian hosts, such as corals and sea anemones, and may destroy their symbiotic relationship. Although the degree of photoinhibition in Symbiodinium under heat stress differs among strains, the differences in their responses to increased temperatures, including cyclic electron flow (CEF), which sustains photoprotective thermal energy dissipation, have not been investigated. Here, we examined CEF in cultured Symbiodinium cells or those in an endosymbiotic relationship within a cnidarian host. The light-dependent reduction of the primary electron donor photosystem I, i.e. P700(+), was enhanced in any Symbiodinium cell by increasing temperatures, indicating CEF was induced by heat, which was accompanied by thermal energy dissipation activation. The critical temperatures for inducing CEF were different among Symbiodinium strains. The clade A strains with greater susceptibility to photoinhibition, OTcH-1 and Y106, exhibited higher CEF activities under moderate heat stress than a more phototolerant clade B strain Mf1.05b, suggesting that the observed CEF induction was not a preventive measure but a stress response in Symbiodinium. PMID:26951432

  10. Induction of mycobacterial proteins during phagocytosis and heat shock: a time interval analysis.

    PubMed

    Alavi, M R; Affronti, L F

    1994-05-01

    Mycobacterium tuberculosis survives macrophage bactericidal activities by mechanisms that may include induction of stress proteins. We sought to determine whether the synthesis of any mycobacterial proteins is increased during phagocytosis and whether any of these proteins are also up-regulated during heat shock. Protein synthesis by M. tuberculosis H37Ra during phagocytosis by the mouse macrophage cell line IC-21, and during heat shock at 45 and 48 degrees C, was monitored at various time intervals using 35S-labeled methionine/cysteine and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our data suggest the existence of certain common elements in the stress response of mycobacteria to the three stress stimuli. This apparent similarity was best characterized by the up-regulation of a 25-kDa protein after exposure to each of the stress conditions. Furthermore, this 25-kDa protein and a 37-kDa protein that was also synthesized during phagocytosis appeared to be extracellular because they were preferentially solubilized when infected macrophages were lysed with 0.5% NP-40. PMID:8182341

  11. Examination of Coil Arrangement for Higher Quality Heating of the Induction Heating Cooker

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Kawata, Kohei; Hara, Takehisa; Ujiie, Satoshi; Joto, Takaya; Masuda, Tadashi

    This paper proposes effective and practical design method of higher quality heating for induction-heating cooker. The IH cooker which has the simple pancake-shaped coil arrangement produces slightly nonuniform temperature distribution along the heating plate. The object of this research is to achieve the better heating performance by adjusting the arrangement of the coil. Easiness of coil winding is added to the evaluation basis. Eddy current analysis is made by the finite element method for calculating the heat distribution of the heating plate. After this, heat transfer analysis is made by the finite element method for calculating the temperature distribution of the heating plate. Multi-objective genetic algorithm is employed for obtaining the optimum arrangement of the coil. The two objectives that mean the uniformity of temperature distribution and the easiness of coil winding are both evaluated. By using the proposed method, we could obtain the expected coil arrangement easily. The temperature distribution approaches closer to uniform distribution by using the obtained coil arrangement which is not difficult to wind.

  12. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A.

  13. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A. PMID:25223383

  14. Setting heat stress limits for acclimatised soldiers exercising in heat.

    PubMed

    Bricknell, M C

    1997-02-01

    Heat illness is a recognised risk of military training. The Combat Fitness Test (CFT) has been identified as an activity that has been associated with heat casualties. The aim of this study was to establish whether a heat stress limit could be set for acclimatised soldiers performing the CFT by measuring the group mean rises in core temperature whilst performing the CFT at various environmental temperatures. The study showed that CFTs should not be undertaken when the start or expected end Wet Bulb Globe Test (WBGT) is greater than 25 degrees C if the group mean rise in core temperature is not to exceed 0.6 degree C (95% CI 0.2 degree C to 1 degree C).

  15. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    SciTech Connect

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  16. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  17. Tank waste remediation system heat stress control program report, 1995

    SciTech Connect

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  18. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    PubMed

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. PMID:27287526

  19. Induction of oxidative stress in paraquat formulating workers.

    PubMed

    Ranjbar, Akram; Pasalar, Parvin; Sedighi, Alireza; Abdollahi, Mohammad

    2002-05-28

    Paraquat as a bipyridyl compound is widely used as an effective herbicide worldwide. In this study, oxidative stress was investigated in blood samples of workers in a pesticide factory, formulating paraquat products for use in agriculture. Controls were age-matched workers with no history of pesticide exposure. They were measured for lipid peroxidation (LPO), antioxidant power and total thiol (SH) groups in blood. The results expressed as mean+/-SD show induction of oxidative stress in workers as revealed by increased plasma LPO (11.46+/-0.99 vs 10.11+/-0.69, P<0.001), decreased plasma antioxidant capacity (1.35+/-0.03 vs 1.54+/-0.05, P<0.001) and plasma SH groups (0.16+/-0.01 vs 0.21+/-0.01, P<0.001) in comparison to those of controls. It is concluded that paraquat-formulating factory workers have elevated LPO and decreased antioxidant power, which may put them in further consequences of oxidative stress. PMID:11992738

  20. Induction of oxidative stress in paraquat formulating workers.

    PubMed

    Ranjbar, Akram; Pasalar, Parvin; Sedighi, Alireza; Abdollahi, Mohammad

    2002-05-28

    Paraquat as a bipyridyl compound is widely used as an effective herbicide worldwide. In this study, oxidative stress was investigated in blood samples of workers in a pesticide factory, formulating paraquat products for use in agriculture. Controls were age-matched workers with no history of pesticide exposure. They were measured for lipid peroxidation (LPO), antioxidant power and total thiol (SH) groups in blood. The results expressed as mean+/-SD show induction of oxidative stress in workers as revealed by increased plasma LPO (11.46+/-0.99 vs 10.11+/-0.69, P<0.001), decreased plasma antioxidant capacity (1.35+/-0.03 vs 1.54+/-0.05, P<0.001) and plasma SH groups (0.16+/-0.01 vs 0.21+/-0.01, P<0.001) in comparison to those of controls. It is concluded that paraquat-formulating factory workers have elevated LPO and decreased antioxidant power, which may put them in further consequences of oxidative stress.

  1. Modeling an RF Cold Crucible Induction Heated Melter with Subsidence

    SciTech Connect

    Grant L. Hawkes

    2004-07-01

    A method to reduce radioactive waste volume that includes melting glass in a cold crucible radio frequency induction heated melter has been investigated numerically. The purpose of the study is to correlate the numerical investigation with an experimental apparatus that in the above mentioned melter. Unique to this model is the subsidence of the glass as it changes from a powder to molten glass and drastically changes density. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melter process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities and magnetic vector potential. Coupled to all of this is a generator that will be used for this lab sized experiment. The coupling with the 60 kW generator occurs with the impedance of the melt as it progresses and changes with time. A power controller has been implemented that controls the primary coil current depending on the power that is induced into the molten glass region.

  2. Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Azuma, Jun-ichi

    2013-06-28

    The stabilities of five neutral monosaccharides (glucose, galactose, mannose, arabinose, and xylose) were kinetically compared after the molecules were submitted to microwave heating (internal heating) and induction heating (external heating) under completely identical thermal histories by employing PID (proportional, integral, and derivative) temperature controlled ovens and homogeneous mixing. By heating in water at 200°C, the rate constants for the decomposition reactions varied from 2.13×10(-4) to 3.87×10(-4)s(-1) for microwave heating; however, the values increased by 1.1- to 1.5-fold for induction heating. Similarly, in a dilute (0.8%) sulfuric acid solution, the decomposition rate constants varied from 0.61×10(-3) to 2.00×10(-3)s(-1) for microwave heating; however, the values increased by 1.5- to 2.2-fold for induction heating. The results show that microwave heating imparts greater stability to neutral monosaccharides than does induction heating. The undesirable decomposition of monosaccharides at the surface boundary of reactor walls may have increased the probability of monosaccharide decomposition during induction heating.

  3. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  4. An inductively heated hot cavity catcher laser ion source.

    PubMed

    Reponen, M; Moore, I D; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined. PMID:26724021

  5. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  6. Design of a superconducting 20 MJ induction heating coil

    SciTech Connect

    Singh, S.K.; Ibrahim, E.A.; Gaberson, P.C.; Eckels, P.W.; Jarabak, A.J.; Rogers, J.D.; Thullen, P.; Walker, M.S.

    1980-01-01

    A pancake-wound, low-loss, superconducting, induction-heating coil has been designed to demonstrate the feasibility of superconducting polaidal system for the Tokamak reactors, to provide confidence in application of superconductivity to actual reactors, and to provide the opportunity to solve specific engineering problems to support the fusion pulsed coil program. the coil is designed to store 20 MJ at 50 kA. The superconductor material is NbTi for a 7.5 tesla maximum field. The coil is designed to survive at least 100,000 cycles of full bipolar half cycle sinusoidal operation from +7.5 tesla to -7.5 telsa fields in one second. The coil is natural convection immersion-cooled at 4.5/sup 0/K in liquid helium bath. The design demonstrates confidence in an advanced design, low-loss, cryostable conductor, along with safety, reliability and the operating life of the coil of more than 100,000 cycles.

  7. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

    PubMed Central

    Gao, Guizhen; Li, Jun; Li, Hao; Li, Feng; Xu, Kun; Yan, Guixin; Chen, Biyun; Qiao, Jiangwei; Wu, Xiaoming

    2014-01-01

    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus. PMID:24987298

  8. Investigation of Urban Heat Stress from Satellite Atmospheric Profiles

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2014-12-01

    Heat stress is the leading cause of weather-related human mortality in the United States and in many countries world-wide. Heat stress is usually enhanced by the urban heat island effect. Here, we investigate the ability to use remotely sensed atmospheric profiles to detect and monitor heat stress in the urban environment. MODIS atmospheric profiles at 5 km are used to quantify the spatial distribution of heat stress across Chicago during summer periods from 2003-2013. Four heat stress indices are investigated (Discomfort Index (DI), NWS Heat Index (HI), Humidex, and Simplified Wet Bulb Globe Temperature (SWBGT)) from the near-surface temperature and humidity observed at ground sites and retrieved from satellite atmospheric profiles. The heat stress climatology indicates that the urban effects are similar to the heat stress in top 5% hot days and 11 summers during the daytime. There is a lack of relationship between urban fraction and the heat stress on the warmest nights. The nighttime heat stress in the hottest 5% suggests a larger stress compared to the normal conditions during 11 summers. A case study of the heat wave in 2012 is assessed to identify the key pre-heat wave spatial patterns, which may potentially apply to predict future high heat-stress events. In addition, the role of the temporal persistence on the spatial dynamics of the heat wave is also examined. This research illustrates the spatial heat pattern under normal and heat wave conditions, which may help to make public heat health protection strategies. Also, the remotely sensed temperature and humidity information are invaluable to assess urban heat island impact spatially and temporally.

  9. An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal

    NASA Astrophysics Data System (ADS)

    Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio

    A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.

  10. Contrasting urban and rural heat stress responses to climate change

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  11. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks.

    PubMed

    Jahanian, R; Rasouli, E

    2015-07-01

    The present study was conducted to investigate the effects of dietary supplementation of chromium methionine (CrMet) on performance, immune responses, and stress status of broiler chicks subjected to heat-stress conditions. A total of 450 day-old Ross 308 broiler chicks were randomly distributed between 5 replicate pens (15 birds each) of 6 experimental treatments according to a 2 × 3 factorial arrangement of treatments including 2 temperature conditions (thermoneutral and heat stress) and 3 supplemental Cr levels (0, 500, and 1,000 μg/kg as CrMet). For induction of heat stress, the house temperature was set at 35 ± 2°C from 15 to 42 d of age. Results showed that the chicks subjected to heat-stress condition had lower (P < 0.01) feed intake, BW gain, and deteriorated (P < 0.05) feed conversion values compared with those kept in the thermoneutral house. Dietary supplementation with CrMet increased (P < 0.01) feed intake and improved (P < 0.01) weight gain and feed efficiency. There were significant Cr level × temperature interactions, so that inclusion of CrMet into the diets was more effective in heat-stressed chicks. Exposure to heat stress suppressed (P < 0.01) cutaneous hypersensivity response to phytohemagglutinin-P injection at 30 d of age, and dietary supplementation of 500 μg Cr/kg induced (P < 0.05) this response, with the greater impacts in heat-stressed chicks, resulting in a significant (P < 0.01) Cr × temperature interaction. Antibody responses against Newcastle and infectious bronchitis disease viruses were diminished (P < 0.01) in heat-stressed chicks. Dietary inclusion of CrMet improved (P < 0.05) antibody responses to different immunostimulants, and this effect was more pronounced in heat-stressed chicks. Exposure to heat stress caused a significant (P < 0.05) decrease in the proportion of helper (CD4+) T lymphocytes and increased cytotoxic (CD8+) T lymphocytes, resulting in a decreased (P < 0.01) CD4+ to CD8+ ratio in peripheral blood

  12. Heat stress and strain in exercise and sport.

    PubMed

    Brotherhood, John R

    2008-01-01

    Heat stress arising from the thermal environment is of concern to sports medicine and to sports administration because of the perceived risk of heat casualties, in particular heat stroke. Many sports organizations recommend environmental indices such as the WBGT for assessing risk and setting environmental limits for training and competition. But the limits are not justified by evidence. This article describes the nature of heat stress in sport and how it may be assessed objectively. Heat stress and the principal human responses to exercise heat stress are reviewed briefly. Metabolic heat production and the thermal environment provoke separate and largely independent physiological strains. Metabolic heat production drives body core temperature, and the thermal environment drives skin temperature; the combined stresses are integrated to drive sweat rate. Control of core temperature depends on adequate sweat production and the capacity of the environment to evaporate the sweat. The nature of exercise heat stress is demonstrated by rational analysis of the physical heat exchanges between the body and the environment. The principles of this analysis are applied to critical review of current practice in the assessment of heat stress in sport. The article concludes with discussion of research to establish methods for objective sport-specific assessment of heat stress.

  13. From Stress to Embryos: Some of the Problems for Induction and Maturation of Somatic Embryos.

    PubMed

    Ochatt, Sergio J; Revilla, Maria Angeles

    2016-01-01

    Although somatic embryogenesis has been successfully achieved in numerous plant species, little is known about the mechanism(s) underlying this process. Changes in the balance of growth regulators of the culture medium, osmolarity, or amino acids as well as the genotype and developmental stage of the tissue used as initial explant may have a pivotal influence on the induction of somatic embryogenic cultures. Moreover, different stress agents (ethylene, activated charcoal, cold or heat or electrical shocks), as well as abscisic acid, can also foster the induction or further development of somatic embryos. In the process, cells first return to a stem cell-like status and then either enter their new program or dye when the stress level exceeds cell tolerance. Recalcitrance to differentiation of somatic cells into embryos is frequently observed, and problems such as secondary or recurrent embryogenesis, embryo growth arrest (at the globular stage or during the transition from torpedo to cotyledonary stage), and development of only the aerial part of somatic embryos can appear, interfering with normal germination and conversion of embryos to plants. Some solutions to solve these problems associated to embryogenesis are proposed and two very efficient somatic embryogenesis protocols for two model plant species are detailed. PMID:26619886

  14. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  15. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  16. Modeling heat stress under different environmental conditions.

    PubMed

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  17. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.

  18. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures. PMID:25943658

  19. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival

    PubMed Central

    Ayo, Abiodun; Pakos-Zebrucka, Karolina; Patterson, John B

    2016-01-01

    Upregulation of SESTRIN 2 (SESN2) has been reported in response to diverse cellular stresses. In this study we demonstrate SESTRIN 2 induction following endoplasmic reticulum (ER) stress. ER stress-induced increases in SESTRIN 2 expression were dependent on both PERK and IRE1/XBP1 arms of the unfolded protein response (UPR). SESTRIN 2 induction, post ER stress, was responsible for mTORC1 inactivation and contributed to autophagy induction. Conversely, knockdown of SESTRIN 2 prolonged mTORC1 signaling, repressed autophagy and increased ER stress-induced cell death. Unexpectedly, the increase in ER stress-induced cell death was not linked to autophagy inhibition. Analysis of UPR pathways identified prolonged eIF2α, ATF4 and CHOP signaling in SESTRIN 2 knockdown cells following ER stress. SESTRIN 2 regulation enables UPR derived signals to indirectly control mTORC1 activity shutting down protein translation thus preventing further exacerbation of ER stress. PMID:26930721

  20. Glycosylation of stress glycoprotein GP62 in cells exposed to heat-shock and subculturing.

    PubMed

    Dumić, J; Lauc, G; Flögel, M

    1999-11-01

    GP62 is a member of the stress glycoprotein family that was proposed to have a chaperone-like function in the heat-shock response. Using lectin blotting we have studied glycosylation of GP62 and determined that in addition to heat-shock, even simple subculturing of cells is a sufficient stimulus to provoke induction of GP62. Interestingly, both kinetics of induction and glycosylation of GP62 induced by subculturing were different than when GP62 was induced by heat-shock. While GP62 induced by heat-shock was recognized by SNA, DSA and PHA-E lectins, and not by BSA I, Con A, RCA I, SJA, UEA I, VVA, and WGA lectins, GP62 induced by subculturing was also recognized by RCA I and WGA lectins.

  1. Acrolein induction of oxidative stress and degranulation in mast cells.

    PubMed

    Hochman, Daniel J; Collaco, Christopher R; Brooks, Edward G

    2014-08-01

    Increases in asthma worldwide have been associated epidemiologically with expanding urban air pollution. The mechanistic relationship between airway hyper-responsiveness, inflammation, and ambient airborne triggers remains ambiguous. Acrolein, a ubiquitous aldehyde pollutant, is a product of incomplete combustion reactions. Acrolein is abundant in cigarette smoke, effluent from industrial smokestacks, diesel exhaust, and even hot oil cooking vapors. Acrolein is a potent airway irritant and can induce airway hyper-responsiveness and inflammation in the lungs of animal models. In the present study, we utilized the mast cell analog, RBL-2H3, to interrogate the responses of cells relevant to airway inflammation and allergic responses as a model for the induction of asthma-like conditions upon exposure to acrolein. We hypothesized that acrolein would induce oxidative stress and degranulation in airway mast cells. Our results indicate that acrolein at 1 ppm initiated degranulation and promoted the generation of reactive oxygen species (ROS). Introduction of antioxidants to the system significantly reduced both ROS generation and degranulation. At higher levels of exposure (above 100 ppm), RBL-2H3 cells displayed signs of severe toxicity. This experimental data indicates acrolein can induce an allergic inflammation in mast cell lines, and the initiation of degranulation was moderated by the application of antioxidants.

  2. Mechanical and electromagnetic induction of protection against oxidative stress.

    PubMed

    Di Carlo, A L; White, N C; Litovitz, T A

    2001-01-01

    Cells and tissues can be protected against a potentially lethal stress by first exposing them to a brief dose of the same or different stress. This "pre-conditioning" phenomenon has been documented in many models of protection against oxidative stress, including ischemia/reperfusion and ultraviolet (UV) light exposure. Stimuli which induce this protective response include heat, chemicals, brief ischemia, and electromagnetic (EM) field exposures. We report here that constant mechanical vibration pre-conditions chick embryos, protecting them during subsequent stress from hypoxia or UV light exposure. Continuously mechanically vibrated embryos (60 Hz, 1 g (32 ft/s2), 20 min) exhibited nearly double the survival (67.5%, P < 0.001) after subsequent hypoxia as compared to non-vibrated controls (37.6%). As a second set of experiments, embryos were vibrated and then exposed to UV light stress. Those embryos that were vibrated prior to UV had nearly double the survival 3 h after UV exposure (66%, P < 0.001) as compared to controls (35%). The degree of protection, however, was dependent on the constancy of the vibration amplitude. When vibration was turned on and off at 1-s intervals throughout exposure, no increase in hypoxia protection was noted. For 50 s on/off vibration intervals, however, hypoxia protection comparable to continuous vibration was obtained. In contrast, random, inconstant mechanical vibration did not induce protection against subsequent UV exposure. These data suggest that to be an effective pre-conditioning agent, mechanical vibration must have a degree of temporally constancy (on/off intervals of greater than 1 s). Further experiments in both models (hypoxia and UV) indicated an interaction between vibration and EM field-induced protection. Vibration-induced hypoxia protection was inhibited by superposition of a random EM noise field (previously shown to inhibit EM field-induced protection). In addition, EM field-induced UV protection was inhibited by

  3. Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein.

    PubMed Central

    Marber, M S; Walker, J M; Latchman, D S; Yellon, D M

    1994-01-01

    The aims of this study were to examine the effects of whole body heat stress and subsequent stress protein induction on glycolytic metabolism, mitochondrial metabolism, and calcium handling within the heart. The effect of heat stress on glycolytic and mitochondrial pathways was examined by measuring contractile performance in the presence of glucose and pyruvate, respectively. Calcium handling was assessed using force-interval relationships. Right ventricular papillary muscles taken from heat-stressed and control rabbit hearts were superfused with Kreb's solution containing either glucose or pyruvate and rendered hypoxic for 30 min. After reoxygenation, the greatest recovery of contractile function occurred in the heat-stressed muscles with pyruvate as substrate; there was, however, no difference in the force-interval relationship between the groups. The degree of contractile recovery was related to the content of the inducible 70-kD but not the 65-kD, heat stress protein. This study suggests that heat stress enhances the ability of rabbit papillary muscle to use pyruvate, but not glucose, after reoxygenation, and that the differences seen in contractility may be secondary to induction of the 72-kD stress protein. Images PMID:8132747

  4. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  5. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  6. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    SciTech Connect

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  7. Induction of heat-shock protein synthesis in chondrocytes at physiological temperatures

    SciTech Connect

    Madreperla, S.A.; Louwerenburg, B.; Mann, R.W.; Towle, C.A.; Mankin, H.J.; Treadwell, B.V.

    1985-01-01

    Induction of heat-shock protein (HSP) synthesis is demonstrated in cultured calf-chondrocytes at temperatures shown to occur in normal human cartilage during experiments subjecting intact cadaverous hip joints to the parameters of level walking. A 70,000 MW heat-shock protein (HSP-70) is synthesized by chondrocytes at temperatures above 39 degrees C, while induction of synthesis of a 110,000 MW HSP only occurs at temperatures of 45 degrees C or greater. These differences in critical temperatures for induction, and data showing differences in kinetics of induction and repression of synthesis, suggest that there are differences in the mechanism of induction of the two HSPs. The duration of HSP synthesis and inhibition of synthesis of normal cellular proteins is directly proportional to the duration and magnitude of the temperature rise. Possible relationships between these new findings and the initiation and progression of degenerative joint disease are discussed.

  8. Reduced heat pain thresholds after sad-mood induction are associated with changes in thalamic activity.

    PubMed

    Wagner, Gerd; Koschke, Mandy; Leuf, Tanja; Schlösser, Ralf; Bär, Karl-Jürgen

    2009-03-01

    Negative affective states influence pain processing in healthy subjects in terms of augmented pain experience. Furthermore, our previous studies revealed that patients with major depressive disorder showed increased heat pain thresholds on the skin. Potential neurofunctional correlates of this finding were located within the fronto-thalamic network. The aim of the present study was to investigate the neurofunctional underpinnings of the influence of sad mood upon heat pain processing in healthy subjects. For this purpose, we used a combination of the Velten Mood Induction procedure and a piece of music to induce sad affect. Initially we assessed heat pain threshold after successful induction of sad mood outside the MR scanner in Experiment 1. We found a highly significant reduction in heat pain threshold on the left hand and a trend for the right. In Experiment 2, we applied thermal pain stimuli on the left hand (37, 42, and 45 degrees C) in an MRI scanner. Subjects were scanned twice, one group before and after sad-mood induction and another group before and after neutral-mood induction, respectively. Our main finding was a significant group x mood-induction interaction bilaterally in the ventrolateral nucleus of the thalamus indicating a BOLD signal increase after sad-mood induction and a BOLD signal decrease in the control group. We present evidence that induced sad affect leads to reduced heat pain thresholds in healthy subjects. This is probably due to altered lateral thalamic activity, which is potentially associated with changed attentional processes.

  9. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    PubMed

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-12

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  10. Boechera species exhibit species-specific responses to combined heat and high light stress.

    PubMed

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  11. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  12. Boechera species exhibit species-specific responses to combined heat and high light stress.

    PubMed

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  13. Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel

    NASA Astrophysics Data System (ADS)

    Sackl, Stephanie; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2016-07-01

    An induction heat treatment is favorable compared to a conventional one mainly due to significant time and cost savings. Therefore, in this study, the microstructure property relationships during induction and conventional heat treatment of a heat treatable steel 42CrMo4 is investigated. The yield strength and hardness is slightly higher for the conventionally heat-treated steel, whereas the induction heat-treated condition exhibits a roughly 30 J/cm2 higher impact energy. In a previous investigation of the authors, it has been proved that the difference in yield strength originates from the smaller block size of the conventionally heat-treated steel, which was already present after hardening. In the present work, it can be shown that during tempering the martensitic blocks become equi-axed ferrite grains due to recrystallization as revealed by electron back scatter diffraction. Nevertheless, a larger grain size usually is less favorable for the impact toughness of steels. Therefore, another mechanism is responsible for the higher impact energy of the induction hardened and tempered steel. With the aid of transmission electron microscopy a finer distribution of cementite was observed in the induction heat-treated samples. The delay of recovery is the reason for the presence of finer cementite in case of the induction heat-treated steel. Here, the higher heating rates and shorter process times reduce the annihilation of dislocation and as a consequence provide more nucleation sites for precipitation of cementite during tempering. From the obtained experimental results, it is believed that the finer distribution of carbides causes the observed higher impact toughness.

  14. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  15. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  16. Appearance of heat shock proteins during the induction of multiple flagella in Naegleria gruberi.

    PubMed

    Walsh, C

    1980-04-10

    A heat shock to amebae of the amebo-flagellate Naegleria gruberi during differentiation into swimming flagellates results in the induction of heat shock proteins as well as multiple flagella. The principal heat shock proteins migrate on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 96,000, 77,000, 70,000, and 68,000. These proteins are synthesized preferentially when cells at 25 degrees C are shifted to temperatures above 32 degrees C. The maximal incorporation of methionine into heat shock proteins occurs at 38.2 degrees C, the temperature at which maximal induction of multiple flagella has been reported. Synthesis of heat shock proteins requires new transcription as judged by the ability of actinomycin D to inhibit their synthesis during the first 15 min of heat shock but not thereafter. Although heat shock can induce multiple flagella only when applied during a restricted interval, heat shock proteins are induced at any time cells are shifted to 38.2 degrees C. The response to heat shock of the Naegleria heat shock proteins resembles that of Drosophila heat shock proteins, but the two groups of proteins differ in both size and number. Naegleria heat shock proteins are, however, strikingly similar in size to a group of heat-induced proteins found in chick embryo fibroblast, mouse L, and BHK cells. PMID:7358690

  17. Re-evaluating Occupational Heat Stress in a Changing Climate

    PubMed Central

    Spector, June T.; Sheffield, Perry E.

