NASA Astrophysics Data System (ADS)
Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.
2018-03-01
The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.
Thermal sprayed composite melt containment tubular component and method of making same
Besser, Matthew F.; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.
2002-03-19
A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.
Control of electromagnetic stirring by power focusing in large induction crucible furnaces
NASA Astrophysics Data System (ADS)
Frizen, V. E.; Sarapulov, F. N.
2011-12-01
An approach is proposed for the calculation of the operating conditions of an induction crucible furnace at the final stage of melting with the power focused in various regions of melted metal. The calculation is performed using a model based on the method of detailed magnetic equivalent circuits. The combination of the furnace and a thyristor frequency converter is taken into account in modeling.
Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy
NASA Technical Reports Server (NTRS)
Decker, R. F.; Rowe, John P.; Freeman, J. W.
1959-01-01
The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.
Interaction of exogenous refractory nanophases with antimony dissolved in liquid iron
NASA Astrophysics Data System (ADS)
Burtsev, V. T.; Anuchkin, S. N.; Samokhin, A. V.
2017-07-01
The heterophase interaction of Al2O3 refractory nanoparticles with a surfactant impurity (antimony) in the Fe-Sb (0.095 wt %)-O (0.008 wt %) system is studied. It is shown that the introduction of 0.06-0.18 wt % Al2O3 nanoparticles (25-83 nm) into a melt during isothermal holding for up to 1200 s leads to a decrease in the antimony content: the maximum degree of antimony removal is 26 rel %. The sessile drop method is used to investigate the surface tension and the density of Fe, Fe-Sb, and Fe-Sb-Al2O3 melts. The polytherms of the surface tension of these melts have a linear character, the removal of antimony from the Fe-Sb-Al2O3 melts depends on the time of melting in a vacuum induction furnace, and the experimental results obtained reveal the kinetic laws of the structure formation in the surface layers of the melts. The determined melt densities demonstrate that the introduction of antimony into the Fe-O melt causes an increase in its compression by 47 rel %. The structure of the Fe-Sb-O melt after the introduction of Al2O3 nanoparticles depends on the time of melting in a vacuum induction furnace.
NASA Technical Reports Server (NTRS)
Mattox, D. M.
1981-01-01
Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.
Optical measurement of high-temperature melt flow rate.
Bizjan, Benjamin; Širok, Brane; Chen, Jinpeng
2018-05-20
This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).
NASA Astrophysics Data System (ADS)
Sasnouski, I.; Kurylionak, A.
2018-03-01
For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.
Code of Federal Regulations, 2013 CFR
2013-07-01
... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...
Code of Federal Regulations, 2012 CFR
2012-07-01
... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...
Code of Federal Regulations, 2014 CFR
2014-07-01
... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...
Code of Federal Regulations, 2011 CFR
2011-07-01
... arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing... induction metal melting furnace or scrap preheater at a new iron and steel foundry, (i) Maintaining the... at or below 0.0004 gr/dscf. (2) For each cupola metal melting furnace at an existing iron and steel...
NASA Astrophysics Data System (ADS)
Kazantseva, N. V.; Stepanova, N. N.; Rigmant, M. B.; Davidov, D. I.; Shishkin, D. A.; Romanov, E. P.
The Co-19 at.%Al-6 at.%W alloy was prepared by two methods of casting. We used arc melting under an argon atmosphere with casting into a copper water-cooled casting mold and induction melting furnace with casting into a ceramic Al2O3 mold. According to the X-ray and SEM analyses, phase compositions depend on the cooling rate of the ingot after melting. After arc melting, the cast alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co3W (DO19) type. After the induction melting, the alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co7W6 (µ) type. All phases in the investigated ternary alloy at the room temperature are ferromagnetic. Curie temperatures of all obtained phases were defined. It is shown that the magnetic properties of the studied alloy are typical for soft magnetic materials.
Vardevanian, P O; Davtian, A M; Tiratsuian, S G; Vardevanian, A O
1990-01-01
A highly active fraction of rat liver oligonucleosome DNA has been isolated and studied by means of thermal denaturation after induction by amino acid mixture or hydrocortisone. A considerable redistribution of DNA content has been shown in sucrose gradient fractions during these forms of induction. The changes are revealed in melting temperature, differential melting profile of DNA, isolated from actively transcribed chromatine fractions. Analysis of melting profiles shows changes of GC content of oligonucleosome DNA, suggesting that there are differences in activation during two studied forms of induction.
Refining a complex nickel alloy to remove a sulfur impurity during vacuum induction melting: Part II
NASA Astrophysics Data System (ADS)
Sidorov, V. V.; Min, P. G.
2014-12-01
The results of studying the refining of complexly alloyed nickel melts from sulfur during melting in a vacuum induction furnace or with the use of an oxide calcium crucible, metallic calcium added to a melt, or rare-earth metals additions (which form thermodynamically stable refractory compounds with sulfur and, thus, eliminate the harmful effect of sulfur in the alloys) are reported.
Power supplies for dual-frequency induction melting of metals
NASA Astrophysics Data System (ADS)
Lusgin, V. I.; Koptyakov, A. S.; Petrov, A. U.; Zinovev, K. A.; Kamaev, D. A.
2018-02-01
The article discusses the benefits of multi frequency induction melting in the production of synthetic cast iron, structural (electric circuit) principles of dual frequency Power supplies of melting systems. The ways of electric power regulation of low frequency and high frequency components of the current in the inductor sections of furnace are demonstrated, namely power rescheduling at the metal melting stage, alloying stage and decarburizing of synthetic cast iron.
Modification of gray iron produced by induction melting with barium strontium
NASA Astrophysics Data System (ADS)
Modzelevskaya, G.; Feoktistov, A. V.; Selyanin, I. F.; Kutsenko, A. I.; Kutsenko, A. A.
2016-09-01
The article provides analysis of results of gray iron experimental melts in induction furnace and the following melt modification with barium-strontium carbonate (BSC-2). It is shown that modification positively affects mechanical and casting properties and as-cast iron structure. It was established that BSC-2 granulated immediately prior to use has greater impact on melt than BSC-2 of the same faction, supplied by the manufacturer.
40 CFR 63.7690 - What emissions limitations must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron... electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, you must not... furnace at an existing iron and steel foundry, you must not discharge emissions through a conveyance to...
40 CFR 63.7690 - What emissions limitations must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron... electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, you must not... furnace at an existing iron and steel foundry, you must not discharge emissions through a conveyance to...
40 CFR 63.7690 - What emissions limitations must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron... electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, you must not... furnace at an existing iron and steel foundry, you must not discharge emissions through a conveyance to...
40 CFR 63.7690 - What emissions limitations must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron... electric induction metal melting furnace or scrap preheater at a new iron and steel foundry, you must not... furnace at an existing iron and steel foundry, you must not discharge emissions through a conveyance to...
Cogolludo, Pablo G; Suarez, María J; Peláez, Jesús; Lozano, José F L
2010-01-01
The aim of this study was to analyze the influence of melting and casting procedures and the cervical finish line design on the marginal fit of nickel-chromium-titanium alloy crowns. Sixty standardized specimens were prepared to receive metal-ceramic crowns and were divided into two groups according to the cervical finish line: chamfer or rounded shoulder. Three melting and casting procedures were analyzed: (1) induction-centrifuge (IC), (2) gas oxygen torch-centrifuge (TC), and (3) induction-vacuum/pressure (IP). The marginal fit was measured with an image analysis system. Significant differences (P =.005) were observed among the groups, with TC showing the lowest discrepancies (45.87 μm). No significant differences were observed between the two finish lines. The accuracy of fit achieved for the groups analyzed may be regarded as within the range of clinical acceptance.
Banker, John G.; Holcombe, Jr., Cressie E.
1977-01-01
A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.
Banker, J.G.; Holcombe, C.E. Jr.
1975-11-06
A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.
INDUCTION HEATING PROCESS FOR MELTING TITANIUM (COLD-WALL CRUCIBLES, SEGMENTED AND NON-SEGMENTED).
system during melting tests. Three types of cold-wall crucibles were investigated. The first was a four-segment copper crucible , the second a non...segmented silicon bronze crucible, and the third a two-segment copper crucible coated with BeO. Attempts to melt titanium in an induction field in a cold
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2010 CFR
2010-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Caldron For High-Temperature Alloys
NASA Technical Reports Server (NTRS)
Geringer, Henry J.
1989-01-01
Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.
DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL
Buyers, A.G.; Rosen, F.D.; Motta, E.E.
1959-12-22
A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.
NASA Technical Reports Server (NTRS)
Frohberg, M. G.; Betz, G.
1982-01-01
A method was tested for measuring the enthalpies of mixing of liquid metallic alloying systems, involving the combination of two samples in the electromagnetic field of an induction coil. The heat of solution is calculated from the pyrometrically measured temperature effect, the heat capacity of the alloy, and the heat content of the added sample. The usefulness of the method was tested experimentally with iron-copper and niobium-silicon systems. This method should be especially applicable to high-melting alloys, for which conventional measurements have failed.
[The induction current, an ideal resource for the smelting of dental alloys].
Ionescu, G; Chiper, C; Teofănescu, L; Brezulianu, C
1996-01-01
The authors present an electrical furnace for melting dental alloys, made by the German company BEGO. This furnace uses electrical current of high frequency. The advantages of this melting method are the possibility of controlling the adequate melting temperature for a specific type of alloy, the fusion in a protective environment of rare gas and casting by associating the centrifugation with the vacuum. This leads to exact castings without any defects. The authors describe as a personal contribution an external cooling system capable of maintaining the furnace's parameters even when the water pressure is low.
The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel
2013-07-01
The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)
Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús
2013-09-01
The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multipurpose Vacuum Induction Processing System
NASA Astrophysics Data System (ADS)
Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.
2012-11-01
Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.
NASA Astrophysics Data System (ADS)
Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.
2013-01-01
A thermodynamic computer simulation of the oxidation potential of a gas-melt-ceramic (80 wt% MgO, 20 wt % Al2O3) system under vacuum induction furnace conditions is used to find that the major contribution to this potential at temperatures ranging from 1673 to 2273 K is made by a nickel melt with additives of nickel protoxide. This provides the possibility of oxidative dephosphorization of the metallic melt. The computation of the saturated vapor pressure of phosphorus compounds with the IIA group elements shows that the data obtained for magnesium, calcium, and barium metaphosphates and europium orthophosphate at 1873 K indicate the principal possibility of melt dephosphorization by the evaporation of these compounds under oxidative conditions.
Studies on the hot corrosion of a nickel-base superalloy, Udimet 700
NASA Technical Reports Server (NTRS)
Misra, A. K.
1984-01-01
The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4 - MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Ns2MoO4 - MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4 - MoO3 melt.
Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy.
Fukui, H; Yang, W; Yamada, S; Fujishiro, Y; Morita, A; Niinomi, M
2001-06-01
Recently, titanium-tantalum alloys have been studied as implant materials for dental and orthopedic surgery. However, titanium and tantalum are difficult to mix by common arc melting and induction melting, because of their high melting point and the marked difference between their densities (Ti: 1,680 degrees C, 4.5 g/cm3, Ta: 2,990 degrees C, 16.6 g/cm3). Thus, the Cold Crucible Levitation Melting (CCLM) method was chosen to produce a Ti-30 wt%Ta binary alloy in the present study. The CCLM furnace, with 1 kg capacity, consisted of a water-cooled crucible comprising oxygen-free high purity copper segments and coils wrapped around the crucible and connected to a frequency inverter power supply. A qualified ingot of 1.0 kg of Ti-30 wt%Ta alloy was obtained. The ingot was characterized from the surface quality, chemical composition distribution and microstructure, and finally the melting process was discussed.
Radioactive scrap metal decontamination technology assessment report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.
1996-04-01
Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less
Induction furnace testing of the durability of prototype crucibles in a molten metal environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonski, Paul D.
2005-09-01
Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off themore » heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.« less
Refining a complex nickel alloy to remove a sulfur impurity during vacuum induction melting: Part I
NASA Astrophysics Data System (ADS)
Sidorov, V. V.; Min, P. G.
2014-12-01
The peculiarities of refining a complexly alloyed nickel alloy from a sulfur impurity during melting of the alloy in a vacuum induction furnace are considered. The application of CaO-based slags is shown to allow the sulfur content in a metal to be decreased; however, in this case, the reduction of calcium, its transfer into the melt, and the degradation of the properties of the alloy take place.
Daniels, Roger L; Kim, Hyun Jung; Min, David B
2006-08-09
Soybean oil with an iodine value of 136 was hydrogenated to have iodine values of 126 and 117. The soybean oils with iodine values of 136, 126, and 117 were randomly interesterified using sodium methoxide. The oxidative stabilities of the hydrogenated and/or interesterified soybean oils were evaluated by measuring the headspace oxygen content by gas chromatography, and the induction time was measured using Rancimat. The melting points of the oils were evaluated by differential scanning calorimetry. Duncan's multiple range test of the headspace oxygen and induction time showed that hydrogenation increased the headspace oxygen content and induction time at alpha = 0.05. Interesterification decreased the headspace oxygen and the induction time for the soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. Hydrogenation increased the melting points as the iodine value decreased from 136 and 126 to 117 at alpha = 0.05. The random interesterification increased the melting points of soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. The combined effects of hydrogenation and interesterification increased the oxidative stability of soybean oil at alpha = 0.05 and the melting point at alpha = 0.01. The optimum combination of hydrogenation and random interesterification can improve the oxidative stability and increase the melting point to expand the application of soybean oil in foods.
Study of the production of unique new glasses
NASA Technical Reports Server (NTRS)
Happe, R. A.
1972-01-01
A number of high new oxide glasses have been prepared by a laser-spin melting technique where droplets are ejected from a molten mass. Techniques have been developed for measuring the optical properties of most of the new glasses so produced. A preliminary study of processing equipment for producing new glasses in a zero gravity environment onboard manned space laboratory is reported. Induction and laser melting emerge as preferred techniques for melting spheroids of new glass compositions in space. Sample calculations for power required to induction melt new glass compositions are presented. Cooling rate calculations show that radiation cooling of the high melting materials results in very short cooling times for 1/2 inch diameters to temperatures where the spheroids can be handled.
Experience of ALCOA-KOFEM with MHD induction stirrer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petho, S.
1996-10-01
Every ingot cast shop makes an effort to reduce the costs and to increase the productivity. The MHD stirrer is an adequate tool to achieve a more economical production. The electromagnetic stirrer accelerates the melting rate of the charge, reduces the metal loss and improves the consistency of ingot quality. The Ingot Business Unit of ALCOA-KOFEM operates seven melting furnaces. Each furnace is equipped with a POTOK type MHD induction stirrer in order to achieve a more profitable melting operation. Magnetohydrodynamic stirrers were installed between 1988 and 1990 on melting furnaces ranging in capacity from 25 to 60 tons ofmore » molten metal.« less
Internal zone growth method for producing metal oxide metal eutectic composites
Clark, Grady W.; Holder, John D.; Pasto, Arvid E.
1980-01-01
An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.
Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji
2015-01-01
The induction period of crystallization, which is defined as the time required for oil to start to crystallize, is useful indicator of the freeze-thaw stability of food emulsions such as mayonnaise. We investigated the induction period of vegetable oils with low melting points, such as rapeseed and soybean oils, which are commonly employed for mayonnaise production. The induction period was measured by monitoring the temperature of a specimen during storage at low temperature. The induction period depended on the type of oil and lipophilic emulsifier, emulsifier concentration, and storage temperature. The effect of the oil type on the induction period depended on the composition of the oil. Differential scanning calorimetry (DSC) analyses of the lipophilic emulsifiers suggested that the melting trend of the emulsifier is strongly related to the induction period.
Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; McCloy, John S.; Goel, Ashutosh
2013-04-01
This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility ofmore » rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.« less
Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys
NASA Astrophysics Data System (ADS)
Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants
2016-06-01
The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.
NASA Astrophysics Data System (ADS)
Titov, A.; Jiraskova, Y.; Zivotsky, O.; Bursik, J.; Janickovic, D.
2018-04-01
This paper is devoted to investigations of the structural and magnetic properties of the Co2FeAl Heusler alloy produced by three technologies. The alloys prepared by arc and induction melting have resulted in coarse-grained samples in contrast to the fine-grained ribbon-type sample prepared by planar flow casting. Scanning electron microscopy completed by energy dispersive X-ray spectroscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic methods sensitive to both bulk and surface were applied. The chemical composition was slightly different from the nominal only for the ribbon sample. From the viewpoint of magnetic properties, the bulk coercivity and remnant magnetization have followed the structure influenced by the technology used. Saturation magnetization was practically the same for samples prepared by arc and induction melting, whereas the magnetization of ribbon is slightly lower due to a higher Al content at the expense of iron and cobalt. The surface magnetic properties were markedly influenced by anisotropy, grain size, and surface roughness of the samples. The surface roughness and brittleness of the ribbon-type sample did not make domain structure observation possible. The other two samples could be well polished and their highly smooth surface has enabled domain structure visualization by both magneto-optical Kerr microscopy and magnetic force microscopy.
NASA Astrophysics Data System (ADS)
Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger
2018-06-01
In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.
NASA Astrophysics Data System (ADS)
Rustan, G. E.; Spyrison, N. S.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2012-02-01
Over the last two decades the popularity of levitation methods for studying equilibrium and supercooled melts has increased steadily. Measurements of density, viscosity, surface tension, and atomic structure have become well established. In contrast, measurements of electrical resistivity and magnetic susceptibility of levitated melts have been very limited. To fill this void, we have combined the tunnel diode oscillator (TDO) technique with electrostatic levitation (ESL) to perform inductively coupled measurements on levitated melts. A description of the basic operating principles of the TDO and ESL will be given, as well as a description of the implementation and performance characteristics of this technique. Preliminary measurements of electrical resistivity in the solid and liquid state will be presented for samples of Zr, Si, and Ge, as well as the measurements of ferromagnetic transitions in Fe and Co based alloys.
NASA Astrophysics Data System (ADS)
He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng
2017-04-01
For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.
NASA Astrophysics Data System (ADS)
Pastushkov, V. G.; Molchanov, A. V.; Serebryakov, V. P.; Smelova, T. V.; Shestoperov, I. N.
2000-07-01
The paper discusses specific features of technology, equipment and control of a single stage RAMW decontamination and melting process in an induction furnace equipped with a "cold" crucible. The calculated and experimental data are given on melting high activity level stainless steel and Zr simulating high activity level metal waste. The work is under way in SSC RF VNIINM.
Free suspension processing of oxides to form amorphous oxide materials, appendix B
NASA Technical Reports Server (NTRS)
Wouch, G.
1973-01-01
The processing of yttria, zirconia, and alumina under weightless conditions is discussed. The process consists of levitation or position control, heating and melting, superheating, and supercooling. The use of arc imaging furnaces, lasers, induction heating, microwave, and electron beam methods are analyzed to show the advantages and disadvantages of each.
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
NASA Astrophysics Data System (ADS)
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.
1985-01-01
An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.
1984-01-06
The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Adkar, Nikhil; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-09-01
A numerical simulation study was carried out to examine the transport phenomena occurring during the Top-Seeded Solution Growth (TSSG) process of SiC. The simulation model includes the contributions of radiative and conductive heat transfer in the furnace, mass transfer and fluid flow in the melt, and the induced electric and magnetic fields. Results show that the induced Lorentz force is dominant in the melt compared with that of buoyancy. At the relatively low coil frequencies, the effect of the Lorentz force on the melt flow is significant, and the corresponding flow patterns loose their axisymmetry and become almost fully disturbed. However, at the relatively higher frequency values, the flow is steady and the flow patterns remain axisymmetric.
40 CFR 63.11556 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... nonferrous foundry HAP. Melting operations (the affected source) means the collection of furnaces (e.g., induction, reverberatory, crucible, tower, dry hearth) used to melt metal ingot, alloyed ingot and/or metal...
40 CFR 63.11556 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... nonferrous foundry HAP. Melting operations (the affected source) means the collection of furnaces (e.g., induction, reverberatory, crucible, tower, dry hearth) used to melt metal ingot, alloyed ingot and/or metal...
40 CFR 63.11556 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... nonferrous foundry HAP. Melting operations (the affected source) means the collection of furnaces (e.g., induction, reverberatory, crucible, tower, dry hearth) used to melt metal ingot, alloyed ingot and/or metal...
40 CFR 63.11556 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... nonferrous foundry HAP. Melting operations (the affected source) means the collection of furnaces (e.g., induction, reverberatory, crucible, tower, dry hearth) used to melt metal ingot, alloyed ingot and/or metal...
40 CFR 63.11556 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... nonferrous foundry HAP. Melting operations (the affected source) means the collection of furnaces (e.g., induction, reverberatory, crucible, tower, dry hearth) used to melt metal ingot, alloyed ingot and/or metal...
NASA Technical Reports Server (NTRS)
Parker, R. J.; Hodder, R. S.
1977-01-01
AMS 5749 steel combines the tempering, hot hardness, and hardness retention characteristics of AISI M-50 steel with the corrosion and oxidation resistance of AISI 440C stainless steel. The five-ball fatigue tester was used to evaluate the rolling-element fatigue life of AMS 5749. Double vacuum melting (vacuum induction melting plus vacuum arc remelting, VIM-VAR) produced AMS 5749 material with a rolling-element fatigue life at least 14 times that of vacuum induction melting alone. The VIM-VAR AMS 5749 steel balls gave lives from 6 to 12 times greater than VIM-VAR AISI M-50 steel balls. The highest level of retained austenite, 14.6 percent, was significantly detrimental to rolling-element fatigue life relative to the intermediate level of 11.1 percent.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
Development of high purity large forgings for nuclear power plants
NASA Astrophysics Data System (ADS)
Tanaka, Yasuhiko; Sato, Ikuo
2011-10-01
The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.
Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.
2018-02-01
Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.
NASA Astrophysics Data System (ADS)
Dishwar, Raj Kumar; Agrawal, Shavi; Mandal, A. K.; Mahobia, G. S.; Sinha, O. P.
2018-06-01
The present work represents a comparative study of impurity removal (sulfur, phosphorus, and carbon) from pig iron melt by the addition of lime powder and reduced fluxed iron ore pellets separately in a 5-kg-capacity induction melting furnace. Two types of reduced flux pellets (80% and 50%) of similar basicity ( 3.06) were charged separately into the pool to obtain the different oxidizing atmospheres of the bath. Results showed that the rate of impurity removal increases up to 6 min of exposure time and decreases afterward. Only lime powder charging, sulfur ( 77%), and a small fraction of carbon were removed from pig iron. Phosphorous ( 41%), sulfur ( 53%), and carbon ( 96%) were removed simultaneously when 80% reduced fluxed pellets were used. The present study indicates that the optimum removal of impurities is possible by charging 80% reduced flux iron ore pellets from the pig iron melt.
Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V
2011-12-01
Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.
Metal Solidification Imaging Process by Magnetic Induction Tomography.
Ma, Lu; Spagnul, Stefano; Soleimani, Manuchehr
2017-11-06
There are growing number of important applications that require a contactless method for monitoring an object surrounded inside a metallic enclosure. Imaging metal solidification is a great example for which there is no real time monitoring technique at present. This paper introduces a technique - magnetic induction tomography - for the real time in-situ imaging of the metal solidification process. Rigorous experimental verifications are presented. Firstly, a single inductive coil is placed on the top of a melting wood alloy to examine the changes of its inductance during solidification process. Secondly, an array of magnetic induction coils are designed to investigate the feasibility of a tomographic approach, i.e., when one coil is driven by an alternating current as a transmitter and a vector of phase changes are measured from the remaining of the coils as receivers. Phase changes are observed when the wood alloy state changes from liquid to solid. Thirdly, a series of static cold phantoms are created to represent various liquid/solid interfaces to verify the system performance. Finally, a powerful temporal reconstruction method is applied to realise real time in-situ visualisation of the solidification and the measurement of solidified shell thickness, a first report of its kind.
8. VIEW OF FOUNDRY INDUCTION FURNACES, MODULE J. THE FOUNDRY ...
8. VIEW OF FOUNDRY INDUCTION FURNACES, MODULE J. THE FOUNDRY CASTING PROCESS WAS CONDUCTED IN A VACUUM. PLUTONIUM METAL WAS MELTED IN ONE OF FOUR ELECTRIC INDUCTION FURNACES TO FORM INGOTS. - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
Analysis of laser-induction hybrid cladding processing conditions
NASA Astrophysics Data System (ADS)
Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu
2007-12-01
A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.
NASA Astrophysics Data System (ADS)
Král, Robert
2012-12-01
Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.
X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts
NASA Astrophysics Data System (ADS)
Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.
2017-09-01
Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel
NASA Technical Reports Server (NTRS)
Parker, R. J.; Hodder, R. S.
1977-01-01
The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great.
NASA Technical Reports Server (NTRS)
Decker, R F; Rowe, John P; Freeman, J W
1957-01-01
A study of the effect of induction-vacuum-melting procedure on the high-temperature properties of a titanium-and-aluminum-hardened nickel-base alloy revealed that a major variable was the type of ceramic used as a crucible. Reactions between the melt and magnesia or zirconia crucibles apparently increased high-temperature properties by introducing small amounts of boron or zirconium into the melts. Heats melted in alumina crucibles had relatively low rupture life and ductility at 1,600 F and cracked during hot-working as a result of deriving no boron or zirconium from the crucible.
Inductance Jump at Melting of Vortex Lattice in Untwinned YBaCuO
NASA Astrophysics Data System (ADS)
Matl, P.; Wu, H.; Ong, N. P.; Gagnon, R.; Taillefer, L.
1997-03-01
We have measured the complex resistivity in an untwinned single crystal YBaCuO between 70K and 120K at a fixed magnetic field. As T increases towards the melting temperature Tm the inductance increases rapidly. At Tm the inductance undergoes a discontinuous jump, which we correlate with the collapse of the shear modulus c_66. We describe how the magnitude of the jump varies with temperature, field, and frequency. We have also extracted the viscosity of the vortex lattice from a Bardeen-Stephen fit to the low field complex resistivity measured at 1 to 15 MHz between 80K and T_c. We find that the viscosity decreases as 1.2x10-13 kg m-1 s-1 K-1 as the temperature approaches T_c.
Influence of Processing on the Microstructure and Mechanical Properties of a NbAl3-Base Alloy
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Locci, Ivan E.; Raj, S. V.; Nathal, Michael V.
1992-01-01
Induction melting and rapid solidification processing, followed by grinding to 75-micron powder and P/M consolidation, have been used to produce a multiphase, NbAl3-based, oxidation-resistant alloy of Nb-67Al-7Cr-0.5Y-0.25W composition whose strength and ductility are significantly higher than those of the induction-melted alloy at test temperatures of up to 1200 K. Attention is given to the beneficial role of microstructural refinement; the major second phase, AlNbCr, improves both oxidation resistance and mechanical properties.
Metallurgical characterization of experimental Ag-based soldering alloys
Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros
2014-01-01
Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945
NASA Astrophysics Data System (ADS)
Tomilenko, A. A.; Kuzmin, D. V.; Bul'bak, T. A.; Sobolev, N. V.
2017-08-01
The primary melt and fluid inclusions in regenerated zonal crystals of olivine and homogeneous phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, were first studied by means of microthermometry, optic and scanning electron microscopy, electron and ion microprobe analysis (SIMS), inductively coupled plasma mass-spectrometry (ICP MSC), and Raman spectroscopy. It was established that olivine crystals were regenerated from silicate-carbonate melts at a temperature of 1100°C.
Ti-Based Metal Matrix Composites Reinforced with TiB Particles
2006-05-16
layer near the water-cooled crucible wall. Such microstructure gradient was observed in samples cooled in copper crucible 6 mm in diameter. III...melting and characterization of Scale 2 ingots. The Scale 2 ingots were melted in induction furnace inside a water-cooled sectioned copper crucible . As
Cold-Worked Inconel(R) 718 Bars
NASA Technical Reports Server (NTRS)
Montano, J. W.
1988-01-01
Cold working and double aging yield high strength without sacrifice of resistance to corrosion. Report presents data on mechanical properties and stress-corrosion resistance of triple-melted, solution-treated, work-strengthened, direct-double-aged Inconel(R) 718 alloy. Triple melting consists of vacuum induction melting, electro-slag remelting, and vacuum arm remelting. Data indicate advance in processing of large-diameter bars. New process increases yield strength without reducing the elongation, reduction of area, and grain size.
USSR Report, Electronics and Electrical Engineering, No. 104
1983-06-13
shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed
NASA Astrophysics Data System (ADS)
Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki
2012-10-01
A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.
Directly susceptible, noncarbon metal ceramic composite crucible
Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald
1999-01-01
A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.
Formation of β-NiAl Phase During Casting of a Ni-Based Superalloy
NASA Astrophysics Data System (ADS)
Detrois, Martin; Jablonski, Paul D.
2018-04-01
A high-refractory Ni-based superalloy prototype was melted on a research scale while simulating industry practices. Ingots were vacuum induction melted and subjected to a computationally optimized homogenization heat treatment prior to fabrication which consisted of forging and hot rolling. Failure of one of the ingots at the early stage of the forging process was attributed to the precipitation of the β-NiAl phase during melting which stabilized the eutectic constituent.
Local ice melting by an antifreeze protein.
Calvaresi, Matteo; Höfinger, Siegfried; Zerbetto, Francesco
2012-07-09
Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.
NASA Astrophysics Data System (ADS)
Shchukin, V. G.; Popov, V. N.
2017-10-01
One of the perspective ways to improve the operational properties of parts of machines during induction treatment of their surfaces is the modification of the melt by specially prepared nanoscale particles of refractory compounds (carbides, nitrides, carbonitrides, etc.). This approach allows us to increase the number of crystallization centers and to refine the structural components of the solidified metal. The resulting high dispersity and homogeneity of crystalline grains favorably affect the quality of the treated surfaces. 3D numerical simulation of thermophysical processes in the modification of the surface layer of metal in a moving substrate was carried out. It is assumed that the surface of the substrate is covered with a layer of specially prepared nanoscale particles of a refractory compound, which, upon penetration into the melt, are uniformly distributed in it. The possibility of applying a high-frequency electromagnetic field of high power for heating and melting of a metal (iron) for the purpose of its subsequent modification is investigated. The distribution of electromagnetic energy in the metal is described by empirical formulas. Melting of the metal is considered in the Stefan approximation, and upon solidification it is assumed that all nanoparticles serve as centers for volume-sequential crystallization. Calculations were carried out with the following parameters: specific power p0 = 35 and 40 kW/cm2 at frequency f = 440 and 1200 kHz, the substrate velocity V = 0.5-2.5 cm/s, the nanoparticles' size is 50 nm and concentration Np = 2.0 . 109 cm-3. Based on the results obtained in a quasi-stationary formulation, the distribution of the temperature field, the dimensions of the melting and crystallization zones, the change in the solid fraction in the two-phase zone, the area of the treated substrate surface, depending on the speed of its movement and induction heating characteristics were estimated.
NASA Technical Reports Server (NTRS)
1982-01-01
Accutron Tool & Instrument Co.'s welder was originally developed as a tool specifically for joining parts made of plastic or composite materials in any atmosphere to include the airless environment of space. Developers decided on induction or magnetic heating to avoid causing deformation and it also can be used with almost any type of thermoplastic material. Induction coil transfers magnetic flux through the plastic to a metal screen that is sandwiched between the sheets of plastic to be joined. When welder is energized, alternating current produces inductive heating on the screen causing the adjacent plastic surfaces to melt and flow into the mesh, creating a bond on the total surface area. Dave Brown, owner of Great Falls Canoe and Kayak Repair, Vienna, VA, uses a special repair technique based on operation of the Induction Toroid Welder to fix canoes. Whitewater canoeing poses the problem of frequent gashes that are difficult to repair. The main reason is that many canoes are made of plastics. The commercial Induction model is a self-contained, portable welding gun with a switch on the handle to regulate the temperature of the plastic melting screen. Welder has a broad range of applications in the automobile, appliance, aerospace and construction industries.
NASA Astrophysics Data System (ADS)
Matl, Peter; Ong, N. P.; Gagnon, R.; Taillefer, L.
2002-06-01
The complex resistivity ρ^(ω) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7 has been measured at frequencies ω/2π from 100 kHz to 20 MHz in a 2-T field H||c, using a four-probe rf transmission technique that enables continuous measurements versus ω and temperature T. As T is increased, the inductance Ls(ω)=Imρ^(ω)/ω increases steeply to a cusp at the melting temperature Tm, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66. We discuss in detail the separation of the vortex-lattice inductance from the ``volume'' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω) over 2 decades in ω. Values of the pinning parameter κ and shear modulus c66 obtained show that c66 collapses by over 4 decades at Tm, whereas κ remains finite.
Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo
2013-05-01
SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery.
Chemical, thermal and impact processing of asteroids
NASA Technical Reports Server (NTRS)
Scott, E. R. D.; Taylor, G. J.; Newsom, H. E.; Herbert, F.; Zolensky, M.
1989-01-01
The geological effects of impacts, heating, melting, core formation, and aqueous alteration on asteroids are reviewed. A review of possible heat sources appears to favor an important role for electrical induction heating. The effects of each geologic process acting individually and in combination with others, are considered; it is concluded that there is much evidence for impacts during alteration, metamorphism and melting. These interactions vastly increased the geologic diversity of the asteroid belt. Subsequent impacts of cool asteroids did not reduce this diversity. Instead new rock types were created by mixing, brecciation and minor melting.
Process for alloying uranium and niobium
Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.
1991-01-01
Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.
Formation of TbCu7-type CeFe10Zr0.8 by rapid solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Pinkerton, FE; Herbst, JF
2013-08-25
We report the discovery of a new ternary compound prepared by melt spinning induction melted ingot of nominal composition CeFe11Zr. The sample melt spun at v(s) = 25 m/s exhibits the hexagonal TbCu7-type structure of space group P6/mmm. Through fitting the experimental X-ray diffraction pattern by Rietveld method, we have successfully derived the crystal structure of the new compound melt spun at v(s) = 25 m/s to be CeFe10Zr0.8. Subsequent density function theory calculation fully supports the chemical stability of the new ternary compound. Annealing test showed that the melt spun CeFe10Zr0.8 is stable up to 700 degrees C andmore » annealing at higher temperature would cause it to decompose into hexagonal Ce2Fe17-type structure and ZrFe2. The Curie temperature measurement found that CeFe10Zr0.8 boasts a T-c = 181 degrees C, which is higher than the Tc values of all known Ce-Fe binary compounds, and 30 degrees C higher than that of Ce2Fe14B. These interesting properties stimulate continued search for new Ce-based permanent magnets that could be a cost effective solution to engineering needs in the future. (c) 2013 Elsevier B.V. All rights reserved.« less
Efg Crystal Growth Apparatus And Method
Mackintosh, Brian H.; Ouellette, Marc
2003-05-13
An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.
Ultra-high vacuum compatible preparation chain for intermetallic compounds
NASA Astrophysics Data System (ADS)
Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.
2016-11-01
We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.
Electromagnetic containerless undercooling facility and experiments for the Shuttle
NASA Technical Reports Server (NTRS)
Frost, R. T.; Flemings, M. C.; Szekely, J.; El-Kaddah, N.; Shiohara, Y.
1984-01-01
An electromagnetic furnace is being prepared for flights aboard the Space Shuttle. This apparatus is capable of melting metals and alloys up to 1400 C melting point by induction heating with subsequent solidification of the freely levitated melt without contact with any container. The solidification can be carried out with greatly reduced fields resulting in minimal heating and stirring of the free melt. Sequential specimens can be processed during flight. Several experiments are planned for a series of flights, beginning in 1985 with an undercooling experiment of NiSn alloys. These will be interspersed with detailed studies of fluid flow caused by low and high field levels in order to quantify the corresponding effect upon the solidification process.
Jiang, Yunyao; Piao, Jingpei; Cho, Hyun-Jong; Kang, Wie-Soo; Kim, Hye-Young
2015-01-01
Angelica gigas Nakai (AGN) is one of the most popular herbal medicines and widely used as a functional food product. In this study, AGN was firstly processed by a low-temperature turbo mill and a hot melting extruder to reduce particle size and form solid dispersion (SD). Anticancer activity against HeLa cells was then examined. AGN-SD based on Soluplus was formed via hot-melt extrusion (HME) and showed the strongest cytotoxic effect on HeLa cells. In addition, the possible mechanism of cell death induced by AGN-SD on HeLa cells was also investigated. AGN-SD decreased cell viability, induced apoptosis, increased the production of reactive oxygen species, regulated the expression of Bcl-2 and Bax, and induced G2/M phase arrest in HeLa cells. This study suggested that AGN-SD based on Soluplus and the method to improve antiproliferative effect by SD formation via HME may be suitable for application in the pharmaceutical industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maio, Vince
This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are tomore » complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.« less
Crucible-free pulling of germanium crystals
NASA Astrophysics Data System (ADS)
Wünscher, Michael; Lüdge, Anke; Riemann, Helge
2011-03-01
Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.
Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng
2016-11-03
Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE) of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs) differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.
Mechanism of corrosion of Ni base superalloys by molten Na2MoO4 at elevated temperatures
NASA Technical Reports Server (NTRS)
Misra, A. K.; Stearns, C. A.
1983-01-01
The corrosion of nickel base superalloy, U-700, by molten Na2MoO4 was studied in the temperature range of 750 deg to 950 deg C. After an induction period, the rate of corrosion is linear and catastrophic corrosion is observed. It is shown that the induction period is associated with the attainment of a minimum MoO3 activity in the melt, which corresponds to the equilibrium MoO3 activity for the reaction, 2MoO3(l) + Mo = 3MoO2(s). A mechanism is proposed to describe the catastrophic nature of corrosion, which involves transport of Ni++ through the melt resulting in formulation of NiO at the melt gas interface and basic fluxing of Cr2O3. The effect of the amount of Na2MoO4 on the corrosion kinetics was also studied. It is found that evaporation and the thermodynamic calculations for the Na2MoO4 - MoO3 system the activity of MoO3 is reduced considerably when dissolved in Na2MoO4, which causes a sharp decrease in the rate of evaporation of MoO3 from a Na2MoO4 - MoO3 melt.
Numerical simulation of the alloying process during impulse induction heating of the metal substrate
NASA Astrophysics Data System (ADS)
Popov, V. N.