    2014-01-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. PMID:25261455

  18. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. PMID:25261455

  19. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  20. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  1. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  2. Heat stress increases insulin sensitivity in pigs

    PubMed Central

    Sanz Fernandez, M Victoria; Stoakes, Sara K; Abuajamieh, Mohannad; Seibert, Jacob T; Johnson, Jay S; Horst, Erin A; Rhoads, Robert P; Baumgard, Lance H

    2015-01-01

    Proper insulin homeostasis appears critical for adapting to and surviving a heat load. Further, heat stress (HS) induces phenotypic changes in livestock that suggest an increase in insulin action. The current study objective was to evaluate the effects of HS on whole-body insulin sensitivity. Female pigs (57 ± 4 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 21°C) and were fed ad libitum. During period 2, pigs were exposed to: (i) constant HS conditions (32°C) and fed ad libitum (n = 6), or (ii) TN conditions and pair-fed (PFTN; n = 6) to eliminate the confounding effects of dissimilar feed intake. A hyperinsulinemic euglycemic clamp (HEC) was conducted on d3 of both periods; and skeletal muscle and adipose tissue biopsies were collected prior to and after an insulin tolerance test (ITT) on d5 of period 2. During the HEC, insulin infusion increased circulating insulin and decreased plasma C-peptide and nonesterified fatty acids, similarly between treatments. From period 1 to 2, the rate of glucose infusion in response to the HEC remained similar in HS pigs while it decreased (36%) in PFTN controls. Prior to the ITT, HS increased (41%) skeletal muscle insulin receptor substrate-1 protein abundance, but did not affect protein kinase B or their phosphorylated forms. In adipose tissue, HS did not alter any of the basal or stimulated measured insulin signaling markers. In summary, HS increases whole-body insulin-stimulated glucose uptake. PMID:26243213

  3. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.

    PubMed

    Shinoda, Keiji; Noguchi, Naoki

    2008-01-01

    A new external heating configuration is presented for high-temperature diamond anvil cell instruments. The supporting rockers are thermally excited by induction from an externally mounted copper coil passing a 30 kHz alternating current. The inductive heating configuration therefore avoids the use of breakable wires, yet is capable of cell temperatures of 1100 K or higher. The diamond anvil cell has no resistive heaters, but uses a single-turn induction coil for elevating the temperature. The induction coil is placed near the diamonds and directly heats the tungsten carbide rockers that support the diamond. The temperature in the cell is determined from a temperature-power curve calibrated by the ratio between the intensities of the Stokes and anti-Stokes Raman lines of silicon. The high-pressure transformation of quartz to coesite is successfully observed by micro-Raman spectroscopy using this apparatus. The induction heating diamond anvil cell is thus a useful alternative to resistively heated diamond anvil cells. PMID:18248060

  4. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  5. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    PubMed

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  6. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  7. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  8. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley

    PubMed Central

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Nuc, Przemyslaw; Alaba, Sylwia; Wroblewska, Zuzanna; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2014-01-01

    Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5’ RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes. PMID:25183744

  9. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley.

    PubMed

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Nuc, Przemyslaw; Alaba, Sylwia; Wroblewska, Zuzanna; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2014-11-01

    Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5' RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes.

  10. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2016-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  11. Occupational Heat Stress Profiles in Selected Workplaces in India

    PubMed Central

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  12. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2016-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  13. Do asteroids evaporate near pulsars? Induction heating by pulsar waves revisited

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko; Mottez, Fabrice; Voisin, Guillaume; Heyvaerts, Jean

    2016-07-01

    Aims: We investigate the evaporation of close-by pulsar companions, such as planets, asteroids, and white dwarfs, by induction heating. Methods: Assuming that the outflow energy is dominated by a Poynting flux (or pulsar wave) at the location of the companions, we calculate their evaporation timescales, by applying the Mie theory. Results: Depending on the size of the companion compared to the incident electromagnetic wavelength, the heating regime varies and can lead to a total evaporation of the companion. In particular, we find that inductive heating is mostly inefficient for small pulsar companions, although it is generally considered the dominant process. Conclusions: Small objects like asteroids can survive induction heating for 104 yr at distances as small as 1 R⊙ from the neutron star. For degenerate companions, induction heating cannot lead to evaporation and another source of heating (likely by kinetic energy of the pulsar wind) has to be considered. It was recently proposed that bodies orbiting pulsars are the cause of fast radio bursts; the present results explain how those bodies can survive in the pulsar's highly energetic environment.

  14. Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations

    NASA Astrophysics Data System (ADS)

    Fujita, Hagino; Ishibashi, Kazuhisa

    In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.

  15. Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection

    PubMed Central

    Hanson, Brett R.; Tan, Ming

    2015-01-01

    Summary Bacteria encode heat shock proteins that aid in survival during stressful growth conditions. In addition, the major heat shock proteins of the intracellular bacterium Chlamydia trachomatis have been associated with immune pathology and disease. We developed a ChIP-qPCR method to study the regulation of chlamydial heat shock gene regulation during an intracellular infection. This approach allowed us to show that chlamydial heat shock genes are regulated by the transcription factor HrcA within an infected cell, providing validation for previous in vitro findings. Induction of chlamydial heat shock gene expression by elevated temperature was due to loss of HrcA binding to heat shock promoters, supporting a mechanism of derepression. This heat shock response was rapid, while recovery of HrcA binding and return to non-stress transcript levels occurred more slowly. We also found that control of heat shock gene expression was differentially regulated over the course of the intracellular Chlamydia infection. There was evidence of HrcA-mediated regulation of heat shock genes throughout the chlamydial developmental cycle but the level of repression was lower at early times. This is the first study of Chlamydia-infected cells showing the effect of an environmental signal on transcription factor-DNA binding and target gene expression in the bacterium. PMID:26075961

  16. Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters

    NASA Astrophysics Data System (ADS)

    Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R.

    2016-03-01

    The possibility of obtaining similar mechanical properties with faster heating processes than the conventional ones has been of interest for several years. In the present study, investigations were performed in terms of the influences of such fast heat-treatments on the microstructure and mechanical properties of the material. This investigation compares an inductive with a conventional furnace heat treating process of a 50CrMo4 steel, however only the austenitizing treatment was changed and subsequent quenching and tempering was done in the same way. To this end experiments with a middle frequency generator, using different heating rates and austenitizing temperatures, were conducted and followed by oil quenching of the workpieces. The resulting structures were characterized regarding their microstructures and mechanical properties in order to gather a better understanding of the differences between the inductive and the conventional heat treating process. As a main result it was found, that the fast austenitized samples exhibited worse ductility than the conventional treated material.

  17. A systems biology approach to heat stress, heat injury, and heat stroke

    NASA Astrophysics Data System (ADS)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  18. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  19. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  20. Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-01-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly (P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly (P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  1. Compilation of information on modeling of inductively heated cold crucible melters

    SciTech Connect

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler`s discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE.

  2. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  3. Induction heating and controlled drug release from thermosensitive magnetic microgels

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Bhattarai, S. R.; Sudakar, C.; Wani, A. S.; Cunninghum, R.; Vaishnava, P. P.; Naik, R.; Oupicky, D.; Lawes, G.

    2010-04-01

    Poly-N-isopropyl acrylamide (PNIPAM) is a biocompatible thermosensitive polymer that exhibits reversible volume phase transition from a hydrophilic coil to hydrophobic globule at the lower critical solution temperature (LCST) of 32 ^oC. To stimulate conformational change we introduced magnetite nanoparticles (size ˜12 nm) in the PNIPAM matrix. The PNIPAM/magnetite nanoparticles composite was then exposed to an alternating magnetic field at a frequency of 380 kHz to induce heating in the nanoparticles by Neel and Brownian relaxations. We report in vitro controlled release of anti-cancer drug mitoxantrone which was loaded into PNIPAM/magnetite nanoparticles composite, driven solely by the heating induced by the external magnetic field. We found that the drug released reached 4% in only 4 minutes of heating to 50 ^oC. We also present results on dielectric and magnetic anomalies near the LCST of the PNIPAM-Fe3O4 composite.

  4. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  5. Heat stress and societal impacts in the 21st century

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.; de Sherbinin, A. M.

    2015-12-01

    Heat is the number-one weather related killer in the US and around the world. As a result of rising temperatures and steady or slightly rising levels of specific humidity, heat stress is projected to become increasingly severe. Here we show that heat stress as measured by two common indices -- the heat index and the wet-bulb temperature -- is projected to rapidly and dramatically increase, and that by mid-century crippling summertime conditions are possible across some of the most densely populated regions of the planet. Many of these regions are places where cooling infrastructure is scarce, adaptive capacity is low, and populations are rapidly rising. We find that by the end of the 21st century, the habitability of some regions of the planet may be questionable due to heat stress alone, and in many other regions severe impacts to human health, infrastructure, agriculture, and economic performance will create significant societal stress and necessitate rapid adaptation.

  6. Surface modification of graphite and ceramics with metals using induction heating

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Imoto, Akiko; Suzumura, Akio; Katori, Mana; Yamazaki, Takahisa; Sakamoto, Masahiro; Sakimichi, Satoshi

    2014-08-01

    In order to join metals to graphite or ceramics by soldering or brazing, a new surface modification method using induction heating was developed for graphite and ceramics. Such source metals as Cu, Ni, Cr, etc. were induction-heated in vacuum atmosphere and making deposited films on the deposition substrate, or the target substrate; graphite, AlN, Si3N4. The applicability of this method was investigated and the deposited layer was analysed by SEM observation, Auger electron spectrum analysis, X-ray diffractometry, and EPMA. By comparison of ambient vacuum pressure during deposition and the saturated vaopr pressure of source metals, this method was considered to utilize the sublimation phenomenon.

  7. Climate change and occupational heat stress: methods for assessment

    PubMed Central

    Holmér, Ingvar

    2010-01-01

    Background Presumed effects of global warming on occupational heat stress aggravate conditions in many parts of the world, in particular in developing countries. In order to assess and evaluate conditions, heat stress must be described and measured correctly. Objective Assessment of heat stress using internationally recognized methods. Design Two such methods are wet bulb globe temperature (WBGT; ISO 7243) and predicted heat strain (PHS; ISO 7933). Both methods measure relevant climatic factors and provide recommendations for limit values in terms of time when heat stress becomes imminent. The WBGT as a heat stress index is empirical and widely recognized. It requires, however, special sensors for the climatic factors that can introduce significant measurement errors if prescriptions in ISO 7243 are not followed. The PHS (ISO 7933) is based on climatic factors that can easily be measured with traditional instruments. It evaluates the conditions for heat balance in a more rational way and it applies equally to all combinations of climates. Results Analyzing similar climatic conditions with WBGT and PHS indicates that WBGT provides a more conservative assessment philosophy that allows much shorter working time than predicted with PHS. Conclusions PHS prediction of physiological strain appears to fit better with published data from warm countries. Both methods should be used and validated more extensively worldwide in order to give reliable and accurate information about the actual heat stress. PMID:21139697

  8. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  9. A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.

    PubMed

    Maman, Moria; Carvalhal Marques, Filipa; Volovik, Yuli; Dubnikov, Tatyana; Bejerano-Sagie, Michal; Cohen, Ehud

    2013-04-01

    In the nematode Caenorhabditis elegans, the heat shock response (HSR) is regulated at the organismal level by a network of thermosensory neurons that senses elevated temperatures and activates the HSR in remote tissues. Which neuronal receptors are required for this signaling mechanism and in which neurons they function are largely unanswered questions. Here we used worms that were engineered to exhibit RNA interference hypersensitivity in neurons to screen for neuronal receptors that are required for the activation of the HSR and identified a putative G-protein coupled receptor (GPCR) as a novel key component of this mechanism. This gene, which we termed GPCR thermal receptor 1 (gtr-1), is expressed in chemosensory neurons and has no role in heat sensing but is critically required for the induction of genes that encode heat shock proteins in non-neural tissues upon exposure to heat. Surprisingly, the knock-down of gtr-1 by RNA interference protected worms expressing the Alzheimer's-disease-linked aggregative peptide Aβ3-42 from proteotoxicity but had no effect on lifespan. This study provides several novel insights: (1) it shows that chemosensory neurons play important roles in the nematode's HSR-regulating mechanism, (2) it shows that lifespan and heat stress resistance are separable, and (3) it strengthens the emerging notion that the ability to respond to heat comes at the expense of protein homeostasis (proteostasis). PMID:23554491

  10. Extreme Heat Stress trends in ERA Interim 1979-2011

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.

    2012-12-01

    Heat stress is a function of temperature and humidity, and is therefore subject to the covariance of the two quantities. One of the robust predictions from climate change is an increase in temperatures across the planet, and therefore heat stress is projected to increase, however the covariance with humidity is less sure. It has been proposed that in future climate, significant portions of the land surface become subject to life threatening heat stress levels to humans and mammals. There are numerous methods and metrics for calculating heat stress, however, the majority use atmospheric state variables (pressure, temperature, and specific humidity), to measure the thermodynamic state of the atmosphere or estimate thermal load on humans and mammals. Here we present calculations of the evolution of heat stress for the past 3 decades using the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA Interim reanalysis data product from near surface boundary layer state variables. We characterize both spatial and temporal trends with a variety of the most commonly used heat stress metrics (wet bulb temperatures, heat index, etc.). The metrics are calculated from 4x daily values to capture both the diurnal cycle and the daily peak values for these indices.

  11. Induction of the Wnt Antagonist Dickkopf-1 Is Involved in Stress-Induced Hippocampal Damage

    PubMed Central

    Bucci, Domenico; Orlando, Rosamaria; Caruso, Alessandra; Molinaro, Gemma; Cappuccio, Irene; Riozzi, Barbara; Gradini, Roberto; Motolese, Marta; Caraci, Filippo; Copani, Agata; Scaccianoce, Sergio; Melchiorri, Daniela; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando

    2011-01-01

    The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system

  12. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects. PMID:25678063

  13. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects.

  14. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  15. Telemetric heat stress monitor (THSM) spin-offs

    SciTech Connect

    Berkbigler, L.; Bradley, O.; Lopez, R.; Martinez, D.; Stampfer, J.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to investigate spin-offs of the telemetric heat stress monitoring system (THSM) developed at LANL. Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. Heat stress occurs when the body`s natural cooling mechanisms fail: it can cause collapse and death. The THSM warns both workers and remote monitoring personnel of incipient heat stress by monitoring and responding to elevations of workers` skin temperatures and heart rates. The technology won a 1994 R & D 100 award.

  16. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace.

  17. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. PMID:24203794

  18. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  19. Cerebrolysin treatment attenuates heat shock protein overexpression in the brain following heat stress: an experimental study using immunohistochemistry at light and electron microscopy in the rat.

    PubMed

    Sharma, Hari Shanker; Muresanu, Dafin; Sharma, Aruna; Zimmermann-Meinzingen, Sibilla

    2010-06-01

    The possibility that overexpression of heat shock proteins (HSPs) in the CNS represents a neurodestructive signal following hyperthermia was examined in a rat model using a potent neuroprotective drug, Cerebrolysin (Ebewe Pharma, Austria). Rats subjected to four hours of heat stress in a biological oxygen demand incubator at 38 degrees C developed profound hyperthermia (41.23 +/- 0.14 degrees C) and overexpressed HSP 72 kD in several brain regions: cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem, and spinal cord compared to controls. This HSP overexpression closely correlated with the leakage of blood-brain barrier permeability and vasogenic edema formation in these brain areas. HSP positive cells are largely confined in the edematous brain regions showing Evans blue leakage. Pretreatment with Cerebrolysin (5 mL/kg, i.v.) 30 minutes before heat stress markedly attenuated hyperthermia (39.48 +/- 0.23 degrees C, P < 0.01) and the induction of HSP to all the brain regions examined. Leakage of Evans blue albumin and increase in brain water content in these brain areas are also markedly reduced with Cerebrolysin pretreatment. These results are the first to show that Cerebrolysin, if administered before heat stress, attenuates hyperthermia induced stress reaction and HSP 72 kD induction. Taken together, these novel observations suggest that upregulation of HSP 72 kD in brain represents neurodestructive signals and a reduction in cellular stress mechanisms leading to decline in HSP expression is neuroprotective in nature.

  20. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae

    SciTech Connect

    Mitchel, R.E.J.; Morrison, D.P.

    1983-10-01

    When exponentially growing diploid wild type Saccharomyces cervisiae cells were subjected to a sudden rise in temperature (heat shock) they responded by increasing their resistance to the lethal effects of ultraviolet light. We have previously reported heat shock-induced increases in heat and ionizing radiation resistance. The shock-induced rise in resistance to uv light reported here was examined in terms of DNA repair capacity, and we find that the increase is due to induction of the recombinational repair system with no significant response from the uv-excision repair process.

  1. Induction heating to trigger the nickel surface modification by in situ generated 4-carboxybenzene diazonium

    NASA Astrophysics Data System (ADS)

    Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb

    2016-05-01

    Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.

  2. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis.

    PubMed

    Kurtz, S; Rossi, J; Petko, L; Lindquist, S

    1986-03-01

    Every eukaryotic and prokaryotic organism tested to date synthesizes a small number of heat-shock proteins in response to heat and other forms of stress. A particular pattern of heat-shock gene expression was observed during ascospore development in Saccharomyces: heat-shock proteins hsp26 and hsp84 were strongly induced nor inducible by heat shock. Instead, two proteins related to hsp70 were induced. A strikingly similar pattern of expression occurs during oogenesis in Drosophila, suggesting that it may be one of the earliest developmental pathways to evolve in eukaryotic cells.

  3. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  4. A virtual rat for simulating environmental and exertional heat stress.

    PubMed

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques

    2014-12-01

    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  5. Transcriptome Profiles of Populus euphratica upon Heat Shock stress.

    PubMed

    Chen, Jinhuan; Yin, Weilun; Xia, Xinli

    2014-10-01

    Heat stress, which strongly affects plant performance and often results in reduced vegetative growth and yields depression, has become an increasingly serious global problem. Populus euphratica Oliv. which has been considered as a tree model for the study of plant response to abiotic stresses, could be resistant to an extremely wide environmental temperature range (-40 °C to 45 °C). Previous study is mainly focused on its gene regulation upon drought and salt stress. However, little is known about gene regulation at the global transcriptome level upon heat stress. To understand the gene network controlling heat stress in P. euphratica, a transcriptome sequencing using Illumina Hiseq 2000 was performed to generate a 10 gigabases depth for each sample in the tissue of leaf. 119,573 unigeneswere generated with an average length of 474 bp. Approximately 49,605 (41.49%) unigenes exhibited significantly different expressions between two libraries. Among these unigenes, 11,165 (9.34%) were upregulated and 38,440 (32.15%) were down regulated. Heat shock proteins classified as molecular chaperones showed a significant percentage (1.13%) in the up regulated group. Heat responsive genes, such as polyubiquitins, were over expressed in heat treated sample. GO enrichment analysis revealed that the Go terms for differentially expressed unigenes were significantly enriched in hormone-mediated signal, biological process regulation and metabolic process regulation. Our data revealed a global transcriptome picture of P. euphratica in response to heat shock. The identified potential heat stress-related transcripts can be used to infer the gene regulation networks underlying the molecular mechanisms of heat response in P. euphratica.

  6. Heated allergens and induction of tolerance in food allergic children.

    PubMed

    Netting, Merryn; Makrides, Maria; Gold, Michael; Quinn, Patrick; Penttila, Irmeli

    2013-06-05

    Food allergies are one of the first manifestations of allergic disease and have been shown to significantly impact on general health perception, parental emotional distress and family activities. It is estimated that in the Western world, almost one in ten children have an IgE-mediated allergy. Cow's milk and egg allergy are common childhood allergies. Until recently, children with food allergy were advised to avoid all dietary exposure to the allergen to which they were sensitive, in the thought that consumption would exacerbate their allergy. However, recent publications indicate that up to 70% of children with egg allergy can tolerate egg baked in a cake or muffin without apparent reaction. Likewise, up to 75% of children can tolerate baked goods containing cow's milk, and these children demonstrate IgE and IgG4 profiles indicative of tolerance development. This article will review the current literature regarding the use of heated food allergens as immunotherapy for children with cow's milk and egg allergy.

  7. Heated Allergens and Induction of Tolerance in Food Allergic Children

    PubMed Central

    Netting, Merryn; Makrides, Maria; Gold, Michael; Quinn, Patrick; Penttila, Irmeli

    2013-01-01

    Food allergies are one of the first manifestations of allergic disease and have been shown to significantly impact on general health perception, parental emotional distress and family activities. It is estimated that in the Western world, almost one in ten children have an IgE-mediated allergy. Cow’s milk and egg allergy are common childhood allergies. Until recently, children with food allergy were advised to avoid all dietary exposure to the allergen to which they were sensitive, in the thought that consumption would exacerbate their allergy. However, recent publications indicate that up to 70% of children with egg allergy can tolerate egg baked in a cake or muffin without apparent reaction. Likewise, up to 75% of children can tolerate baked goods containing cow’s milk, and these children demonstrate IgE and IgG4 profiles indicative of tolerance development. This article will review the current literature regarding the use of heated food allergens as immunotherapy for children with cow’s milk and egg allergy. PMID:23739144

  8. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress.

    PubMed

    Soto, A; Allona, I; Collada, C; Guevara, M A; Casado, R; Rodriguez-Cerezo, E; Aragoncillo, C; Gomez, L

    1999-06-01

    A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17. 5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37 degrees C to 50 degrees C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4 degrees C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress.

  9. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules

    PubMed Central

    Jevtov, Irena; Zacharogianni, Margarita; van Oorschot, Marinke M.; van Zadelhoff, Guus; Aguilera-Gomez, Angelica; Vuillez, Igor; Braakman, Ineke; Hafen, Ernst; Stocker, Hugo; Rabouille, Catherine

    2015-01-01

    ABSTRACT The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules. PMID:26054799

  10. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants.

    PubMed

    Pnueli, Lilach; Liang, Hongjian; Rozenberg, Mira; Mittler, Ron

    2003-04-01

    The accumulation of hydrogen peroxide (H2O2) in plants is typically associated with biotic or abiotic stresses. However, H2O2 is continuously produced in cells during normal metabolism. Yet, little is known about how H2O2 accumulation will affect plant metabolism in the absence of pathogens or abiotic stress. Here, we report that a deficiency in the H2O2-scavenging enzyme, cytosolic ascorbate peroxidase (APX1), results in the accumulation of H2O2 in Arabidopsis plants grown under optimal conditions. Knockout-Apx1 plants were characterized by suppressed growth and development, altered stomatal responses, and augmented induction of heat shock proteins during light stress. The inactivation of Apx1 resulted in the induction of several transcripts encoding signal transduction proteins. These were not previously linked to H2O2 signaling during stress and may belong to a signal transduction pathway specifically involved in H2O2 sensing during normal metabolism. Surprisingly, the expression of transcripts encoding H2O2 scavenging enzymes, such as catalase or glutathione peroxidase, was not elevated in knockout-Apx1 plants. The expression of catalase, two typical plant peroxidases, and several different heat shock proteins was however elevated in knockout-Apx1 plants during light stress. Our results demonstrate that in planta accumulation of H2O2 can suppress plant growth and development, interfere with different physiological processes, and enhance the response of plants to abiotic stress conditions. Our findings also suggest that at least part of the induction of heat shock proteins during light stress in Arabidopsis is mediated by H2O2 that is scavenged by APX1.

  11. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  12. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    PubMed

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  13. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao; Rigby, Wayne; Wallace, John

    2012-06-15

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  14. Heat treatment of pipes with thickened ends in an induction installation

    SciTech Connect

    Zgura, A.A.; Tyazhel'nikov, A.I.

    1986-03-01

    The authors determined the operating parameters of an industrial induction installation for the purpose of working out recommendations for devising better installations of a similar type. A diagram of the installation is shown and consists of two independent lines: the hardening and the tempering lines. The total capacity of the induction equipment of the hardening line by output frequency is 3 MW. Investigations were carried out with heat treatment of an experimental batch of pipes of steel 28Kh2MFBD. The authors calculated the heatengineering indicators of the installation, which are presented.

  15. Effects of passive heat stress on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2015-12-01

    Herein, we investigated the effects of passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs). Fifteen healthy subjects received a median nerve stimulation at the left wrist under two thermal conditions: Heat Stress and normothermic Time Control. The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Under the Heat Stress condition, SEPs were recorded at normothermic baseline (1st), early in heat stress (2nd), when esophageal temperature had increased by ~1.0°C (3rd) and ~2.0°C (4th), and after heat stress (5th). In the Time Control condition, SEPs were measured at the same time intervals as those in the Heat Stress condition. The peak latencies and amplitudes of SEPs did not change early in heat stress. However, the latencies of P14, N20, and N60 at C4' and P14, N18, and P22 at Fz were significantly shorter in the 4th session than in the 1st session. Furthermore, the peak amplitudes of P25 and N60 at C4', and P22 and N30 at Fz decreased with increases in body temperature. On the other hand, under the Time Control condition, no significant differences were observed in the amplitudes or latencies of any component of SEPs. These results suggested that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and hyperthermia impaired the neural activity of cortical somatosensory processing. PMID:26468258

  16. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  17. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  18. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  19. Dynamics of urban heat stress events in climate models

    NASA Astrophysics Data System (ADS)

    Yang, David

    2016-04-01

    Extreme heat stress events as measured by the wet-bulb temperature require extraordinarily high air temperatures coupled with high humidity. These conditions are rare, as relative humidity rapidly falls with rising air temperature, and this effect often results in decreasing heat stress as temperature rises. However, in certain coastal locations in the Middle East recent heat waves have resulted in wet-bulb temperatures of 33-35 degrees C, which approach the theoretical limits of human tolerance. These conditions result from the combination of extreme desert heat and humid winds off of the warm ocean waters. It is unclear if climate models properly simulate these dynamics. This study will analyse the ability of the CMIP5 model suite to replicate observed dynamics during extreme heat events in major urban areas.

  20. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    NASA Astrophysics Data System (ADS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-06-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable.

  1. Design, Fabrication and Testing of Two Different Laboratory Prototypes of CSI-based Induction Heating Units

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2012-09-01

    Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.

  2. Time constant measurement for control of induction heating processes for thixoforming

    NASA Astrophysics Data System (ADS)

    Gerlach, O.; Lechler, A.; Verl, A.

    2015-02-01

    In controlling induction heating systems, several measurement methods exist for controlled heating of metal billets into the semi-solid state for thixoforming. The most common approach is to measure the billet temperature, which suffers from various drawbacks leading to difficulties in process stability. The main disadvantages are the small temperature range of the process window and the alloy composition dependency of the correlation between temperature and liquid fraction. An alternative is to determine the liquid fraction of the billet by measuring the time constant of the load. Although time constant measurement is not affected by the mentioned problems, it is difficult to use it as a controlled variable. This paper shows that disturbances affecting time constant measurement are mainly caused by semiconductor losses inside the inverter. A method is introduced to compensate these losses. This method was implemented and tested in the embedded system of an induction heating unit, thereby showing that it is possible to use time constant measurement to determine the liquid fraction of a billet during induction heating.

  3. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe.

    PubMed

    Glatz, Attila; Pilbat, Ana-Maria; Németh, Gergely L; Vince-Kontár, Katalin; Jósvay, Katalin; Hunya, Ákos; Udvardy, Andor; Gombos, Imre; Péter, Mária; Balogh, Gábor; Horváth, Ibolya; Vígh, László; Török, Zsolt

    2016-03-01

    Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.

  4. [Pre-induction sport activity in prevention of stress fractures in elite infantry recruits].

    PubMed

    Finestone, A S; Eldad, A; Milgrom, C

    2000-05-01

    Pre-induction sports participation of 392 elite infantry recruits was evaluated for correlation with incidence of stress fractures (SF) during 14 weeks of basic training. 23.7% developed lower extremity stress fractures. 72% of the recruits had participated in sports on a regular basis during the 2 years prior to induction. Their fitness as examined by the Bar-Or induction fitness test, was significantly better than that of those who had not trained. 14.9% of the soldiers who had previously participated in ball games (primarily basketball) as an only sport suffered stress fractures, compared to 31.0% of those whose only sport was running (p < 0.005). Training for only 6 months prior to induction had no effect on the incidence of SF. The reason for the difference between ball games and running is probably related to the higher strains and strain rates developed during ball games and to their multidirectional nature, as compared to running. These findings suggest that participation in a pre-induction program that includes activities that create strains, such as basketball, can reduce incidence of SF in infantry recruits. The training period has to last at least 2 years.