2017-10-01
2D numerical modeling of the processes during the alloying of the substrate surface metal layer is carried out. Heating, phase transition, heat and mass transfer in the molten metal, solidification of the melt are considered with the aid the proposed mathematical model. Under study is the applicability of the high-frequency electromagnetic field impulse for metal heating and melting. The distribution of the electromagnetic energy in the metal is described by empirical formulas. According to the results of numerical experiments, the flow structure in the melt and distribution of the alloying substances is evaluated.
Solidification processing of intermetallic Nb-Al alloys
NASA Technical Reports Server (NTRS)
Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.
1992-01-01
Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.
ELECTROMAGNETIC STIRRING IN ZONE REFINING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, I.; Frank, F.C.; Marshall, S.
1958-02-01
The efficiency of the zone refining process can obviously be increased by stirring the molten zone to disperse the impurity-rich layer at the solid- liquid surface. Induction heating is sometimes preferred to radiant heat because it produces more convection, but no marked improvement has been reported. Pfann and Dorsi(1967) have described a method of stirring the melt by passing an electric current through the ingot and compressing a magnetic field across the molten zone. Preliminary results obtained by using a rotating magnetic field us the stirring agent during the purification of aluminum are described. (A.C.)
Composition and methods of preparation of target material for producing radionuclides
Seropeghin, Yurii D; Zhuikov, Boris L
2013-05-28
A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.
ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials
2015-05-14
of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation
Evaluation of the Mechanical Properties of Electroslag Refined Fe-12Ni Alloys
NASA Technical Reports Server (NTRS)
Bhat, G. K.
1978-01-01
Three Fe-12Ni alloys, individually alloyed with small amounts of V, Ti, and Al, were manufactured through different melting techniques, with special emphasis on electroslag remelting, in order to achieve different levels of metal purity and associated costs. The relative effectiveness of these melting techniques was evaluated from tensile and slow bend fracture toughness behavior at 25 C and -196 C after tempering the test specimens at various temperatures. The best melting procedure was vacuum induction melting (VIM) with or without electroslag remelting (ESR). VIM+ESR is the recommended procedure since ESR provides increased yield of plate product, a reduction of overall manufacturing costs and, depending on the alloy composition, improved tensile and fracture toughness properties.
Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas.
Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki
2016-04-06
Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems-Li-Mn, Li-Cr, Li-Co, and Li-Ni-were compared to understand formation mechanism of Li-Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li-Me oxide nanoparticles were successfully synthesized in Li-Mn, Li-Cr, and Li-Co systems. Spinel structured LiMn₂O₄ with truncated octahedral shape was formed. Layer structured LiCrO₂ or LiCoO₂ nanoparticles with polyhedral shapes were also synthesized in Li-Cr or Li-Co systems. By contrast, Li-Ni oxide nanoparticles were not synthesized in the Li-Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.
Inductive detection of the free surface of liquid metals
NASA Astrophysics Data System (ADS)
Zürner, Till; Ratajczak, Matthias; Wondrak, Thomas; Eckert, Sven
2017-11-01
A novel measurement system to determine the surface position and topology of liquid metals is presented. It is based on the induction of eddy currents by a time-harmonic magnetic field and the subsequent measurement of the resulting secondary magnetic field using gradiometric induction coils. The system is validated experimentally for static and dynamic surfaces of the low-melting liquid metal alloy gallium-indium-tin in a narrow vessel. It is shown that a precision below 1 mm and a time resolution of at least 20 Hz can be achieved.
Experimental program on nucleation and structure in undercooled melts
NASA Technical Reports Server (NTRS)
1982-01-01
Undercooling and structural refinements in droplets of molten metal levitated in an induction field and/or by dispersion in a fluid carrier were studied. Nickel base and lower melting point alloys levitated in molten carrier fluids are considered. The dispersion of molten alloy droplets in a high temperature fluid following the procedures developed by Perepezko and co-workers for lower melting point alloys; obtaining a similar dispersion by room temperature mechanical mixing of particles of the metal and solidified liquid carrier; and solidification of single relatively large droplets in a transparent fluid carrier, enabling high-speed temperature measurement of the recalescence and subsequent cooling behavior are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation
NASA Astrophysics Data System (ADS)
Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.
2000-06-01
A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.
Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt
NASA Astrophysics Data System (ADS)
Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen
2017-12-01
Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.
NASA Technical Reports Server (NTRS)
Righter, K.; Campbell, A. J.; Humayun, M.
2003-01-01
Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.
Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies
NASA Astrophysics Data System (ADS)
Hang, N. Tran Thi; Lüdtke, U.
2018-05-01
The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Non-graphite crucible for high temperature applications
Holcombe, Cressie E.; Pfeiler, William A.
1996-01-01
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.
Non-graphite crucible for high temperature applications
Holcombe, C.E.; Pfeiler, W.A.
1996-01-09
A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.
Optical and contact nondestructive measurement of the laser remelting layers
NASA Astrophysics Data System (ADS)
Chmelíčková, Hana; Lapšanská, Hana; Hiklová, Helena; Havelková, Martina; Medlín, Rostislav; Beneš, Petr
2007-06-01
Laser beam of the infrared pulsed Nd:YAG laser was used to re-melting PVD coatings on the steel substrates. Chemical composition of these layers contains carbide Cr 3C II with alloy NiCr or nitrides TiN, TiAlN, TiAlSiN and CrAlSiN. First coatings were prepared by method of high velocity oxygen fuel (HVOF) that protects the machine component surfaces from abrasion, corrosion or ensures thermal isolation, nitrides by PVD (Physical Vapor Deposition). Processing parameters such as pulse energy, pulse length and frequency were optimized in many experiments to achieve the sufficient surface energy density to melting without vaporization of the material. Multimode beam diameters about some millimetres were computed and adjusted in the suitable distance from focus plane. High laser power re-melting decreases their porosity, increases adhesion to basic material. In case of high laser energy gas vapours escape from basic material and cause fissures, re-melted surfaces have to be carefully controlled. New approach to evaluation of the quality surface structure was realized by laser confocal microscopy. Direct measuring or 3D surface model is possible with resolution less than hundred nanometres, depressions along laser beam path or rises on the laser spot edges were determined. Particles and grains with dimensions about one micron in re-melting structures can be observed better then by optical microscopy. Parallel measurements of the surface roughness were realized by the contact inductive profilometer Talysurf, collected data were displayed by software tool Talymap in a plane or spatial pictures.
Purfication kinetics of beryllium during vacuum induction melting
NASA Technical Reports Server (NTRS)
Mukherjee, J. L.; Gupta, K. P.; Li, C. H.
1972-01-01
The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.
NASA Technical Reports Server (NTRS)
Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.
1974-01-01
Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.
Solubility of Nitrogen in Superaustenitic Stainless Steels During Air Induction Melting
NASA Astrophysics Data System (ADS)
Chandrasekar, A.; Anburaj, J.; Narayanan, R.; Balusamy, V.; Mohamed Nazirudeen, S. S.
2013-04-01
The amount of nitrogen contained in super austenitic stainless steels (SASS) influences their properties significantly. The effect of maximum amount of nitrogen in the highly alloyed Cr and Ni SASS containing further additions of Mo and Mn is studied. The calculated nitrogen contents of the experimental alloys are compared with the actual nitrogen contents obtained in the alloys produced using induction melting furnace. The actual nitrogen content of the alloys is always lower than the calculated value, and this discrepancy is due to the presence of positive interaction parameters of Ni, Cu, and Si in the alloy. However, the yield of nitrogen in the liquid SASS is improved significantly with additions of Mn and Mo contents. The construction of multicomponent phase diagrams for SASS is demonstrated using Thermo-Calc software. SASS containing more nitrogen exhibited a very high strength without loss of toughness.
NASA Astrophysics Data System (ADS)
Crăciun, R. C.; Stanciu, S.; Geantă, V.; Voiculescu, I.; Manole, V.; Gârneţ, I. A.; Alexandru, A.; Cimpoesu, N.; Săndulache, F.
2017-06-01
Abstract Iron based materials still represent a high percentage from metallic materials used in industry, in general, and in automotive industry, in particular. In this case we used a duplex process in order to obtain the FeMnSiAl experimental alloy for a more efficient use of various units. In the first stage iron, manganese, silicon and aluminum were melted and mixed together using arc melting technology and for the second stage the alloy was re-melt for homogeneity in an induction furnace. Chemical composition, after each melting step, was analyzed using EDS Bruker detector for various areas and microstructural characterization using SEM, VegaTescan LMH II with SE detector, equipment. This alloy is proposed as a metallic approach of mechanical dumpers used in automotive industry for low and medium impact contacts.
Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting
NASA Astrophysics Data System (ADS)
Bartosinski, M.; Hassan-Pour, S.; Friedrich, B.; Ratiev, S.; Ryabtsev, A.
2016-07-01
This paper focuses on deoxidation of titanium alloys produced by aluminothermic reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting (VIM). The main goal of the performed research work is to outline the deoxidation limit during pressure electro slag remelting (PESR) of the described material. To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia (pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and alloying elements were analysed by XRF. Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in calcium-zirconate crucibles and approx. 1 - 1.2 wt.-% for the material produced by utilization of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated material is possible applying this method to a certain limit. Pilot scale trials showed a reduction of oxygen contents by 1500 - 3500 ppm. Oxygen levels in lab scale trials showed weaker deoxidation effects. In order to describe the achieved deoxidation effects in a quantitative way, the analyzed oxygen contents of the obtained ingots are compared with calculated data resulting from a mathematical kinetic model. The modelled datasets are in good agreement with experimental oxygen values.
Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi
1999-01-01
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Hongliang; Li, Songhao; Zhang, Feipeng; Lu, Qingmei; Li, Jingfeng
2014-03-01
A series of Sb-doped Mg2(Si0.4Sn0.6)Sbx (0 ≤ x ≤ 0.025) solid solutions were prepared by an induction melting, Melt Spinning (MS) and Spark Plasma Sintering (SPS) method, namely the non-equilibrium technique MS-SPS, using bulks of Magnesium, Silicon, Tin, and Antimony as raw materials. The non-equilibrium technique generates the unique multiscale microstructures of samples containing micronscale grains and nanoscale precipitates, the multiscale microstructures remarkably make the lattice thermal conductivities decreased, particularly for samples with the nanoscale precipitates having the size of 10-20 nm. Meanwhile, Sb-doping greatly increased the electrical performance of samples. Consequently, the Sb-doping combined with the multiscale microstructures strategy remarkably improves the overall thermoelectric (TE) performance of Sb doped samples, and a high dimensionless figure of merit (ZT) value of up to 1.25 at 723 K is obtained with Mg2(Si0.4Sn0.6)Sb0.02 sample in a relatively wide temperature range.
The origin of Cu/Au ratios in porphyry-type ore deposits.
Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A
2002-06-07
Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.
Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy
NASA Technical Reports Server (NTRS)
Benafan, Othmane; Bigelow, Glen S.; Elahinia, Mohammad; Moghaddam, Narges Shayesteh; Amerinatanzi, Amirhesam; Saedi, Soheil; Toker, Guher Pelin; Karaca, Haluk
2017-01-01
Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM).
Dopant occupancy and exposure energy in Hf:Nd:LiNbO3 crystal as a function of [Li]/[Nb] ratios
NASA Astrophysics Data System (ADS)
Dai, Li; Liu, Chunrui; Han, Xianbo; Yan, Zhehua; Tan, Chao; Wang, Luping; Xu, Yuheng
2017-09-01
A series of Hf: Nd: LiNbO3 crystals with various [Li]/[Nb] ratios ([Li]/[Nb] = 0.94, 1.05, 1.20, 1.38) in the melt were grown by conventional Czochralski technique. The distribution coefficients of Hf4+ and Nd3+ ions were recorded by an inductively coupled plasma-atomic emission spectrometer (ICP-AES). The effective distribution coefficient of Hf4+ is reduced and that of Nd3+ is increased with the increase of [Li]/[Nb] ratio in the melts. In all cases, the effective distribution coefficients is less than 1. The IR transmission spectroscopy of the Hf: Nd: LiNbO3 crystals were measured, getting the results that Hf: Yb: Ho: LiNbO3 crystals with 1.05 [Li]/[Nb] ratios was the stoichiometric. The optical damage resistance ability of Hf:Nd:LiNbO3 crystals were studied by light-induced scattering exposure energy flux threshold method and it increases with the increasing of [Li]/[Nb] ratios. When the [Li]/[Nb] ratio is 1.38 in the melt (the sample 4#), the exposure energy achieves 687.35 J/cm2, approximately 441 folds than that of the sample 1# ([Li]/[Nb] = 0.94) in magnitude.
The directional crystallization of W-B-C- d-transition metal alloys
NASA Astrophysics Data System (ADS)
Paderno, Yuriy; Paderno, Varvara; Liashchenko, Alfred; Filipov, Volodymyr; Evdokimova, Alina; Martynenko, Anna
2006-09-01
Crystallization from the melt during arc melting and directional solidification during induction zone melting of pseudo-alloys tungsten carbide (WC)- MeB 2 ( Me—Ti, Zr, Cr) and a number of alloys of the W-B-C system (WB 0.12C 0.74; WB 0.25C 0.75; WB 0.34C 0.32; WB 0.49C 0.76; WB 0.59C 0.76; WB 0.89C 0.75; (WC) 0.9B 0.1) has been studied. It was shown that the alloys WC—80 mass%-ZrB 2—20 mass% and WC—72 mass%-WB—28 mass% are the closest ones to eutectic compositions. Investigation of the microstructure of eutectic alloys in the WC-WB system by thin foil method has revealed that both matrix and reinforcing phases are single crystalline. Hardness tests by indentation of the eutectic structure area ( P=10.3 N) do not result in radial crack formation, which is evidence of the essential plasticity of the obtained composite material. It is established that new ceramic-ceramic eutectic composite materials based on WC with transition metal diborides and with a boride phase of tungsten may be created. Such materials can be successfully applied in contemporary high-temperature techniques.
Boron and Zirconium from Crucible Refractories in a Complex Heat-Resistant Alloy
NASA Technical Reports Server (NTRS)
Decker, R F; Rowe, John P; Freeman, J W
1958-01-01
In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability.
Transport properties of lithium ions doped vanado-bismuth-tellurite glasses
NASA Astrophysics Data System (ADS)
Keshavamurthy, K.; Eraiah, B.
2016-05-01
The glasses of composition (65-x)V2O5-xLi2O-20TeO2-15Bi2O3 (x = 15 and 25 mol%) were prepared by conventional melt quenching method and their electrical conductivity and dielectric measurements have been carried out in the frequency range 40Hz to 6MHz over a temperature 373 to 473 K. The conductivity values increased with both Li2O concentration and temperature. Interestingly, the dielectric response showed the existence of a negative capacitance effect in the present glass system and concluded that this effect arose from the presence of external inductive reactance.
Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.
Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang
2015-09-21
A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.
Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang
A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less
Induction technique in manufacturing preforms
NASA Astrophysics Data System (ADS)
Frauenhofer, M.; Ströhlein, T.; Fabig, S.; Böhm, S.; Herbeck, L.; Dilger, K.
2008-09-01
The prepreg technology is a state-of-the-art method to produce high-performance CFRP parts. Due to the high material prices, the restricted process rate, and limitations to the component complexity, in future, more and more parts will be assembled by using liquid composite moulding. Especially in the case of series larger than 100 parts per year, the LCM technology offers the best cost-effectiveness. This technology is based on resin injection into dry multilayer fibre textiles (preforms). The Institute of Joining and Welding (TU, Braunschweig), together with the Institute of Composite Structures and Adaptive Systems (DLR), has elaborated a new technology to speed up the preform process, which is the most labour-intensive step within the LCM process chain. A novel concept to consolidate binder-coated fabrics is under development. By applying the high energy transfer rate of induction technology, it is possible to heat up a preform with rates up to 50 K/s to melt the binder and consolidate the preform.
Three dimensional multilayer solenoid microcoils inside silica glass
NASA Astrophysics Data System (ADS)
Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun
2016-01-01
Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.
Fast Erase Method and Apparatus For Digital Media
NASA Technical Reports Server (NTRS)
Oakely, Ernest C. (Inventor)
2006-01-01
A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.
Dehydration and melting experiments constrain the fate of subducted sediments
NASA Astrophysics Data System (ADS)
Johnson, Marie C.; Plank, Terry
1999-12-01
Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 +/- 25°C at 2 GPa, 810 +/- 15°C at 3 GPa, and 1025 +/- 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ~ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.
Dehydration and melting experiments constrain the fate of subducted sediments
NASA Astrophysics Data System (ADS)
Johnson, Marie C.; Plank, Terry
2000-12-01
Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.
Novel duplex vapor-electrochemical method for silicon solar cells
NASA Technical Reports Server (NTRS)
Kapur, V. K.; Nanis, L.; Sanjurjo, A.
1977-01-01
Silicon obtained by the SiF4-Na reaction was analyzed by spark source mass spectrometry (SSMS). Silicon samples prepared from induction melted powder were evaluated for electrical properties using four point probe conductivity and thermoelectric methods. SiF4-Na reaction under P sub SiF4 greater than 1 atmosphere. The amount of silicon produced was increased from 25 g per batch (in the glass reactor) to greater than 70 g per batch in the stainless steel reactor. The study of the effects of reaction variables such as P sub SiF4 and maximum temperature attained on the particle size of silicon powder showed that the silicon particle size tends to grow larger with increasing pressure of the SiF4 gas in the reaction system.
Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating
NASA Astrophysics Data System (ADS)
Kislyakova, K. G.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Guedel, M.
2017-10-01
Low-mass M stars are plentiful in the Universe and often host small, rocky planets detectable with the current instrumentation. Recently, seven small planets have been discovered orbiting the ultracool dwarf TRAPPIST-1 te{Gillon16,Gillon17}. We examine the role of electromagnetic induction heating of these planets, caused by the star's rotation and the planet's orbital motion. If the stellar rotation and magnetic dipole axes are inclined with respect to each other, induction heating can melt the upper mantle and enormously increase volcanic activity, sometimes producing a magma ocean below the planetary surface. We show that induction heating leads the three innermost planets, one of which is in the habitable zone, to either evolve towards a molten mantle planet, or to experience increased outgassing and volcanic activity, while the four outermost planets remain mostly unaffected.
Segregation control in vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Tao, Y.; Kou, S.
1996-11-01
To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.
High-energy, high-rate materials processing
NASA Astrophysics Data System (ADS)
Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.
1987-12-01
The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.
Evidence of a primordial solar wind. [T Tauri-type evolution model
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1974-01-01
A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.
Shock melting and vaporization of metals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1972-01-01
The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.
Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.
2015-07-23
Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted withmore » amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.« less
Induction heating of planetary interiors
NASA Astrophysics Data System (ADS)
Kislyakova, K.; Noack, L.; Johnstone, C. P.; Zaitsev, V. V.; Fossati, L.; Lammer, H.; Khodachenko, M. L.; Odert, P.; Güdel, M.
2017-09-01
We present a calculation of the energy release in planetary interiors caused by induction heating. If an exoplanet orbits a host star with a strong magnetic field, it will be embedded in periodically varying magnetic environment. In our work, we consider only a dipole field of the host star and assume the dipole axis to be inclined with respect to the stellar rotational axis, which causes the magnetic field to vary. In this case, the varying magnetic field surrounding the planet will generate induction currents inside the planetary mantle, which will dissipate in the planetary interiors. We show that this energy release can be very substantial and in some cases even lead to complete melting of the planetary mantle over geological timescales, accompanied by the enhanced magnetic activity.
NASA Astrophysics Data System (ADS)
Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James
2008-12-01
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.
Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module
NASA Astrophysics Data System (ADS)
Lee, Jin-Seok; Ahn, Young-Soo; Kang, Gi-Hwan; Wang, Jei-Pil
2017-09-01
This research was attempted to recover metal alloy and copper from photovoltaic ribbon (PV ribbon) of spent solar module by means of thermal treatment. In this study, thermal method newly proposed was applied to remove coating layer composed of tin and lead and separate copper substrate. Using thermal treatment under reductive gas atmosphere with CH4 gas coating layer was easily melted down at the range of temperature of 700 °C to 800 °C. In the long run, metal alloy and copper substrate were successfully obtained and their chemical compositions were examined by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and energy dispersive x-ray Spectroscopy (EDS).
Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-05-07
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.
Magnetic field controlled floating-zone single crystal growth of intermetallic compounds
NASA Astrophysics Data System (ADS)
Hermann, R.; Gerbeth, G.; Priede, J.
2013-03-01
Radio-frequency (RF) floating zone single crystal growth is an important technique for the preparation of single bulk crystals. The advantage of the floating-zone method is the crucible-free growth of single crystals of reactive materials with high melting points. The strong heat diffusion on the surface, as well as the melt convection in the molten zone due to induction heating, often leads to an undesired solid-liquid interface geometry with a concave (towards the solid phase) outer rim. These concave parts aggravate the single crystal growth over the full cross-section. A two-phase stirrer was developed at IFW Dresden in order to avoid the problems connected with these concave parts. It acts as a magnetic field pump and changes the typical double vortex structure to a single roll structure, thus pushing hot melt into the regions where the concave parts may arise. The current in the secondary coil is induced by the primary coil, and the capacitor and the resistance of the secondary circuit are adjusted to get a stable 90 degree phase-shift between the coil currents. Single crystal growth of industrial relevant RuAl and TiAl intermetallic compounds was performed based on the material parameters and using the adjusted two-phase stirrer. Very recently, the magnetic system was applied to the crystal growth of biocompatible TiNb alloys and antiferromagnetic Heusler MnSi compounds.
Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...
2017-01-18
The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less
Casting technology for ODS steels - dispersion of nanoparticles in liquid metals
NASA Astrophysics Data System (ADS)
Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.
2017-07-01
Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.
Hypoeutectic melting in the UO2-x-Gd2O3 system
NASA Astrophysics Data System (ADS)
Journeau, Christophe; Fouquart, Pascal; Domenger, Renaud; Allegri, Patrick
2017-05-01
Gadolinium is one of the best neutron absorber materials and its use can be considered as a sacrificial material in a Sodium Fast Reactor core catcher in view of preventing recriticallity. A series of experiments have been conducted in the VITI induction-heated facility to study the melting in the UO2-x-Gd2O3 system with 60-87 mol% gadolinia. These experiments have indicated that the eutectic composition is around 92 mol% Gd2O3 - 8 mol% UO2-x and that the liquidus line is close to that of Popov et al. [Atom. Energ. 110 (2011) pp. 221-229] phase diagram.
Processing, Microstructure, and Tensile Properties of the Ti-6Al-4V-1.55B Eutectic Alloy (Preprint)
2007-02-01
compositions via induction skull melting using a water-cooled segmented copper crucible . The charge was incrementally added to give chemical homogeneity...achieved near the water-cooled wall of the segmented copper crucible . The regular eutectic arrangement was destroyed and an irregular distribution of fine
11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED ...
11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED IN CRUCIBLES, LOADED INTO ONE OF EIGHT INDUCTION FURNACES AND MELTED IN A VACUUM ATMOSPHERE. (11/11/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Electromagnetic heating of minor planets in the early solar system
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.
1979-01-01
Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.
Formation of the lunar crust - An electrical source of heating
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Colburn, D. S.; Schwartz, K.
1975-01-01
A model for formation of the lunar crust based on heating by electrical induction is explored, while adherence is maintained to certain constraints associated with existing models of the solar system. The heating mechanism is based on eddy current induction from disordered magnetic fields swept outwards by an intense (T Tauri-like) plasma flow from the sun. The electrical theory is an alternative to intense short-period accretion as a source of heat for the evolution of lunar maria and highlands, provided that long-lived radioactives are not swept to the surface from too large a melt volume during the initial thermal episode. This formation of the lunar highlands does not intrinsically require rapid accretion, nor on this basis is the time of formation of the planets generally restricted to a very short time. The threshold temperature for eddy current heating is attained by either a solar nebula at 300-400 C during formation of the moon or a very low energy long-period accumulation of the moon, both leading to melting in ten to the fifth to ten to the seventh power years.
Model 'zero-age' lunar thermal profiles resulting from electrical induction
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.
1977-01-01
Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.
NASA Astrophysics Data System (ADS)
Thielemann, R.
1981-05-01
It seemed quite natural and logical for me to want to address such an informed group about some of the many superalloys developed over the past forty years-but then I realized that most, if not all of them are listed with their compositions and properties in the ASM Metals Handbook, so this subject did not seem promising. At this point I started to think about the many new and important developments in processing techniques that made the melting, casting, and forming of the alloys possible. It seemed to me that the new procedures were, in most every instance, just as important as the new compositions themselves. Without the new techniques, many of the higher strength compositions were difficult, if not impossible to produce by existing procedures. Certainly, vacuum induction melting allowed us to melt and cast the titanium-and aluminum-bearing compositions without incurring the usual oxide and nitride inclusions.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace
NASA Astrophysics Data System (ADS)
Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng
2009-10-01
Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.
Preparation of low strategic metal content superalloys
NASA Technical Reports Server (NTRS)
Sczerzenie, F. E.; Maurer, G. E.
1982-01-01
The properties of modified NIMONIC 115 and UDIMET 720 with reduced levels of cobalt were evaluated. Vacuum induction melted and vacuum arc remelted ingots were hot rolled to 3/4 inch diameter bar. Hot workability was evaluated in terms of the ingot rolling behavior and the hot ductility of the as-rolled bar. Variations in workability and bar ductility were correlated to variations in incipient melting temperature and gamma prime solvus, both of which varied with cobalt content. Heat treatments were defined to yield, as far as possible, similar structures from alloy to alloy. At the lowest cobalt levels N-115 workability was severely limited and the alloys could not be worked to bar. It is suggested that incipient melting in combination with heavy grain boundary carbide precipitation reduced ingot workability. Final heat treatment of modified alloys was difficult in the situation where the gamma prime solvus temperature was close to the incipient melting point, indicating that it may not be feasible to fully solution low cobalt alloys to obtain the large grain size required for optimum creep resistance.
Scale up of NiTi shape memory alloy production by EBM
NASA Astrophysics Data System (ADS)
Otubo, J.; Rigo, O. D.; Moura Neto, C.; Kaufman, M. J.; Mei, P. R.
2003-10-01
The usual process to produce NiTi shape memory alloy is by vacuum induction melting (VIM) using a graphite crucible, which causes contamination of the melt with carbon. Contamination with oxygen originates from the residual oxygen inside the melting chamber. An alternative process to produce NiTi alloys is by electron beam melting (EBM) using a water-cooled copper crucible that eliminates carbon contamination, and the oxygen contamination would be minimal due to operation in a vacuum of better than 10^{-2} Pa. In a previous work, it was demonstrated that the technique is feasible for button shaped samples weighing around 30g. The present work presents the results on the scale up program that enables the production of larger samples/ingots. The results are very promising in terms of chemical composition homogeneity as well as in terms of carbon contamination, the latter being four to ten times lower than the commercially-produced VIM products, and in terms of final oxygen content which is shown to depend primarily on the starting raw materials.
Metallurgical characterization of experimental Ag-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros
2014-10-01
To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
Melt migration modeling in partially molten upper mantle
NASA Astrophysics Data System (ADS)
Ghods, Abdolreza
The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
NASA Technical Reports Server (NTRS)
1975-01-01
Space processing of directionally solidified eutectic-alloy type turbine blades is envisioned as a simple remelt operations in which precast blades are remelted in a preformed mold. Process systems based on induction melting, continuous resistance furnaces, and batch resistance furnaces were evaluated. The batch resistance furnace type process using a multiblade mold is considered to offer the best possibility for turbine blade processing.
Magnetic properties of permalloy wires in vycor capillaries
NASA Astrophysics Data System (ADS)
Lubitz, P.; Ayers, J. D.; Davis, A.
1991-11-01
Thin wires of NiFe alloys with compositions near 80% Ni were prepared by melting the alloy in vycor tubes and drawing fibers from the softened glass. The resulting fibers consist of relatively thick-walled vycor capillaries containing permalloy wires filling a few percent of the volume. The wires are continuous over considerable lengths, uniform in circular cross section, nearly free of contact with the walls and can be drawn to have diameters less than 1 μm. Their magnetic properties are generally similar to bulk permalloy, but show a variety of magnetic switching behaviors for fields along the wire axis, depending on composition, wire diameter, and thermal history. As pulled, the wires can show sharp switching, reversible rotation or mixed behavior. This method can produce NiFe alloy wires suitable for use in applications as sensor, memory or inductive elements; other alloys, such as supermalloy and sendust, also can be fabricated as fine wires by this method.
Experimental and numerical modelling of the fluid flow in the continuous casting of steel
NASA Astrophysics Data System (ADS)
Timmel, K.; Miao, X.; Wondrak, T.; Stefani, F.; Lucas, D.; Eckert, S.; Gerbeth, G.
2013-03-01
This article gives an overview of recent research activities with respect to the mold flow in the continuous casting of steel in presence of DC magnetic fields. The magnetic fields appear to be an attractive tool for controlling the melt flow in a contactless way. Various kinds of magnetic systems are already in operation in industrial steel casting, but the actual impact on the melt flow has not been sufficiently verified by experimental studies. The rapid development of innovative diagnostic techniques in low-melting liquid metals over the last two decades enables new possibilities for systematic flow measurements in liquid metal model experiments. A new research program was initiated at HZDR comprising three experimental facilities providing a LIquid Metal Model for continuous CASTing of steel (LIMMCAST). The facilities operate in a temperature range from room temperature up to 400∘C using the low-melting alloys GaInSn and SnBi, respectively. The experimental program is focused on quantitative flow measurements in the mold, the submerged entry nozzle and the tundish. Local potential probes, Ultrasonic Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT) are employed to measure the melt flow. The behavior of two-phase flows in case of argon injection is investigated by means of the Mutual Inductance Tomography (MIT) and X-ray radioscopy. The experimental results provide a substantial data basis for the validation of related numerical simulations. Numerical calculations were performed with the software package ANSYS-CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. First results of the LIMMCAST program reveal important findings such as the peculiar, unexpected phenomenon that the application of a DC magnetic field may excite non-steady, non-isotropic large-scale flow oscillations in the mold. Another important result of our study is that electrical boundary conditions, namely the wall conductivity ratio, have a serious influence on the mold flow while it is exposed to an external magnetic field.
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
NASA Astrophysics Data System (ADS)
Liu, Boda; Liang, Yan
2017-04-01
Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.
NASA Astrophysics Data System (ADS)
Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.
2016-12-01
The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.
Cousins, Matthew M.; Swan, David; Magaret, Craig A.; Hoover, Donald R.; Eshleman, Susan H.
2012-01-01
Background HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data. Methods DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2–T1 = HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves. Results HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method. Conclusion DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies. PMID:23240016
Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites
Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker
2011-01-01
Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...
NASA Astrophysics Data System (ADS)
Zhao, Shan; McNamara, Cameron T.; Bowen, Patrick K.; Verhun, Nicholas; Braykovich, Jacob P.; Goldman, Jeremy; Drelich, Jaroslaw W.
2017-03-01
Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn- xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa ( x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.
Plastic phase change material and articles made therefrom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhari, Ramin
The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds aremore » provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.« less
Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu
2018-01-01
To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958
Method and apparatus for drawing monocrystalline ribbon from a melt
Ciszek, Theodore F.; Schwuttke, Guenter H.
1981-11-10
A method and apparatus for drawing a monocrystalline ribbon or web from a melt comprising utilizing a shaping die including at least two elements spaced one from the other each having a portion thereof located below the level of the melt and another portion located above the level of the melt a distance sufficient to form a raised meniscus of melt about the corresponding element.
Further development and characterization of VM-103, a NASA wrought cobalt base alloy
NASA Technical Reports Server (NTRS)
Harlow, R. A.; Ritchie, E. E.
1972-01-01
The data obtained during this and previous programs indicate that the VM-103 has useful strength at temperatures as high 2200 F (1204 C), and can be considered as an alternate for other wrought superalloys such as L-605. The addition of 10 percent nickel to the standard composition improves both the hot and cold fabricability, ductility, impact strength, and metallurgical stability, while it only slightly reduces strength properties. Electroslag re-melting was effective in significantly increasing the fabricability of vacuum induction method VM-103, both with and without the 10 percent nickel addition. A specification for wrought VM-103 was developed and is included. Although thermomechanical processing improves lower temperature properties, no improvement occurs at temperatures at or above 2000 F (1093 C).
Power Quality Improvement in Induction Furnace by Harmonic Reduction Using Dynamic Voltage Restorer
NASA Astrophysics Data System (ADS)
Saggu, Tejinder Singh; Singh, Lakhwinder
2016-06-01
Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.
NASA Astrophysics Data System (ADS)
Poklad, A.; Pal, J.; Galindo, V.; Grants, I.; Heinze, V.; Meier, D.; Pätzold, O.; Stelter, M.; Gerbeth, G.
2017-07-01
A novel, vertical Bridgman-type technique for growing multi-crystalline silicon ingots in an induction furnace is described. In contrast to conventional growth, a modified setup with a cone-shaped crucible and susceptor is used. A detailed numerical simulation of the setup is presented. It includes a global thermal simulation of the furnace and a local simulation of the melt, which aims at the influence of the melt flow on the temperature and concentration fields. Furthermore, seeded growth of cone-shaped Si ingots using either a monocrystalline seed or a seed layer formed by pieces of poly-Si is demonstrated and compared to growth without seeds. The influences of the seed material on the grain structure and the dislocation density of the ingots are discussed. The second part addresses model experiments for the Czochralski technique using the room temperature liquid metal GaInSn. The studies were focused on the influence of a rotating and a horizontally static magnetic field on the melt flow and the related heat transport in crucibles being heated from bottom and/or side, and cooled by a crystal model covering about 1/3 of the upper melt surface.
Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrois, Martin; Jablonski, Paul D.
Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less
NASA Astrophysics Data System (ADS)
Yang, Jian; Shao, Yanyan; Feng, Zaixin; Liu, Jian
2018-04-01
In this work, the microstructure, phase formation behavior of the NaZn13-type 1:13 phase and related magnetocaloric effect have been investigated in La0.6Ce0.4Fe11.0Si2.0 as-cast bulk and melt-spun ribbons with different cooling rates. A multi-phase structure consisting of 1:13, α-Fe and La-rich phases is observed in the induction-melted sample with slow cooling. By fast cooling in the melt spinning processing, the La-rich phase can be almost eliminated and thus 1:13 phases with volume fraction as high as 74.4% directly form in the absence of further heat treatment. The resulting maximum magnetic entropy change of 3.1 J/kg K in 2 T field appears at its Curie temperature of 210 K for the La0.6Ce0.4Fe11.0Si2.0 ribbon prepared in 25 m/s.
Frequency characteristics of geomagnetic induction anomalies in Saurashtra region
NASA Astrophysics Data System (ADS)
Kumar, P. V. Vijaya; Rao, P. B. V. Subba; Rao, C. K.; Singh, A. K.; Rao, P. Rama
2017-10-01
Magnetovariational studies were carried out along four different EW profiles in Saurashtra region in different phases, during January 2007-March 2012. Transient geomagnetic field variations (X, Y horizontal field and Z vertical field components) recorded along these profiles are analyzed to infer the electrical conductivity distribution of the region. The vertical field transfer functions which depict the characteristics of electrical conductivity distribution are presented in the form of induction arrows. From the spatial distribution of these arrows, it is inferred that the sediments filling the offshore basins have more conductivity than those basins in Saurashtra region. Z/ H pseudo sections along the four profiles in conjunction with tectonics and other geophysical methods permit to infer that the conductivity anomaly in the eastern part of the profiles is associated with the crustal/lithosphere thinning. The possible cause for these anomalies may be explained in terms of partial melts associated with mafic intrusions, related to Deccan and pre-Deccan volcanism. High resistive block related to underplating mantle material has been reflected in 1D models of long period magnetotelluric data and its thickness reduces from west to east. Lithosphere-asthenosphere boundary varies from 80 to 100 km.
Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1-0.2 GPa
NASA Astrophysics Data System (ADS)
Veksler, Ilya V.; Keppler, Hans
Experimental studies of the element distribution between carbonatite melts and hydrous fluids are hampered by the fact that neither the fluid nor the melt can be isochemically quenched in conventional high-pressure vessels. In order to overcome this problem, we used a double-capsule technique to separate immiscible fluid and melt phases during and after the runs. The inner platinum capsules were charged with carbonate mixtures (CaCO3, MgCO3 and Na2CO3) and placed inside the outer capsules charged with distilled water and diamond powder. The latter was used as an inert trap for solids precipitating from the fluid on quenching. Carbonate melt and hydrous fluid equilibrated through a small hole left in the upper end of the inner capsule. The runs were performed in rapid-quench cold-seal pressure vessels at 0.1-0.2 GPa and 700-900°C in the two-phase (fluid+melt) stability region. Both quenched melt and quenched fluid were dissolved in dilute HCl and analysed by inductively coupled plasma atomic emission spectroscopy. The results show that under all conditions investigated, fluid/melt partition coefficients for Ca and Mg are similar and several times smaller than those for Na. At 0.1 GPa and a water/carbonatite ratio of 1 (by weight), the partition coefficients are DNa= 0.35+/- 0.02, DCa=0.09+/-0.02, and DMg=0.13+/- 0.01. Between 700 and 900°C, the effect of temperature on partitioning is negligible. However, DNa increases significantly with decreasing water/carbonatite ratio in the system. Our data show that the release of a hydrous fluid enriched in sodium and simultaneous crystallisation of calcite can transform an alkaline, vapour-saturated carbonatite melt into a body of pure calcite surrounded by zones of sodium metasomatism. Thus, it is quite possible that carbonate magmas with substantial amounts of alkalies were common parental liquids of plutonic carbonatites.
Growth of 2 Inch Eu-doped SrI2 single crystals for scintillator applications
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Shoji, Yasuhiro; Yokota, Yuui; Kurosawa, Shunsuke; Hayasaka, Shoki; Chani, Valery I.; Ito, Tomoki; Kamada, Kei; Ohashi, Yuji; Kochurikhin, Vladimir
2016-10-01
A vertical Bridgman (VB) crystal growth process was established using modified micro-pulling-down (μ-PD) crystal growth system with a removable chamber that was developed for the growth of deliquescent halide single crystals because conventional μ-PD method does not allow growth of large bulk single crystals. Eu:SrI2 crystals were grown from the melt of (Sr0.98Eu0.02)I2 composition using carbon crucibles. Undoped μ-PD SrI2 crystals were used as seeds that were affixed to the bottom of the crucible. All the preparations preceding the growths and the hot zone assembling were performed in a glove box with Ar gas. Then the removable chamber was taken out of the glove box, attached to the μ-PD system, connected with a Turbo Molecular pump, and evacuated down to 10-4 Pa at 300 °C. After the baking procedure, high purity Ar gas (6N) was injected into the chamber. The crucible was heated by a high frequency induction coil up to the melting point of Eu:SrI2. After melting the starting materials, the crucible was displaced in downward direction for the crystal growth and then cooled down to room temperature. Thus, 2 in. and crack-free Eu:SrI2 bulk crystals were produced. The crystals had high transparency and did not contain any visible inclusions. The crystals were cut and polished in the glove box and then sealed in an aluminum container with an optical window for characterization. The details of the crystal growth are discussed.