  5. Low, medium, and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat.

    PubMed

    Shen, Qian; Jangam, Priyanka M; Soni, Kamlesh A; Nannapaneni, Ramakrishna; Schilling, Wes; Silva, Juan L

    2014-08-01

    A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with an initial cell density of 10(7) CFU/ml were analyzed for their heat tolerance at 60°C for 10 min. These L. monocytogenes strains were categorized into three heat tolerance groups: low (<2 log CFU/ml survival), medium (2 to 4 log CFU/ml survival), and high (4 to 6 log CFU/ml survival). Serotype 1/2a strains had relatively low heat tolerance; seven of the eight tested strains were classified as low heat tolerant. Of the two serotype 1/2b strains tested, one was very heat sensitive (not detectable) and the other was very heat resistant (5.4 log CFU/ml survival). Among the 16 serotype 4b strains, survival ranged from not detectable to 4 log CFU/ml. When one L. monocytogenes strain from each heat tolerance group was subjected to sublethal heat stress at 48°C for 30 or 60 min, the survival of heat-stressed cells at 60°C for 10 min increased by 5 log CFU/ml (D60°C-values nearly doubled) compared with the nonstressed control cells. Sublethal heat stress at 48°C for 60 or 90 min increased the lag phase of L. monocytogenes in tryptic soy broth supplemented with 0.6% yeast extract at room temperature by 3 to 5 h compared with nonstressed control cells. The heat stress adaptation in L. monocytogenes was reversed after 2 h at room temperature but was maintained for up to 24 h at 4°C. Our results indicate a high diversity in heat tolerance among strains of L. monocytogenes, and once acquired this heat stress adaptation persists after cooling, which should be taken into account while conducting risk analyses for this pathogen.

  6. Short communication: genotype by environment interaction due to heat stress.

    PubMed

    Bohmanova, J; Misztal, I; Tsuruta, S; Norman, H D; Lawlor, T J

    2008-02-01

    Heat stress was evaluated as a factor in differences between regional evaluations for milk yield in the United States. The national data set (NA) consisted of 56 million first-parity, test-day milk yields on 6 million Holsteins. The Northeastern subset (NE) included 12.5 million records on 1.3 million first-calved heifers from 8 states, and the Southeastern subset (SE) included 3.5 million records on 0.4 million heifers from 11 states. Climatic data were available from 202 public weather stations. Each herd was assigned to the nearest weather station. Average daily temperature-humidity index (mean THI) 3 d before test date was used as an indicator of heat stress. Two test-day repeatability models were implemented. Effects included in both models were herd-test date, age at calving class, frequency of milking, days in milk x season class, additive genetic (regular breeding value) and permanent environmental effects. Additionally, the second model included random regressions on degrees of heat stress (t = max[0, mean THI - 72]) for additive genetic (breeding value for heat tolerance) and permanent environmental effects. Both models were fitted with the national and regional data sets. Correlations involved estimated breeding values (EBV) from SE and NE for sires with >or=100 and >or=300 daughters in each region. When heat stress was ignored (first model) the correlations of regular EBV between SE and NE for sires with >or=100 (>or=300) daughters were 0.85 (0.87). When heat stress was considered (second model), the correlation increased by up to 0.01. The correlations of heat stress EBV between NE and SE for sires with >or=100 (>or=300, >or=700) daughters were 0.58 (0.72, 0.81). Evaluations for heat tolerance were similar in cooler and hotter regions for high-reliability sires. Heat stress as modeled explains only a small amount of regional differences, partly because test-day records depict only snapshots of heat stress.

  7. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  8. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking?

    PubMed

    Cotgreave, Ian A

    2005-03-01

    Cells phenotypically adapt to alterations in their intra- and extracellular environment via organised alterations to gene and protein expression. Many chemical and physical stimuli are known to drive such responses, including the induction of oxidative stress and heat shock. Increasing use of mobile telephones in our society, has brought focus on the potential for radio frequency (microwave) electromagnetic radiation to elicit biological stress responses, in association with potentially detrimental effects of this to human health. Here we review evidence suggesting altered gene and protein expression in response to such emissions, with particular focus on heat shock proteins. Non-thermal induction of heat shock proteins has been claimed by a number of investigations in in vitro cellular systems, and appears pleiotropic for many other regulatory events. However, many of these studies are flawed by inconsistencies in exposure models, cell types used and the independent reproducibility of the findings. Further, the paucity of evidence from in vivo experimentation is largely contradictory. Therefore, the validity of these effects in human health risk assessment remain unsubstantiated. Where possible, suggestions for further experimental clarification have been provided.

  9. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.

    PubMed

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  10. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  11. Beginning Teachers' Self-Efficacy and Stress and the Supposed Effects of Induction Arrangements

    ERIC Educational Resources Information Center

    Helms-Lorenz, Michelle; Slof, Bert; Vermue, Carlien E.; Canrinus, Esther T.

    2012-01-01

    Induction arrangements are implemented in schools all over the world to support beginning teachers (BTs) (novices) in gradually growing into their profession. The aim of this study is to gain more insight into two key psychological processes involved in the work of a qualified beginning teacher, namely perceived stress and self-efficacy. This…

  12. Phosphoinositolphosphate (PIP) cascade induction by hypertonic stress of plant tissue

    SciTech Connect

    Srivastava, A.; Jacoby, B. )

    1989-04-01

    Inositol 1,4,5-trisphosphate (IP{sub 3}) was determined by competition with ({sup 3}H)-IP{sub 3} for binding to an IP{sub 3} specific protein. A hypertonic mannitol, sorbitol or lactose shock induced an increase in the rate of K{sup +} uptake and raised the IP{sub 3} content of Beta vulgaris slices, excised Vigna mungo and Sorghum bicolor roots, as well as attached V. mungo roots. Increased K{sup +} uptake could also be induced by compounds that artificially induce the PIP cascade, or mimic it's products. A hypertonic shock, administered to intact B. vulgaris slices, further enhanced the phosphorylation of a 20 kD protein in the plasmalemma. Maximal IP{sub 3} content was found 10 min after hypertonic induction and maximal K{sup +} uptake was obtained 10 min later. The effect of a continuous hypertonic treatment on IP{sub 3} content, but not on K{sup +} uptake, was transient. Li{sup +} decreased the rate of IP{sub 3} metabolism.

  13. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  14. Gas nitriding of Ti-6Al-4V by induction heating

    SciTech Connect

    Grosch, J.; Saglitz, M.

    1995-12-31

    The usually poor wear behavior of titanium materials can be improved by thermochemical surface heat treatment. In contrast to conventional procedures, which necessitate prolonged treatment, it is possible to reduce the heat treatment period considerably by means of HF induction. Serving as an example in this context is a Ti-6Al-4V titanium alloy that is to demonstrate the possibilities of induction gas nitriding. Temperature variations between 900 C and 1,600 C have resulted in homogeneous surface structures whose microstructures can basically be explained by the titanium-nitrogen diagram. In particular with the 1,600 C variant, the wear resistance has been improved, compared with the untreated titanium material there is a seventyfold increase in wear resistance.

  15. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon.

    PubMed

    Voigt, Birgit; Schroeter, Rebecca; Jürgen, Britta; Albrecht, Dirk; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Schweder, Thomas; Hecker, Michael

    2013-07-01

    The heat and ethanol stress response of Bacillus licheniformis DSM13 was analyzed at the transcriptional and/or translational level. During heat shock, regulons known to be heat-induced in Bacillus subtilis 168 are upregulated in B. licheniformis, such as the HrcA, SigB, CtsR, and CssRS regulon. Upregulation of the SigY regulon and of genes controlled by other extracytoplasmic function (ECF) sigma factors indicates a cell-wall stress triggered by the heat shock. Furthermore, tryptophan synthesis enzymes were upregulated in heat stressed cells as well as regulons involved in usage of alternative carbon and nitrogen sources. Ethanol stress led to an induction of the SigB, HrcA, and CtsR regulons. As indicated by the upregulation of a SigM-dependent protein, ethanol also triggered a cell wall stress. To characterize the SigB regulon of B. licheniformis, we analyzed the heat stress response of a sigB mutant. It is shown that the B. licheniformis SigB regulon comprises additional genes, some of which do not exist in B. subtilis, such as BLi03885, encoding a hypothetical protein, the Na/solute symporter gene BLi02212, the arginase homolog-encoding gene BLi00198 and mcrA, encoding a protein with endonuclease activity.

  16. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon.

    PubMed

    Voigt, Birgit; Schroeter, Rebecca; Jürgen, Britta; Albrecht, Dirk; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Schweder, Thomas; Hecker, Michael

    2013-07-01

    The heat and ethanol stress response of Bacillus licheniformis DSM13 was analyzed at the transcriptional and/or translational level. During heat shock, regulons known to be heat-induced in Bacillus subtilis 168 are upregulated in B. licheniformis, such as the HrcA, SigB, CtsR, and CssRS regulon. Upregulation of the SigY regulon and of genes controlled by other extracytoplasmic function (ECF) sigma factors indicates a cell-wall stress triggered by the heat shock. Furthermore, tryptophan synthesis enzymes were upregulated in heat stressed cells as well as regulons involved in usage of alternative carbon and nitrogen sources. Ethanol stress led to an induction of the SigB, HrcA, and CtsR regulons. As indicated by the upregulation of a SigM-dependent protein, ethanol also triggered a cell wall stress. To characterize the SigB regulon of B. licheniformis, we analyzed the heat stress response of a sigB mutant. It is shown that the B. licheniformis SigB regulon comprises additional genes, some of which do not exist in B. subtilis, such as BLi03885, encoding a hypothetical protein, the Na/solute symporter gene BLi02212, the arginase homolog-encoding gene BLi00198 and mcrA, encoding a protein with endonuclease activity. PMID:23592518

  17. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis)

    PubMed Central

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  18. Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Crisbasan, A.; Chaumont, D.; Sacilotti, M.; Crisan, A.; Lazar, A. M.; Ciobanu, I.; Lacroute, Y.; Chassagnon, R.

    2015-12-01

    Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  19. Induction heat treatment and technique of bioceramic coatings production on medical titanium alloys

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Rodionov, Igor V.; Fomina, Marina A.; Poshivalova, Elena Y.; Krasnikov, Aleksandr V.; Petrova, Natalia N.; Zakharevich, Andrey M.; Skaptsov, Alexander A.; Gribov, Andrey N.; Atkin, Vsevolod S.

    2015-03-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, physico-mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  20. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  1. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    SciTech Connect

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  2. Development of a telemetric heat stress monitor. Final report

    SciTech Connect

    1996-10-21

    Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. A prototype of the Telemetric Heat Stress Monitor (THSM) was developed at LANL to warn workers, and personnel monitoring the workers, of incipient heat stress by detecting the workers` elevated temperatures and heart rates. The purpose of this CRADA was to transfer the information and technology from LANL to the industrial partner, and to assist in the further development of a commercial THSM product. The THSM is the first extensive telemetric physiological monitor to be developed; previous monitors used wires between the sensors and the recording and display equipment. Developing a reliable, small, battery-powered, inexpensive telemetry system to share the RF spectrum with today`s proliferating wireless devices was a significant technical accomplishment.

  3. Decision support for subjects exposed to heat stress.

    PubMed

    Seeberg, Trine M; Vardøy, Astrid-Sofie B; Taklo, Maaike M Visser; Austad, Hanne Opsahl

    2013-03-01

    The physiological and activity strain index (PASI) has been developed to improve the online decision support for workers exposed to heat stress. Fire fighters (smoke divers) which are exposed to both heat-stress and high-risk situations have been used as test case. PASI combines a modified version of the relatively well-known physiological strain index (PSI) with activity data from accelerometers. The algorithm has been developed based on tests in a laboratory, and it has been verified in two field tests performed by smoke divers exposed to heat stress. The verification demonstrates that it is possible to distinguish between high- and low-risk situations when data from accelerometers are added to the situation analysis. This indicates that PASI can contribute to an improved risk assessment and online decision support for smoke divers compared to using PSI alone. PMID:24235112

  4. Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device.

    PubMed

    Müller, Christian W; Pfeifer, Ronny; El-Kashef, Tarek; Hurschler, Christof; Herzog, Dirk; Oszwald, Markus; Haasper, Carl; Krettek, Christian; Gösling, Thomas

    2010-12-01

    Shape memory orthopaedic implants made from nickel-titanium (NiTi) might allow the modulation of fracture healing, changing their cross-sectional shape by employing the shape memory effect. We aimed to show the feasibility and safety of contact-free electromagnetic induction heating of NiTi implants in a rat model. A water-cooled generator-oscillator combination was used. Induction characteristics were determined by measuring the temperature increase of a test sample in correlation to generator power and time. In 53 rats, NiTi implants were introduced into the right hind leg. The animals were transferred to the inductor, and the implant was electromagnetically heated to temperatures between 40 and 60°C. Blood samples were drawn before and 4 h after the procedure. IL-1, IL-4, IL-10, TNF-α, and IFN-γ were measured. Animals were euthanized at 3 weeks. Histological specimens from the hind leg and liver were retrieved and examined for inflammatory changes, necrosis, and corrosion pits. Cytokine measurements and histological specimens showed no significant differences among the groups. We concluded that electromagnetic induction heating of orthopedic NiTi implants is feasible and safe in a rat model. This is the first step in the development of new orthopedic implants in which stiffness or rigidity can be modified after implantation to optimize bone-healing.

  5. Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo).

    PubMed

    Rivera, Rafael E; Christensen, V L; Edens, F W; Wineland, M J

    2005-12-01

    Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos

  6. Enemies with benefits: parasitic endoliths protect mussels against heat stress

    PubMed Central

    Zardi, G. I.; Nicastro, K. R.; McQuaid, C. D.; Ng, T. P. T.; Lathlean, J.; Seuront, L.

    2016-01-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation. PMID:27506855

  7. Enemies with benefits: parasitic endoliths protect mussels against heat stress.

    PubMed

    Zardi, G I; Nicastro, K R; McQuaid, C D; Ng, T P T; Lathlean, J; Seuront, L

    2016-01-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation. PMID:27506855

  8. Enemies with benefits: parasitic endoliths protect mussels against heat stress.

    PubMed

    Zardi, G I; Nicastro, K R; McQuaid, C D; Ng, T P T; Lathlean, J; Seuront, L

    2016-08-10

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation.

  9. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  10. Induction of the nuclear factor HIF-1{alpha} in acetaminophen toxicity: Evidence for oxidative stress

    SciTech Connect

    James, Laura P. . E-mail: jameslaurap@uams.edu; Donahower, Brian; Burke, Angela S.; McCullough, Sandra; Hinson, Jack A.

    2006-04-28

    Hypoxia inducible factor (HIF) controls the transcription of genes involved in angiogenesis, erythropoiesis, glycolysis, and cell survival. HIF-1{alpha} levels are a critical determinant of HIF activity. The induction of HIF-1{alpha} was examined in the livers of mice treated with a toxic dose of APAP (300 mg/kg IP) and sacrificed at 1, 2, 4, 8, and 12 h. HIF-1{alpha} was induced at 1-12 h and induction occurred prior to the onset of toxicity. Pre-treatment of mice with N-acetylcysteine (1200 mg/kg IP) prevented toxicity and HIF-1{alpha} induction. In further studies, hepatocyte suspensions were incubated with APAP (1 mM) in the presence of an oxygen atmosphere. HIF-1{alpha} was induced at 1 h, prior to the onset of toxicity. Inclusion of cyclosporine A (10 {mu}M), an inhibitor of mitochondrial permeability transition, oxidative stress, and toxicity, prevented the induction of HIF-1{alpha}. Thus, HIF-1{alpha} is induced before APAP toxicity and can occur under non-hypoxic conditions. The data suggest a role for oxidative stress in the induction of HIF-1{alpha} in APAP toxicity.

  11. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  12. Hypersonic Composites Resist Extreme Heat and Stress

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Through research contracts with NASA, Materials and Electrochemical Research Corporation (MER), of Tucson, Arizona, contributed a number of technologies to record-breaking hypersonic flights. Through this research, MER developed a coating that successfully passed testing to simulate Mach 10 conditions, as well as provide several additional carbon-carbon (C-C) composite components for the flights. MER created all of the leading edges for the X-43A test vehicles at Dryden-considered the most critical parts of this experimental craft. In addition to being very heat resistant, the coating had to be very lightweight and thin, as the aircraft was designed to very precise specifications and could not afford to have a bulky coating. MER patented its carbon-carbon (C-C) composite process and then formed a spinoff company, Frontier Materials Corporation (FMC), also based in Tucson. FMC is using the patent in conjunction with low-cost PAN (polyacrylonitrile)-based fibers to introduce these materials to the commercial markets. The C-C composites are very lightweight and exceptionally strong and stiff, even at very high temperatures. The composites have been used in industrial heating applications, the automotive and aerospace industries, as well as in glass manufacturing and on semiconductors. Applications also include transfer components for glass manufacturing and structural members for carrier support in semiconductor processing.

  13. High temperature setup for measurements of Seebeck coefficient and electrical resistivity of thin films using inductive heating.

    PubMed

    Adnane, L; Williams, N; Silva, H; Gokirmak, A

    2015-10-01

    We have developed an automated setup for simultaneous measurement of Seebeck coefficient S(T) and electrical resistivity ρ(T) of thin film samples from room temperature to ∼650 °C. S and ρ are extracted from current-voltage (I-V) measurements obtained using a semiconductor parameter analyzer and temperature measurements obtained using commercial thermocouples. The slope and the x-axis intercept of the I-V characteristics represent the sample conductance G and the Seebeck voltage, respectively. The measured G(T) can be scaled to ρ(T) by the geometry factor obtained from the room temperature resistivity measurement of the film. The setup uses resistive or inductive heating to control the temperature and temperature gradient on the sample. Inductive heating is achieved with steel plates that surround the test area and a water cooled copper pipe coil underneath that generates an AC magnetic field. The measurements can be performed using resistive heating only or inductive heating only, or a combination of both depending on the desired heating ranges. Inductive heating provides a more uniform heating of the test area, does not require contacts to the sample holder, can be used up to the Curie temperature of the particular magnetic material, and the temperature gradients can be adjusted by the relative positions of the coil and sample. Example results obtained for low doped single-crystal silicon with inductive heating only and with resistive heating only are presented. PMID:26520996

  14. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  15. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  16. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE).

    PubMed Central

    Martínez-Pastor, M T; Marchler, G; Schüller, C; Marchler-Bauer, A; Ruis, H; Estruch, F

    1996-01-01

    The MSN2 and MSN4 genes encode homologous and functionally redundant Cys2His2 zinc finger proteins. A disruption of both MSN2 and MSN4 genes results in a higher sensitivity to different stresses, including carbon source starvation, heat shock and severe osmotic and oxidative stresses. We show that MSN2 and MSN4 are required for activation of several yeast genes such as CTT1, DDR2 and HSP12, whose induction is mediated through stress-response elements (STREs). Msn2p and Msn4p are important factors for the stress-induced activation of STRE dependent promoters and bind specifically to STRE-containing oligonucleotides. Our results suggest that MSN2 and MSN4 encode a DNA-binding component of the stress responsive system and it is likely that they act as positive transcription factors. Images PMID:8641288

  17. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-01

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions.

  18. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-01

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. PMID:27151892

  19. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.

    PubMed

    Ahsan, Nagib; Donnart, Tifenn; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2010-08-01

    A comparative proteomic approach was employed to explore tissue-specific protein expression patterns in soybean seedlings under heat stress. The changes in the protein expression profiles of soybean seedling leaves, stems, and roots were analyzed after exposure to high temperatures. A total of 54, 35, and 61 differentially expressed proteins were identified from heat-treated leaves, stems, and roots, respectively. Differentially expressed heat shock proteins (HSPs) and proteins involved in antioxidant defense were mostly up-regulated, whereas proteins associated with photosynthesis, secondary metabolism, and amino acid and protein biosynthesis were down-regulated in response to heat stress. A group of proteins, specifically low molecular weight HSPs and HSP70, were up-regulated and expressed in a similar manner in all tissues. Proteomic analysis indicated that the responses of HSP70, CPN-60 beta, and ChsHSP were tissue specific, and this observation was validated by immunoblot analysis. The heat-responsive sHSPs were not induced by other stresses such as cold and hydrogen peroxide. Taken together, these results suggest that to cope with heat stress soybean seedlings operate tissue-specific defenses and adaptive mechanisms, whereas a common defense mechanism associated with the induction of several HSPs was employed in all three tissues. In addition, tissue-specific proteins may play a crucial role in defending each type of tissues against thermal stress.

  20. Heat stress preconditioning improves cognitive outcome after diffuse axonal injury in rats.

    PubMed

    Su, Zhangjie; Han, Dadong; Sun, Bo; Qiu, Jiaheng; Li, Ying; Li, Mu; Zhang, Tao; Yang, Zhuo

    2009-10-01

    This study investigates the influence of heat stress preconditioning on cognitive outcome for rats with diffuse axonal injury (DAI), and attempts to examine the underlying mechanisms. Wistar rats were divided into four groups: rats subjected to heat stress preconditioning 24 h before induction of DAI (n = 10; HSDAI group), a DAI alone group (n = 10), a heat stress alone group (n = 10), and a sham-injury group (n = 10). From day 14 post-injury, the rats' learning abilities and memory were tested using the Morris water maze (MWM) task, followed by long-term potentiation (LTP) recording of the hippocampus. In addition, hematoxylin and eosin staining (H&E) and immunohistochemical staining (IHC) were conducted to determine the presence of brain lesions and expression of heat shock protein 70 (HSP70) at 24 h, and on days 14 and 20 post-injury. The rats in the DAI group displayed impaired MWM performance and attenuated LTP compared to the sham group (p < 0.05); the rats in the HSDAI and HS groups showed significant improvement in both MWM and LTP compared with the DAI group (p < 0.05), and no significant differences with the sham group (p > 0.05). Following injury, retraction balls, shrunken neurons, and HSP70 expression were visible in the brains of rats from the DAI and HSDAI groups; recovery was expedited in the rats belonging to the HSDAI group, as these pathological changes were alleviated, coincident with higher expression of HSP70. The rats' abilities for learning and memory were impaired following DAI; this may be due to the disconnection of brain regions, damage to neurons in the hippocampus, and a decrease in synaptic plasticity. Heat stress preconditioning is able to significantly attenuate this cognitive impairment, possibly mediated by the neuroprotective effect of HSP70.

  1. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum

    PubMed Central

    Cheng, Fei; Yin, Ling-Ling; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Yu, Jing-Quan; Zhou, Yan-Hong; Foyer, Christine Helen

    2016-01-01

    2-Cys peroxiredoxins (2-CPs) function in the removal of hydrogen peroxide and lipid peroxides but their precise roles in the induction of autophagy have not been characterized. Here we show that heat stress, which is known to induce oxidative stress, leads to the simultaneous accumulation of transcripts encoding 2-CPs and autophagy proteins, as well as autophagosomes, in tomato (Solanum lycopersicum) plants. Virus-induced gene silencing of the tomato peroxiredoxin genes 2-CP1, 2-CP2, and 2-CP1/2 resulted in an increased sensitivity of tomato plants to heat stress. Silencing 2-CP2 or 2-CP1/2 increased the levels of transcripts associated with ascorbate biosynthesis but had no effect on the glutathione pool in the absence of stress. However, the heat-induced accumulation of transcripts associated with the water-water cycle was compromised by the loss of 2-CP1/2 functions. The transcript levels of autophagy-related genes ATG5 and ATG7 were higher in plants with impaired 2-CP1/2 functions, and the formation of autophagosomes increased, together with an accumulation of oxidized and insoluble proteins. Silencing of ATG5 or ATG7 increased the levels of 2-CP transcripts and protein but decreased heat stress tolerance. These results demonstrate that 2-CPs fulfil a pivotal role in heat stress tolerance in tomato, via interactions with ascorbate-dependent pathways and autophagy. PMID:26834179

  2. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum.

    PubMed

    Cheng, Fei; Yin, Ling-Ling; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Yu, Jing-Quan; Zhou, Yan-Hong; Foyer, Christine Helen

    2016-03-01

    2-Cys peroxiredoxins (2-CPs) function in the removal of hydrogen peroxide and lipid peroxides but their precise roles in the induction of autophagy have not been characterized. Here we show that heat stress, which is known to induce oxidative stress, leads to the simultaneous accumulation of transcripts encoding 2-CPs and autophagy proteins, as well as autophagosomes, in tomato (Solanum lycopersicum) plants. Virus-induced gene silencing of the tomato peroxiredoxin genes 2-CP1, 2-CP2, and 2-CP1/2 resulted in an increased sensitivity of tomato plants to heat stress. Silencing 2-CP2 or 2-CP1/2 increased the levels of transcripts associated with ascorbate biosynthesis but had no effect on the glutathione pool in the absence of stress. However, the heat-induced accumulation of transcripts associated with the water-water cycle was compromised by the loss of 2-CP1/2 functions. The transcript levels of autophagy-related genes ATG5 and ATG7 were higher in plants with impaired 2-CP1/2 functions, and the formation of autophagosomes increased, together with an accumulation of oxidized and insoluble proteins. Silencing of ATG5 or ATG7 increased the levels of 2-CP transcripts and protein but decreased heat stress tolerance. These results demonstrate that 2-CPs fulfil a pivotal role in heat stress tolerance in tomato, via interactions with ascorbate-dependent pathways and autophagy. PMID:26834179

  3. [Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids].

    PubMed

    Kolupaev, Yu E; Vayner, A A; Yastreb, T O; Oboznyi, A I; Khripach, V A

    2015-01-01

    The involvement of Ca2+ into the signal transduction of exogenous brassinosteroids (BS) (24-epi-brassinolide-24-EBL and 24-epicastasterone-24-ECS) causing the increase of heat resistance of the cells of wheat (Triticum aestivum L.) coleoptiles was investigated using calcium chelator EGTA and inhibitor of phosphatidylinositol-specific phospholipase C--neomycin. Twenty-four-hour treatment of coleoptile segments with 10 nM solutions of 24-EBL and 24-ECS led to a transient increase in the generation of superoxide anion radical by cell surface and the subsequent activation of superoxide dismutase and catalase. Pretreatment of coleoptiles with EGTA and neomycin depressed to a considerable extent these effects and leveled the increase in heat resistance of wheat coleoptiles that were caused by BS. Possible mechanisms of involvement of calcium signaling into the formation of reactive oxygen species in plant cells and induction of heat resistance of plant cells by the action of exogenous BS have been discussed.

  4. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  5. Genetic solutions to infertility caused by heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  6. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  7. Simulating canopy temperature for modelling heat stress in cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  8. Boundary element techniques - Applications in stress analysis and heat transfer

    SciTech Connect

    Brebbia, C.A.; Venturini, W.S.

    1987-01-01

    This volume includes contributions in the field of stress analysis, soil and rock mechanics, non-linear problems, dynamics and vibrations, plate bending and heat transfer. The companion volume includes contributions dealing with viscous and inviscid fluid flow, aerodynamics and hydrodynamics applications, elastostatics and computational and mathematical aspects.

  9. Heat Stress Screening of Peanut Seedlings for Acquired Thermotolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a user-friendly and medium throughput laboratory protocol using acquired thermotolerance (ATT) in peanut seedlings as a measure of one mechanism of heat stress tolerance. Sixteen genotypes, including selected accessions of the U.S. peanut min...

  10. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study is to characterize the thermoregulatory responses of unrestrained heat-stressed dairy cows within a freestall environment using fan and spray configurations for cooling cows while lying or standing. An experimental treatment sprayed individual cows lying in freestalls from ...

  11. Short Communication: Genotype by Environment Interaction Due to Heat Stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress was evaluated as a factor in differences between regional evaluations for milk yield in the United States. The national data set (NA) consisted of 56 million first-parity test-day milk yields on 6 million Holsteins. The Northeastern subset (NE) included 12.5 million records on 1.3 millio...

  12. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  13. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-03-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  14. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death.

  15. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  16. Hormetic modulation of aging and longevity by mild heat stress.

    PubMed

    Rattan, Suresh I S

    2006-05-22

    Aging is characterized by a stochastic accumulation of molecular damage, progressive failure of maintenance and repair, and consequent onset of age-related diseases. Applying hormesis in aging research and therapy is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. In a series of experimental studies we have shown that repetitive mild heat stress has anti-aging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. These effects include the maintenance of stress protein profiles, reduction in the accumulation of oxidatively and glycoxidatively damaged proteins, stimulation of the proteasomal activities for the degradation of abnormal proteins, improved cellular resistance to ethanol, hydrogen peroxide and ultraviolet-B rays, and enhanced levels of various antioxidant enzymes. Anti-aging hormetic effects of mild heat shock appear to be facilitated by reducing protein damage and protein aggregation by activating internal antioxidant, repair and degradation processes.

  17. Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination.

    PubMed

    Ashoub, Ahmed; Baeumlisberger, Marion; Neupaertl, Moritz; Karas, Michael; Brüggemann, Wolfgang

    2015-03-01

    In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.

  18. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    PubMed

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  19. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  20. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels

    PubMed Central

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance. PMID:25050702

  1. Impact of Stationary Direct Current in the Central Solenoidal Coil on Tokamak Plasma Formation by Non-induction Heating

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu

    2016-09-01

    Stationary direct current in the central solenoidal coil (DCCS) of tokamak devices can reduce the non-induction heating energy necessary for tokamak plasma formation. The magnetic field energy in the inner region of the central solenoidal coil (CS region) is expelled during the tokamak plasma formation, because the vertical magnetic field intensity generated by the central solenoidal coil and poloidal field coils is partly cancelled by the increase in the toroidal plasma current. Because this magnetic field energy expelled from the CS region is distributed to the tokamak plasma in accordance with the mutual inductance, this expelled energy can drive the toroidal plasma current inductively. This energy expulsion in the CS region can be enhanced by the DCCS without the modification of the tokamak plasma configuration, when the CS coil current has negligible leakage magnetic field in the plasma area. Because the drive of the toroidal plasma current by non-induction heating can be assisted by this inductive current drive mechanism, the non-induction heating energy necessary for the tokamak plasma formation can be reduced by the DCCS. If the non-induction heating is constant, the tokamak plasma formation time can be shorted by the DCCS.

  2. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Zhang, WeiNa; Chen, WenLi

    2010-02-01

    Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including oxidative stress. Cd, as a toxicity heavy metal, resulted in the production of reactive oxygen species (ROS). In this paper, we demonstrated that ROS contributed to the induction of autophagy in Cd-stressed Arabidopsis thaliana. However, pre-incubation with ascorbic acid (AsA, antioxidant molecule) and catalase (CAT, a H2O2-specific scavenger) decreased the ROS production and the number of autolysosomal-like structures. Together our results indicated that the oxidative condition was essential for autophagy, as treatment with AsA and CAT abolished the formation of autophagosomes, and ROS may function as signal molecules to induce autophagy in abiotic stress.

  3. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  4. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  5. Autophagy Induction Protects Against 7-Oxysterol-induced Cell Death via Lysosomal Pathway and Oxidative Stress

    PubMed Central

    Yuan, Xi-Ming; Sultana, Nargis; Siraj, Nabeel; Ward, Liam J.; Ghafouri, Bijar; Li, Wei

    2016-01-01

    7-Oxysterols are major toxic components in oxidized low-density lipoprotein and human atheroma lesions, which cause lysosomal membrane permeabilization (LMP) and cell death. Autophagy may function as a survival mechanism in this process. Here, we investigated whether 7-oxysterols mixed in an atheroma-relevant proportion induce autophagy, whether autophagy induction influences 7-oxysterol-mediated cell death, and the underlying mechanisms, by focusing on cellular lipid levels, oxidative stress, and LMP in 7-oxysterol-treated macrophages. We found that 7-oxysterols induced cellular lipid accumulation, autophagy dysfunction, and cell death in the form of both apoptosis and necrosis. Exposure to 7-oxysterols induced autophagic vacuole synthesis in the form of increased autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and LC3-phosphatidylethanolamine conjugate (LC3-II) and autophagic vacuole formation. This led to an accumulation of p62, indicating a reduction in autophagic vacuole degradation. Importantly, autophagy induction significantly reduced 7-oxysterol-mediated cell death by diminishing LMP and oxidative stress. Moreover, autophagy induction minimized cellular lipid accumulation induced by 7-oxysterols. These findings highlight the importance of autophagy in combating cellular stress, LMP, and cell death in atherosclerosis. Therefore, activation of the autophagy pathway may be a potential therapeutic strategy for prevention of necrotic core formation in atherosclerotic lesions. PMID:26966389

  6. Arousal Predisposition as a Vulnerability Indicator for Psychosis: A General Population Online Stress Induction Study

    PubMed Central

    Clamor, Annika; Warmuth, A. Malika; Lincoln, Tania M.

    2015-01-01

    Explanatory models ascribe to arousability a central role for the development of psychotic symptoms. Thus, a disposition to hyperarousal (i.e., increased arousal predisposition (AP)) may serve as an underlying vulnerability indicator for psychosis by interacting with stressors to cause symptoms. In this case, AP, stress-response, and psychotic symptoms should be linked before the development of a diagnosable psychotic disorder. We conducted a cross-sectional online study in a population sample (N = 104; Mage = 27.7 years, SD = 11.2, range 18–70). Participants rated their AP and subclinical psychotic symptoms. Participants reported their stress-levels before and after two stress inductions including an arithmetic and a social stressor. The participants with an increased AP generally felt more stressed. However, AP was not associated with the specific stress-response. As expected, positive psychotic symptoms were significantly associated with AP, but this was not mediated by general stress-levels. Its association to subtle, nonclinical psychotic symptoms supports our assumption that AP could be a vulnerability indicator for psychosis. The trait is easily accessible via a short self-report and could facilitate the identification of people at risk and be a promising target for early stress-management. Further research is needed to clarify its predictive value for stress-responses. PMID:26199758

  7. An adaptability limit to climate change due to heat stress.

    PubMed

    Sherwood, Steven C; Huber, Matthew

    2010-05-25

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature T(W), is surprisingly similar across diverse climates today. T(W) never exceeds 31 degrees C. Any exceedence of 35 degrees C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 degrees C, calling the habitability of some regions into question. With 11-12 degrees C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 degrees C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record.

  8. Intermediate filaments take the heat as stress proteins

    PubMed Central

    Toivola, D.M.; Strnad, P.; Habtezion, A.; Omary, M.B.

    2010-01-01

    Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multi-membered families that share several features. These features include protein abundance, significant up-regulation in response to a variety of stresses, function as cytoprotectors, and the phenocopying of several human diseases upon IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress while HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. We review here recent data that corroborate the view that IFs function as highly-specialized cytoskeletal stress proteins that promote cellular organization and homeostasis. PMID:20045331

  9. Electromagnetic interference with a bipolar pacemaker by an induction heating (IH) rice cooker.

    PubMed

    Nagatomo, Toshihisa; Abe, Haruhiko; Kohno, Ritsuko; Toyoshima, Takeshi; Fujimoto, Hiroshi; Kondo, Shoichi; Kabashima, Narutoshi; Takeuchi, Masaaki; Tamura, Masahito; Okazaki, Masahiro; Otsuji, Yutaka

    2009-01-01

    Electromagnetic fields may interfere with normal pacemaker function. Despite new device designs and bipolar leads, electromagnetic interference (EMI) remains a concern when pacemaker recipients are exposed to various household appliances. We report the observation of EMI by an induction heating (IH) rice cooker in a patient with sick sinus syndrome who was the recipient of a bipolar dual chamber-pacing system. Stored electrograms revealed episodes of inappropriate ventricular pacing, all coinciding with the opening of an IH rice cooker. Recipients of implantable medical devices must be warned to handle IH rice cookers with caution.

  10. Ibogaine blocked methamphetamine-induced hyperthermia and induction of heat shock protein in mice.

    PubMed

    Yu, X; Imam, S Z; Newport, G D; Slikker, W; Ali, S F

    1999-03-27

    Body temperature changes and heat shock protein (HSP-72) induction in the caudate nucleus were studied in female C57BL/6N mice pretreated with ibogaine (50 mg/kg) and sacrificed 48 h. after a single dose of methamphetamine (20 mg/kg). Methamphetamine injection resulted in hyperthermia and induced HSP-72 expression, whereas treatment with ibogaine alone produced hypothermia. The ibogaine followed by methamphetamine injection showed no hyperthermia and decreased HSP-72 expression. These data indicate that pretreatment with ibogaine can completely block methamphetamine-induced hyperthermia and HSP-72 expression in the striatum.

  11. Magneto-inductive heating of water-based iron oxide ferrofluids

    NASA Astrophysics Data System (ADS)

    Novoselova, Iu. P.; Safronov, A. P.; Samatov, O. M.; Kurlyandskaya, G. V.

    2016-09-01

    Spherical magnetic nanoparticles (MNPs) of iron oxide were fabricated by laser target evaporation technique. Water-based ferrofluids were prepared on the basis of obtained MNPs. Their structure and magnetic properties were studied by a number of methods including transmission electron microscopy, X-ray diffraction, SQUID-magnetometry and magnetic relaxation losses measurements. Magneto-inductive heating experiment showed the specific power loss value of 2 W/g for 1.8 kA/m alternating magnetic field of 214 kHz frequency. These parameters indicate that LTE MNPs are perspective materials for biomedical applications such as hyperthermia.

  12. Historical Review of Electric Household Appliances using Induction-Heating and Future Challenging Trends

    NASA Astrophysics Data System (ADS)

    Hirota, Izuo; Yamashita, Hidekazu; Omori, Hideki; Nakaoka, Mutsuo

    This paper presents historical progress on technology evolution of the electric and electronic household appliances using the inverter, especially for Induction-Heating applications, which have been put in practical use as the desk-top cooker for the first time at home in 1974 until being applied to the rice cooker and the multi-burner cooking heater. It also describes the future innovative evolution of the power semiconductor switching devices and the inverter circuit topologies supporting its progressive developments. Looking back its progress, the future trends on consumer power electronics is discussed on the practical problem in the future.

  13. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    PubMed

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  14. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  15. Comparative studies on temperature threshold for heat shock protein 70 induction in young and adult Murrah buffaloes.

    PubMed

    Haque, N; Ludri, A; Hossain, S A; Ashutosh, M

    2012-10-01

    To know the temperature threshold for heat shock protein 70 (HSP70) induction in lymphocytes and to assess physiological changes, if any, in relation to HSP70 induction in young and adult Murrah buffaloes, this study was divided into two parts: I. In vivo study: where assay of HSP70 was performed in blood samples collected from acutely exposed young and adult Murrah buffaloes (n = 6) inside a climatic chamber at 40, 42 and 45 °C for 4 h and thermoneutral temperature (22 °C). Physiological parameters viz., rectal temperature, respiratory rate, pulse rate and skin temperature of different body parts were monitored to assess magnitude of stress in the animals owing to thermal exposure II. For in vitro study, equal numbers of lymphocyte cells were separated from blood collected from young and adult buffaloes and were subjected to four temperature treatments (38, 40, 42 and 45 °C) for 4 h. A significant increase (p < 0.05) in all the physiological parameters in both young and adult buffaloes was observed after exposure to 40, 42 and 45 °C for 4 h as compared to 38 °C. The average plasma HSP70 concentrations (ng/ml) were significantly higher (p < 0.05) at 40, 42 and 45 °C as compared to 38 °C in both young and adult and were higher in young than adult buffaloes at 38 and 45 °C. Heat shock protein 70 level in lymphocyte lysate showed highest concentration after 3-h exposure to all temperatures (40, 42 and 45 °C) in both young and adult buffaloes. The intensity of changes of all physiological parameters was more in young animals than in the adults indicating the greater susceptibility of younger animals to heat stress and was found to be changed at around 40 °C when animals were exposed to different temperatures, indicating the possibility that HSP70 production may be initiated at this temperature which is 2 or 3 °C higher than core body temperature.

  16. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia)*

    PubMed Central

    Liu, Dong-feng; Zhang, Dong; Liu, Guo-qin; Hussain, Sayed; Teng, Yuan-wen

    2013-01-01

    Plants encounter a variety of stresses in natural environments. One-year-old pot-grown trees of pear (Pyrus pyrifolia Nakai cv. Cuiguan and Wonhwang) were exposed to two heat stress regimes. Under constant short-term heat stress, chloroplasts and mitochondria were visibly damaged. Relative chlorophyll content and maximum photochemical efficiency of photosystem II were significantly decreased, which indicated that the leaf photosynthetic capability declined. Under chronic heat stress, mesophyll cell ultrastructure was not obviously damaged, but leaf photosynthetic capability was still restrained. As chronic heat stress was a simulation of the natural environment in summer, further study of the responses under this stress regime was undertaken. Ascorbate peroxidase (APX) activity was increased in ‘Cuiguan’, but not in ‘Wonhwang’. Inducible expression of PpAPX genes in the cytoplasm, chloroplasts and peroxisomes was consistent with increased APX activity in ‘Cuiguan’, whereas only weak induction of PpAPX genes was observed in ‘Wonhwang’. The isoenzymes cytosolic APX1 (cAPX1) and stromal APX (sAPX) were confirmed to be localized in the cytoplasm and chloroplasts, respectively. PMID:24302708

  17. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia).

    PubMed

    Liu, Dong-feng; Zhang, Dong; Liu, Guo-qin; Hussain, Sayed; Teng, Yuan-wen

    2013-12-01

    Plants encounter a variety of stresses in natural environments. One-year-old pot-grown trees of pear (Pyrus pyrifolia Nakai cv. Cuiguan and Wonhwang) were exposed to two heat stress regimes. Under constant short-term heat stress, chloroplasts and mitochondria were visibly damaged. Relative chlorophyll content and maximum photochemical efficiency of photosystem II were significantly decreased, which indicated that the leaf photosynthetic capability declined. Under chronic heat stress, mesophyll cell ultrastructure was not obviously damaged, but leaf photosynthetic capability was still restrained. As chronic heat stress was a simulation of the natural environment in summer, further study of the responses under this stress regime was undertaken. Ascorbate peroxidase (APX) activity was increased in 'Cuiguan', but not in 'Wonhwang'. Inducible expression of PpAPX genes in the cytoplasm, chloroplasts and peroxisomes was consistent with increased APX activity in 'Cuiguan', whereas only weak induction of PpAPX genes was observed in 'Wonhwang'. The isoenzymes cytosolic APX1 (cAPX1) and stromal APX (sAPX) were confirmed to be localized in the cytoplasm and chloroplasts, respectively.

  18. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  19. Microclimate and Heat Stress of Runners in Mass Participation Events.

    NASA Astrophysics Data System (ADS)

    de Freitas, C. R.; Dawson, N. J.; Young, A. A.; Mackey, W. J.

    1985-02-01

    The largest mass participation fun run in the world took place in Auckland, New Zealand where an estimated 80000 participants ran 10.4 km `Round the Bays' in the early fall of 1982. Even in the relatively mild climate of Auckland, heat stroke and other types of heat illness occur during this annual event. Techniques for thermal assessment of human bioclimate have not been applied to an exercising crowd although it is widely accepted that crowding will reduce the heat loss of individuals. To quantify the possible heat load brought about by running in a large crowd, those components of the microenvironment that affect radiant, evaporative and convective heat exchange were measured, both within the mass of runners and separately from it. These data were used as input for two detailed body-environment heat exchange models which show the effect of the runners themselves on the thermal environment. Since it is assumed that changes longwave radiation exchange and convective losses from the body are likely to be the major causes of differences between solo and group running, these avenues of heat exchange are carefully assessed . The results show that longwave radiative losses can be reduced substantially by running in a lame group compared to solo running, but the absolute size of the increase in net heat load on the individual is small. However, heat loss by convection for group runners is less than half that for sole runners. This may be the result of entertainment of air within an atmospheric envelope below head level in which wind speed and direction are the same as the runner's and direction. For the weather conditions prevailing at the time of the experiment, jogging in the main bunch of runners is estimated to cause, on occasions, more than three times the heat stress on the body compared to that experienced when running solo along the same route at the same time of day during identical weather conditions.

  20. Modelling the heat stress and the recovery of bacterial spores.

    PubMed

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  1. Reduced tolerance for heat stress environments caused by protective lotions.

    PubMed

    Spaul, W A; Boatman, J A; Emling, S W; Dirks, H G; Flohr, S B; Crocker, W H; Glazeski, M A

    1985-08-01

    There have been complaints of excessive heat after applying skin protective lotions. The purpose of this study was to determine if oil-base or alcohol-base protective lotions interfere with the body's cooling mechanisms during moderate work in heat stress conditions, and if so, then to identify the mechanisms. This was accomplished by evaluating the effect of lotions on thermoregulation as measured by rectal temperatures, local sweat rates, and total water losses during exercise at elevated temperatures. In comparison to the control, after about thirty minutes, the skin lotion tests resulted in a more hyperthermic condition, as measured by rectal temperatures.

  2. Quantifying livestock responses for heat stress management: a review.

    PubMed

    Nienaber, J A; Hahn, G L; Eigenberg, R A

    1999-04-01

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep. PMID:10232054

  3. Quantifying livestock responses for heat stress management: a review

    NASA Astrophysics Data System (ADS)

    Nienaber, J. A.; Hahn, G. L.; Eigenberg, R. A.

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep.

  4. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment

    NASA Astrophysics Data System (ADS)

    Clos, Joachim; Rabindran, Sridhar; Wisniewski, Jan; Wu, Carl

    1993-07-01

    HEAT shock factor (HSF)1,2, the transcriptional activator of eukaryotic heat shock genes, is induced to bind DNA by a monomer to trimer transition involving leucine zipper interactions3,4. Although this mode of regulation is shared among many eukaryotic species, there is variation in the temperature at which HSF binding activity is induced. We investigated the basis of this variation by analysing the response of a human HSF expressed in Drosophila cells and Drosophila HSF expressed in human cells. We report here that the temperature that induces DNA binding and trimerization of human HSF in Drosophila was decreased by ~10 °C to the induction temperature for the host cell, whereas Drosophila HSF expressed in human cells was constitutively active. The results indicate that the activity of HSF in vivo is not a simple function of the absolute environmental temperature.

  5. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  6. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah

    2015-01-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. PMID:25767030

  7. Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction.

    PubMed

    Hong, Min-Eui; Hwang, Sung Kwan; Chang, Won Seok; Kim, Byung Woo; Lee, Jeewon; Sim, Sang Jun

    2015-06-01

    High temperatures (30-36 °C) inhibited astaxanthin accumulation in Haematococcus pluvialis under photoautotrophic conditions. The depression of carotenogenesis was primarily attributed to excess intracellular less reactive oxygen species (LROS; O2 (-) and H2O2) levels generated under high temperature conditions. Here, we show that the heat stress-driven inefficient astaxanthin production was improved by accelerating the iron-catalyzed Haber-Weiss reaction to convert LROS into more reactive oxygen species (MROS; O2 and OH·), thereby facilitating lipid peroxidation. As a result, during 18 days of photoautotrophic induction, the astaxanthin concentration of cells cultured in high temperatures in the presence of iron (450 μM) was dramatically increased by 75 % (30 °C) and 133 % (36 °C) compared to that of cells exposed to heat stress alone. The heat stress-driven Haber-Weiss reaction will be useful for economically producing astaxanthin by reducing energy cost and enhancing photoautotrophic astaxanthin production, particularly outdoors utilizing natural solar radiation including heat and light for photo-induction of H. pluvialis.

  8. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    PubMed Central

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-01-01

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate. PMID:27690079

  9. Induction and measurement of UPR and osmotic stress in the yeast Pichia pastoris.

    PubMed

    Dragosits, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2011-01-01

    Unfolded protein response (UPR) is a major reaction to intrinsic stress of eukaryotic organisms and is also related to environmental stress reactions. Among yeasts, stress regulation has mainly been investigated in Saccharomyces cerevisiae, while other species with biotechnological or medical interest are less well understood. Pichia pastoris as one example has emerged as a favorite production platform for recombinant proteins during the last two decades. UPR and environmental stress are well known to interfere with the production of recombinant proteins as well as other technologically relevant processes, so that the demand for well-documented protocols to measure such stress reactions has strongly increased. Here, we describe protocols for the induction of UPR and osmotic stress, as well as for the quantitative measurement of cellular stress reactions at the levels of transcripts, proteins, and metabolites. As such protocols need to be adapted for a new species of interest, the guidelines presented here should enable researchers to study P. pastoris directly without the hassle to modify standard protocols designed for the model organism S. cerevisiae first.

  10. Pulmonary Artery and Intestinal Temperatures during Heat Stress and Cooling

    PubMed Central

    Pearson, James; Ganio, Matthew S; Seifert, Thomas; Overgaard, Morten; Secher, Niels H; Crandall, Craig G

    2011-01-01

    Introduction/Purpose In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used in laboratory settings as well as in athletics. However, it is unknown whether intestinal temperature accurately tracks pulmonary artery blood temperature, the gold standard, during thermal stimuli in resting humans, which is the investigated hypothesis. Methods This study compared pulmonary artery blood temperature (via thermistor in a pulmonary artery catheter) with intestinal temperature (telemetry pill) during whole-body heat stress (n=8), followed by whole-body cooling in healthy humans (mean ± SD age 24 ± 3 yrs; height 183 ± 8 cm; mass 78.1 ± 8.2 kg). Heat stress and subsequent cooling were performed by perfusing warm followed by cold water through a tube-lined suit worn by each subject. Results Prior to heat stress blood temperature (36.69 ± 0.25°C) was less than intestinal temperature (36.96 ± 0.21°C, P = 0.004). The increase in blood temperature after 20 min of heat stress was greater than intestinal temperature (0.70 ± 0.24 vs. 0.47 ± 0.18; P = 0.001). However, the increase in temperatures at the end of heat stress were similar between sites (blood Δ = 1.32 ± 0.20°C vs. intestinal Δ = 1.21 ± 0.36°C; P = 0.30). Subsequent cooling decreased blood temperature (Δ = −1.03 ± 0.34°C) to a greater extent than intestinal temperature (Δ = −0.41 ± 0.30°C, P = 0.04). Conclusion In response to the applied thermal provocations, early temperature changes in the intestine are less than the temperature changes in pulmonary artery blood. PMID:22015711

  11. Modelflow underestimates cardiac output in heat-stressed individuals

    PubMed Central

    Shibasaki, Manabu; Wilson, Thad E.; Bundgaard-Nielsen, Morten; Seifert, Thomas; Secher, Niels H.

    2011-01-01

    An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were similar with cardiac outputs measured by thermodilution (6.4 ± 0.8 l/min). The subsequent reduction in cardiac output during LBNP was also similar among these methods. Whole body heat stress elevated internal temperature from 36.6 ± 0.3 to 37.8 ± 0.4°C and increased cardiac output from 6.4 ± 0.8 to 10.9 ± 2.0 l/min when evaluated with thermodilution (P < 0.001). However, the increase in cardiac output estimated from the Modelflow method for both arterial cannulation (2.3 ± 1.1 l/min) and Finometer (1.5 ± 1.2 l/min) was attenuated compared with thermodilution (4.5 ± 1.4 l/min, both P < 0.01). Finally, the reduction in cardiac output during LBNP while heat stressed was significantly attenuated for both Modelflow methods (cannulation: −1.8 ± 1.2 l/min, Finometer: −1.5 ± 0.9 l/min) compared with thermodilution (−3.8 ± 1.19 l/min). These results demonstrate that the Modelflow method, regardless of Finometer or direct arterial waveforms, underestimates cardiac output during heat stress and during subsequent reductions in cardiac output via LBNP. PMID

  12. Heat stress during the Black Saturday event in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephanie J.; Vihma, Timo; Pezza, Alexandre B.

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h-1 and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h-1 to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  13. Heat stress during the Black Saturday event in Melbourne, Australia.

    PubMed

    Jacobs, Stephanie J; Vihma, Timo; Pezza, Alexandre B

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h(-1) and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h(-1) to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience. PMID:25172086

  14. Heat stress during the Black Saturday event in Melbourne, Australia.

    PubMed

    Jacobs, Stephanie J; Vihma, Timo; Pezza, Alexandre B

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h(-1) and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h(-1) to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  15. Suppressed peripheral blood lymphocyte blastogenesis in pre- and postpartal sheep by chronic heat-stress, and suppressive property of heat-stressed sheep serum on lymphocytes.

    PubMed

    Niwano, Y; Becker, B A; Mitra, R; Caldwell, C W; Abdalla, E B; Johnson, H D

    1990-01-01

    Phytohemagglutinin (PHA) and concanavalin A (Con A)-induced blastogenesis of peripheral blood lymphocytes was examined in heat-stressed pre- and postpartal sheep. The peak responses of lymphocytes to PHA and Con A in heat-stressed sheep revealed significant reduction before and after parturition compared with those in the corresponding control animals kept under thermoneutral conditions. Furthermore, the effect of serum from control or heat-stressed sheep on PHA-induced lymphocyte blastogenesis was examined. Supplementation of serum from heat-stressed sheep significantly suppressed the blastogenesis of lymphocytes obtained from healthy sheep, bovine, and human donors. Unlike dexamethasone, heat-stressed sheep serum did not inhibit IL-2 production by PHA-stimulated human peripheral blood lymphocytes. These results indicate that the immunosuppression of heat-stressed sheep is in part mediated by serum factor(s) that can modulate T-cell function in a species nonspecific manner.

  16. Heat stress causes substantial labour productivity loss in Australia

    NASA Astrophysics Data System (ADS)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  17. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction.

    PubMed

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  18. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    NASA Astrophysics Data System (ADS)

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-12-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature.

  19. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  20. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis.

    PubMed

    Nowak, Katarzyna; Gaj, Małgorzata D

    2016-04-01

    The bHLH109 gene of the bHLH family was identified among the transcription factor encoding genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong activation of bHLH109 expression was found to be associated with somatic embryogenesis (SE) induction. Several pieces of evidence suggested the involvement of bHLH109 in SE, including the high stimulation of the gene expression in SE-induced explants, which contrasts to the drastically lower level of the gene transcripts in the non-embryogenic callus and in tissue that is induced towards shoot regeneration via organogenesis. Moreover, in contrast to the overexpression of bHLH109, which has been indicated to enhance SE induction in a culture, the bhlh109 knock-out mutation was found to impair the embryogenic potential of explants. In order to identify the genes interacting with the bHLH109, the candidate co-expressed genes were identified in a yeast one hybrid assay. The in vitro regulatory interactions that were identified were verified through mutant and expression analysis. The results suggest that in SE bHLH109 acts as an activator of ECP63, a member of the LEA (LATE EMBRYOGENESIS ABUNDANT) family. Among the potential regulators of bHLH109, three candidates (At5g61620, bZIP4 and bZIP43) were indicated to possibly control bHLH109. The functions of all of the genes that are assumed to interact with bHLH109 are annotated to stress responses. Collectively, the results of the study provide new evidence that cell responses to stress that is imposed under in vitro conditions underlies the promotion of SE. bHLH109 may play a central role in the stress-related mechanism of SE induction via an increased accumulation of the LEA protein (ECP63), which results in the enhanced tolerance of the cells to stress. PMID:26973252

  1. Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells

    SciTech Connect

    Applegate, L.A.; Luscher, P.; Tyrrell, R.M. )

    1991-02-01

    Accumulation of heme oxygenase mRNA is strongly stimulated by treatment of cultured human skin fibroblasts with ultraviolet radiation, hydrogen peroxide, or the sulfhydryl reagent sodium arsenite. Since this will result in a transient reduction in the prooxidant state of cells, the phenomenon may represent an important inducible antioxidant defense mechanism. To examine the generality of the response, we have measured the accumulation of the specific mRNA in a variety of human and mammalian cell types after inducing treatments. Induction by sodium arsenite is observed in all additional human cell types tested. This includes primary epidermal keratinocytes and lung and colon fibroblasts as well as established cell lines such as HeLa, TK6 lymphoblastoid, and transformed fetal keratinocytes. Strong induction of heme oxygenase mRNA is also observed following sodium arsenite treatment of cell lines of rat, hamster, mouse, monkey, and marsupial origin. The agents which lead to induction in cultured human skin fibroblasts fall into two categories: (a) those which are oxidants or can generate active intermediates (ultraviolet A radiation, hydrogen peroxide, menadione, and the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate); (b) agents which are known to interact with or modify cellular glutathione levels (buthionine sulfoximine, sodium arsenite, iodoacetamide, diamide, and cadmium chloride). These observations strongly support the hypothesis that induction of the enzyme is a general response to oxidant stress in mammalian cells and are consistent with the possibility that the cellular redox state plays a key role.