Solidification microstructures in single-crystal stainless steel melt pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipf, J.B.; Boatner, L.A.; David, S.A.
1994-03-01
Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less
Multicomponent homogeneous alloys and method for making same
Dutta, Partha S.; Miller, Thomas R.
2003-09-02
The present application discloses a method for preparing a homogeneous ternary or quaternary alloy from a quaternary melt. The method includes providing a family of phase diagrams for the quaternary melt which shows (i) composition/temperature data, (ii) tie lines connecting equilibrium liquid and solid compositions, and (iii) isotherms representing boundaries of a miscibility gap. Based on the family of phase diagrams, a quaternary melt composition and an alloy growth temperature is selected. A quaternary melt having the selected quaternary melt composition is provided and a ternary or quaternary alloy is grown from the quaternary melt at the selected alloy growth temperature. A method for making homogeneous ternary or quaternary alloy from a ternary or quaternary melt is also disclosed, as are homogeneous quaternary single-crystal alloys which are substantially free from crystal defects and which have the formula A.sub.x B.sub.1-x C.sub.y D.sub.1-y, x and y being the same or different and in the range of 0.001 to 0.999.
Density Measurement for MORB Melts by X-ray Absorption Method
NASA Astrophysics Data System (ADS)
Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.
2006-12-01
Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.
Density Measurement for MORB Melts by X-ray Absorption Method
NASA Astrophysics Data System (ADS)
Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.
2005-12-01
Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.
NASA Astrophysics Data System (ADS)
Mostajeran Goortani, Behnam; Gitzhofer, François; Bouyer, Etienne; Mousavi, Mehdi
2009-03-01
An innovative method, namely ultrafast plasma surface melting, is developed to fabricate solid films of silicon with very high rates (150 cm2/min). The method is composed of preparing a suspension of solid particles in a volatile solvent and spreading it on a refractory substrate such as Mo. After solvent evaporation, the resulting porous layer is exposed to the flame tale of inductively coupled RF plasma to sinter and melt the surface particles and to prepare a solid film of silicon. It is shown that by controlling the flow dynamics and heat transfer around the substrate, and managing the kinetic parameters (i.e., exposure time, substrate transport speed, and reaction kinetics) in the reactor, we can produce solid crystalline Si films with the potential applications in photovoltaic cells industry. The results indicate that the optimum formation conditions with a film thickness of 250-700 μm is when the exposure time in the plasma is in the range of 5-12.5 s for a 100 × 50 mm large layer. By combining the Fourier’s law of conduction with the experimental measurements, we obtained an effective heat diffusivity and developed a model to obtain heat diffusion in the porous layer exposed to the plasma. The model further predicts the minimum and maximum exposure time for the substrate in the plasma flame as a function of material properties, the porous layer thickness and of the imposed heat flux.
Method For Synthesizing Extremely High-Temperature Melting Materials
Saboungi, Marie-Louise; Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Method for synthesizing extremely high-temperature melting materials
Saboungi, Marie-Louise; Glorieux, Benoit
2007-11-06
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Method for Synthesizing Extremeley High Temperature Melting Materials
Saboungi, Marie-Louise and Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Cousins, Matthew M; Swan, David; Magaret, Craig A; Hoover, Donald R; Eshleman, Susan H
2012-01-01
HIV diversity may be a useful biomarker for discriminating between recent and non-recent HIV infection. The high resolution melting (HRM) diversity assay was developed to quantify HIV diversity in viral populations without sequencing. In this assay, HIV diversity is expressed as a single numeric HRM score that represents the width of a melting peak. HRM scores are highly associated with diversity measures obtained with next generation sequencing. In this report, a software package, the HRM Diversity Assay Analysis Tool (DivMelt), was developed to automate calculation of HRM scores from melting curve data. DivMelt uses computational algorithms to calculate HRM scores by identifying the start (T1) and end (T2) melting temperatures for a DNA sample and subtracting them (T2 - T1 = HRM score). DivMelt contains many user-supplied analysis parameters to allow analyses to be tailored to different contexts. DivMelt analysis options were optimized to discriminate between recent and non-recent HIV infection and to maximize HRM score reproducibility. HRM scores calculated using DivMelt were compared to HRM scores obtained using a manual method that is based on visual inspection of DNA melting curves. HRM scores generated with DivMelt agreed with manually generated HRM scores obtained from the same DNA melting data. Optimal parameters for discriminating between recent and non-recent HIV infection were identified. DivMelt provided greater discrimination between recent and non-recent HIV infection than the manual method. DivMelt provides a rapid, accurate method of determining HRM scores from melting curve data, facilitating use of the HRM diversity assay for large-scale studies.
Analysis of impact melt and vapor production in CTH for planetary applications
Quintana, S. N.; Crawford, D. A.; Schultz, P. H.
2015-05-19
This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less
Analysis of impact melt and vapor production in CTH for planetary applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, S. N.; Crawford, D. A.; Schultz, P. H.
This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less
NASA Astrophysics Data System (ADS)
Koshuro, V.; Fomin, A.; Fomina, M.; Rodionov, I.; Brzhozovskii, B.; Martynov, V.; Zakharevich, A.; Aman, A.; Oseev, A.; Majcherek, S.; Hirsch, S.
2016-08-01
The study focuses on combined spark alloying of titanium and titanium alloy surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of metal- oxide system Ti-Ta-(Ti,Ta)xOy.
Scientific Articles on Magnetic Materials and Applications Research from 2006 - 2014
2015-03-01
had coercivities less than 0.4 Oe and saturation inductions greater than 1Tesla. The electrical resistivities of the amorphous ribbons were all...S. Liu, S. Y. Chu, J. C. Horwath and R. T. Fingers, "Effects of Zr , Nb , and Cu substitutions on magnetic properties of melt-spun and hot deformed...DISTRIBUTION STATEMENT. *//Signature// //Signature// JOHN C. HORWATH THOMAS L. REITZ, Technical Advisor Electrical Engineer Mechanical
The automated system for technological process of spacecraft's waveguide paths soldering
NASA Astrophysics Data System (ADS)
Tynchenko, V. S.; Murygin, A. V.; Emilova, O. A.; Bocharov, A. N.; Laptenok, V. D.
2016-11-01
The paper solves the problem of automated process control of space vehicles waveguide paths soldering by means of induction heating. The peculiarities of the induction soldering process are analyzed and necessity of information-control system automation is identified. The developed automated system makes the control of the product heating process, by varying the power supplied to the inductor, on the basis of information about the soldering zone temperature, and stabilizing the temperature in a narrow range above the melting point of the solder but below the melting point of the waveguide. This allows the soldering process automating to improve the quality of the waveguides and eliminate burn-troughs. The article shows a block diagram of a software system consisting of five modules, and describes the main algorithm of its work. Also there is a description of the waveguide paths automated soldering system operation, for explaining the basic functions and limitations of the system. The developed software allows setting of the measurement equipment, setting and changing parameters of the soldering process, as well as view graphs of temperatures recorded by the system. There is shown the results of experimental studies that prove high quality of soldering process control and the system applicability to the tasks of automation.
Vitrified metal finishing wastes I. Composition, density and chemical durability.
Bingham, P A; Hand, R J
2005-03-17
Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.
Growth and characterization of LiInSe2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen
2015-04-01
Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.
Method for laser machining explosives and ordnance
Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.
2003-05-06
Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.
Belchansky, Gennady I.; Douglas, David C.; Mordvintsev, Ilia N.; Platonov, Nikita G.
2004-01-01
Accurate calculation of the time of melt onset, freeze onset, and melt duration over Arctic sea-ice area is crucial for climate and global change studies because it affects accuracy of surface energy balance estimates. This comparative study evaluates several methods used to estimate sea-ice melt and freeze onset dates: (1) the melt onset database derived from SSM/I passive microwave brightness temperatures (Tbs) using Drobot and Anderson's [J. Geophys. Res. 106 (2001) 24033] Advanced Horizontal Range Algorithm (AHRA) and distributed by the National Snow and Ice Data Center (NSIDC); (2) the International Arctic Buoy Program/Polar Exchange at the Sea (IABP/POLES) surface air temperatures (SATs); (3) an elaborated version of the AHRA that uses IABP/POLES to avoid anomalous results (Passive Microwave and Surface Temperature Analysis [PMSTA]); (4) another elaborated version of the AHRA that uses Tb variance to avoid anomalous results (Mean Differences and Standard Deviation Analysis [MDSDA]); (5) Smith's [J. Geophys. Res. 103 (1998) 27753] vertically polarized Tb algorithm for estimating melt onset in multiyear (MY) ice (SSM/I 19V–37V); and (6) analyses of concurrent backscattering cross section (σ°) and brightness temperature (Tb) from OKEAN-01 satellite series. Melt onset and freeze onset maps were created and compared to understand how the estimates vary between different satellite instruments and methods over different Arctic sea-ice regions. Comparisons were made to evaluate relative sensitivities among the methods to slight adjustments of the Tbcalibration coefficients and algorithm threshold values. Compared to the PMSTA method, the AHRA method tended to estimate significantly earlier melt dates, likely caused by the AHRA's susceptibility to prematurely identify melt onset conditions. In contrast, the IABP/POLES surface air temperature data tended to estimate later melt and earlier freeze in all but perennial ice. The MDSDA method was least sensitive to small adjustments of the SMMR–SSM/I inter-satellite calibration coefficients. Differences among methods varied by latitude. Freeze onset dates among methods were most disparate in southern latitudes, and tended to converge northward. Surface air temperatures (IABP/POLES) indicated freeze onset well before the MDSDA method, especially in southern peripheral seas, while PMSTA freeze estimates were generally intermediate. Surface air temperature data estimated latest melt onset dates in southern latitudes, but earliest melt onset in northern latitudes. The PMSTA estimated earliest melt onset dates in southern regions, and converged with the MDSDA northward. Because sea-ice melt and freeze are dynamical transitional processes, differences among these methods are associated with differing sensitivities to changing stages of environmental and physical development. These studies contribute to the growing body of documentation about the levels of disparity obtained when Arctic seasonal transition parameters are estimated using various types of microwave data and algorithms.
Posse, Viktor; Gustafsson, Claes M
2017-02-17
The mitochondrial transcription initiation machinery in humans consists of three proteins: the RNA polymerase (POLRMT) and two accessory factors, transcription factors A and B2 (TFAM and TFB2M, respectively). This machinery is required for the expression of mitochondrial DNA and the biogenesis of the oxidative phosphorylation system. Previous experiments suggested that TFB2M is required for promoter melting, but conclusive experimental proof for this effect has not been presented. Moreover, the role of TFB2M in promoter unwinding has not been discriminated from that of TFAM. Here we used potassium permanganate footprinting, DNase I footprinting, and in vitro transcription from the mitochondrial light-strand promoter to study the role of TFB2M in transcription initiation. We demonstrate that a complex composed of TFAM and POLRMT was readily formed at the promoter but alone was insufficient for promoter melting, which only occurred when TFB2M joined the complex. We also show that mismatch bubble templates could circumvent the requirement of TFB2M, but TFAM was still required for efficient initiation. Our findings support a model in which TFAM first recruits POLRMT to the promoter, followed by TFB2M binding and induction of promoter melting. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan
2017-11-15
A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Jason K.; Ko, Junghyuk; Jun, Martin B. G.; Lee, Patrick C.
2016-02-01
Encapsulated structures of poly(ε-caprolactone) microfibers were successfully fabricated through two distinct melt electrospinning methods: melt coaxial and melt-blending electrospinning methods. Both methods resulted in encapsulated microfibers, but the resultant microfibers had different morphologies. Melt coaxial electrospinning formed a dual, semi-concentric structure, whereas melt-blending electrospinning resulted in an islands-in-a-sea fiber structure (i.e. a multiple-core structure). The encapsulated microfibers were produced using a custom-designed melt coaxial electrospinning device and the microfibers were characterized using a scanning electron microscope. To analyze the properties of the melt blended encapsulated fibers and coaxial fibers, the microfiber mesh specimens were collected. The mechanical properties of each microfiber mesh were analyzed through a tensile test. The coaxial microfiber meshes were post processed with a femtosecond laser machine to create dog-bone shaped tensile test specimens, while the melt blended microfiber meshes were kept as-fabricated. The tensile experiments undertaken with coaxial microfiber specimens resulted in an increase in tensile strength compared to 10 k and 45 k monolayer specimens. However, melt blended microfiber meshes did not result in an increase in tensile strength. The melt blended microfiber mesh results indicate that by using greater amounts of 45 k PCL resin within the microstructure, the resulting fibers obtain a higher tensile strength.
Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin.
Liu, Jin; Svärd, Michael; Hippen, Perschia; Rasmuson, Åke C
2015-07-01
Two crystal polymorphs of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) have been obtained by crystallization from ethanol (EtOH) solution. The polymorphs have been characterized by differential scanning calorimetry, infrared spectroscopy, and X-ray powder diffraction and shown to be the previously described forms I and III. The solubility of both polymorphs in EtOH and of one polymorph in ethyl acetate (EA) has been measured between 10°C and 50°C with a gravimetric method. Primary nucleation of curcumin from EtOH solution has been investigated in 520 constant temperature crystallization experiments in sealed, magnetically stirred vials under different conditions of supersaturation, temperature, and agitation rate. By a thermodynamic analysis of the melting data and solubility of form I, the solid-state activity is estimated from 10°C up to the melting point. The solubility is lower in EtOH than in EA, and in both solvents, a positive deviation from Raoult's law is observed. Form I has lower solubility than form III and is accordingly thermodynamically more stable over the investigated temperature interval. Extrapolation of solubility regression models indicates that there should be a low-temperature enantiotropic transition point, below which form I will be metastable. By slurry conversion experiments, it is established that this temperature is below -30°C. All nucleation experiments resulted in the stable form I. The induction time is observed to decrease with increasing agitation rate up to a certain point, and then increase with further increasing agitation rate; a trend previously observed for other compounds. By correlating the induction time data obtained at different supersaturation and temperature, the interfacial energy of form I in EtOH is estimated to be 3.0 mJ/m(2) . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Improved Creep Measurements for Ultra-High Temperature Materials
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Ye, X.; Rogers, Jan R.
2010-01-01
Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.
Continuous method for manufacturing grain-oriented magnetostrictive bodies
Gibson, Edwin D.; Verhoeven, John D.; Schmidt, Frederick A.; McMasters, O. Dale
1988-01-01
The invention comprises a continuous casting and crystallization method for manufacturing grain-oriented magnetostrictive bodies. A magnetostrictive alloy is melted in a crucible having a bottom outlet. The melt is discharged through the bottom of the crucible and deposited in an elongated mold. Heat is removed from the deposited melt through the lower end portion of the mold to progressively solidify the melt. The solid-liquid interface of the melt moves directionally upwardly from the bottom to the top of the mold, to produce the axial grain orientation.
NASA Astrophysics Data System (ADS)
Bohnenstiehl, Scot David
In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in MgB2 had been reached. The 1530 °C sample was characterized by Electron Probe Microanalysis at the University of Oregon and the average carbon concentration was estimated to be ˜5.9 at%. Further investigation using TEM found MgO inclusions in the 1530 °C sample which were not detected with X-ray diffraction.
String stabilized ribbon growth a method for seeding same
Sachs, Emanuel M.
1987-08-25
This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.
A melting method for RNA extraction from the mucosal membrane of the mouse middle ear.
Seo, Young Joon; Kim, Sung Huhn; Moon, In Seok; Choi, Jae Young
2015-03-01
There is much confusion surrounding the methods of RNA extraction from the middle ear mucosa of mice. In this study, we worked to develop a "melting method," which is faster, purer, and more reliable than other methods in common use. Thirty-two ears were used for this study. Light microscopy with hematoxylin-eosin staining of the bullae, scanning electron microscopy (SEM), spectrophotometer analysis, and reverse transcription polymerase chain reaction were performed before and after melting the half lateral bullae, which were detached from the temporal bone by using a lateral retroauricular approach. Each resected half bulla contained a well distributed mucosal membrane. After a TRIzol melting duration of 10-30 minutes, only mucosal marker (MUC5AC) was expressed without bony marker (total osteocalcin). The same results were determined from SEM. This melting method, compared with stripping and irrigation methods, is effective and offers an easier, more robust approach to extracting RNA from the middle ear mucosal membranes of mice.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.
NASA Technical Reports Server (NTRS)
Daines, Martha J.; Richter, Frank M.
1988-01-01
An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.
VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington
Towle, J.N.
1983-01-01
A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.
Molecular dynamics simulations of the melting curve of NiAl alloy under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net
2014-05-15
The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less
Temperature and emissivity measurements at the sapphire single crystal fiber growth process
NASA Astrophysics Data System (ADS)
Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.
NASA Astrophysics Data System (ADS)
Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon
2016-11-01
The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The keff of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively.
New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes
NASA Astrophysics Data System (ADS)
Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.
2017-06-01
This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.
NASA Astrophysics Data System (ADS)
Lowe, David; Machin, Graham
2012-06-01
The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.
Methods for Melting Temperature Calculation
NASA Astrophysics Data System (ADS)
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.
Lid for improved dendritic web growth
Duncan, Charles S.; Kochka, Edgar L.; Piotrowski, Paul A.; Seidensticker, Raymond G.
1992-03-24
A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.
Abildgaard, Anders; Tovbjerg, Sara K; Giltay, Axel; Detemmerman, Liselot; Nissen, Peter H
2018-03-26
The lactase persistence phenotype is controlled by a regulatory enhancer region upstream of the Lactase (LCT) gene. In northern Europe, specifically the -13910C > T variant has been associated with lactase persistence whereas other persistence variants, e.g. -13907C > G and -13915 T > G, have been identified in Africa and the Middle East. The aim of the present study was to compare a previously developed high resolution melting assay (HRM) with a novel method based on loop-mediated isothermal amplification and melting curve analysis (LAMP-MC) with both whole blood and DNA as input material. To evaluate the LAMP-MC method, we used 100 whole blood samples and 93 DNA samples in a two tiered study. First, we studied the ability of the LAMP-MC method to produce specific melting curves for several variants of the LCT enhancer region. Next, we performed a blinded comparison between the LAMP-MC method and our existing HRM method with clinical samples of unknown genotype. The LAMP-MC method produced specific melting curves for the variants at position -13909, -13910, -13913 whereas the -13907C > G and -13915 T > G variants produced indistinguishable melting profiles. The LAMP-MC assay is a simple method for lactase persistence genotyping and compares well with our existing HRM method. Copyright © 2018. Published by Elsevier B.V.
Vacuum Processing Technique for Development of Primary Standard Blackbodies
Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.
1999-01-01
Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.