  2. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cows with increased rectal temperature during heat stress experience lower milk yield and fertility. Given that rectal temperature during heat stress is heritable in dairy cattle, genetic selection for regulation of body temperature should reduce effects of heat stress on production. One goal...

  3. Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction

    NASA Astrophysics Data System (ADS)

    Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.

    2016-05-01

    We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.

  4. Mechanisms of hormesis through mild heat stress on human cells.

    PubMed

    Rattan, Suresh I S

    2004-06-01

    In a series of experimental studies, it was shown that repetitive mild heat stress has antiaging hormetic effects on growth and various other cellular and biochemical characteristics of human skin fibroblasts undergoing aging in vitro. We have reported the hormetic effects of repeated challenge at the levels of maintenance of stress protein profile; reduction in the accumulation of oxidatively and glycoxidatively damaged proteins; stimulation of the proteasomal activities for the degradation of abnormal proteins; improved cellular resistance to ethanol, hydrogen peroxide, and ultraviolet-B rays; and enhanced levels of various antioxidant enzymes. Detailed analysis of the signal transduction pathways to determine alterations in the phosphorylation and dephosphorylation states of ERK, JNK, and p38 MAP kinases as a measure of cellular responsiveness to mild and severe heat stress is in progress. Furthermore, comparative studies using nonaging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells are also in progress for establishing differences in normal and cancerous cells for their responsiveness to mild and severe stresses.

  5. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli.

    PubMed

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs) have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH) and adenosine triphosphate (ATP) significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH), glutathione S-transferase (GST), super oxide dismutase (SOD), and catalase (CAT). These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and heat stress

  6. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress.

    PubMed

    Rong, Guang; Tang, Xun; Guo, Tingting; Duan, Na; Wang, Yue; Yang, Lei; Zhang, Jun; Liang, Xiujie

    2015-09-01

    Although podocyte apoptosis has been shown to be induced by the accumulation of advanced oxidation protein products (AOPPs), the mechanisms through which AOPPs trigger apoptosis in these cells remain unclear. In this study, we investigated the role of endoplasmic reticulum (ER) stress in AOPP-induced podocyte apoptosis. AOPP treatment induced overexpression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein (CHOP) in podocytes, indicating that AOPPs induced ER stress. Notably, AOPP-induced increase in the rate of podocyte apoptosis was partly reversed by salubrinal, an ER stress inhibitor, whereas the AOPP effect was reproduced by an inducer of ER stress, thapsigargin, suggesting that AOPPs triggered podocyte apoptosis by inducing ER stress. Furthermore, AOPP-induced reactive oxygen species (ROS) generation, ER stress, and podocyte apoptosis were significantly inhibited by an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, a ROS scavenger, or receptor of advanced glycation end products (RAGE) small interfering RNA (siRNA). Moreover, silencing of the three ER stress sensors, protein kinase-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring 1 (IRE1), respectively, significantly lowered the apoptotic rate of the cells compared with that of the scramble siRNA-transfected cells. Lastly, our data suggested that CHOP- and caspase-12-dependent pathways were involved in ER stress-mediated podocyte apoptosis and that Bcl-2 suppression was involved in CHOP-mediated apoptosis. Collectively, our results indicate for the first time that AOPPs trigger podocyte apoptosis through induction of ER stress, which might be regulated by NADPH oxidase-dependent ROS through RAGE, and that this apoptosis is mediated by three unfolded protein response pathways, the PERK, ATF6, and IRE1 pathways, and the mediators, CHOP and caspase-12. PMID:26197866

  7. Induction of heat shock protein HSPA6 (HSP70B') upon HSP90 inhibition in cancer cell lines.

    PubMed

    Kuballa, Petric; Baumann, Anna-Lena; Mayer, Klaus; Bär, Ute; Burtscher, Helmut; Brinkmann, Ulrich

    2015-06-01

    Genome-wide transcript profiling to elucidate responses to HSP90 inhibition revealed strong induction of HSPA6 in MCF-7 cells treated with 17-AAG. Time- and dose dependent induction of HSPA6 (confirmed by qPCR and Western Blots) occurred also upon treatment with Radicicol, another HSP90 inhibitor. HSPA6 was not detectable in untreated cells or cells treated with toxins that do not inhibit HSP90, or upon applying oxidative stress. Thus, HSPA6 induction is not a general response to cytotoxic insults. Modulation of HSPA6 levels by siRNA-mediated inhibition or recombinant expression did not influence 17-AAG mediated cell death. HSPA6 induction as a consequence of HSP90 inhibition occurs in various (but not all) cell lines and may be a more specific marker for HSP90 inhibition than induction of other HSP70 proteins.

  8. Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways.

    PubMed

    Xie, Wen-Yue; Zhou, Xiang-Dong; Yang, Juan; Chen, Ling-Xiu; Ran, Dan-Hua

    2016-10-01

    The occurrence and mechanisms of autophagy induced by heat stress are not well known in lung cancer cells. Here, we have demonstrated that heat stress induces autophagy in A549 and NCI-H460 cells through morphological and biochemical analyses. The inhibition of autophagy by chloroquine, 3-methyladenine and Beclin 1 siRNA enhanced heat-induced apoptosis. Moreover, the combination of chloroquine and heat stress inhibited tumor growth and enhanced apoptosis in vivo experiments. In addition, heat-induced autophagy involved the ER stress pathway (PERK- or IRE1-dependent). Further, heat treatment led to the increased phosphorylation of AMPK and the decreased phosphorylation of mTOR in vitro and in vivo. Knockdown of GRP78 inhibited the AMPK-mTOR pathway, and the AMPK inhibitor compound C decreased heat-induced autophagy, suggesting that activation of ER stress was involved in autophagy induction and promotion of the AMPK-mTOR pathway. In conclusion, our data suggested that the heat treatment of lung cancer cells triggered protective autophagy, as mediated by ER stress. Thus, inhibition of autophagy can be a promising strategy to enhance hyperthermia in the treatment of lung cancer patients.

  9. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and

  10. Role of ATP in the sensitivity to heat and the induction of apoptosis in mammalian cells.

    PubMed

    Miyazaki, N; Kurihara, K; Nakano, H; Shinohara, K

    2002-01-01

    Heat-induced cell death and apoptosis were studied with respect to intracellular ATP. Studies on the relationship between hyperthermic cell-killing at 44 degrees C and cellular ATP levels in four cell lines grown as monolayers and six cell lines grown in suspension showed good correlations between cellular ATP levels and the sensitivity to heat. D(0) values (the dose required to reduce survival in the linear portion of the response by 63%) linearly increased with an increase in cellular ATP levels. No such changes in sensitivity to heat were observed between the cells cultured at different cell densities, regardless of the change in the cellular ATP level. These results suggest that cellular intrinsic ability to supply ATP rather than the level of pooled ATP per se is responsible for the thermal response. Heat-induced apoptosis in L5178Y cells was observed following treatment at 42 degrees C for 70 min, 44 degrees C for 20 min or 47 degrees C for 3 min, which corresponded to surviving fractions of 25, 0.6 and 0.8%, respectively, but not at 47 degrees C for 20 min, indicating that mild heat shock induced apoptosis. 2-deoxyglucose (2DG) and 2,4-dinitrophenol (DNP) increased the sensitivity to heat and affected the mode of cell death. Cells treated with 2DG and DNP (2DG/DNP) were heated at 42 degrees C for 20 min, and then incubated at 37 degrees C for up to 2h in the presence or absence of 2DG/DNP. In the absence of 2DG/DNP, the cellular ATP level recovered to 76% of the control level and DNA ladder formation was observed, whereas in the presence of 2DG/DNP, the cellular ATP level was further decreased (3-7% of the control) and no DNA fragmentation was detected. These results suggest that the inhibition of ATP synthesis is closely associated with the enhancement of sensitivity to heat and that ATP is required for the induction of apoptosis.

  11. Thermoregulatory disorders and illness related to heat and cold stress.

    PubMed

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. PMID:26794588

  12. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.

    PubMed

    Tsai, Wen-Tien; Chang, Jeng-Hung; Hsien, Kuo-Jung; Chang, Yuan-Ming

    2009-01-01

    With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values. PMID:18656347

  13. Advanced Synthesis of Spinnable MWCNT Forests by RF-Induction Heating Enhanced CVD Process

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar; Holmes, William; UTD Solarno Team; Solarno UTD Team

    2015-03-01

    We demonstrate here an advanced method to effectively grow tall multi-wall carbon nanotubes (MWCNT) vertically oriented forests which are highly spinnable. Heating of the Fe catalyst is achieved extremely fast by RF induction heating using coils outside the quartz tube. This method and the new apparatus designed and presented in this paper allow separate control over the temperature of the substrate and the temperature of the incoming gases. In addition to temperature control, the fast T-ramping of the substrate preserves the catalyst nanoclusters from Ostwald ripening and other growth quenching effects such as carbon overgrowth of the catalyst. We show that the parametric sweet spot or bell curve of substrate spinnability can be increased significantly with this improved RF-CVD method. The catalyst nanoclusters also show a wide band of density arrangements that very positively effect spinnability and the drawing ratio. Drawing ratios can vary from 2 meters to 12 meters of sheets drawn from only 1cm of forest. RF-CVD method allows to grow fast (in several minuts) higher CNT forests at higher temperature of synthesis up to 800 K, and obtain dry-spinable CNTs, Characterization results of the samples created in the newRF-CVD system will be presented and compared to previous CNT sheet samples by conventional three-zone resistive heating CVD to measure the extent of property improvements of the CNT sheets and forests. Specifics of the experimental system will be addressed in detail and future property improvements and applications explored.

  14. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    PubMed

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation.

  15. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  16. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  17. Prolactin mediates effects of chronic psychological stress on induction of fibrofatty cells in the heart.

    PubMed

    Song, Jiangping; Wang, Mangyuan; Chen, Xiao; Liu, Li; Chen, Liang; Song, Zhizhao; Teng, Xiao; Xing, Yong; Chen, Kai; Zhao, Kun; Hou, Jianfeng; Yang, Pingchang

    2016-01-01

    Cardiocyte apoptosis plays an important role in the pathogenesis of heart diseases. The mechanism is unclear. It is reported that prolactin (PRL) is involved in cardiac disorders. This study aims to investigate the role of PRL in mediating the psychological stress-induced fibrofatty cell differentiation in the heart. In this study, BALB/c mice were treated with a 30-day restraint stress. The heart tissue was processed by paraffin embedding and hematoxylin and eosin. The expression of Sca1 in NIH3T3 cells was assessed by cell culture, flow cytometry and Western blotting. The results showed that chronic stress induced fibrofatty cells in the mouse heart and high serum PRL levels. The induction of fibrofatty cell was mimicked by administration with recombinant PRL. The stress also induced the expression of Sca1 in the mouse heart. Exposure of NIH3T3 cells (a fibroblast cell line) to PRL in the culture enhanced the expression of stem cell antigen-1 (Sca1), phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of adipocyte-related protein molecules, including adiponectin, fatty acid binding protein (aP2), peroxisome proliferator activated receptor-g (PPARg) and CCAAT/enhancer binding protein (C/EBP)α, in the cells. We conclude that psychological stress-derived PRL induces fibroblasts to differentiate into fibrofatty cells in the heart. PMID:27158356

  18. Prolactin mediates effects of chronic psychological stress on induction of fibrofatty cells in the heart.

    PubMed

    Song, Jiangping; Wang, Mangyuan; Chen, Xiao; Liu, Li; Chen, Liang; Song, Zhizhao; Teng, Xiao; Xing, Yong; Chen, Kai; Zhao, Kun; Hou, Jianfeng; Yang, Pingchang

    2016-01-01

    Cardiocyte apoptosis plays an important role in the pathogenesis of heart diseases. The mechanism is unclear. It is reported that prolactin (PRL) is involved in cardiac disorders. This study aims to investigate the role of PRL in mediating the psychological stress-induced fibrofatty cell differentiation in the heart. In this study, BALB/c mice were treated with a 30-day restraint stress. The heart tissue was processed by paraffin embedding and hematoxylin and eosin. The expression of Sca1 in NIH3T3 cells was assessed by cell culture, flow cytometry and Western blotting. The results showed that chronic stress induced fibrofatty cells in the mouse heart and high serum PRL levels. The induction of fibrofatty cell was mimicked by administration with recombinant PRL. The stress also induced the expression of Sca1 in the mouse heart. Exposure of NIH3T3 cells (a fibroblast cell line) to PRL in the culture enhanced the expression of stem cell antigen-1 (Sca1), phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of adipocyte-related protein molecules, including adiponectin, fatty acid binding protein (aP2), peroxisome proliferator activated receptor-g (PPARg) and CCAAT/enhancer binding protein (C/EBP)α, in the cells. We conclude that psychological stress-derived PRL induces fibroblasts to differentiate into fibrofatty cells in the heart.

  19. Cancer Therapeutic Effects of Titanium Dioxide Nanoparticles Are Associated with Oxidative Stress and Cytokine Induction.

    PubMed

    Fujiwara, Rina; Luo, Yi; Sasaki, Takamitsu; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2015-01-01

    Nanoparticles (NPs) are considered to influence the inflammatory process; however, the precise mechanism and the significance in tumors are still not clear. In this study, when CT26 and LL2 mouse cancer cells were treated with 6-nm anatase titanium dioxide NPs (TDNPs) without ultraviolet irradiation, oxidative stress and induction of inflammatory cytokines were observed. Oxidative stress was further increased by disease-associated conditions such as high glucose concentrations and hypoxia. Inhaled or orally administered TDNPs generated granulomatous lesions in the lungs and colon of the rodent models tested, with increased oxidative stress and inflammatory cytokines. Oxidative stress and inflammatory cytokines were also found in cancer cells treated with gold or carbon black NPs. Treatment of CT26 cells with 10- to 70-nm rutile TDNPs showed that smaller NPs produced more oxidative stress and inflammatory cytokines than larger ones did. To avoid diffusion of TDNPs and to minimize toxicity, 10-nm TDNPs were suspended in a collagen gel inserted into a subcutaneous tumor in a CT26 mouse. A single TDNP treatment via this method inhibited tumor growth in a size- and dose-dependent manner, and resulted in lower levels of urinary 8-OHdG when compared to systemically administered TDNPs. These findings suggest that TDNPs might be useful for the local treatment of tumors. PMID:26485713

  20. Historical Temperature Variability Affects Coral Response to Heat Stress

    PubMed Central

    Carilli, Jessica; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. PMID:22479626

  1. Short term post-partum heat stress in dairy cows

    NASA Astrophysics Data System (ADS)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  2. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Shi, H N; Liu, Z; Zhang, J P; Kang, Y J; Wang, J F; Huang, J Q; Wang, W M

    2015-05-18

    The enhanced expression of heat shock proteins (hsps) in organisms can be detected in response to many kinds of stressor. For fish, high temperature is an important stressor, and hsp expression is associated with differences in environmental temperature. In this study, rainbow trout (Oncorhynchus mykiss) that were accustomed to an aquatic temperature of 18°C were exposed to an elevated temperature (25°C), and hsp60 expression in the gill, liver, spleen, heart, and head kidney was quantified using real-time polymerase chain reaction in unstressed and heat-stressed animals. The fish responded to heat stress in a time- and tissue-specific manner. Cardiac hsp60 mRNA levels were largely unchanged, and the greatest induction of hsp60 in heat-stressed animals was recorded in the liver, suggesting that protein damage and the consequent requirement for the Hsp60 protein are probably greater in hepatic tissue. Therefore, fish must be provided with optimal temperature conditions in order to realize their potential growth and maximize fish farm profits.

  3. New alloys and multilayer configuration of them to get self-regulated temperature cookware (SRTC) in induction heating

    NASA Astrophysics Data System (ADS)

    Waeckerlé, Thierry; Fraissé, Herve; Boulogne, Bruno; Spire, Sjean Luc

    2006-09-01

    It is pointed out in this paper that the concept of self-regulating temperature cookware is valid for cooking by induction heating. This provides no overheating, improved heating rate, self-adjusted cooking temperature and further improved energy efficiency. To succeed in this, a 3-ply cladded metallic structure made of an inner stainless steel layer, a thick aluminium layer in the centre part, and an outer dedicated low-Curie-point layer made of a new FeNiCr alloy is used. The magnetic coupling between induction heater and the new structure is discussed.

  4. Accelerated carbide spheroidisation of 1.2343 tool steel by induction heating

    NASA Astrophysics Data System (ADS)

    Dlouhý, J.; Kövér, M.

    2015-12-01

    Tool steels undergo spheroidisation or soft annealing to enhance machinability and cold formability. Conventional soft annealing takes several hours. The final microstructure is composed of globular carbides in a ferritic matrix. We present an alternative process of carbide spheroidisation and steel softening. Accelerated carbide spheroidisation and refinement (ASR) was achieved by induction heating at temperatures close to the A1 temperature. The spheroidised structure was obtained in less than 5 minutes. The carbide particles that formed during the ASR were significantly finer than for the conventional soft annealing. The hardness after ASR was higher than the hardness after soft annealing because of the dispersion strengthening by finer and more densely distributed carbide particles. On the other hand, the fine structure is favourable for hardening. It enables smaller austenite grains and martensite laths to be obtained.

  5. Magnetically driven three-dimensional manipulation and inductive heating of magnetic-dispersion containing metal alloys

    PubMed Central

    Calabro, Joshua D.; Huang, Xu; Lewis, Brian G.; Ramirez, Ainissa G.

    2010-01-01

    Fundamental to the development of three-dimensional microelectronic fabrication is a material that enables vertical geometries. Here we show low-melting-point metal alloys containing iron dispersions that can be remotely manipulated by magnetic fields to create vertical geometries and thus enable novel three-dimensional assemblies. These iron dispersions enhance the mechanical properties needed for strong, reliable interconnects without significantly altering the electrical properties of the alloys. Additionally, these iron dispersions act as susceptors for magnetic induction heating, allowing the rapid melting of these novel alloys at temperatures lower than those usually reported for conventional metal alloys. By localizing high temperatures and by reducing temperature excursions, the materials and methods described have potential in a variety of device fabrication applications. PMID:20194786

  6. Vitrification of HLW inside sealed low-temperature disposal canisters by inductive heating

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-12-31

    A new approach to the vitrification and disposal of high-level nuclear wastes (HLW) is proposed in this paper. The current approach is to melt the HLW solids and frit material in large high-temperature melters. The melt is then poured into small ({approximately}1-m{sup 3}) disposal canisters, where it solidifies and cools. Problems with the current approach include the following: (1) system vulnerability to failure of the large melter (2) ability of the melter and liner to hold high-temperature (e.g., {approximately}1100{degrees}C) molten glass for many years (3) long-time capability for controlled pouring and avoidance of plugging (4) radioactive emissions and contamination from volatilized components (e.g., cesium) (5) maintenance, repair, and decommissioning of large, complex, highly radioactive process equipment. The proposed SMILE (small module inductively loaded energy) approach would eliminate the large high-temperature melter. Instead, HLW solids and frit would melt inside the final closed disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE process is designed so that the outer stainless can of the module remains at low temperature during the process cycle.

  7. Induction of a heat shock puff by hypoxia in polytene foot pad chromosomes of Sarcophaga bullata.

    PubMed

    Bultmann, H

    1986-01-01

    The single large heat-responsive puff (hs puff) in polytene foot pad cells of fly pupae (Sarcophaga bullata) is shown to be inducible by oxygen deprivation but not, as in other systems, by reoxygenation following an hypoxic treatment. The ambient oxygen concentration must drop below 2% for the hs puff to be maximally induced but the puff is fully inducible and transcriptionally active even in the complete absence of oxygen. Lack of oxygen is also compatible with continued transport of puff materials (formation and dissipation of puff droplets at the hs locus). Hypoxia-induced hs puffs persist indefinitely (greater than 2 days) at maximal or intermediate size and only regress completely after oxygen is resupplied. The induction of the hs puff during hypoxia is highly specific and does not seem to involve activation of any other chromosomal loci, yet the reaction is not confined to the giant foot pad cells or to specific developmental stages. Azide poisoning of cultured foot pads simulates the in vivo effects of hypoxia. The induction of the hs puff by azide, heat, or other means is inhibited by sulfhydryl reagents (iodoacetamide, arsenite) and fluoride, but not by an inhibitor of substrate-linked phosphorylation (arsenate). Instead, arsenate, like other uncouplers (2,4-dinitrophenol) is an inducer of the hs locus. The hs puff can be fully induced by hypoxia at any temperature between 2 degrees and 45 degrees C. The rate of puff expansion is strictly temperature dependent and the temperature characteristics of this process are remarkably similar to those of a promoter RNA polymerase association.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Time-related expression profiles for heat shock protein gene transcripts (HSP40, HSP70) in the central nervous system of Lymnaea stagnalis exposed to thermal stress

    PubMed Central

    Foster, Nicola L; Lukowiak, Ken; Henry, Theodore B

    2015-01-01

    Organisms exposed to environmental stressors respond by rapidly synthesising a suite of highly conserved proteins called heat shock proteins (HSPs). Environmental stress can also enhance and/or block memory formation, with long-term memory formation requiring gene activation and protein synthesis. Thermal stress in the pond snail Lymnaea stagnalis can enhance memory formation, and, in this study, the effect of thermal stress on HSP gene expression in the nervous system was investigated. Time-related expression profiles for HSP40 and HSP70 indicated rapid (<30 min) induction for both transcripts. For HSP40, induction was <20 fold relative to control and expression returned to control levels within 8 h, whereas HSP70 induction was >100 fold and expression did not return to control levels within 8 h. PMID:26478775

  9. An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda).

    PubMed

    Knigge, Thomas; Bachmann, Lutz; Köhler, Heinz-R

    2014-09-01

    The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.

  10. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    SciTech Connect

    Tsuji, Takayuki Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-15

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular c0010el.

  11. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes Heat stress abatement during the dry period influences prolactin signaling in lymphocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress perturbs PRL release and affects dairy cow lactational performance and immune cell function. We hypothesized that greater PRL concentration in plasma of heat-stressed cows would decrease expression of PRL-R mRNA and increase mRNA expression of suppressors of cytokine signaling (SOCS) in ...

  12. Self organizing maps in urban heat stress projections

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung

    2016-04-01

    A self organizing map (SOM) is an unsupervised machine learning algorithm well suited for identifying patterns in large datasets. It has been used successfully to classify atmospheric states in climate data and as part of statistical downscaling procedures. This study aims to use SOMs to produce downscaled CMIP5-based projections of wet-bulb temperature in urban areas, taking into account the regional atmospheric state and learned local dynamics. These downscaled projections will be compared to the CMIP5 models as well as to observations and then used to project local extreme heat stress events in the future.

  13. Zinc supplementation alleviates heat stress in laying Japanese quail.

    PubMed

    Sahin, Kazim; Kucuk, Omer

    2003-09-01

    The study was conducted to determine whether zinc supplementation could alleviate the detrimental effects of high ambient temperature (34 degrees C) on egg production, digestibility of nutrients and antioxidant status in laying Japanese quail. Quail (n = 180; 52 d old) were divided into six groups (n = 30/group) and were fed a basal diet or the basal diet supplemented with 30 or 60 mg of zinc (ZnSO(4). H(2)O)/kg diet. Birds were kept at 22 degrees C and 58% relative humidity (RH). At 13 wk of age, the thermoneutral (TN) groups remained at the same temperature, whereas the heat-stress (HS) groups were kept in an environmentally controlled room at 34 degrees C and 42% RH for 3 wk. Heat exposure decreased egg production in birds fed the basal diet (P = 0.001). Linear increases in feed intake (P = 0.01) and egg production (P = 0.004) and improved feed efficiency (P = 0.01) and egg quality variables (P Heat exposure decreased digestibility of nutrients (P = 0.001), and these decreases were ameliorated by zinc supplementation (P 0.05). Results of the present study suggest that supplementation with 60 mg zinc/kg diet protects quail by reducing the negative effects of heat stress.

  14. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  15. Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats.

    PubMed

    Kim, Kui-Jin; Yoon, Kye-Yoon; Hong, Hee-Do; Lee, Boo-Yong

    2015-01-01

    Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans. PMID:26569207

  16. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent Gpnmb induction.

    PubMed

    Gabriel, Tanit L; Tol, Marc J; Ottenhof, Roelof; van Roomen, Cindy; Aten, Jan; Claessen, Nike; Hooibrink, Berend; de Weijer, Barbara; Serlie, Mireille J; Argmann, Carmen; van Elsenburg, Leonie; Aerts, Johannes M F G; van Eijk, Marco

    2014-10-01

    In obesity, adipose tissue (AT) contains crown-like structures where macrophages surround nonviable adipocytes. To understand how AT macrophages (ATMs) contribute to development of insulin resistance, we examined their character in more detail. In silico analysis of F2 mouse populations revealed significant correlation between adipose glycoprotein nonmetastatic melanoma protein B (Gpnmb) expression and body weight. In obese mice and obese individuals, Gpnmb expression was induced in ATMs. Cultured RAW264.7 cells were used to obtain insight into the mechanism of Gpnmb regulation. Gpnmb was potently induced by lysosomal stress inducers, including palmitate and chloroquine, or Torin1, an inhibitor of mammalian target of rapamycin complex 1 (mTORC1). These stimuli also provoked microphthalmia transcription factor (MITF) translocation to the nucleus, and knockdown of MITF by short hairpin RNA indicated its absolute requirement for Gpnmb induction. In agreement with our in vitro data, reduced mTORC1 activity was observed in isolated ATMs from obese mice, which coincided with increased nuclear MITF localization and Gpnmb transcription. Aberrant nutrient sensing provokes lysosomal stress, resulting in attenuated mTORC1 activity and enhanced MITF-dependent Gpnmb induction. Our data identify Gpnmb as a novel marker for obesity-induced ATM infiltration and potentiator of interleukin-4 responses and point toward a crucial role for MITF in driving part of the ATM phenotype. PMID:24789918

  17. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  18. Factors of subjective heat stress of urban citizens in contexts of everyday life

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  19. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle.

    PubMed

    Ganesan, Shanthi; Reynolds, Carmen; Hollinger, Katrin; Pearce, Sarah C; Gabler, Nicholas K; Baumgard, Lance H; Rhoads, Robert P; Selsby, Joshua T

    2016-06-01

    Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle. PMID:27009052

  20. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed Central

    SHIN, Sora; PARK, Joonhee; LEE, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100–130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers’ hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses. PMID:26165361

  1. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals.

    PubMed

    Collén, J; Pinto, E; Pedersén, M; Colepicolo, P

    2003-10-01

    Heavy metals are environmental pollutants that have the potential to induce severe stress-reactions in organisms on land as well as in the sea. We have studied effects of short term sublethal concentrations of copper (Cu2+) and cadmium (Cd2+) on the reactive oxygen metabolism of the marine red macroalga Gracilaria tenuistipitata. Additions of either 0.2 ppm Cu2+ or 1 ppm Cd2+ caused decreased growth (approximately 60%), increased oxidation of lipids and increased oxidative damage to proteins as shown by increased content of protein carbonyl groups. Together this strongly suggests an induction of oxidative stress. Cu2+ caused more oxidative damage than Cd2+. As a response to the increased oxidative stress, addition of Cu2+ induced the activities of catalase, ascorbate peroxidase, and superoxide dismutase. In contrast, Cd2+ only caused increased catalase activity. Ten-fold lower concentrations of the metals did not cause an increase in enzyme activity. Both heavy metals also increased the content of the antioxidants beta-carotene and lutein. The results show that Cd2+ and, to a larger extent, Cu2+ induce oxidative stress in short-term experiments and the seaweed responds by increasing the activity of the reactive oxygen metabolism. PMID:14674586

  2. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82

    SciTech Connect

    Szent-Gyorgyi, C.

    1995-12-01

    This report seeks to characterize the activation of meiotic gene in terms of cis-acting DNA elements and their associated factors in Saccharomyces cerevisiae. It was found that vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element with a nearby bipartite repression element. The experiments described explore how two different regulatory pathways induce transcription by stimulating a single classical activation element, a nonspecific heat shock element. 81 refs., 10 figs., 1 tab.

  3. Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress

    PubMed Central

    Issan, Yossi; Kornowski, Ran; Aravot, Dan; Shainberg, Asher; Laniado-Schwartzman, Michal; Sodhi, Komal; Abraham, Nader G.; Hochhauser, Edith

    2014-01-01

    Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by

  4. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  5. Brazed Diamond Micropowder Bur Fabricated by Supersonic Frequency Induction Heating for Precision Machining

    NASA Astrophysics Data System (ADS)

    Ma, Bojiang; Lou, Jianpeng; Pang, Qian

    2014-04-01

    The common brazed diamond micropowder bur fabricated in a vacuum furnace produces an even brazing alloy surface. The small brazed diamond grits show low outcropping from the brazing alloy surface, and the chip space between them is small. The bur shows a low grinding efficiency and poor heat dissipation. In this study, a brazed diamond micropowder bur was fabricated by supersonic frequency induction heating. The method afforded a fluctuant surface on the brazing alloy. The brazed diamond grits with an outcropping height distributed uniformly on the fluctuant surface. The fluctuant surface showed a certain chip space. These characteristics of the tool increased the grinding efficiency and decreased the temperature of the grinding arc area. The roughness R a of the ceramic tile surface trimmed by the tool cylinder was between 0.09 and 0.12 μm. In the first 90 min, the decrease in the weight of the ceramic tile ground by the tool cylinder was higher than that ground by the tool fabricated in a vacuum furnace. When the ceramic tile was cylindrically ground, the temperature of the grinding arc area measured using a thermocouple remained below 70 °C.

  6. Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

    PubMed Central

    Liao, Jianquan; Sun, Aijun; Xie, Yeqing; Isse, Toyoshi; Kawamoto, Toshihiro; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress

  7. Expression analysis of ClpB/Hsp100 gene in faba bean (Vicia faba L.) plants in response to heat stress.

    PubMed

    Kumar, Ritesh; Singh, Amit Kumar; Lavania, Dhruv; Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Grover, Anil

    2016-03-01

    Heat stress adversely affects the growth and yield of faba bean crop. Accumulation of ClpB/Hsp100 class of proteins is a critical parameter in induction of acquired heat stress tolerance in plants. Heat-induced expression of ClpB/Hsp100 genes has been noted in diverse plant species. Using primers complementary to soybean ClpB/Hsp100 gene, we analyzed the transcript expression profile of faba bean ClpB/Hsp100 gene in leaves of seedlings and flowering plants and in pollen grains. ClpB/Hsp100 protein accumulation profile was analyzed in leaves of faba bean seedlings using Arabidopsis thaliana cytoplasmic Hsp101 antibodies. The transcript and protein levels of faba bean ClpB/Hsp100 were significantly induced in response to heat stress.

  8. Expression analysis of ClpB/Hsp100 gene in faba bean (Vicia faba L.) plants in response to heat stress.

    PubMed

    Kumar, Ritesh; Singh, Amit Kumar; Lavania, Dhruv; Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Grover, Anil

    2016-03-01

    Heat stress adversely affects the growth and yield of faba bean crop. Accumulation of ClpB/Hsp100 class of proteins is a critical parameter in induction of acquired heat stress tolerance in plants. Heat-induced expression of ClpB/Hsp100 genes has been noted in diverse plant species. Using primers complementary to soybean ClpB/Hsp100 gene, we analyzed the transcript expression profile of faba bean ClpB/Hsp100 gene in leaves of seedlings and flowering plants and in pollen grains. ClpB/Hsp100 protein accumulation profile was analyzed in leaves of faba bean seedlings using Arabidopsis thaliana cytoplasmic Hsp101 antibodies. The transcript and protein levels of faba bean ClpB/Hsp100 were significantly induced in response to heat stress. PMID:26981006

  9. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  10. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  11. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  12. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  13. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  14. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.).

    PubMed

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, Hyeran; Kim, Chulwook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-06-04

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), "HO", and a heat-sensitive cabbage line (HSCL), "JK", by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  15. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  16. Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress negatively affects the production, fertility, and health of dairy cattle. One strategy to reduce the magnitude of heat stress is to select individuals that are genetically resistant to heat stress. Most of the negative effects of heat stress on animal performance are a consequence of eit...

  17. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  18. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  19. The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1.

    PubMed

    Xu, L; Ma, X; Bagattin, A; Mueller, E

    2016-02-18

    Heat shock proteins (HSPs) are required for the clearance of damaged and aggregated proteins and have important roles in protein homeostasis. It has been shown that the heat shock transcription factor, HSF1, orchestrates the transcriptional induction of these stress-regulated chaperones; however, the coregulatory factors responsible for the enhancement of HSF1 function on these target genes have not been fully elucidated. Here, we demonstrate that the cold-inducible coactivator, PGC1α, also known for its role as a regulator of mitochondrial and peroxisomal biogenesis, thermogenesis and cytoprotection from oxidative stress, regulates the expression of HSPs in vitro and in vivo and modulates heat tolerance. Mechanistically, we show that PGC1α physically interacts with HSF1 on HSP promoters and that cells and mice lacking PGC1α have decreased HSPs levels and are more sensitive to thermal challenges. Taken together, our findings suggest that PGC1α protects against hyperthermia by cooperating with HSF1 in the induction of a transcriptional program devoted to the cellular protection from thermal insults.

  20. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  1. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies.

  2. Biochemical analysis of ‘kerosene tree’ Hymenaea courbaril L. under heat stress

    PubMed Central

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  3. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  4. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress.

    PubMed

    Hillman, Angela R; Vince, Rebecca V; Taylor, Lee; McNaughton, Lars; Mitchell, Nigel; Siegler, Jason

    2011-10-01

    While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.

  5. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor

    PubMed Central

    Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi

    1999-01-01

    Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722

  6. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress.

    PubMed

    Winkler, Astrid; Arkind, Christopher; Mattison, Christopher P; Burkholder, Anne; Knoche, Kathryn; Ota, Irene

    2002-04-01

    The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1 delta strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways. PMID:12455951

  7. Heat Stress Activates the Yeast High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway, and Protein Tyrosine Phosphatases Are Essential under Heat Stress

    PubMed Central

    Winkler, Astrid; Arkind, Christopher; Mattison, Christopher P.; Burkholder, Anne; Knoche, Kathryn; Ota, Irene

    2002-01-01

    The yeast high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway has been characterized as being activated solely by osmotic stress. In this work, we show that the Hog1 MAPK is also activated by heat stress and that Sho1, previously identified as a membrane-bound osmosensor, is required for heat stress activation of Hog1. The two-component signaling protein, Sln1, the second osmosensor in the HOG pathway, was not involved in heat stress activation of Hog1, suggesting that the Sho1 and Sln1 sensors discriminate between stresses. The possible function of Hog1 activation during heat stress was examined, and it was found that the hog1Δ strain does not recover as rapidly from heat stress as well as the wild type. It was also found that protein tyrosine phosphatases (PTPs) Ptp2 and Ptp3, which inactivate Hog1, have two functions during heat stress. First, they are essential for survival at elevated temperatures, preventing lethality due to Hog1 hyperactivation. Second, they block inappropriate cross talk between the HOG and the cell wall integrity MAPK pathways, suggesting that PTPs are important for maintaining specificity in MAPK signaling pathways. PMID:12455951

  8. Online induction heating for determination of isotope composition of woody stem water with laser spectrometry: A methods assessment

    USGS Publications Warehouse

    Lazarus, Brynne E.; Germino, Matthew; Vander Veen, Jessica L.

    2016-01-01

    Application of stable isotopes of water to studies of plant–soil interactions often requires a substantial preparatory step of extracting water from samples without fractionating isotopes. Online heating is an emerging approach for this need, but is relatively untested and major questions of how to best deliver standards and assess interference by organics have not been evaluated. We examined these issues in our application of measuring woody stem xylem of sagebrush using a Picarro laser spectrometer with online induction heating. We determined (1) effects of cryogenic compared to induction-heating extraction, (2) effects of delivery of standards on filter media compared to on woody stem sections, and (3) spectral interference from organic compounds for these approaches (and developed a technique to do so). Our results suggest that matching sample and standard media improves accuracy, but that isotopic values differ with the extraction method in ways that are not due to spectral interference from organics.

  9. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein.

    PubMed

    Mujahid, A; Akiba, Y; Toyomizu, M

    2007-02-01

    Reactive oxygen species-induced damage of cells and molecules is one of the mechanisms responsible for the decline in an animal's performance due to heat stress. Mitochondria are the main producers of cellular superoxide, a process that is sensitive to proton motive force, and this superoxide production can be decreased by mild uncoupling. We studied the effects of heat stress on the production of mitochondrial superoxide as well as heat stress effects on the expression of avian uncoupling protein (avUCP) and avian A nucleotide translocator (avANT) in skeletal muscles of chicks and young cockerels. Male White Leghorn (Julia) chicks at 16 d and cockerels at 87 d of age were exposed to acute heat stress, 34 degrees C for 18 h, or kept at moderate ambient temperature (25 and 21 degrees C, respectively). There was no difference in mitochondrial superoxide production between heat-exposed and control chicks, whereas significant differences were observed in the case of young cockerels. Greater substrate-independent superoxide production was found in muscle mitochondria from heat-stressed young cockerels. In chicks, neither avUCP nor avANT transcript expression was changed by heat exposure, whereas in young cockerels avUCP transcript was decreased, but avANT transcript level was not changed. Thus, in heat-stressed young cockerels, increased mitochondrial superoxide production was accompanied by downregulation of avUCP. Taken together, these results suggest that exposure of young cockerels to heat stress stimulates mitochondrial superoxide production, possibly via downregulation of avUCP. Chicks with persistent avUCP expression, on the other hand, are relatively better adapted to high temperature. It can be assumed that appropriate expression of avUCP may alleviate overproduction of mitochondrial superoxide and could help birds adapt to oxidative stress resulting from acute heat stress.

  10. Mannosylglycerate and Di-myo-Inositol Phosphate Have Interchangeable Roles during Adaptation of Pyrococcus furiosus to Heat Stress

    PubMed Central

    Esteves, Ana M.; Chandrayan, Sanjeev K.; McTernan, Patrick M.; Adams, Michael W. W.; Santos, Helena

    2014-01-01

    Marine hyperthermophiles accumulate small organic compounds, known as compatible solutes, in response to supraoptimal temperatures or salinities. Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at temperatures near 100°C. This organism accumulates mannosylglycerate (MG) and di-myo-inositol phosphate (DIP) in response to osmotic and heat stress, respectively. It has been assumed that MG and DIP are involved in cell protection; however, firm evidence for the roles of these solutes in stress adaptation is still missing, largely due to the lack of genetic tools to produce suitable mutants of hyperthermophiles. Recently, such tools were developed for P. furiosus, making this organism an ideal target for that purpose. In this work, genes coding for the synthases in the biosynthetic pathways of MG and DIP were deleted by double-crossover homologous recombination. The growth profiles and solute patterns of the two mutants and the parent strain were investigated under optimal growth conditions and also at supraoptimal temperatures and NaCl concentrations. DIP was a suitable replacement for MG during heat stress, but substitution of MG for DIP and aspartate led to less efficient growth under conditions of osmotic stress. The results suggest that the cascade of molecular events leading to MG synthesis is tuned for osmotic adjustment, while the machinery for induction of DIP synthesis responds to either stress agent. MG protects cells against heat as effectively as DIP, despite the finding that the amount of DIP consistently increases in response to heat stress in the nine (hyper)thermophiles examined thus far. PMID:24795373

  11. Stress and Heat Transfer Analyses for Different Channel Arrangements of PCHE

    SciTech Connect

    Jong B. Lim; Robert G. Shrake; Eung S. Kim; Chang H. Oh

    2008-11-01

    Stress and heat transfer analyses are being performed on the different channel arrangements of Printed Circuit Heat Exchanger (PCHE) proposed for application of VHTRs using ABAQUS [ABAQUS, 2007] and COMSOL [COMSOL, 2007], respectively. The work is being done to determine the configuration that would result in minimum stress for the same heat performance. This paper discusses the effects of shifting the coolant channels in every other row to reduce stress.

  12. Myocardial function improved by electromagnetic field induction of stress protein hsp70.

    PubMed

    George, Isaac; Geddis, Matthew S; Lill, Zachary; Lin, Hana; Gomez, Teodoro; Blank, Martin; Oz, Mehmet C; Goodman, Reba

    2008-09-01

    Studies on myocardial function have shown that hsp70, stimulated by an increase in temperature, leads to improved survival following ischemia-reperfusion (I-R). Low frequency electromagnetic fields (EMFs) also induce the stress protein hsp70, but without elevating temperature. We have examined the hemodynamic changes in concert with EMF pre-conditioning and the induction of hsp70 to determine whether improved myocardial function occurs following I-R injury in Sprague-Dawley rats. Animals were exposed to EMF (60 Hz, 8 microT) for 30 min prior to I-R. Ischemia was then induced by ligation of left anterior descending coronary artery (LAD) for 30 min, followed by 30 min of reperfusion. Blood and heart tissue levels for hsp70 were determined by Western blot and RNA transcription by rtPCR. Significant upregulation of the HSP70 gene and increased hsp70 levels were measured in response to EMF pre-exposures. Invasive hemodynamics, as measured using a volume conductance catheter, demonstrated significant recovery of systolic contractile function after 30 min of reperfusion following EMF exposure. Additionally, isovolemic relaxation, a measure of ventricular diastolic function, was markedly improved in EMF-treated animals. In conclusion, non-invasive EMF induction of hsp70 preserved myocardial function and has the potential to improve tolerance to ischemic injury.

  13. Induction of phytochelatins in hydrilla verticillata (l.f.) Royle under cadmium stress

    SciTech Connect

    Tripathi, R.D.; Rai, U.N.; Gupta, M.

    1996-03-01

    Plants tolerate Cd by sequestering them through synthesizing phytochelatins with the general structure (t-Glu-cys)n-gly where n= 2-11 depending upon the species from which these peptides are isolated. Recent biochemical evidence suggests that these peptides are synthesized via posttranslationally activated, metal-dependent enzymatic pathways from the precursor glutathione. However, most of these studies are confined to terrestrial species and only a few studies have been made on higher aquatic plants. Recently H. verticillata and other aquatic higher plants have been reported to be hyperaccumulators of Cd and have demonstrated the ability to remove many toxic metals, including Cd, from wastewater. It is hypothesized that cadmium hyperaccumulating ability of the macrophyte is associated with induction of the metal chelating peptides, the phytochelatins (PCs), to copeup with high cellular Cd levels. In view of this, it was considered worthwhile to examine the induction of phytochelatins and changes in levels of glutathione and related metabolites in H. verticillata under Cd stress.

  14. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron. PMID:20192343

  15. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  16. ROLE OF ENVIRONMENTAL HEAT AND COLD STRESS ON THE PHYSIOLOGICAL RESPONSE TO ORGANOPHOSPHATES AND OTHER TOXICANTS.

    EPA Science Inventory

    Most toxicological and pharmacological studies are performed in laboratory rodents maintained under comfortable environmental conditions. However, exposure to toxicants as well as some drugs can occur under stressful conditions during rest or while exercising. Heat stress can exa...

  17. Comparison of heat dissipation response between Malaysian and Japanese males during exercise in humid heat stress

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-07-01

    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature ( T re) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T re in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T re.

  18. Regulation of Non-coding RNAs in Heat Stress Responses of Plants

    PubMed Central

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  19. Adverse impact of heat stress on embryo production: causes and strategies for mitigation.

    PubMed

    Hansen, P J; Drost, M; Rivera, R M; Paula-Lopes, F F; al-Katanani, Y M; Krininger, C E; Chase, C C

    2001-01-01

    The production of embryos by superovulation is often reduced in periods of heat stress. The associated reduction in the number of transferable embryos is due to reduced superovulatory response, lower fertilization rate, and reduced embryo quality. There are also reports that success of in vitro fertilization procedures is reduced during warm periods of the year. Heat stress can compromise the reproductive events required for embryo production by decreasing expression of estrus behavior, altering follicular development, compromising oocyte competence, and inhibiting embryonic development. While preventing effects of heat stress can be difficult, several strategies exist to improve embryo production during heat stress. Among these strategies are changing animal housing to reduce the magnitude of heat stress, utilization of cows with increased resistance to heat stress (i.e., cows with lower milk yield or from thermally-adapted breeds), and manipulation of physiological and cellular function to overcome deleterious consequences of heat stress. Effects of heat stress on estrus behavior can be mitigated by use of estrus detection aids or utilization of ovulation synchronization treatments to allow timed embryo transfer. There is some evidence that embryonic survival can be improved by antioxidant administration and that pharmacological treatments can be developed that reduce the degree of hyperthermia experienced by cows exposed to heat stress.

  20. Regulation of Non-coding RNAs in Heat Stress Responses of Plants.

    PubMed

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  1. Regulation of Non-coding RNAs in Heat Stress Responses of Plants.

    PubMed

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.

  2. Enhanced economic connectivity to foster heat stress-related losses.

    PubMed

    Wenz, Leonie; Levermann, Anders

    2016-06-01

    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress-induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken. PMID:27386555

  3. Differential translocation of heat shock factor-1 after mild and severe stress to human skin fibroblasts undergoing aging in vitro.

    PubMed

    Demirovic, Dino; de Toda, Irene Martinez; Nizard, Carine; Rattan, Suresh I S

    2014-12-01

    Repeated exposure to mild heat shock (HS) has been shown to induce a wide range of health promoting hormetic effects in various biological systems, including human cells undergoing aging in vitro. In order to understand how cells distinguish between mild and severe stress, we have investigated the extent of early and immediate HS response by analyzing the nuclear translocation of the transcription factor heat shock factor-1 (HSF1), in serially passaged normal adult human facial skin fibroblasts exposed to mild (41 °C) or severe (43 °C) HS. Cells respond differently when exposed to mild and severe HS at different passage levels in terms of the extent of HSF1 translocation. In early passage young cells there was a 5-fold difference between mild and severe HS in the extent of HSF1 translocation. However, in near senescent late passage cells, the difference between mild and severe stress in terms of the extent of HSF1 translocation was reduced to less than 2-fold. One of the reasons for this age-related attenuation of heat shock response is due to the fact there was a higher basal level of HSF1 in the nuclei of late passage cells, which is indicative of increased intrinsic stress during cellular aging. These observations are consistent with previously reported data that whereas repeated mild stress given at younger ages can slow down aging and increase the lifespan, the same level of stress given at older ages may not provide the same benefits. Therefore, elucidating the early and immediate steps in the induction of stress response can be useful in deciding whether a particular level of stress is potentially hormetically beneficial or not.

  4. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Marras, S.; Spano, D.

    2013-12-01

    Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

  5. Heat stress in the A-10 cockpit: flights over desert.

    PubMed

    Nunneley, S A; Flick, C F

    1981-09-01

    Heat stress is a significant problem during low-level flight in hot climates, especially in aircraft that impose high task loads and repetitive maneuvering forces. The A-10 close-support aircraft presents such a combined-stress environment. This report summarizes data from 15 low-level flights over desert. Ground dry-bulb temperature (Tdb,g) was 26-42 degrees C. Cockpit temperature (Tdb,c) was commonly over 40 degrees C on the ground and tended to drop progressively from taxi-out through flight to the range and return; for any given phase it was a linear function of Tdb,g. Small (50-mm) black globe temperature (Tbg,s) exceeded Tdb,c by 2-5 degrees C on the ground and by 4-8 degrees C in flight. The pilot's mean skin temperature was a linear function of Tdb,c in each phase. Auditory canal temperature (Tac) rose from a control value of 37.0 to a mean of 37.4 degrees C in flight, with one pilot reaching 37.8 degrees C. Sweat rate was a linear function of Tdb,g, with weight loss up to 2.3%. These data are compared to earlier studies of the F-4 and F-111 aircraft. Although the performance of the A-10's cooling system resembles that in other aircraft and is somewhat better than the F-4 on the ground, the effects of cockpit heat are exacerbated by its close-support role. Pilots noted lowered G-tolerance and increased general fatigue on the hotter flights. The foot- and leg-area temperatures exceeded those at the head; planned changes in air distribution should partly alleviate that situation.

  6. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  7. Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats.

    PubMed

    Yun, Seo-Hyun; Moon, Yang-Soo; Sohn, Sea-Hwan; Jang, In-Surk

    2012-01-01

    A total of 21 male SD rats were divided into three groups to investigate the effects of consecutive cyclic heat stress or vitamin C under heat stress on heat shock protein (HSP) 70, inflammatory cytokines, and antioxidant systems. The heat stress (HS) and vitamin C supplementation during heat stress (HS+VC) groups were exposed to cyclic heat stress (23 to 38 to 23°C) for 2 h on each of seven consecutive days. The HS+VC group had free access to water containing 0.5% vitamin C throughout the experiment. Hepatic HSP70 mRNA in the HS group was significantly (P<0.05) higher than that in the control (CON) or HS+VC group. The mRNA levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) in the HS group were greater (P<0.05) than those in the CON group. The HS+VC group showed significantly (P<0.05) lower mRNA levels of hepatic interleukin-6 and TNF-α than the HS group. However, thymic HSP70 and inflammatory cytokines were unaffected by treatments. In the hepatic antioxidant system, the mRNA and activity of glutathione peroxidase (GPX) were greater (P<0.05) in the HS than in the CON group, whereas the HS+VC group showed markedly (P<0.05) lower GPX mRNA and activity than the HS group. However, superoxide dismutase, glutathione S-transferase, and malondialdehyde were unaffected by treatments. In conclusion, cyclic heat stress activated hepatic HSP70, TNF-α, iNOS, and GPX genes, whereas vitamin C during heat stress ameliorated heat stress-induced cellular responses in rats.

  8. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  9. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb. PMID:27370472

  10. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  11. Infant's physiological response to short heat stress during sauna bath.

    PubMed

    Rissmann, A; Al-Karawi, J; Jorch, G

    2002-01-01

    Thermoregulatory response to Finnish sauna bath was investigated in 47 infants (age 3 - 14 month). Before taking a short sauna bath lasting 3 min, the infants stayed in a swimming pool for 15 min. Under these conditions sauna bathing did not increase the rectal temperature. Unexpectedly rectal temperature even decreased by 0.2 degrees C (p < 0.05) probably due to redistribution of cold peripheral blood into the core of the body. Mean systolic and diastolic arterial blood pressure and mean heart rate remained unchanged after sauna bathing. The blood pressure amplitude decreased significantly after the swimming period from 47 mm Hg to 38 mm Hg (p < 0.05) and rose again after sauna bathing to 42 mm Hg. All infants tolerated short heat exposure in the sauna without side effects. The circulatory adjustment was efficient. Even young infants were able to cope with the acute circulatory changes imposed by heat stress. Adequate thermoregulatory and cardiovascular adaptive responses to sauna bathing could be shown for the first time in infants between 3 and 14 months of age.

  12. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  13. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress.

    PubMed

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I; Dent, Paul; Grant, Steven

    2009-05-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2alpha phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2alpha) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  14. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress

    PubMed Central

    Dasmahapatra, Girija; Lembersky, Dmitry; Rahmani, Mohamed; Kramer, Lora; Friedberg, Jonathan; Fisher, Richard I.; Dent, Paul; Grant, Steven

    2010-01-01

    Mechanisms underlying interactions between the proteasome inhibitor bortezomib and small molecule Bcl-2 antagonists were examined in GC- and ABC-type human DLBCL (diffuse lymphocytic B-cell lymphoma) cells. Concomitant or sequential exposure to non- or minimally toxic concentrations of bortezomib or other proteasome inhibitors and either HA14-1 or gossypol resulted in a striking increase in Bax/Bak conformational change/translocation, cytochrome c release, caspase activation and synergistic induction of apoptosis in both GC- and ABC-type cells. These events were associated with a sharp increase in activation of the stress kinase JNK and evidence of ER stress induction (e.g., eIF2α phosphorylation, activation of caspases-2 and -4, and Grp78 upregulation). Pharmacologic or genetic (e.g., shRNA knockdown) interruption of JNK signaling attenuated HA14-1/bortezomib lethality and ER stress induction. Genetic disruption of the ER stress pathway (e.g., in cells expressing caspase-4 shRNA or DN-eIF2α) significantly attenuated lethality. The toxicity of this regimen was independent of ROS generation. Finally, HA14-1 significantly increased bortezomib-mediated JNK activation, ER stress induction, and lethality in bortezomib-resistant cells. Collectively these findings indicate that small molecule Bcl-2 antagonists promote bortezomib-mediated mitochondrial injury and lethality in DLBCL cells in association with enhanced JNK activation and ER stress induction. They also raise the possibility that such a strategy may be effective in different DLBCL sub-types (e.g., GC- or ABC), and in bortezomib-resistant disease. PMID:19270531

  15. Cerebral Vascular Control and Metabolism in Heat Stress.

    PubMed

    Bain, Anthony R; Nybo, Lars; Ainslie, Philip N

    2015-07-01

    This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases. PMID:26140721

  16. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress.