NASA Astrophysics Data System (ADS)
Duan, Deng-Fei; Jiang, Shao-Yong
2017-05-01
The Tonglvshan deposit is the largest Cu-Fe (Au) skarn deposit in the Edong district, which is located in the westernmost part of the Middle and Lower Yangtze River metallogenic belt, China. In this study, we performed a detailed in situ analysis of major and trace elements in amphiboles from the ore-related Tonglvshan quartz monzodiorite porphyry using electron microprobe (EMPA) analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two distinct populations of amphiboles, which can be distinguished by their aluminum content, are found in the quartz monzodiorite porphyry. The low-aluminum (Low-Al) amphiboles are subhedral or anhedral and formed at 46.3-73.5 MPa and 713-763 °C. In contrast, the high-aluminum (High-Al) amphiboles are euhedral and formed at 88-165 MPa and 778-854 °C. Some euhedral amphiboles are partially or completely replaced by Low-Al amphibole. The compositions of parental melts in equilibrium with the High-Al amphibole ( Melt 1) and Low-Al amphibole ( Melt 2) were computed by applying solid/liquid partition coefficients. This modeling shows that magma in equilibrium with High-Al amphibole ( Melt 1) underwent 40% fractional crystallization of amphibole, plagioclase and apatite at a depth of 5 km to evolve to magma in equilibrium with Low-Al amphibole ( Melt 2). Copper enrichment occurred in the magma after undergoing fractional crystallization. The magma had a high oxygen fugacity, increasing from NNO + 1 ( Melt 1) through NNO + 2 to HM ( Melt 2), which could have prevented the loss of Cu (and possibly Au) to sulfide minerals during crystallization. Finally, the evolved magma intruded to shallower depths, where it presumably exsolved aqueous ore-forming fluids. Therefore, the large Cu-Fe-Au reserves of the Tonglvshan deposit can likely be attributed to a combination of controlling factors, including high oxygen fugacity, fractional crystallization, fluid exsolution, and a shallow emplacement depth.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.; Zhu, S.
2004-01-01
A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.
2007-01-01
In this paper we studied the effects of external fields' polarization on the coupling of pure magnetic fields into human body. Finite Difference Time Domain (FDTD) method is used to calculate the current densities induced in a 1 cm resolution anatomically based model with proper tissue conductivities. Twenty different tissues have been considered in this investigation and scaled FDTD technique is used to convert the results of computer code run in 15 MHz to low frequencies which are encountered in the vicinity of industrial induction heating and melting devices. It has been found that external magnetic field's orientation due to human body has a pronounced impact on the level of induced currents in different body tissues. This may potentially help developing protecting strategies to mitigate the situations in which workers are exposed to high levels of external magnetic radiation. PMID:17504520
NASA Astrophysics Data System (ADS)
Abalı, Serkan
2017-09-01
The directionally solidified eutectic MgAl2O4-Y3Al5O12 crystal was prepared at a pressure of 0.4 MPa of ambient nitrogen gas by the high frequency induction heated floating zone furnace. In order to determine the high temperature characteristics, directionally solidified MgAl2O4-Y3Al5O12 eutectic phase has been analyzed with creep test, tensile strength, young modulus and fracture toughness at the various temperatures and the microstructural variations have been studied according to the analysis results. It has been seen that directionally solidified with zone melting MgAl2O4-YAG eutectic ceramic which has given the value of 168 MPa below 10-6/s strain rate at 1,700 °C temperature has revealed minimum stress.
NASA Astrophysics Data System (ADS)
Haoyi, Li; Weimin, Yang; Hongbo, Chen; Jing, Tan; Pengcheng, Xie
2016-03-01
A concept of Differential-Integral (DI) method applied in polymer processing and molding was proposed, which included melt DI injection molding, DI nano-composites extrusion molding and melt differential electrospinning principle and equipment. Taking the melt differential electrospinning for example to introduce the innovation research progress, two methods preparing polymer ultrafine fiber have been developed: solution electro-spinning and melt electro-spinning, between which solution electro-spinning is much simpler to realize in lab. More than 100 institutions have endeavored to conduct research on it and more than 30 thousand papers have been published. However, its industrialization was restricted to some extend because of the existence of toxic solvent during spinning process and poor mechanical strength of resultant fibers caused by small pores on fiber surface. Solvent-free melt electrospinning is environmentally friendly and highly productive. However, problems such as the high melt viscosity, thick fiber diameter and complex equipment makes it relatively under researched compared with solution electrospinning. With the purpose of solving the shortage of traditional electro-spinning equipment with needles or capillaries, a melt differential electro-spinning method without needles or capillaries was firstly proposed. Nearly 50 related patents have been applied since 2005, and systematic method innovations and experimental studies have also been conducted. The prepared fiber by this method had exhibited small diameter and smooth surface. The average fiber diameter can reach 200-800 nm, and the single nozzle can yield two orders of magnitude more than the capillaries. Based on the above principle, complete commercial techniques and equipment have been developed to produce ultra-fine non-woven fabrics for the applications in air filtration, oil spill recovery and water treatment, etc.
Early evolution and dynamics of Earth from a molten initial stage
NASA Astrophysics Data System (ADS)
Lourenço, Diogo L.; Tackley, Paul J.
2014-05-01
It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat such as conversion of gravitational energy of formation into heat, heat losses from the core at the core-mantle boundary, radioactive decay, electromagnetic induction heating and tidal heating, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet, influencing the chemical composition of the mantle after differentiation, the style of tectonic regime prevailing in the solid-state mantle and its habitability. Considerable research has been done on magma oceans using 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton, EPSL 2008). However, its dynamics, evolution from a molten state to the present day solid state, and crystallisation are still not fully understood and are more complex than a 1-D formulation. Recent advances in computational methods and resources allow us to address numerically more complex problems, with higher resolution and multiple physics incorporated. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterise the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to test existing published 1-D parameterisations of magma ocean dynamics and extend them into 2-D models. We will address this problem using the numerical code StagYY (Tackley, PEPI 2008), which uses a finite-volume scheme for advection of temperature, a multigrid solver to obtain a velocity-pressure solution at each timestep, tracers to track composition, and a treatment of partial melting and crustal formation. Additional enhancements are needed in the code and are related to the physics and parameterisation of melting.
Understanding the High Temperature Behavior of Niobium Aluminides; First Year Summary Report
1990-11-08
characterization to follow. Near-net shape processing may be used to form test specimens. A transmission elec- tron microscopy effort will be used ...to identify deformation mechanisms. ,, 20 DISTRIBUTION/AVAII ABILITY OF ABSTRACT SK’NCI ASSIFIFD’UNL MITED • SAME AS R"T • DTC USEDS J...ingots have been processed for us (gratis) by Nippon Mining Corporation by vacuum induction melted from a stock of niobium oxide and elemental aluminum
Surface Fatigue Tests Of M50NiL Gears And Bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1994-01-01
Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Fox, R. L.; Swain, R. J.
1980-01-01
Low-cost, self-contained, portable welder joins plastic parts by induction heating. Welder is useable in any atmosphere or in vacuum and with most types of thermoplastic; plastic components can be joined in situ. Device is applicable to aerospace industry and in automobile, furniture, and construction industries. Power requirements are easily met by battery or solar energy. In welder, toroidal inductor transfers magnetic flux through thermoplastic to screen. Heated screen causes plastic surface on either side to melt and flow into it to form joint.
Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts
NASA Astrophysics Data System (ADS)
Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun
2015-04-01
The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.
Silicon crystals: Process for manufacturing wafer-like silicon crystals with a columnar structure
NASA Technical Reports Server (NTRS)
Authier, B.
1978-01-01
Wafer-like crystals suitable for making solar cells are formed by pouring molten Si containing suitable dopants into a mold of the desired shape and allowing it to solidify in a temperature gradient, whereby the large surface of the melt in contact with the mold is kept at less than 200 D and the free surface is kept at a temperature of 200-1000 D higher, but below the melting point of Si. The mold can also be made in the form of a slit, whereby the 2 sides of the mold are kept at different temperatures. A mold was milled in the surface of a cylindrical graphite block 200 mm in diameter. The granite block was induction heated and the bottom of the mold was cooled by means of a water-cooled Cu plate, so that the surface of the mold in contact with one of the largest surfaces of the melt was held at approximately 800 D. The free surface of the melt was subjected to thermal radiation from a graphite plate located 2 mm from the surface and heated to 1500 D. The Si crystal formed after slow cooling to room temperature had a columnar structure and was cut with a diamond saw into wafers approximately 500 mm thick. Solar cells prepared from these wafers had efficiencies of 10 to 11%.
Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim
2010-05-01
The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Gong-jin; Gao, Zi-xian; Yang, He; Xue, Xiang-xin
2017-11-01
The effect of diboron trioxide (B2O3) on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy-energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B2O3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B2O3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B2O3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B2O3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B2O3 content.
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
Methods for producing complex films, and films produced thereby
Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven
2015-11-24
A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.
Carbonaceous cathode with enhanced wettability for aluminum production
Keller, Rudolf; Gatty, David G.; Barca, Brian J.
2003-09-09
A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.
Production and Physical Metallurgy of Pure Metals - Part V
1960-07-25
crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper
Molecular dynamics study of the melting curve of NiTi alloy under pressure
NASA Astrophysics Data System (ADS)
Zeng, Zhao-Yi; Hu, Cui-E.; Cai, Ling-Cang; Chen, Xiang-Rong; Jing, Fu-Qian
2011-02-01
The melting curve of NiTi alloy was predicted by using molecular dynamics simulations combining with the embedded atom model potential. The calculated thermal equation of state consists well with our previous results obtained from quasiharmonic Debye approximation. Fitting the well-known Simon form to our Tm data yields the melting curves for NiTi: 1850(1 + P/21.938)0.328 (for one-phase method) and 1575(1 + P/7.476)0.305 (for two-phase method). The two-phase simulations can effectively eliminate the superheating in one-phase simulations. At 1 bar, the melting temperature of NiTi is 1575 ± 25 K and the corresponding melting slope is 64 K/GPa.
Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith
2016-03-01
Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
The emissivities of liquid metals at their fusion temperatures
NASA Technical Reports Server (NTRS)
Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.
1972-01-01
A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.
Researches concerning influence of magnesium, aluminum and titanium lime on steel desulfurization
NASA Astrophysics Data System (ADS)
Putan, V.; Putan, A.; Josan, A.; Vilceanu, L.
2016-02-01
The paper presents the results of laboratory experiments on steel desulphurisation with slag from the system MgO-Al2O3-TiO2. To determine the influence, on the desulphurisation process, of the titanium oxide added in calcium aluminate slag, we experimented, in the laboratory phase, the steel treatment with a mechanical mixture consisting of lime, aluminous slag and slag obtained from the titanium making process through the aluminothermic technology. The steel melting was carried out in an induction furnace of 10 kg capacity, existent in the "Metallic Melts" laboratory of the Engineering Faculty of Hunedoara. During the research, we aimed to establish correlation equations between the sulphur distribution coefficient and the slag components (MgO, Al2O3, TiO2). The data obtained in the experiments were processed in MATLAB programs, resulting multiple correlation equations, which allowed the elucidation of some physical-chemical phenomena specific to the desulphurisation processes.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
Aluminium-gold reference material for the k0-standardisation of neutron activation analysis
NASA Astrophysics Data System (ADS)
Ingelbrecht, C.; Peetermans, F.; De Corte, F.; De Wispelaere, A.; Vandecasteele, C.; Courtijn, E.; D'Hondt, P.
1991-05-01
Gold is an excellent comparator material for the k0-standardisation of neutron activation analysis because of its convenient and well defined nuclear properties. The most suitable form for a reference material is a dilute aluminium-gold alloy, for which the self-shielding effect for neutrons is small. Castings of composition Al-0.1 wt.% Au were prepared by crucible-less levitation melting, which gives close control of ingot composition with minimal contamination of the melt. The alloy composition was checked using induction-coupled plasma source emission spectrometry. The homogeneity of the alloy was measured by neutron activation analysis and a relative standard deviation of the gold content of 0.30% was found (10 mg samples). Metallography revealed a homogeneous distribution of AuAl 2 particles. The alloy was certified as Reference Material CBNM-530, with certified gold mass fraction 0.100±0.002 wt.%.
Development and melt growth of novel scintillating halide crystals
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin
2017-12-01
Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.
Toward Fully in Silico Melting Point Prediction Using Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Maginn, EJ
2013-03-01
Melting point is one of the most fundamental and practically important properties of a compound. Molecular computation of melting points. However, all of these methods simulation methods have been developed for the accurate need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structuresmore » (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.« less
NASA Astrophysics Data System (ADS)
Gasper, Paul Joseph; Apelian, Diran
2015-04-01
Electron-beam (EB) melting is used for the processing of refractory metals, such as Ta, Nb, Mo, and W. These metals have high value and are critical to many industries, including the semiconductor, aerospace, and nuclear industries. EB melting can also purify secondary feedstock, enabling the recovery and recycling of these materials. Currently, there is no method for measuring melt composition in situ during EB melting. Optical emission spectroscopy of the plasma generated by EB impact with vapor above the melt, a technique here termed electron-beam atomic spectroscopy, can be used to measure melt composition in situ, allowing for analysis of melt dynamics, facilitating improvement of EB melting processes and aiding recycling and recovery of these critical and high-value metals. This paper reviews the physics of the plasma generation by EB impact by characterizing the densities and energies of electrons, ions, and neutrals, and describing the interactions between them. Then several plasma models are introduced and their suitability to this application analyzed. Lastly, a potential method for calibration-free composition measurement is described and the challenges for implementation addressed.
Unlabeled Oligonucleotides as Internal Temperature Controls for Genotyping by Amplicon Melting
Seipp, Michael T.; Durtschi, Jacob D.; Liew, Michael A.; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V.; Wittwer, Carl T.
2007-01-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39°C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments. PMID:17591926
Enhancement of heat transfer rate on phase change materials with thermocapillary flows
NASA Astrophysics Data System (ADS)
Madruga, Santiago; Mendoza, Carolina
2017-04-01
We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.
Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method
NASA Astrophysics Data System (ADS)
Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen
2017-04-01
This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.
Influence of Sodium Chloride Doping on Thermoelectric Properties of p-type SnSe
NASA Astrophysics Data System (ADS)
Yang, Shi Dan; Nutor, Raymond Kwesi; Chen, Zi Jie; Zheng, Hao; Wu, Hai Fei; Si, Jian Xiao
2017-11-01
We investigated the effect of NaCl doping on the thermoelectric properties of p-type Sn 1- x Na x SeCl x ( x = 0, 0.005, 0.01, 0.02, 0.03 and 0.04) prepared by a method which combines rapid induction melting and rapid hot pressing. After introducing the NaCl into the SnSe system, the carrier concentration of SnSe is significantly increased from ˜4.55 × 1017 cm-3 to ˜3.95 × 1019 cm-3 at 300 K. An electrical conductivity of ˜102.5 S cm-1 was obtained at 473 K by addition of 2 mol.% NaCl. It was found that Cl was effective in reducing the thermal conductivity by inducing abundant defects. A maximum ZT value of 0.84 was achieved in the Na0.005Sn0.995SeCl0.005 sample at 810 K. This suggests that doping with NaCl is a facile and cost-effective method in optimizing the thermoelectric properties of SnSe materials.
Additive Manufactured Superconducting Cavities
NASA Astrophysics Data System (ADS)
Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan
Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.
NASA Astrophysics Data System (ADS)
Zhao, Wenhan; Liu, Lijun
2017-01-01
The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.
Manufacturing unique glasses in space
NASA Technical Reports Server (NTRS)
Happe, R. P.
1976-01-01
An air suspension melting technique is described for making glasses from substances which to date have been observed only in the crystalline condition. A laminar flow vertical wind tunnel was constructed for suspending oxide melts that were melted using the energy from a carbon dioxide laser beam. By this method it is possible to melt many high-melting-point materials without interaction between the melt and crucible material. In addition, space melting permits cooling to suppress crystal growth. If a sufficient amount of under cooling is accompanied by a sufficient increase in viscosity, crystallization will be avoided entirely and glass will result.
The melting curve of Ni to 1 Mbar
NASA Astrophysics Data System (ADS)
Lord, Oliver T.; Wood, Ian G.; Dobson, David P.; Vočadlo, Lidunka; Wang, Weiwei; Thomson, Andrew R.; Wann, Elizabeth T. H.; Morard, Guillaume; Mezouar, Mohamed; Walter, Michael J.
2014-12-01
The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments in which two melting criteria were used: firstly, the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and secondly, plateaux in temperature vs. laser power functions in both in situ and off-line experiments. Our new melting curve, defined by a Simon-Glatzel fit to the data where TM (K) = [ (PM/18.78 ± 10.20 + 1) ]1/2.42 ± 0.66 × 1726, is in good agreement with the majority of the theoretical studies on Ni melting and matches closely the available shock wave melting data. It is however dramatically steeper than the previous off-line LH-DAC studies in which determination of melting was based on the visual observation of motion aided by the laser speckle method. We estimate the melting point (TM) of Ni at the inner-core boundary (ICB) pressure of 330 GPa to be TM = 5800 ± 700 K (2 σ), within error of the value for Fe of TM = 6230 ± 500 K determined in a recent in situ LH-DAC study by similar methods to those employed here. This similarity suggests that the alloying of 5-10 wt.% Ni with the Fe-rich core alloy is unlikely to have any significant effect on the temperature of the ICB, though this is dependent on the details of the topology of the Fe-Ni binary phase diagram at core pressures. Our melting temperature for Ni at 330 GPa is ∼2500 K higher than that found in previous experimental studies employing the laser speckle method. We find that those earlier melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as convective motion of a melt. This finding has significant implications for our understanding of the high-pressure melting behaviour of a number of other transition metals.
Dynamic melting of metals in the diamond cell: Clues for melt viscosity?
NASA Astrophysics Data System (ADS)
Boehler, R.; Karandikar, A.; Yang, L.
2011-12-01
From the observed decreasing mobility of liquid iron at high pressure in the laser-heated diamond cell and the gradual decrease in the shear modulus in shock experiments, one may derive high viscosity in the liquid outer core of the Earth. A possible explanation could be the presence of local structures in the liquid as has been observed for several transition metals. In order to bridge the large gap in the timescales between static and dynamic melting experiments, we have developed new experimental techniques to solve the large discrepancies in the melting curves of transition metals (Fe, W, Ta, Mo) measured statically in the laser-heated diamond cell and in shock experiments. The new methods employ "single-shot" laser heating in order to reduce problems associated with mechanical instabilities and chemical reactions of the samples subjected to several thousand degrees at megabar pressures. For melt detection, both synchrotron X-ray diffraction and Scanning Electron Microscopy (SEM) on recovered samples are used. A third approach is the measurement of latent heat effects associated with melting or freezing. This method employs simultaneous CW and pulse laser heating and monitoring the temperature-time history with fast photomultipliers. Using the SEM recovery method, we measured first melting temperatures of rhenium, which at high pressure may be one of the most refractory materials. From the melt textures of Re, we did not observe a significant pressure dependence of viscosity.
Development of synthetic nuclear melt glass for forensic analysis.
Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, C J; Cook, Matthew T; Young, Stephen A; Hall, Howard L
A method for producing synthetic debris similar to the melt glass produced by nuclear surface testing is demonstrated. Melt glass from the first nuclear weapon test (commonly referred to as trinitite) is used as the benchmark for this study. These surrogates can be used to simulate a variety of scenarios and will serve as a tool for developing and validating forensic analysis methods.
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Petrologic evidence for collisional heating of chondritic asteroids
NASA Technical Reports Server (NTRS)
Rubin, Alan E.
1995-01-01
The identification of the mechanism(s) responsible for heating asteroids is among the major problems in planetary science. Because of difficulties with models of electromagnetic induction and the decay of short-lived radionuclides, it is worthwhile to evaluate the evidence for collisional heating. New evidence for localized impact heating comes from the high proportion of relict type-6 material among impact-melt-bearing ordinary chondrites (OC). This relict material was probably metamorphosed by residual heat within large craters. Olivine aggregates composed of faceted crystals with 120 deg triple junctions occur within the melted regions of the Chico and Rose City OC melt rocks; the olivine aggregates formed from shocked, mosaicized olivine grains that underwent contact metamorphism. Large-scale collisional heating is supoorted by the correlation in OC between petrologic type and shock stage; no other heating mechanism can readily account for this correlation. The occurrence of impact-melt-rock clasts in OC that have been metamorphosed along with their whole rocks indicates that some impact events preceded or accompanied thermal metamorphism. Such impacts events, occurring during or shortly after accretion, are probably responsible for substantially melting approximately 0.5% of OC. These events must have heated a larger percentage of OC to subsolidus temperatures sufficient to have caused significant metamorphism. If collisional heating is viable, then OC parent asteroids must have been large; large OC asteroids in the main belt may include those of the S(IV) spectral subtype. Collisional heating is inconsistent with layered ('onion-shell') structures in OC asteroids (wherein the degree of metamorphism increases with depth), but the evidence for such structures is weak. It seems likely that collisional heating played an important role in metamorphosing chondritic asteroids.
Silica-rich orthopyroxenite in the Bovedy chondrite
NASA Technical Reports Server (NTRS)
Ruzicka, Alex; Kring, David A.; Hill, Dolores H.; Boynton, William V.; Clayton, Robert N.; Mayeda, Toshiko K.
1995-01-01
A large (greater than 4.5 x 7 x 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (is approximately equal to 57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2%), an intergrowth of feldspar (5.8%) and sodic glass (3.1%), pigeonite (1.0%), and small amounts of chromite (0.2%), augite, and Fe,Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggestion that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.
NASA Astrophysics Data System (ADS)
Martinsen, F. A.; Nordstrand, E. F.; Gibson, U. J.
2013-01-01
Melt-spun metallurgical grade (MG) micron dimension silicon flakes have been purified into near solar grade (SG) quality through a multi-step melting and re-solidification procedure. A wet oxidation-applied thermal oxide maintained the sample morphology during annealing while the interiors were melted and re-solidified. The small thickness of the flakes allowed for near elimination of in-plane grain boundaries, with segregation enhanced accumulation of impurities at the object surface and in the few remaining grain boundaries. A subsequent etch in 48% hydrofluoric acid (HF) removed the impure oxide layer, and part of the contamination at the oxide-silicon interface, as shown by electron dispersive spectroscopy (EDS) and backscattered electron imaging (BEI). The sample grains were investigated by electron back-scattered diffraction (EBSD) after varying numbers of oxidation-annealing-etch cycles, and were observed to grow from ˜5 μm to ˜200 μm. The concentration of iron, titanium, copper and aluminium were shown by secondary ion mass spectroscopy (SIMS) and inductively coupled plasma mass spectroscopy (ICPMS) to drop between five and six orders of magnitude. The concentration of boron was observed to drop approximately one order of magnitude. A good correlation was observed between impurity removal rates and segregation models, indicating that the purification effect is mainly caused by segregation. Deviations from these models could be explained by the formation of oxides and hydroxides later removed through etching.
The melting curve of Ni to 125 GPa: implications for Earth's Fe rich core alloy
NASA Astrophysics Data System (ADS)
Lord, O. T.; Wood, I. G.; Dobson, D. P.; Vocadlo, L.; Thomson, A. R.; Wann, E.; Wang, W.; Edgington, A.; Morard, G.; Mezouar, N.; Walter, M. J.
2014-12-01
The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments and two melting criteria: the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and simultaneous plateaux in temperature vs. laser power functions [1]. Our melting curve (Fig. 1) is in good agreement with most theoretical studies [e.g. 2] and the available shock wave data (Fig. 2). It is, however, dramatically steeper than the previous off-line LH-DAC studies in which the determination of melting was based on the visual observation of motion aided by the laser speckle method [e.g. 3]. We estimate the melting point of Ni at the inner-core boundary (ICB; 330 GPa) to be 5800±700 K (2σ), ~2500 K higher than the estimate based on the laser speckle method [3] and within error of Fe (6230±500 K) as determined in a similar in situ LH-DAC study [4]. We find that laser speckle based melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as melt convection. Our new melting curve suggests that the reduction in ICB temperature due to the alloying of Ni with Fe is likely to be significantly smaller than would be expected had the earlier experimental Ni melting studies been correct. We have applied our methodology to a range of other transition metals (Mo, Ti, V, Cu). In the case of Mo, Ti and V the melting curves are in good agreement with the shock compression and theoretical melting studies but hotter and steeper than those based on the laser speckle method, as with Ni. Cu is an exception in which all studies agree, including those employing the laser speckle method. These results go a long way toward resolving the the long-standing controversy over the phase diagrams of the transition metals as determined from static LH-DAC studies on the one hand, and theoretical and dynamic compression studies on the other. [1] Lord et al. (2014) Phys Earth Planet Inter [2] Pozzo M, Alfè D (2013) Phys Rev B, 88:024111 [3] Errandonea et al. (2001) Phys Rev B, 63:132104 [4] Anzellini et al. (2013) Science, 340:464-466
Hasiów-Jaroszewska, Beata; Komorowska, Beata
2013-10-01
Diagnostic methods distinguished different Pepino mosaic virus (PepMV) genotypes but the methods do not detect sequence variation in particular gene segments. The necrotic and non-necrotic isolates (pathotypes) of PepMV share a 99% sequence similarity. These isolates differ from each other at one nucleotide site in the triple gene block 3. In this study, a combination of real-time reverse transcription polymerase chain reaction and high resolution melting curve analysis of triple gene block 3 was developed for simultaneous detection and differentiation of PepMV pathotypes. The triple gene block 3 region carrying a transition A → G was amplified using two primer pairs from twelve virus isolates, and was subjected to high resolution melting curve analysis. The results showed two distinct melting curve profiles related to each pathotype. The results also indicated that the high resolution melting method could readily differentiate between necrotic and non-necrotic PepMV pathotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
Deciphering viscous flow of frictional melts with the mini-AMS method
NASA Astrophysics Data System (ADS)
Ferré, Eric C.; Chou, Yu-Min; Kuo, Ruo Lin; Yeh, En-Chao; Leibovitz, Natalie R.; Meado, Andrea L.; Campbell, Lucy; Geissman, John W.
2016-09-01
The anisotropy of magnetic susceptibility (AMS) is widely used to analyze magmatic flow in intrusive igneous bodies including plutons, sills and dikes. This method, owing its success to the rapid nature of measurements, provides a proxy for the orientation of markers with shape anisotropy that flow and align in a viscous medium. AMS specimens typically are 25 mm diameter right cylinders or 20 mm on-a-side cubes, representing a volume deemed statistically representative. Here, we present new AMS results, based on significantly smaller cubic specimens, which are 3.5 mm on a side, hence∼250 times volumetrically smaller than conventional specimens. We show that, in the case of frictional melts, which inherently have an extremely small grain size, this small volume is in most cases sufficient to characterize the pseudotachylyte fabric, particularly when magnetite is present. Further, we demonstrate that the mini-AMS method provides new opportunities to investigate the details of frictional melt flow in these coseismic miniature melt bodies. This new method offers significant potential to investigate frictional melt flow in pseudotachylyte veins including contributions to the lubrication of faults at shallow to moderate depths.
Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey
2010-01-01
In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.
Bretcanu, O; Spriano, S; Verné, E; Cöisson, M; Tiberto, P; Allia, P
2005-07-01
Ferrimagnetic glass-ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass-ceramic samples. Thus, two different ferrimagnetic glass-ceramics with the composition of the system Na(2)O-CaO-SiO(2)-P(2)O(5)-FeO-Fe(2)O(3) were prepared by melting at 1500 degrees C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass-ceramic with lower iron oxides content and 25 W/g for the glass-ceramic with higher iron oxide content.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
The effect of CO2 on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa
NASA Astrophysics Data System (ADS)
Dvir, Omri; Kessel, Ronit
2017-06-01
The effect of various amounts of CO2 on the solidus of H2O-CO2-bearing peridotite was examined by determining the composition of H2O-CO2-bearing fluids and melts in equilibrium with garnet peridotite at 4-6 GPa and 900-1100 °C. Two capsules were placed in a rocking multi-anvil apparatus in each experiment. Both capsules contained a fertile peridotite with 10 wt% H2O, one with 1 (CLZ1) and the other with 5 wt% CO2 (CLZ5). In both capsules a diamond trap was placed on one end of the capsule as a fluid/melt trap. The H2O and CO2 content in the fluid or melt trapped in between the diamonds were measured using the quartz-tube-system technique by releasing the volatiles through infrared gas analyzer. The total dissolved solids in these phases were determined using the cryogenic laser-ablation - inductive couple plasma - mass spectrometry technique. The residual lherzolite consists of olivine, orthopyroxene, ±clinopyroxene, garnet, and ±magnesite as carbonate phase. The solidus of CLZ1 peridotite was located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. CLZ5 peridotite melts below 900 °C at 4 GPa and between 900 and 1000 °C at 5 and 6 GPa. The results demonstrate a decrease in melting temperature of hydrous peridotite at pressures between 4 and 6 GPa with increasing amount of CO2. The H2O-CO2-bearing fluids found in this study at 900-1000 °C are similar in composition to low-Mg carbonatitic to silicic high-density fluids found in fluid inclusions in diamonds. With increasing temperature, the melts approach type II kimberlites. We propose that H2O-CO2-induced partial melting of metasomatized garnet lherzolite at 4-6 GPa is a possible origin for group II kimberlites.
NASA Technical Reports Server (NTRS)
Penn, B. G.; Shields, A.; Frazier, D. O.
1988-01-01
Methods for the growth of polydiacetylene thin films by melt and vapor growth and their subsequent polymerization are summarized. Films with random orientations were obtained when glass or quartz were used as substrates in the vapor growth process. Oriented polydiacetylene films were fabricated by the vapor deposition of diacetylene monomer onto oriented polydiacetylene on a glass substrate and its subsequent polymerization by UV light. A method for the growth of oriented thin films by a melt-shear growth process as well as a method of film growth by seeded recrstallization from the melt between glass plates, that may be applied to the growth of polydiacetylene films, are described. Moreover, a method is presented for the fabrication of single crystal thin films of polyacetylenes by irradiation of the surface of diacetylene single crystals to a depth between 100 and 2000 angstroms.
Primordial heating of asteroidal parent bodies
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Reynolds, R. T.
1979-01-01
Most meteorites show evidence of thermal processing either because of metamorphic changes or as a result of melting and differentiation. Proposed mechanisms for supplying this energy generally rely upon short-lived radioisotopes or electrical induction, though accretion is sometimes mentioned, and more exotic models have been discussed. Interest in isotopic heating has been heightened by the discovery of Al-26 in Allende inclusions and also by the proposal that a lunar core and dynamo resulted from the radioactive decay of superheavy elements during the early solar system. Electrical induction as a heat source can be scaled to a broad range of solar system conditions, but corroborative evidence for these conditions is inconclusive. The accretion mechanism is probably not viable for the asteroidal and meteorite parent bodies, because the high kinetic energy requirement is inconsistent with the formation of the objects and their regoliths in the presence of a weak gravitational field.
NASA Technical Reports Server (NTRS)
Wittmann, A.; Willay, G.
1986-01-01
For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branover, H.; Mond, M.; Unger, Y.
The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less
What heated the parent meteorite planets?
NASA Technical Reports Server (NTRS)
Wood, John A.; Pellas, Paul
1991-01-01
The plausibility of the two most wide discussed mechanisms, decay of short-lived Al-26 and solar wind induction heating, for heating the small planetesimals in which the meteorites formed are examined and shown to have significant problems. The main problem for the Al-26 decay mechanism is the fact that eucritic lavas, melted by the mysterious heating mechanism in some early planetesimal, did not contain enough Al-26 to decay to radiogenic Mg-26 when they erupted to their planetesimal surface and cooled. It is necessary to postulate that the lavas lingered underground while their Al-26 decayed away. The solar wind induction heat concept has the problem that astrophysical evidence has made is seem increasingly unlikely that an intense solar wind flux blew past planetesimals in the early solar system. Instead, it was probably collimated in the direction of the sun's poles by the persistence of the solar nebula during the T Tauri epoch.
Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime
2013-12-19
Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA(-) complexes with the five alkali metal cations are -140.3, -119.4, -104.1, -96.9, and -91.1 kcal/mol, respectively. The induction interactions also contribute to the attraction. In particular, the induction interactions are large in the Li(+) complexes. The induction energies for the five complexes are -46.6, -25.2, -17.5, -13.3, and -10.4 kcal/mol, respectively.
Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M
2001-03-23
The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun
2015-05-30
Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. Copyright © 2015 Elsevier B.V. All rights reserved.
Method and apparatus for melt growth of crystalline semiconductor sheets
Ciszek, T.F.; Hurd, J.L.
1981-02-25
An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.
Device and method for skull-melting depth measurement
Lauf, R.J.; Heestand, R.L.
1993-02-09
A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.
Device and method for skull-melting depth measurement
Lauf, Robert J.; Heestand, Richard L.
1993-01-01
A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.
Theory and Simulation of A Novel Viscosity Measurement Method for High Temperature Semiconductor
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rose; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The properties of molten semiconductors are good indicators for material structure transformation and hysteresis under temperature variations. Viscosity, as one of the most important properties, is difficult to measure because of high temperature, high pressure, and vapor toxicity of melts. Recently, a novel method was developed by applying a rotating magnetic field to the melt sealed in a suspended quartz ampoule, and measuring the transient torque exerted by rotating melt flow on the ampoule wall. The method was designed to measure viscosity in short time period, which is essential for evaluating temperature hysteresis. This paper compares the theoretical prediction of melt flow and ampoule oscillation with the experimental data. A theoretical model was established and the coupled fluid flow and ampoule torsional vibration equations were solved numerically. The simulation results showed a good agreement with experimental data. The results also showed that both electrical conductivity and viscosity could be calculated by fitting the theoretical results to the experimental data. The transient velocity of the melt caused by the rotating magnetic field was found reach equilibrium in about half a minute, and the viscosity of melt could be calculated from the altitude of oscillation. This would allow the measurement of viscosity in a minute or so, in contrast to the existing oscillation cup method, which requires about an hour for one measurement.
Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume
NASA Astrophysics Data System (ADS)
Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.
2018-01-01
Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method is shown for the West Eifel volcanic field.
NASA Astrophysics Data System (ADS)
Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.
2013-05-01
The activities of the components of BaO-BaF2-BaCl2-NiO and CaO-CaF2-CaCl2-NiO slags systems, which were considered as a phase having a collective electron system, are calculated, and it is shown that the barium, calcium, and oxygen activities at 1600°C are maximal in the BaO- and CaO-based systems depending on the main oxide content. The dephosphorization of three types of nickel-based melts by slags of 14 compositions in crucibles made of Al2O3, MgO, and MgO-Al2O3 (80-20 wt %) is experimentally studied, and the degree of dephosphorization is shown to depend on the phosphorus content in a metal, the slag composition, and the crucible material (degree of dephosphorization is maximal in Al2O3 crucibles). The forming slag is assimilated by Al2O3 and MgO-Al2O3 ceramics with a porosity of about 30%. If 4-10 wt % NiO are present in a slag, the wettability of the Al2O3 ceramic is significantly higher than that of the MgO-based ceramic.
NASA Astrophysics Data System (ADS)
Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.
2009-03-01
The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.
Bellucci, Jeremy J; Simonetti, Antonio; Wallace, Christine; Koeman, Elizabeth C; Burns, Peter C
2013-08-06
The Pb isotopic compositions for 51 spots of melt glass in 11 samples of trinitite have been determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Trinitite glass yields a large range of Pb isotopic compositions (i.e., (206)Pb/(204)Pb = 17.08-19.04), which reflect mixing between industrial Pb from materials used in the Trinity test and natural geologic components. Areas within trinitite melt glass containing high concentrations of both Cu and Pb, which are derived from the bomb and blast site-related components, were used for delineating the Pb isotopic composition corresponding to the anthropogenic Pb component. Comparison between the isotopic composition estimated here for the industrial Pb used in the Trinity test and those from known Pb deposits worldwide indicates close agreement with ore from the Buchans mine (Newfoundland, Canada). The Buchans mine was active during the time of the Trinity test and was operated by the American Smelting and Refining Company, which could have provided the Pb used in the test. The industrial Pb used in the Trinity test materials is not documented in the literature (or declassified) but could have been present in bricks, solder, pigs, or some other anthropogenic component related to the experiment.
WHO Melting-Point Reference Substances
Bervenmark, H.; Diding, N. Å.; Öhrner, B.
1963-01-01
Batches of 13 highly purified chemicals, intended for use as reference substances in the calibration of apparatus for melting-point determinations, have been subjected to a collaborative assay by 15 laboratories in 13 countries. All the laboratories performed melting-point determinations by the capillary methods described in the proposed text for the second edition of the Pharmacopoea Internationalis and some, in addition, carried out determinations by the microscope hot stage (Kofler) method, using both the “going-through” and the “equilibrium” technique. Statistical analysis of the data obtained by the capillary method showed that the within-laboratory variation was small and that the between-laboratory variation, though constituting the greatest part of the whole variance, was not such as to warrant the exclusion of any laboratory from the evaluation of the results. The average values of the melting-points obtained by the laboratories can therefore be used as constants for the substances in question, which have accordingly been established as WHO Melting-Point Reference Substances and included in the WHO collection of authentic chemical substances. As to the microscope hot stage method, analysis of the results indicated that the values obtained by the “going-through” technique did not differ significantly from those obtained by the capillary method, but the values obtained by the “equilibrium” technique were mostly significantly lower. PMID:20604137
Fiber-optical method of pyrometric measurement of melts temperature
NASA Astrophysics Data System (ADS)
Zakharenko, V. A.; Veprikova, Ya R.
2018-01-01
There is a scientific problem of non-contact measurement of the temperature of metal melts now. The problem is related to the need to achieve the specified measurement errors in conditions of uncertainty of the blackness coefficients of the radiating surfaces. The aim of this work is to substantiate the new method of measurement in which the influence of the blackness coefficient is eliminated. The task consisted in calculating the design and material of special crucible placed in the molten metal, which is an emitter in the form of blackbody (BB). The methods are based on the classical concepts of thermal radiation and calculations based on the Planck function. To solve the problem, the geometry of the crucible was calculated on the basis of the Goofy method which forms the emitter of a blackbody at the immersed in the melt. The paper describes the pyrometric device based on fiber optic pyrometer for temperature measurement of melts, which implements the proposed method of measurement using a special crucible. The emitter is formed by the melt in this crucible, the temperature within which is measured by means of fiber optic pyrometer. Based on the results of experimental studies, the radiation coefficient ε‧ > 0.999, which confirms the theoretical and computational justification is given in the article
Comparison of two DSC-based methods to predict drug-polymer solubility.
Rask, Malte Bille; Knopp, Matthias Manne; Olesen, Niels Erik; Holm, René; Rades, Thomas
2018-04-05
The aim of the present study was to compare two DSC-based methods to predict drug-polymer solubility (melting point depression method and recrystallization method) and propose a guideline for selecting the most suitable method based on physicochemical properties of both the drug and the polymer. Using the two methods, the solubilities of celecoxib, indomethacin, carbamazepine, and ritonavir in polyvinylpyrrolidone, hydroxypropyl methylcellulose, and Soluplus® were determined at elevated temperatures and extrapolated to room temperature using the Flory-Huggins model. For the melting point depression method, it was observed that a well-defined drug melting point was required in order to predict drug-polymer solubility, since the method is based on the depression of the melting point as a function of polymer content. In contrast to previous findings, it was possible to measure melting point depression up to 20 °C below the glass transition temperature (T g ) of the polymer for some systems. Nevertheless, in general it was possible to obtain solubility measurements at lower temperatures using polymers with a low T g . Finally, for the recrystallization method it was found that the experimental composition dependence of the T g must be differentiable for compositions ranging from 50 to 90% drug (w/w) so that one T g corresponds to only one composition. Based on these findings, a guideline for selecting the most suitable thermal method to predict drug-polymer solubility based on the physicochemical properties of the drug and polymer is suggested in the form of a decision tree. Copyright © 2018 Elsevier B.V. All rights reserved.
Welding wire selection critical to jet engine repair work
NASA Astrophysics Data System (ADS)
1992-11-01
A review is provided of issues related to the selection of welding wire for aircraft gas-turbine engines emphasizing the importance of cleanliness in the welding wire product. A three-step metallurgical control process is described for the production of welding wire that is clean and suitable for turbine repair. The process is based on: (1) vacuum induction melting; (2) contamination-free processing of the wire; and (3) environmentally controlled packaging. Weld work on aerospace casting is shown to be useful and suitable for many alloy and superalloy materials with various filler materials.
Effect of Yttrium on the Microstructure and Properties of Pt-Ir Electrical Contact Materials
NASA Astrophysics Data System (ADS)
Wang, Saibei; Sun, Yong; Wang, Song; Peng, Mingjun; Liu, Manmen; Duan, Yonghua; Chen, Yongtai; Yang, Youcai; Chen, Song; Li, Aikun; Xie, Ming
2017-10-01
The Pt-10Ir and Pt-10Ir-1Y were prepared by high frequency induction melting, then the samples were obtained by powder metallurgy, hot extrusion and drawing. The influence of Y addition on microstructure and electrical contact properties of Pt-10Ir alloy has been investigated by using optical microscopy, SEM, electronic balance and the contact material test system. The results show that the addition of Y leads to the micro-structural refinement and directional change of material transfer, but has almost no influence on erosion morphology.
Low-Melt Poly(Amic Acids) and Polyimides and Their Uses
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Snyder, Sarah J. (Inventor); Williams, Martha K. (Inventor)
2016-01-01
Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.
Method for the melting of metals
White, Jack C.; Traut, Davis E.
1992-01-01
A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.
Topology evolution and gelation mechanism of agarose gel.
Xiong, Jun-Ying; Narayanan, Janaky; Liu, Xiang-Yang; Chong, Tan Kok; Chen, Shing Bor; Chung, Tai-Shung
2005-03-31
Kinetics as well as the evolution of the agarose gel topology is discussed, and the agarose gelation mechanism is identified. Aqueous high melting (HM) agarose solution (0.5% w/v) is used as the model system. It is found that the gelation process can be clearly divided into three stages: induction stage, gelation stage, and pseudoequilibrium stage. The induction stage of the gelation mechanism is identified using an advanced rheological expansion system (ARES, Rheometric Scientific). When a quench rate as large as 30 deg C/min is applied, gelation seems to occur through a nucleation and growth mechanism with a well-defined induction time (time required for the formation of the critical nuclei which enable further growth). The relationship between the induction time and the driving force which is determined by the final setting temperature follows the 3D nucleation model. A schematic representation of the three stages of the gelation mechanism is given based on turbidity and rheological measurements. Aggregation of agarose chains is promoted in the polymer-rich phase and this effect is evident from the increasing mass/length ratio of the fiber bundles upon gelation. Continuously increasing pore size during gelation may be attributed to the coagulation of the local polymer-rich phase in order to achieve the global minimum of the free energy of the gelling system. The gel pore size determined using turbidity measurements has been verified by electrophoretic mobility measurements.
McCann, Jesse T; Marquez, Manuel; Xia, Younan
2006-12-01
We have developed a method based on melt coaxial electrospinning for fabricating phase change nanofibers consisting of long-chain hydrocarbon cores and composite sheaths. This method combines melt electrospinning with a coaxial spinneret and allows for nonpolar solids such as paraffins to be electrospun and encapsulated in one step. Shape-stabilized, phase change nanofibers have many potential applications as they are able to absorb, hold, and release large amounts of thermal energy over a certain temperature range by taking advantage of the large heat of fusion of long-chain hydrocarbons. We have focused on compounds with melting points near room temperature (octadecane) and body temperature (eicosane) as these temperature ranges are most valuable in practice. We have produced thermally stable, phase change materials up to 45 wt % octadecane, as measured by differential scanning calorimetry. In addition, the resultant fibers display novel segmented morphologies for the cores due to the rapid solidification of the hydrocarbons driven by evaporative cooling of the carrier solution. Aside from the fabrication of phase change nanofibers, the melt coaxial method is promising for applications related to microencapsulation and controlled release of drugs.
The melting point of lithium: an orbital-free first-principles molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mohan; Hung, Linda; Huang, Chen
2013-08-25
The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less
NASA Technical Reports Server (NTRS)
Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.
2004-01-01
Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.
Heterodyne-detected dispersed vibrational echo spectroscopy.
Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei
2009-12-24
We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.
Preparation and crystal structure of U3Fe2C5: An original uranium-iron carbide
NASA Astrophysics Data System (ADS)
Henriques, M. S.; Paixão, J. A.; Henriques, M. S. C.; Gonçalves, A. P.
2015-09-01
The U3Fe2C5 compound was prepared from the elements by arc-melting, followed by an heat-treatment in an induction furnace, at 1250 °C for 1 h and 1300 °C for 2 h. The crystal structure of this phase was determined by direct methods from single crystal X-ray diffraction data. U3Fe2C5 crystallizes in an original tetragonal crystal structure, with space group I4/mmm, a = 3.4980(3) Å and c = 19.8380(15) Å as lattice constants and two formula units per cell. This new type structure is characterized by the simultaneous presence of isolated and pairs of carbon atoms, the interatomic distances in the pairs being similar to a typical carbon-carbon double bond length found in a molecule. U3Fe2C5 is closely related to UC and UFeC2, and can be seen as build from two (distorted) UFeC2 unit cells and a UC layer.
Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices
Karger, Barry L.; Thilly, William G.; Foret, Frantisek; Khrapko, Konstaintin; Koehavong, Phouthone; Cohen, Aharon S.; Giese, Roger W.
1997-01-01
The disclosure relates to a method for resolving double-stranded DNA species differing by at least one base pair. Each of the species is characterized by an iso-melting domain with a unique melting temperature contiguous with a melting domain of higher thermal stability.
Ellis, Timothy W.; Schmidt, Frederick A.
1995-08-01
Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.
Method for melting glass by measurement of non-bridging oxygen
Jantzen, Carol M.
1992-01-01
A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.
Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM
NASA Astrophysics Data System (ADS)
Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D. D.
2018-02-01
In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.
High pressure melting curve of platinum up to 35 GPa
NASA Astrophysics Data System (ADS)
Patel, Nishant N.; Sunder, Meenakshi
2018-04-01
Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.
Rare earth-transition metal scrap treatment method
Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.
1992-02-11
Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.
Rare earth-transition metal scrap treatment method
Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.
1992-02-11
Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.
Energy Efficiency Model for Induction Furnace
NASA Astrophysics Data System (ADS)
Dey, Asit Kr
2018-01-01
In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.
Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices
Karger, B.L.; Thilly, W.G.; Foret, F.; Khrapko, K.; Koehavong, P.; Cohen, A.S.; Giese, R.W.
1997-05-27
The disclosure relates to a method for resolving double-stranded DNA species differing by at least one base pair. Each of the species is characterized by an iso-melting domain with a unique melting temperature contiguous with a melting domain of higher thermal stability. 18 figs.
Eike, David M; Maginn, Edward J
2006-04-28
A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.
NASA Astrophysics Data System (ADS)
Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali
2016-12-01
In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.
SEM and AFM Studies of Two-Phase Magnetic Alkali Borosilicate Glasses
Tomkovich, M.; Nacke, B.; Filimonov, A.; Alekseeva, O.; Vanina, P.; Nizhankovskii, V.
2017-01-01
The morphology and composition of four types of two-phase alkali borosilicate glasses with magnetic atoms prepared by inductive melting have been studied. The results of scanning electron microscopy point to uniform distribution of Na, Si, and O atoms in these samples while magnetic iron atoms form ball-shaped agglomerates. The magnetic properties of these agglomerates have been confirmed by magnetic force microscopy. Atomic force microscopy had shown that in these samples two different morphological structures, drop-like and dendrite net, are formed. The formation of dendrite-like structure is a necessary condition for production of porous magnetic glasses. The obtained results allow us to optimize the melting and heat treatment processes leading to production of porous alkali borosilicate glasses with magnetic properties. The first results for nanocomposite materials on the basis of magnetic glasses containing the embedded ferroelectrics KH2PO4 demonstrate the effect of applied magnetic field on the ferroelectric phase transition. PMID:28428976
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-05-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
NASA Technical Reports Server (NTRS)
Reynolds, E E; Freeman, J W; White, A E
1951-01-01
The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-04-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
Effect of MELT method on thoracolumbar connective tissue: The full study.
Sanjana, Faria; Chaudhry, Hans; Findley, Thomas
2017-01-01
Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.
Melt-growth dynamics in CdTe crystals
Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...
2012-06-01
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less
Control of interface shape during high melting sesquioxide crystal growth by HEM technique
NASA Astrophysics Data System (ADS)
Hu, Kaiwei; Zheng, Lili; Zhang, Hui
2018-02-01
During crystal growth in heat exchanger method (HEM) system, the shape of the growth interface changes with the proceeding of the growth process, which limits the crystal size and reduces the quality of the crystal. In this paper, a modified HEM system is proposed to control the interface shape for growth of sesquioxide crystals. Numerical simulation is performed to predict heat transfer, melt flow and interface shape during growth of high melting sesquioxide crystals by the heat exchanger method. The results show that a flat or slightly convex interface shape is beneficial to reduce the solute pileup in front of the melt/crystal interface and decrease the radial temperature gradient inside the crystal during growth of sesquioxide crystals. The interface shape can be controlled by adjusting the gap size d and lower resistance heater power during growth. The growth rate and the melt/crystal interface position can be obtained by two measured temperatures.
An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal
NASA Astrophysics Data System (ADS)
Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio
A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
A flammability study of thin plastic film materials
NASA Technical Reports Server (NTRS)
Skinner, S. Ballou
1990-01-01
The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.
Method for melting glass by measurement of non-bridging oxygen
Jantzen, C.M.
1992-04-07
A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.
Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2004-01-01
A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.
Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim
2003-01-01
A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.
Ellis, T.W.; Schmidt, F.A.
1995-08-01
A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.
Kinetic limit of heterogeneous melting in metals.
Ivanov, Dmitriy S; Zhigilei, Leonid V
2007-05-11
The velocity and nanoscale shape of the melting front are investigated in a model that combines the molecular dynamics method with a continuum description of the electron heat conduction and electron-phonon coupling. The velocity of the melting front is strongly affected by the local drop of the lattice temperature, defined by the kinetic balance between the transfer of thermal energy to the latent heat of melting, the electron heat conduction from the overheated solid, and the electron-phonon coupling. The maximum velocity of the melting front is found to be below 3% of the room temperature speed of sound in the crystal, suggesting a limited contribution of heterogeneous melting under conditions of fast heating.
A new method for separating first row transition metals and actinides from synthetic melt glass
Roman, Audrey Rae; Bond, Evelyn M.
2016-01-14
A new method was developed for separating Co, Fe, and Sc from complex debris matrices using the extraction chromatography resin DGA. The activation products Co-58, Mn-54, and Sc-46 were used to characterize the separation of the synthetic melt glass solutions. In the separation scheme that was developed, Au, Co, Cu, Fe, Sc, and Ti were separated from the rest of the sample constituents. In this paper, the synthetic melt glass separation method, efficiency, recoveries, and the length of procedure will be discussed. In conclusion, batch contact adsorption studies for Na and Sc for DGA resin are discussed as well.
NASA Astrophysics Data System (ADS)
Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.
2013-01-01
The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.
Observed Enhancement of Reflectivity and Electric Field in Long-Lived Florida Anvils
NASA Technical Reports Server (NTRS)
Dye, James E.; Willett, John C.
2007-01-01
A study of two long-lived Florida anvils showed that reflectivity >20 dBZ increased in area, thickness and sometimes magnitude at mid-level well downstream of the convective cores. In these same regions electric fields maintained strengths >10 kV m1 for many tens of minutes and became quite uniform over tens of kilometers. Millimetric aggregates persisted at 9 to 10 km for extended times and distances. Aggregation of ice particles enhanced by strong electric fields might have contributed to reflectivity growth in the early anvil, but is unlikely to explain observations further out in the anvil. The enhanced reflectivity and existence of small, medium and large ice particles far out into the anvil suggest that an updraft was acting, perhaps in weak convective cells formed by instability generated from the evaporation and melting of falling ice particles. We conclude that charge separation must have occurred in these anvils, perhaps at the melting level but also at higher altitudes, in order to maintain fields >10 kV m 1 at 9 to 10 km for extended periods of time over large distances. We speculate that charge separation occurred as a result of ice-ice particle collisions (without supercooled water being present) via either a non-inductive or perhaps even an inductive mechanism, given the observed broad ice particle spectra, the strong pre-existing electric fields and the many tens of minutes available for particle interactions. The observations, particularly in the early anvil, show that the charge structure in these anvils was quite complex.
Density, Electrical Conductivity and Viscosity of Hg(0.8)Cd(0.2)Te Melt
NASA Technical Reports Server (NTRS)
Li, C.; Scripa, R. N.; Ban, H.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The density, viscosity, and electrical conductivity of Hg(0.8)Cd(0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(0.8)Cd(0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(0.8)Cd(0.2)Te melt as the temperature was decreased to below 1090 K
Thermophysical Properties and Structural Transition of Hg(0.8)Cd(0.2)Te Melt
NASA Technical Reports Server (NTRS)
Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.; Lehoczky, S. L.
2004-01-01
Thermophysical properties, namely, density, viscosity, and electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt were measured as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were simultaneously determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub o.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(0.2)Te melt as the temperature was decreased from 1090 K to the liquidus temperature.
Density, Electrical Conductivity and Viscosity of Hg(sub 0.8)Cd(sub 0.2)Te Melt
NASA Technical Reports Server (NTRS)
Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The density, viscosity, and electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt were measures as a function of temperature. A pycnometric method was used to measure the melt density in the temperature range of 1072 to 1122 K. The viscosity and electrical conductivity were determined using a transient torque method from 1068 to 1132 K. The density result from this study is within 0.3% of the published data. However, the current viscosity result is approximately 30% lower than the existing data. The electrical conductivity of Hg(sub 0.8)Cd(sub 0.2)Te melt as a function of temperature, which is not available in the literature, is also determined. The analysis of the temperature dependent electrical conductivity and the relationship between the kinematic viscosity and density indicated that the structure of the melt appeared to be homogeneous when the temperature was above 1090 K. A structural transition occurred in the Hg(sub 0.8)Cd(sub 0.2)Te melt as the temperature was decreased to below 1090 K.
Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis
2016-01-01
Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily determine the A. paniculata species in herbal products tested. Abbreviations used: bp: Base pair, Tm: Melting temperature.
High-pressure melting of molybdenum.
Belonoshko, A B; Simak, S I; Kochetov, A E; Johansson, B; Burakovsky, L; Preston, D L
2004-05-14
The melting curve of the body-centered cubic (bcc) phase of Mo has been determined for a wide pressure range using both direct ab initio molecular dynamics simulations of melting as well as a phenomenological theory of melting. These two methods show very good agreement. The simulations are based on density functional theory within the generalized gradient approximation. Our calculated equation of state of bcc Mo is in excellent agreement with experimental data. However, our melting curve is substantially higher than the one determined in diamond anvil cell experiments up to a pressure of 100 GPa. An explanation is suggested for this discrepancy.
Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers
NASA Astrophysics Data System (ADS)
Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong
2017-03-01
A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.
Cha, Kwang-Ho; Cho, Kyung-Jin; Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Park, Junsung; Cho, Wonkyung; Park, Jeong-Sook; Hwang, Sung-Joo
2012-01-01
Background: The aim of this study was to enhance the bioavailability of fenofibrate, a poorly water-soluble drug, using a melt-adsorption method with supercritical CO2. Methods: Fenofibrate was loaded onto Neusilin® UFL2 at different weight ratios of fenofibrate to Neusilin UFL2 by melt-adsorption using supercritical CO2. For comparison, fenofibrate-loaded Neusilin UFL2 was prepared by solvent evaporation and hot melt-adsorption methods. The fenofibrate formulations prepared were characterized by differential scanning calorimetry, powder x-ray diffractometry, specific surface area, pore size distribution, scanning electron microscopy, and energy-dispersive x-ray spectrometry. In vitro dissolution and in vivo bioavailability were also investigated. Results: Fenofibrate was distributed into the pores of Neusilin UFL2 and showed reduced crystal formation following adsorption. Supercritical CO2 facilitated the introduction of fenofibrate into the pores of Neusilin UFL2. Compared with raw fenofibrate, fenofibrate from the prepared powders showed a significantly increased dissolution rate and better bioavailability. In particular, the area under the drug concentration-time curve and maximal serum concentration of the powders prepared using supercritical CO2 were 4.62-fold and 4.52-fold greater than the corresponding values for raw fenofibrate. Conclusion: The results of this study highlight the usefulness of the melt-adsorption method using supercritical CO2 for improving the bioavailability of fenofibrate. PMID:23118538
Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers
Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong
2017-01-01
A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045
Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.
Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong
2017-03-30
A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals
NASA Technical Reports Server (NTRS)
Otterson, Dumas A.
1961-01-01
Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.
Ribbon growing method and apparatus
NASA Technical Reports Server (NTRS)
Morrison, Andrew D. (Inventor)
1989-01-01
A method and apparatus are described which facilitate the growing of silicon ribbon. A container for molten silicon has a pair of passages in its bottom through which filaments extend to a level above the molten silicon, so as the filaments are pulled up they drag up molten silicon to form a ribbon. A pair of guides surround the filaments along most of the height of the molten silicon, so that the filament contacts only the upper portion of the melt. This permits a filament to be used which tends to contaminate the melt if it is in long term contact with the melt. This arrangement also enables a higher melt to be used without danger that the molten silicon will run out of any bottom hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Dandeneau, C.
FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less
Development of an Ointment Formulation Using Hot-Melt Extrusion Technology.
Bhagurkar, Ajinkya M; Angamuthu, Muralikrishnan; Patil, Hemlata; Tiwari, Roshan V; Maurya, Abhijeet; Hashemnejad, Seyed Meysam; Kundu, Santanu; Murthy, S Narasimha; Repka, Michael A
2016-02-01
Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
Tanahashi, Mitsuru
2010-01-01
Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.
Rapid Detection Method for the Four Most Common