    PubMed

    Rainwater, D T; Gossett, D R; Millhollon, E P; Hanna, H Y; Banks, S W; Lucas, M C

    1996-11-01

    Four putative heat-tolerant tomato (Lycopersicum esculentum) cultivars (Tamasabro, Heat Wave, LHT-24, and Solar Set) and one putative heat-sensitive tomato cultivar (Floradade) were grown in the field under non-stress (average daily temperature of 26 degrees C) and heat-stress (average daily temperature of 34 degrees C) conditions. At anthesis, approximately five weeks after being transplanted to the field, leaf samples were collected for antioxidant analyses. Yield was determined by harvesting ripe fruit seven weeks after the collection of leaf samples. Heat stress resulted in a 79.1% decrease in yield for the heat-sensitive Floradade, while the fruit yield in the heat-tolerant cultivars Heat Wave, LHT-24, Solar Set, and Tamasabro was reduced 51.5%, 22.1%, 43.8%, and 34.8% respectively. When grown under heat stress, antioxidant activities were also greater in the heat-tolerant cultivars. Superoxide dismutase (SOD) activity increased up to 9-fold in the heat-tolerant cultivars but decreased 83.1% in the heat-sensitive Floradade. Catalase, peroxidase, and ascorbate peroxidase activity increased significantly in all cultivars. Only Heat Wave showed a significant increase in glutathione reductase in response to heat stress but all heat-tolerant cultivars exhibited significantly lower oxidized ascorbate/reduced ascorbate ratios, greater reduced glutathione/oxidized glutathione rations, and greater alpha-tocopherol concentrations compared to the heat-sensitive cultivar Floridade. These data indicate that the more heat-tolerant cultivars had an enhanced capacity for scavenging active oxygen species and a more active ascorbate-glutathione cycle and suggest a strong correlation between the ability to up-regulate the antioxidant defense system and the ability of tomatoes to produce greater yields when grown under heat stress.

  17. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs

    PubMed Central

    Stief, Anna; Brzezinka, Krzysztof; Lämke, Jörn; Bäurle, Isabel

    2014-01-01

    The hypothesis that plants can benefit from a memory of past stress exposure has recently attracted a lot of attention. Here, we discuss two different examples of heat stress memory to elucidate the potential benefits that epigenetic responses may provide at both the level of acclimation of the individual plant and adaptation at a species-wide level. Specifically, we discuss how microRNAs regulate the heat stress memory and thereby increase survival upon a recurring heat stress. Secondly, we review how a prolonged heat stress in a small interfering RNA-deficient background induces retrotransposition that is transmitted to the next generation, thus creating genetic variation for natural selection to act on. Collectively, these studies reveal a crucial role of short RNAs in heat stress memory across different time scales. PMID:25482804

  18. Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells.

    PubMed

    Zhao, Qing-Li; Fujiwara, Yoshisada; Kondo, Takashi

    2010-10-01

    We have shown that heat stress or a superoxide dismutase mimic nitroxide, Tempo, induces apoptosis, while their combination causes nonapoptotic cell death; however, the underlying mechanism for this switch remains unclear. Here we identified for the first time that 10 mM Tempo present during heating at 44°C for 30 min rapidly induced autophagy in U937 leukemic cells in spite of Bax activation and mitochondrial outer membrane (MOM) permeabilization. This co-treatment inhibited the processing of heat-activated procaspases-2, -8, -9 and -3 into active small subunits, leading to the inhibition of caspase-dependent apoptosis, and instead caused the induction of autophagy. The inactivation of caspases, a key event, could result from oxidation of active-site-CysSH of all caspases by a prooxidant oxo-ammonium cation, an intermediate derived Tempo during dismutation of heat-induced superoxide anion. In addition, the co-treatment caused mitochondrial calcium overloads, the mitochondrial inner membrane permeabilization, profound mitochondrial dysfunction, and liberation of Beclin 1 from the Bcl-2/Beclin 1 complex, all of which contributed to induction of autophagy. These autophagic cells underwent propidium iodide-positive necrosis in a delayed fashion, leading to the complete proliferative inhibition. Remarkably, ruthenium red and BAPTA, which interfere with mitochondrial calcium uptake, facilitated autophagic necrotic death. Cyclosporin A, which binds to cyclophilin D, had a similar necrotic effect. 3-Methyladenine facilitated the necrosis of autophagic cells. In contrast, 5 mM Tempo-44°C/10 min or 44°C/30 min induced Bax-mediated MOM permeabilization and caspase-dependent apoptosis more potently than Tempo alone. Thus, Tempo is a unique thermosensitizer to synergistically induce apoptosis and autophagic cell death.

  19. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  20. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles.

    PubMed

    Markowska, Katarzyna; Grudniak, Anna M; Krawczyk, Krzysztof; Wróbel, Izabela; Wolska, Krystyna I

    2014-06-01

    The objective of this study was to characterize the effects of silver nanoparticles on Pseudomonas aeruginosa. Their interactions with several conventional antibiotics and ability to induce a stress response were examined. Interactions between silver nanoparticles (AgNPs) and antibiotics against free-living cells and biofilm of P. aeruginosa were studied using the chequerboard method and time-kill assays. The ability of AgNPs to induce a stress response was determined by evaluation of cellular levels of the DnaK and HtpG chaperones using SDS-PAGE and Western blot analysis. Synergistic activity against free-living P. aeruginosa between AgNPs and ampicillin, streptomycin, rifampicin and tetracycline, but not oxacillin, ciprofloxacin, meropenem or ceftazidime, was demonstrated by the chequerboard method. No such interactions were observed against P. aeruginosa biofilm. The results of time-kill assays confirmed synergy only for the AgNPs-streptomycin combination. AgNPs induced the expression of chaperone DnaK. No induction of the HtpG chaperone was detected. In conclusion, AgNPs not only display potent bactericidal activity against P. aeruginosa, but also act synergistically with several conventional antibiotics to enhance their effect against free-living bacteria as determined by the chequerboard method. The time-kill assay proved synergy between AgNPs and streptomycin only. The ability of AgNPs to induce the major chaperone protein DnaK may influence bacterial resistance to antimicrobials.

  1. Induction kinetics of a conditional pH stress response system in Escherichia coli.

    PubMed

    Fritz, Georg; Koller, Christiane; Burdack, Korinna; Tetsch, Larissa; Haneburger, Ina; Jung, Kirsten; Gerland, Ulrich

    2009-10-23

    The analysis of stress response systems in microorganisms can reveal molecular strategies for regulatory control and adaptation. In this study, we focused on the Cad module, a subsystem of Escherichia coli's response to acidic stress that is conditionally activated at low pH only when lysine is available. When expressed, the Cad system counteracts the elevated H(+) concentration by converting lysine to cadaverine under the consumption of H(+) and exporting cadaverine in exchange for external lysine. Surprisingly, the cad operon displays a transient response, even when the conditions for its induction persist. To quantitatively characterize the regulation of the Cad module, we experimentally recorded and theoretically modeled the dynamics of important system variables. We established a quantitative model that adequately describes and predicts the transient expression behavior for various initial conditions. Our quantitative analysis of the Cad system supports negative feedback by external cadaverine as the origin of the transient response. Furthermore, the analysis puts causal constraints on the precise mechanism of signal transduction via the regulatory protein CadC. PMID:19703467

  2. An assessment of heat stress in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; Fernandez García, F.

    2010-09-01

    of heat extremes (PET > 35 °C) was compared with the occurrence of several circulation patterns, in other to validate the circulation pattern catalogue and obtain a regional signal. In order to gain a comprehensive understanding of the sources and thermodynamic characteristics of the air masses involved in those events, the atmospheric circulation prior selected episodes of heat stress was analyzed using a sequential classification procedure (up to three days) and compared with the backward trajectories supplied by the HYSPLIT model (Hybrid Single-Particle Lagrangian Integrated Trajectory model; http://ready.arl.noaa.gov/HYSPLIT.php). The dependence of the PET on some geographical controls (e.g. topography, latitude, distance to sea) results on marked variation between the values calculated for different stations. Low/middle-altitude continental stations (eg. Madrid, Seville) show much higher thermal stress than coastal stations (Barcelona, Málaga) or stations in elevated areas (e.g. Burgos, Navacerrada). Besides, coastal stations display an asymmetric monthly distribution, with larger probability in August, while July is the most typical month in the interior of Iberia. 5 regions resulted from the analysis of daily PET fields: Northern, Atlantic North, Atlantic South, Mediterranean North and Mediterranean South. The extreme heat events occurrence on each region showed strong links with the atmospheric circulation, but two basic mechanisms are involved in most of them. Coastal stations experience such events when the regional atmospheric circulation overrules local circulations, replacing the cooler and moist air masses by continental downslope flows. In continental Iberia the advection of hot air masses from a diverse precedence and embedded into a weak atmospheric circulation (radiative processes) trigger most of the situations of heat stress.

  3. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis

    PubMed Central

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  4. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance. PMID:27493656

  5. Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis.

    PubMed

    Okamoto, Masanori; Matsui, Akihiro; Tanaka, Maho; Morosawa, Taeko; Ishida, Junko; Iida, Kei; Mochizuki, Yoshiki; Toyoda, Tetsuro; Seki, Motoaki

    2016-01-01

    Sm-like proteins play multiple functions in RNA metabolism, which is essential for biological processes such as stress responses in eukaryotes. The Arabidopsis thaliana sad1 mutant has a mutation of sm-like protein 5 (LSM5) and shows impaired drought and salt stress tolerances. The lsm5/sad1 mutant also showed hypersensitivity to heat stress. GFP-fused LSM5/SAD1 was localized in the nucleus under optimal growth conditions. After heat stress treatment, GFP-fused LSM5/SAD1 fluorescence was also observed as small cytoplasmic dots, in addition to nuclear localization. Whole genome transcriptome analysis revealed that many genes in Arabidopsis were drastically changed in response to heat stress. More heat-responsive genes were highly expressed in lsm5/sad1 mutant at both 2 and 6 h after heat stress treatment. Additionally, intron-retained and capped transcripts accumulated in the lsm5/sad1 mutant after heat stress treatment. In this study, we also identified non-Arabidopsis Genome Initiative transcripts that were expressed from unannotated regions. Most of these transcripts were antisense transcripts, and many capped non-AGI transcripts accumulated in the lsm5/sad1 mutant during heat stress treatment. These results indicated that LSM5/SAD1 functions to degrade aberrant transcripts through appropriate mRNA splicing and decapping, and precise RNA metabolic machinery is required for heat stress tolerance.

  6. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  7. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress12

    PubMed Central

    Rhoads, Robert P.; Baumgard, Lance H.; Suagee, Jessica K.; Sanders, Sara R.

    2013-01-01

    Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed. PMID:23674792

  8. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  9. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  10. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to (1) investigate the relationship between the heat stability of thylakoid membranes/PS II and loss of chlorophyll in winter wheat under heat stress conditions, and (2) to test the possibility of using chlorophyll loss, as determined by SPAD chlorophyll meter, as a...

  11. Oxide-bioceramic coatings obtained on titanium items by the induction heat treatment and modified with hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fomina, Marina A.; Rodionov, Igor V.; Koshuro, Vladimir A.; Petrova, Natalia V.; Skaptsov, Aleksandr A.; Atkin, Vsevolod S.

    2015-06-01

    Prospective composite bioceramic titania coatings were obtained on intraosseous implants fabricated from cp-titanium and medical titanium alloy VT16 (Ti-2.5Al-5Mo-5V). Consistency changes of morphological characteristics, mechanical properties and biocompatibility of experimental titanium implant coatings obtained by oxidation during induction heat treatment are defined. Technological recommendations for obtaining bioceramic coatings with extremely high strength on titanium items surface are given.

  12. Development of ti-coated ferromagnetic needle, adaptable for ablation cancer therapy by high-frequency induction heating.

    PubMed

    Naohara, Takashi; Aono, Hiromichi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Matsutomo, Shinya; Watanabe, Yuji

    2012-03-06

    To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  13. Root zone calcium modulates the response of potato plants to heat stress.

    PubMed

    Kleinhenz, Matthew D; Palta, Jiwan P

    2002-05-01

    Potato plant growth and development are known to be severely impacted by heat stress. Here plants grown in a chemically inert medium of 1 : 1 quartzite : perlite (v : v) were subjected to either 35/25 degrees C (stress) or 20/15 degrees C (control) day/night air temperatures and four concentrations of root zone calcium (5, 25, 125 and 600 &mgr;M Ca) for 3 weeks. We report for the first time that potato plant growth under heat stress can persist at specific levels of Ca2+ in the root zone and that the Ca2+ level required for growth under heat stress exceeds that required for growth under normal temperatures. We also provide strong, initial evidence that the ability of high Ca2+ levels to mitigate heat stress effects results from shifts in meristematic activity. Total foliar mass and leaf area were essentially unaffected by Ca2+ level under control temperatures. Under heat stress, leaf area was reduced to about 5% of the control at 5 and 25 &mgr;M Ca but to only 70% of the control at 125 and 600 &mgr;M Ca. Likewise, total foliar mass was reduced under heat stress to about 30% of the control at 5 and 25 &mgr;M Ca but total foliar mass was greater under heat stress than control conditions at 125 and 600 &mgr;M Ca. This increase at higher Ca2+ concentrations was due primarily to axillary shoot growth. Anatomical studies of leaves grown under heat stress show that cell expansion was impaired by heat stress and this impairment was overcome by increasing root zone calcium levels. These results provide insight into the mechanism by which root zone Ca2+ may modulate plant response to heat stress. PMID:12010474

  14. Eddy current pulsed phase thermography considering volumetric induction heating for delamination evaluation in carbon fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yang, Ruizhen; He, Yunze

    2015-06-01

    Anisotropy and inhomogeneity of carbon fiber reinforced polymers (CFRPs) result in that many traditional non-destructive inspection techniques are inapplicable on the delamination evaluation. This letter introduces eddy current pulsed phase thermography (ECPPT) for CFRPs evaluation considering volumetric induction heating due to small electrical conductivity, abnormal thermal wave propagation, and Fourier analysis. The proposed methods were verified through experimental studies under transmission and reflection modes. Using ECPPT, the influence of the non-uniform heating effect and carbon fiber structures can be suppressed, and then delamination detectability can be improved dramatically over eddy current pulsed thermography.

  15. Transient heat-stress compromises the resistance of wheat seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat-stress exerts profound impact on resistance of plants to parasites. In this research, we investigated the impact of an acute, transient heat-stress on the resistance of the wheat line 'Molly', which contains the resistance gene H13, to an avirulent Hessian fly [Mayetiola destructor (Say)] popu...

  16. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  17. Interactions of low temperature, water stress, and short days in the induction of stem frost hardiness in red osier dogwood.

    PubMed

    Chen, H H; Li, P H

    1978-11-01

    The induction of stem frost hardiness by low temperature, water stress, short days, and their combinations in 2- and 4-month-old growing dogwoods (Cornus stolonifera) were investigated. When plants were subjected to more than one factor, the increased hardiness was the sum of the effects of the individual factors involved. No interactions among these factors on hardiness were observed during a 3-week treatment. Results indicate that low temperature, water stress, and short days initially trigger independent frost-hardening mechanisms. Plant ages significantly influenced the change in low temperature-induced frost hardiness, but not the water stress or short day-induced frost hardiness. PMID:16660617

  18. A New Approach in Optimizing the Induction Heating Process Using Flux Concentrators: Application to 4340 Steel Spur Gear

    NASA Astrophysics Data System (ADS)

    Barka, Noureddine; Chebak, Ahmed; El Ouafi, Abderrazak; Jahazi, Mohammad; Menou, Abdellah

    2014-09-01

    The beneficial effects of using flux concentrators during induction heat treatment process of spur gears made of 4340 high strength steel is demonstrated using 3D finite element model. The model is developed by coupling electromagnetic field and heat transfer equations and simulated by using Comsol software. Based on an adequate formulation and taking into account material properties and process parameters, the model allows calculating temperature distribution in the gear tooth. A new approach is proposed to reduce the electromagnetic edge effect in the gear teeth which allows achieving optimum hardness profile after induction heat treatment. In the proposed method, the principal gear is positioned in sandwich between two other gears having the same geometry that act as flux concentrators. The gap between the gear and the flux concentrators was optimized by studying temperature variation between the tip and root regions of gear teeth. Using the proposed model, it was possible identifying processing conditions that allow for quasi-uniform final temperature profile in the medium and high frequency conditions during induction hardening of spur gears.

  19. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge.

    PubMed

    Huff, G R; Huff, W E; Wesley, I V; Anthony, N B; Satterlee, D G

    2013-03-01

    Japanese quail selected for divergent corticosterone response to restraint stress were evaluated for their susceptibility to heat stress and challenge with Escherichia coli. These quail lines are designated as high stress (HS), low stress (LS), and the random-bred control (CS) lines. Heat stress (35°C, 8 h/d) began at 24 d until the end of the study at 39 d. Birds were challenged with an aerosol spray containing 2 × 10(9) cfu of E. coli at 25 and 32 d. At 38 d, the surviving birds were necropsied and the intestinal tract was screened for both Salmonella and Campylobacter. Body weights of the CS birds were higher than both HS and LS at 17, 25, and 32 d. At 32 d, there was no difference in mortality between males and females and the CS line had higher mortality compared with the LS line with the HS line being intermediate. At 38 d, females of the CS line that were both heat stressed and challenged had a mortality incidence of 25%, which was significantly higher than male birds of the same line and treatment (5.3%). There was an increased incidence in Salmonella enterica serotype Agona isolation after heat stress, with the LS birds having less isolation than the HS birds. Mean corticosterone levels of male birds were not significantly affected by line, heat stress, or E. coli challenge; however, the LS line subjected to heat stress had one-third the level of the HS line, a difference identical to that seen in the original selection for response to restraint stress.

  20. Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance1[w

    PubMed Central

    Larkindale, Jane; Hall, Jennifer D.; Knight, Marc R.; Vierling, Elizabeth

    2005-01-01

    To investigate the importance of different processes to heat stress tolerance, 45 Arabidopsis (Arabidopsis thaliana) mutants and one transgenic line were tested for basal and acquired thermotolerance at different stages of growth. Plants tested were defective in signaling pathways (abscisic acid, salicylic acid, ethylene, and oxidative burst signaling) and in reactive oxygen metabolism (ascorbic acid or glutathione production, catalase) or had previously been found to have temperature-related phenotypes (e.g. fatty acid desaturase mutants, uvh6). Mutants were assessed for thermotolerance defects in seed germination, hypocotyl elongation, root growth, and seedling survival. To assess oxidative damage and alterations in the heat shock response, thiobarbituric acid reactive substances, heat shock protein 101, and small heat shock protein levels were determined. Fifteen mutants showed significant phenotypes. Abscisic acid (ABA) signaling mutants (abi1 and abi2) and the UV-sensitive mutant, uvh6, showed the strongest defects in acquired thermotolerance of root growth and seedling survival. Mutations in nicotinamide adenine dinucleotide phosphate oxidase homolog genes (atrbohB and D), ABA biosynthesis mutants (aba1, aba2, and aba3), and NahG transgenic lines (salicylic acid deficient) showed weaker defects. Ethylene signaling mutants (ein2 and etr1) and reactive oxygen metabolism mutants (vtc1, vtc2, npq1, and cad2) were more defective in basal than acquired thermotolerance, especially under high light. All mutants accumulated wild-type levels of heat shock protein 101 and small heat shock proteins. These data indicate that, separate from heat shock protein induction, ABA, active oxygen species, and salicylic acid pathways are involved in acquired thermotolerance and that UVH6 plays a significant role in temperature responses in addition to its role in UV stress. PMID:15923322

  1. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism

    PubMed Central

    Liu, Chengcheng; Niu, Yulong; Zhou, Xuedong; Zheng, Xin; Wang, Shida; Guo, Qiang; Li, Yuqing; Li, Mingyun; Li, Jiyao; Yang, Yi; Ding, Yi; Lamont, Richard J.; Xu, Xin

    2015-01-01

    Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans. PMID:26251057

  2. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. PMID:27503713

  3. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  4. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  5. Serum response factor promotes resilience to chronic social stress through the induction of ΔFosB

    PubMed Central

    Vialou, Vincent; Maze, Ian; Renthal, William; LaPlant, Quincey C.; Watts, Emily L.; Mouzon, Ezekiell; Ghose, Subroto; Tamminga, Carol A.; Nestler, Eric J.

    2010-01-01

    The molecular mechanisms underlying stress- and drug-induced neuronal adaptations are incompletely understood. One molecule implicated in such adaptations is ΔFosB, a transcription factor that accumulates in the rodent nucleus accumbens (NAc), a key brain reward region, in response to either chronic stress or repeated exposure to drugs of abuse. The upstream transcriptional mechanisms controlling ΔFosB induction by these environmental stimuli remain elusive. Here, we identify the activity-dependent transcription factor, serum response factor (SRF), as a novel upstream mediator of stress-, but not cocaine-, induced ΔFosB. SRF is downregulated in NAc of both human depressed patients and in mice chronically exposed to social defeat stress. This downregulation of SRF is absent in resilient animals. Through the use of inducible mutagenesis, we show that stress-mediated induction of ΔFosB, which occurs predominantly in resilient mice, is dependent on SRF expression in this brain region. Furthermore, NAc-specific genetic deletion of SRF promotes a variety of pro-depressant- and anxiety-like phenotypes and renders animals more sensitive to the deleterious effects of chronic stress. In contrast, we demonstrate that SRF does not play a role in ΔFosB accumulation in NAc in response to chronic cocaine exposure. Furthermore, NAc-specific knockout of SRF has no effect on cocaine-induced behaviors, indicating that chronic social defeat stress and repeated cocaine exposure regulate ΔFosB accumulation and behavioral sensitivity through independent mechanisms. PMID:20980616

  6. Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response.

    PubMed

    Liu, Hsiang-chin; Charng, Yee-yung

    2012-05-01

    The heat stress (HS) response in eukaryotes is mainly regulated by heat shock factors (HSFs). Genetic disruption of the master HSF gene leads to dramatically reduced HS response and thermotolerance in several model organisms. However, it is not clear whether organisms devoid of the master regulator can still acclimate to heat. Previously, we showed that Arabidopsis HsfA1a, HsfA1b, and HsfA1d act as master regulators in the HS response. In this study, we examined the heat acclimation capacity of the Arabidopsis quadruple and triple T-DNA knockout mutants of HsfA1a, HsfA1b, HsfA1d, and HsfA1e. Our data showed that in the absence of the master regulators, a minimal but significant level of acquired thermotolerance could be attained in the Arabidopsis mutants after acclimation. The optimum acclimation temperature for the HsfA1 quadruple mutant was lower than that for the wild type plants, suggesting that plant cells have two HS-sensing mechanisms that can be distinguished genetically. The acquired thermotolerance of the quadruple mutant was likely due to the induction of a small number of HsfA1-independent HS response genes regulated by other transcription factors. Here, we discuss the possible candidates and propose a working model of the transcription network of the HS response by including the HsfA1-dependent and -independent pathways.

  7. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.

    PubMed

    Sleadd, Isaac M; Lee, Marissa; Hassumani, Daniel O; Stecyk, Tonya M A; Zeitz, Otto K; Buckley, Bradley A

    2014-08-01

    The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species. PMID:25086982

  8. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  9. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress

    PubMed Central

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S.; Inupakutika, Madhuri A.; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M.; Verbeck, Guido F.; Azad, Rajeev K.; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  10. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  11. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  12. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    SciTech Connect

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  13. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry.

  14. Exercise intensity prescription during heat stress: A brief review.

    PubMed

    Wingo, J E

    2015-06-01

    Exercise intensity can be prescribed using a variety of indices, such as rating of perceived exertion, heart rate, levels of absolute intensity (e.g., metabolic equivalents), and levels of relative intensity [e.g., percentage of maximal aerobic capacity (% V ˙ O 2 m a x ) or percentage of oxygen uptake reserve (% V ˙ O 2 R )]. Heart rate has a linear relationship with oxygen uptake, is easy to measure, and requires relatively inexpensive monitoring equipment, so it is commonly used to monitor exercise intensity. During heat stress, however, cardiovascular adjustments - including a rise in heart rate that is disproportionate to absolute intensity - result in diminished aerobic capacity and performance. These adjustments include cardiovascular drift, the progressive rise in heart rate and fall in stroke volume over time during prolonged, constant-rate exercise. A variety of factors have been shown to modulate the magnitude of cardiovascular drift, e.g., hyperthermia, dehydration, exercise intensity, and ambient temperature. Regardless of the mode of manipulation, decreases in stroke volume with cardiovascular drift are associated with proportionally similar decreases in V ˙ O 2 m a x , which affects the relationship between heart rate and relative metabolic intensity (% V ˙ O 2 m a x or % V ˙ O 2 R ). This review summarizes the current state of knowledge regarding the influence of cardiovascular drift and reduced V ˙ O 2 m a x on exercise intensity prescription in hot conditions.

  15. Role and regulation of autophagy in heat stress responses of tomato plants.

    PubMed

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  16. Effect of heat stress on the porcine small intestine: a morphological and gene expression study.

    PubMed

    Yu, Jin; Yin, Peng; Liu, Fenghua; Cheng, Guilin; Guo, Kaijun; Lu, An; Zhu, Xiaoyu; Luan, Weili; Xu, Jianqin

    2010-05-01

    With the presence of global warming, the occurrence of extreme heat is becoming more common, especially during the summer, increasing pig susceptibility to severe heat stress. The aim of the current study was to investigate changes in morphology and gene expression in the pig small intestine in response to heat stress. Forty eight Chinese experimental mini pigs (Sus scrofa) were subjected to 40 degrees C for 5h each day for 10 successive days. Pigs were euthanized at 1, 3, 6, and 10 days after heat treatment and sections of the small intestine epithelial tissue were excised for morphological examination and microarray analyses. After heat treatment, the pig rectal temperature, the body surface temperature and serum cortisol levels were all significantly increased. The duodenum and jejunum displayed significant damage, most severe after 3 days of treatment. Microarray analysis found 93 genes to be up-regulated and 110 genes to be down-regulated in response to heat stress. Subsequent bioinformatic analysis (including gene ontology and KEGG pathway analysis) revealed the genes altered in response to heat stress related to unfolded protein, regulation of translation initiation, regulation of cell proliferation, cell migration and antioxidant regulation. Heat stress caused significant damage to the pig small intestine and altered gene expression in the pig jejunum. The results of the bioinformatic analysis from the present study will be beneficial to further investigate the underlying mechanisms involved in heat stress-induced damage in the pig small intestine.

  17. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. PMID:23429639

  18. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness.

  19. Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood.

    PubMed

    Tozzi, Emily S; Easlon, Hsien Ming; Richards, James H

    2013-08-01

    Fremont cottonwood seedlings are vulnerable to water stress from rapid water-table decline during river recession in spring. Water stress is usually cited as the reason for reduced establishment, but interactions of water stress with microclimate extremes are more likely the causes of mortality. We assessed photosynthetic responses of Fremont cottonwood seedlings to water, light and heat stresses, which commonly co-occur in habitats where seedlings establish. Under moderate temperature and light conditions, water stress did not affect photosynthetic function. However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 °C versus at 41 °C for well-watered plants. Ontogenetic shifts in leaf orientation from horizontal to vertical, which occur as seedlings mature, reduce heat and light stress, especially during water stress. When compared with naturally occurring microclimate extremes, seedling stress responses suggest that reduced assimilation and photoprotection are common for Fremont cottonwood seedlings on exposed point bars where they establish. These reductions in photosynthesis likely have negative impacts on growth and may predispose young (<90-day-old) seedlings to early mortality during rapid water-table declines. Interactions with heat and light stress are more important in these effects than water stress alone.

  20. Ecdysone Induction of MsrA Protects Against Oxidative Stress in Drosophila

    SciTech Connect

    Roesijadi, Guri; Rezvankhah, Saeid; Binninger, David M.; Weissbach, Herbert

    2007-03-09

    The methionine sulfoxide reductases MsrA and MsrB reduce Met(O) to Met in epimer-specific fashion. In Drosophila, the major ecdysone induced protein is MsrA, which is regulated by the EcR-USP complex. We tested Kc cells for induction of MsrA, MsrB, EcR. and CAT by ecdysone and found that MsrA and the EcR were induced by ecdysone, but MsrB and CAT were not. When we tested for resistance to 20 mM H2O2 toxicity, viability of Kc cells was reduced threefold. After pretreatment with 0.2 μM ecdysone for 48 h, then exposed to H2O2, viability of Kc cells increased to 77% of controls. The EcR-deficient L57-3-11 knockout line was not responsive to ecdysone, and H2O2 resistance of both control and ecdysone-treated L57-3-11 cells was similar to that of the ecdysone-untreated Kc cells. These results show that hormonal regulation of MsrA is implicated in conferring protection against oxidative stress in the Drosophila model.

  1. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    PubMed

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  2. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  3. The American Football Uniform: Uncompensable Heat Stress and Hyperthermic Exhaustion

    PubMed Central

    Armstrong, Lawrence E.; Johnson, Evan C.; Casa, Douglas J.; Ganio, Matthew S.; McDermott, Brendon P.; Yamamoto, Linda M.; Lopez, Rebecca M.; Emmanuel, Holly

    2010-01-01

    volume, plasma lactate, plasma glucose, or plasma osmolality. Exhaustion occurred during the FULL and PART conditions at the same Tre (39.2°C). Systolic and diastolic blood pressures (n  =  9) indicated that hypotension developed throughout exercise (all treatments). Compared with the PART condition, the FULL condition resulted in a faster rate of Tre increase (P < .001, d  =  0.79), decreased treadmill exercise time (P  =  .005, d  =  0.48), and fewer completed exercise bouts. Interestingly, Tre increase was correlated with lean body mass during the FULL condition (R2  =  0.71, P  =  .005), and treadmill exercise time was correlated with total fat mass during the CON (R2  =  0.90, P < .001) and PART (R2  =  0.69, P  =  .005) conditions. Conclusions: The FULL and PART conditions resulted in greater physiologic strain than the CON condition. These findings indicated that critical internal temperature and hypotension were concurrent with exhaustion during uncompensable (FULL) or nearly uncompensable (PART) heat stress and that anthropomorphic characteristics influenced heat storage and exercise time to exhaustion. PMID:20210615

  4. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress

    PubMed Central

    Hu, Xiuli; Wu, Liuji; Zhao, Feiyun; Zhang, Dayong; Li, Nana; Zhu, Guohui; Li, Chaohao; Wang, Wei

    2015-01-01

    Drought and heat stress, especially their combination, greatly affect crop production. Many studies have described transcriptome, proteome and phosphoproteome changes in response of plants to drought or heat stress. However, the study about the phosphoproteomic changes in response of crops to the combination stress is scare. To understand the mechanism of maize responses to the drought and heat combination stress, phosphoproteomic analysis was performed on maize leaves by using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. Five-leaf-stage maize was subjected to drought, heat or their combination, and the leaves were collected. Globally, heat, drought and the combined stress significantly changed the phosphorylation levels of 172, 149, and 144 phosphopeptides, respectively. These phosphopeptides corresponded to 282 proteins. Among them, 23 only responded to the combined stress and could not be predicted from their responses to single stressors; 30 and 75 only responded to drought and heat, respectively. Notably, 19 proteins were phosphorylated on different sites in response to the single and combination stresses. Of the seven significantly enriched phosphorylation motifs identified, two were common for all stresses, two were common for heat and the combined stress, and one was specific to the combined stress. The signaling pathways in which the phosphoproteins were involved clearly differed among the three stresses. Functional characterization of the phosphoproteins and the pathways identified here could lead to new targets for the enhancement of crop stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of abiotic stressors. PMID:25999967

  5. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation.

  6. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  7. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression. PMID:26551745

  8. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  9. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.).

    PubMed

    Li, Hao; He, Jie; Yang, Xiaozhen; Li, Xin; Luo, Dan; Wei, Chunhua; Ma, Jianxiang; Zhang, Yong; Yang, Jianqiang; Zhang, Xian

    2016-03-01

    Melatonin is involved in defending against oxidative stress caused by various environmental stresses in plants. In this study, the roles of exogenous melatonin in regulating local and systemic defense against photooxidative stress in cucumber (Cucumis sativus) and the involvement of redox signaling were examined. Foliar or rhizospheric treatment with melatonin enhanced tolerance to photooxidative stress in both melatonin-treated leaves and untreated systemic leaves. Increased melatonin levels are capable of increasing glutathione (reduced glutathione [GSH]) redox status. Application of H2 O2 and GSH also induced tolerance to photooxidative stress, while inhibition of H2 O2 accumulation and GSH synthesis compromised melatonin-induced local and systemic tolerance to photooxidative stress. H2 O2 treatment increased the GSH/oxidized glutathione (GSSG) ratio, while inhibition of H2 O2 accumulation prevented a melatonin-induced increase in the GSH/GSSG ratio. Additionally, inhibition of GSH synthesis blocked H2 O2 -induced photooxidative stress tolerance, whereas scavenging or inhibition of H2 O2 production attenuated but did not abolish GSH-induced tolerance to photooxidative stress. These results strongly suggest that exogenous melatonin is capable of inducing both local and systemic defense against photooxidative stress and melatonin-enhanced GSH/GSSG ratio in a H2 O2 -dependent manner is critical in the induction of tolerance.

  10. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress. PMID:25801077

  11. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family.

  12. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  13. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress.

  14. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings.

    PubMed

    Xue, Da-Wei; Jiang, Hua; Hu, Jiang; Zhang, Xiao-Qin; Guo, Long-Biao; Zeng, Da-Li; Dong, Guo-Jun; Sun, Guo-Chang; Qian, Qian

    2012-12-01

    Global warming, which is caused by greenhouse gas emissions, makes food crops more vulnerable to heat stress. Understanding the heat stress-related mechanisms in crops and classifying heat stress-related genes can increase our knowledge in heat-resistant molecular biology and propel developments in molecular design breeding, which can help rice cope with unfavorable temperatures. In this study, we carried out a physiological analysis of rice plants after heat stress. The results show a dramatic increase in malondialdehyde contents and SOD activities. We successfully isolated 11 heat-related rice genes with known function annotation through DNSH, which is an improved SSH method for screening long cDNA fragments. The reanalysis of microarray data from public database revealed that all these genes displayed various expression patterns after heat stress, drought, cold and salt. Quantitative real-time reverse transcription PCR was also performed to validate the expression of these genes after heat stress. The expressions in 10 genes were all significantly changed except for contig 77, which is a CBL-interacting protein kinase. Several reports have been published about the members of the same gene family. PMID:23037947

  15. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  16. Expression Profiles of the Heat Shock Protein 70 Gene in Response to Heat Stress in Agrotis c-nigrum (Lepidoptera: Noctuidae)

    PubMed Central

    Wang, Ling; Yang, Shuai; Zhao, Kuijun; Han, Lanlan

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones, and their overexpression enhances the survivability and stress tolerance of the cell. To understand the characteristics of HSP70 in Agrotis c-nigrum Linnaeus larvae, the coding sequence of this protein was cloned, and the effect of heat stress on transcription and protein properties was assessed. The obtained cDNA sequence of HSP70 was 2,213 bp, which contained an ORF of 1,965 bp and encoded 654 amino acid residues. Isolated HSP70 cDNA demonstrated more than 80% identity with the sequences of other known insect HSP70s. Next, HSP70 was expressed in Escherichia coli BL21 (DE3) cells and identified using SDS-PAGE and western blotting analyses. In addition, anti-HSP70-specific antisera were prepared using a recombinant HSP70 protein, and the results showed that this antisera was very specific to AcHSP70. Real-time quantitative polymerase chain reaction detected the relative transcription of the HSP70 gene in larvae and the transcription of A. c-nigrum in response to high temperatures. Induction of HSP70 was up-regulated to peak expression at 36°C. PMID:25688087

  17. Expression profiles of the heat shock protein 70 gene in response to heat stress in Agrotis c-nigrum (Lepidoptera: Noctuidae).

    PubMed

    Wang, Ling; Yang, Shuai; Zhao, Kuijun; Han, Lanlan

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones, and their overexpression enhances the survivability and stress tolerance of the cell. To understand the characteristics of HSP70 in Agrotis c-nigrum Linnaeus larvae, the coding sequence of this protein was cloned, and the effect of heat stress on transcription and protein properties was assessed. The obtained cDNA sequence of HSP70 was 2,213 bp, which contained an ORF of 1,965 bp and encoded 654 amino acid residues. Isolated HSP70 cDNA demonstrated more than 80% identity with the sequences of other known insect HSP70s. Next, HSP70 was expressed in Escherichia coli BL21 (DE3) cells and identified using SDS-PAGE and western blotting analyses. In addition, anti-HSP70-specific antisera were prepared using a recombinant HSP70 protein, and the results showed that this antisera was very specific to AcHSP70. Real-time quantitative polymerase chain reaction detected the relative transcription of the HSP70 gene in larvae and the transcription of A. c-nigrum in response to high temperatures. Induction of HSP70 was up-regulated to peak expression at 36°C.

  18. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory

    NASA Astrophysics Data System (ADS)

    Lee, K. L.; Chan, Y. H.; Lee, T. C.; Goggins, William B.; Chan, Emily Y. Y.

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong.

  19. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory.

    PubMed

    Lee, K L; Chan, Y H; Lee, T C; Goggins, William B; Chan, Emily Y Y

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong. PMID:26546311

  20. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory.

    PubMed

    Lee, K L; Chan, Y H; Lee, T C; Goggins, William B; Chan, Emily Y Y

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong.

  1. Cognitive and perceptual responses during passive heat stress in younger and older adults

    PubMed Central

    Schlader, Zachary J.; Gagnon, Daniel; Adams, Amy; Rivas, Eric; Cullum, C. Munro

    2015-01-01

    We tested the hypothesis that attention, memory, and executive function are impaired to a greater extent in passively heat-stressed older adults than in passively heat-stressed younger adults. In a randomized, crossover design, 15 older (age: 69 ± 5 yr) and 14 younger (age: 30 ± 4 yr) healthy subjects underwent passive heat stress and time control trials. Cognitive tests (outcomes: accuracy and reaction time) from the CANTAB battery evaluated attention [rapid visual processing (RVP), choice reaction time (CRT)], memory [spatial span (SSP), pattern recognition memory (PRM)], and executive function [one touch stockings of Cambridge (OTS)]. Testing was undertaken on two occasions during each trial, at baseline and after internal temperature had increased by 1.0 ± 0.2°C or after a time control period. For tests that measured attention, reaction time during RVP and CRT was slower (P ≤ 0.01) in the older group. During heat stress, RVP reaction time improved (P < 0.01) in both groups. Heat stress had no effect (P ≥ 0.09) on RVP or CRT accuracy in either group. For tests that measured memory, accuracy on SSP and PRM was lower (P < 0.01) in the older group, but there was no effect of heat stress (P ≥ 0.14). For tests that measured executive function, overall, accuracy on OTS was lower, and reaction time was slower in the older group (P ≤ 0.05). Reaction time generally improved during heat stress, but there was no effect of heat stress on accuracy in either group. These data indicate that moderate increases in body temperature during passive heat stress do not differentially compromise cognitive function in younger and older adults. PMID:25786484

  2. Cognitive and perceptual responses during passive heat stress in younger and older adults.

    PubMed

    Schlader, Zachary J; Gagnon, Daniel; Adams, Amy; Rivas, Eric; Cullum, C Munro; Crandall, Craig G

    2015-05-15

    We tested the hypothesis that attention, memory, and executive function are impaired to a greater extent in passively heat-stressed older adults than in passively heat-stressed younger adults. In a randomized, crossover design, 15 older (age: 69 ± 5 yr) and 14 younger (age: 30 ± 4 yr) healthy subjects underwent passive heat stress and time control trials. Cognitive tests (outcomes: accuracy and reaction time) from the CANTAB battery evaluated attention [rapid visual processing (RVP), choice reaction time (CRT)], memory [spatial span (SSP), pattern recognition memory (PRM)], and executive function [one touch stockings of Cambridge (OTS)]. Testing was undertaken on two occasions during each trial, at baseline and after internal temperature had increased by 1.0 ± 0.2°C or after a time control period. For tests that measured attention, reaction time during RVP and CRT was slower (P ≤ 0.01) in the older group. During heat stress, RVP reaction time improved (P < 0.01) in both groups. Heat stress had no effect (P ≥ 0.09) on RVP or CRT accuracy in either group. For tests that measured memory, accuracy on SSP and PRM was lower (P < 0.01) in the older group, but there was no effect of heat stress (P ≥ 0.14). For tests that measured executive function, overall, accuracy on OTS was lower, and reaction time was slower in the older group (P ≤ 0.05). Reaction time generally improved during heat stress, but there was no effect of heat stress on accuracy in either group. These data indicate that moderate increases in body temperature during passive heat stress do not differentially compromise cognitive function in younger and older adults.

  3. Enhancement of enterohemorrhagic Escherichia coli O157:H7 stress tolerance via pre-heating.

    PubMed

    Nakano, Masanori; Itoh, Youko; Yamada, Yoshiaki; Nakamura, Kogenta; Sumitomo, Makoto; Nitta, Masakazu

    2012-03-01

    Enterohemorrhagic Escherichia coli O157:H7 infection causes several hundred cases of food poisoning every year in Japan. In severe cases, this type of food poisoning can be fatal. In the present study, we examined the induction of HSP70 in E. coli O157:H7 cells at various temperatures and the thermotolerance of E. coli O157:H7 cells alone and in contaminated food following pre-heating. We evaluated the possibility that thermotolerance by E. coli O157:H7 increases the likelihood of food poisoning. E. coli O157:H7 cells were heated at 43-51 °C, and the survival rate was examined. The temperature of highest induction of HSP70 was used as the pre-heating temperature. We measured the thermotolerance of E. coli O157:H7 cells following pre-heating as the survival after heating at 53 °C (lethal temperature). Additionally, we evaluated the thermotolerance of E. coli O157:H7 cells in ground beef following pre-heating. Heating at 47 °C for 30 min caused the highest induction of HSP70 and this temperature was selected as the pre-heating temperature. The survival rate was significantly higher for 0-90 min compared to that in cultures incubated at 53 °C without pre-heating indicating thermotolerance. Additionally, in ground beef, thermotolerance in E. coli O157:H7 cells was induced by pre-heating. We showed that E. coli O157:H7 cells acquired thermotolerance after pre-heating, which significantly increased survival after a lethal temperature, and increased the likelihood of food poisoning.

  4. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    SciTech Connect

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A.; Austin, M. E.; Diem, S. J.; Kaufman, M. C.; Ryan, P. M.; Doyle, E. J.; Zeng, L.; Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G.; Maggiora, R.; Milanesio, D.; Porkolab, M.; Turco, F.

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  5. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.

    PubMed

    Mehla, Kusum; Magotra, Ankit; Choudhary, Jyoti; Singh, A K; Mohanty, A K; Upadhyay, R C; Srinivasan, Surendran; Gupta, Pankaj; Choudhary, Neelam; Antony, Bristo; Khan, Farheen

    2014-01-10

    Environmental-induced hyperthermia compromises animal production with drastic economic consequences to global animal agriculture and jeopardizes animal welfare. Heat stress is a major stressor that occurs as a result of an imbalance between heat production within the body and its dissipation and it affects animals at cellular, molecular and ecological levels. The molecular mechanism underlying the physiology of heat stress in the cattle remains undefined. The present study sought to evaluate mRNA expression profiles in the cattle blood in response to heat stress. In this study we report the genes that were differentially expressed in response to heat stress using global scale genome expression technology (Microarray). Four Sahiwal heifers were exposed to 42°C with 90% humidity for 4h followed by normothermia. Gene expression changes include activation of heat shock transcription factor 1 (HSF1), increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins, immune system activation via extracellular secretion of HSP. A cDNA microarray analysis found 140 transcripts to be up-regulated and 77 down-regulated in the cattle blood after heat treatment (P<0.05). But still a comprehensive explanation for the direction of fold change and the specific genes involved in response to acute heat stress still remains to be explored. These findings may provide insights into the underlying mechanism of physiology of heat stress in cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics.

  6. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation

    SciTech Connect

    Singh, Mahendra Pratap; Reddy, M.M. Krishna.; Mathur, N.; Saxena, D.K.; Chowdhuri, D. Kar

    2009-03-01

    Exposure to benzene, toluene and xylene in the human population may pose a health risk. We tested a working hypothesis that these test chemicals cause cellular toxicity to a non-target organism, Drosophila melanogaster. Third instar larvae of D. melanogaster transgenic for hsp70, hsp83 and hsp26 and Oregon R{sup +} strain were exposed to 1.0-100.0 mM benzene, toluene and xylene for 2-48 h to examine the heat shock proteins (hsps), ROS generation, anti-oxidant stress markers and developmental end points. The test chemicals elicited a concentration- and time-dependent significant (p < 0.01) induction of the hsps in the exposed organism in the order of hsp70 > hsp83 {>=} hsp26 as evident by {beta}-galactosidase activity after 24 h. RT-PCR amplification studies in Oregon R{sup +} larvae revealed a similar induction pattern of these genes along with hsp60 in the order of hsp70 > hsp60 > hsp26 {>=} hsp83. Under similar experimental conditions, a significant induction of ROS generation and oxidative stress markers viz. superoxide dismutase, catalase, glutathione S-transferase, thioredoxin reductase, glutathione, malondialdehyde and protein carbonyl content was observed. Sub-organismal response was propagated towards organismal response i.e., a delay in the emergence of flies and their reproductive performance. While hsp70 was predominantly induced in the organism till 24 h of treatment with the test chemicals, a significant or insignificant regression of Hsp70 after 48 h was concurrent with a significant induction (p < 0.01) of hsp60 > hsp83 {>=} hsp26 in comparison to the former. A significant positive correlation was observed between ROS generation and these hsps in the exposed organism till 24 h and a negative correlation between ROS generation and hsp70 in them after 48 h indicating a modulatory role of ROS in the induction of hsps. The study suggests that among the tested hsps, hsp70 may be used as an early bioindicator of cellular toxicity against benzene, toluene

  7. A review of heat stress and its management in the power industry

    SciTech Connect

    Waner, N.S.

    1986-06-01

    The effects of heat stress on plant operator performance is discussed. Sources of heat stress are reviewed, in particular, those unique to the Nuclear Power Industry. Measurement techniques correlating environmental conditions with physiological responses are covered, along with suggested assessment indices to establish criteria for worker health and safety. Available major countermeasures are described and include those categorized as, procedural, personal support systems, and plant betterment/engineering programs. Data, recommended standards, and industry practices are presented as viable guidelines along with references and information resources to assist the reader in establishing and implementing programs for managing heat stress.

  8. The Quinone Methide Aurin Is a Heat Shock Response Inducer That Causes Proteotoxic Stress and Noxa-dependent Apoptosis in Malignant Melanoma Cells*

    PubMed Central

    Davis, Angela L.; Qiao, Shuxi; Lesson, Jessica L.; Rojo de la Vega, Montserrat; Park, Sophia L.; Seanez, Carol M.; Gokhale, Vijay; Cabello, Christopher M.; Wondrak, Georg T.

    2015-01-01

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinderTM PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. PMID:25477506

  9. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling

    PubMed Central

    2014-01-01

    Background Eotaxin proteins are a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Since inflammation is often associated with an increased generation of reactive oxygen species (ROS), oxidative stress is a mechanistically imperative factor in asthma. Astragalin (kaempferol-3-O-glucoside) is a flavonoid with anti-inflammatory activity and newly found in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited endotoxin-induced oxidative stress leading to eosinophilia and epithelial apoptosis in airways. Methods Airway epithelial BEAS-2B cells were exposed to lipopolysaccharide (LPS) in the absence and presence of 1–20 μM astragalin. Western blot and immunocytochemical analyses were conducted to determine induction of target proteins. Cell and nuclear staining was also performed for ROS production and epithelial apoptosis. Results When airway epithelial cells were exposed to 2 μg/ml LPS, astragalin nontoxic at ≤20 μM suppressed cellular induction of Toll-like receptor 4 (TLR4) and ROS production enhanced by LPS. Both LPS and H2O2 induced epithelial eotaxin-1 expression, which was blocked by astragalin. LPS activated and induced PLCγ1, PKCβ2, and NADPH oxidase subunits of p22phox and p47phox in epithelial cells and such activation and induction were demoted by astragalin or TLR4 inhibition antagonizing eotaxin-1 induction. H2O2-upregulated phosphorylation of JNK and p38 MAPK was dampened by adding astragalin to epithelial cells, while this compound enhanced epithelial activation of Akt and ERK. H2O2 and LPS promoted epithelial apoptosis concomitant with nuclear condensation or caspase-3 activation, which was blunted by astragalin. Conclusions Astragalin ameliorated oxidative stress-associated epithelial eosinophilia and apoptosis through disturbing TLR4-PKCβ2-NADPH oxidase-responsive signaling. Therefore, astragalin may be a potent agent antagonizing endotoxin

  10. Overexpression of Small Heat Shock Protein Enhances Heat- and Salt-Stress Tolerance of Bifidobacterium longum NCC2705.

    PubMed

    Khaskheli, Gul Bahar; Zuo, FangLei; Yu, Rui; Chen, ShangWu

    2015-07-01

    Bifidobacteria are probiotics that are incorporated live into various dairy products. They confer health-promotive effects via gastrointestinal tract colonization. However, to provide their health-beneficial properties, they must battle the various abiotic stresses in that environment, such as bile salts, acids, oxygen, and heat. In this study, Bifidobacterium longum salt- and heat-stress tolerance was enhanced by homologous overexpression of a small heat shock protein (sHsp). A positive contribution of overproduced sHsp to abiotic stress tolerance was observed when the bacterium was exposed to heat and salt stresses. Significantly higher survival of B. l ongum NCC2705 overexpressing sHsp was observed at 30 and 60 min into heat (55 °C) and salt (5 M NaCl) treatment, respectively. Thermotolerance analysis at 47 °C with sampling every 2 h also revealed the great potential tolerance of the engineered strain. Cell density and acid production rate increased for the sHsp-overexpressing strain after 8 and 10 h of both heat and salt stresses. In addition, tolerance to bile salts, low pH (3.5) and low temperature (4 °C) was also increased by homologous overexpression of the sHsp hsp20 in B. l ongum. Results revealed that hsp20 overexpression in B longum NCC2705 plays a positive cross-protective role in upregulating abiotic responses, ensuring the organism's tolerance to various stress conditions; therefore, sHsp-overexpressing B. l ongum is advised for fermented dairy foods and other probiotic product applications.

  11. The relationship between stress protein induction and the oxidative defense system in the rat hippocampus following kainic acid administration.

    PubMed

    Gilberti, E A; Trombetta, L D

    2000-07-27

    The time and dose-dependent effects of kainic acid (KA) induced excitotoxicity on the oxidative defense system and the relationship to the induction of stress proteins were investigated in the rat hippocampus. Male Long-Evans rats were injected subcutaneously with 5.0, 7.5, or 10 mg KA/kg. Rats were sacrificed and the hippocampus removed and processed for biochemical and electrophoretic analysis. The activity of glutathione peroxidase (GPx) increased significantly at the 5 mg KA/kg dose, while malondialdehyde (MDA) levels significantly increased at 7.5 mg KA/kg when measured at 24 h. A dose of 10 mg KA/kg depleted significantly hippocampal glutathione (GSH) levels at 8, 16 and 24 h post-treatment while GPx activity was increased significantly at 2, 4, 8 and 16 hr post-treatment. The 10 mg KA/kg increased significantly hippocampal MDA levels at 2 h post-treatment and decreased significantly thereafter. The induction of stress proteins increased in a dose and time dependent manner. The expression of Hp72 and Hsp32 increased significantly at 16 h with a maximum induction observed at 24 h post-treatment. The data suggests that KA toxicity is mediated through the formation of reactive oxygen species resulting in alterations in the oxidative defense system. The expression of stress proteins following KA administration may reflect a concomitant but alternate response to excitotoxic events.

  12. Improved magnetic induction heating of nanoferrites for hyperthermia applications: Correlation with colloidal stability and magneto-structural properties

    NASA Astrophysics Data System (ADS)

    Khot, V. M.; Salunkhe, A. B.; Ruso, J. M.; Pawar, S. H.

    2015-06-01

    Nanoferrites with compositions Mn0.4Zn0.6Fe2O4, Co0.4Zn0.6Fe2O4, Ni0.4Zn0.6Fe2O4 (MZF, CZF and NZF respectively) coated with polyethylene glycol (PEG) were prepared in a single step. These nanoparticles are highly water dispersible with zeta potential values between 14 and 21 mV. Magnetic induction heating characteristics of these NPs have been studied as a function of magnetic field amplitude from 6.7 to 26.7 kA m-1 (at fixed frequency 265 kHz) and concentration of nanoparticles. Notable enhancement in specific absorption rate (334.5 W g-1) by CZF nanoparticles has been observed. This enhanced induction heating properties have been studied and correlated with colloidal stability and magnetostructural properties such as tuned magnetic anisotropy arising from zinc substitution. Cytotoxicity of synthesized mixed ferrites has been evaluated in vitro on HeLa cell lines using MTT assay to explore their use as heating agents in magnetic hyperthermia.

  13. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide

    SciTech Connect

    Lee, Wen-Ying; Chen, Yen-Chou; Shih, Chwen-Ming; Lin, Chun-Mao; Cheng, Chia-Hsiung; Chen, Ku-Chung; Lin, Cheng-Wei

    2014-01-01

    Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO){sub 3}Cl{sub 2}]{sub 2} (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic. - Highlights: • CO and HO-1 inhibited the growth of human breast cancer cells. • CO and HO-1 attenuated HSP90 and its client proteins expression. • CO induced mutant p53 protein ubiquitination and

  14. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect

    Williams, W.R.

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  15. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers.

    PubMed

    Giorno, Filomena; Wolters-Arts, Mieke; Grillo, Stefania; Scharf, Klaus-Dieter; Vriezen, Wim H; Mariani, Celestina

    2010-01-01

    The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures. PMID:19854799

  16. Decreased oxidative stress in prehepatic portal hypertensive rat livers following the induction of diabetes.

    PubMed

    Evelson, P; Llesuy, S; Filinger, E; Rodriguez, R R; Lemberg, A; Scorticati, C; Susemihl, M; Villareal, I; Polo, J M; Peredo, H; Perazzo, J C

    2004-03-01

    1. Oxidative stress (OS) is a biological entity indicated as being responsible for several pathologies, including diabetes. Diabetes can also be associated with human cirrhosis. Portal hypertension (PH), a major syndrome in cirrhosis, produces hyperdynamic splanchnic circulation and hyperaemia. The present study was designed to investigate the occurrence of OS in prehepatic PH rat livers following the induction of diabetes. 2. Five groups of rats were used: control, sham operated, chronic diabetes (induced with a single dose of streptozotocin at 60 mg/kg, i.p.), prehepatic PH and chronic diabetic plus prehepatic PH. The occurrence of OS was determined in liver homogenates by measuring hydroperoxide-initiated chemiluminescence and the activity of anti-oxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). 3. Prehepatic PH produced a significant increase in hydroperoxide-initiated chemiluminescence in the liver compared with control and sham-operated rats, whereas the liver in chronic diabetic rats showed no difference. However, chemiluminescence values decreased almost by 50% in the chronic diabetic plus prehepatic PH group. Concomitantly, the activities of the anti-oxidant enzymes in chronic diabetes, prehepatic PH and chronic diabetic plus prehepatic PH groups were decreased (P < 0.05 vs control and sham-operated groups). 4. Livers from the chronic diabetic group did not show any evidence of the occurrence of OS, whereas the prehepatic PH group showed the occurrence of OS. The association of PH and chronic diabetes resulted in a significant decrease in the occurrence of OS, which could be explained by an anti-oxidant response to an OS. PMID:15008960

  17. Insect pollination reduces yield loss following heat stress in faba bean (Vicia faba L.)

    PubMed Central

    Bishop, Jacob; Jones, Hannah Elizabeth; Lukac, Martin; Potts, Simon Geoffrey

    2016-01-01

    Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially po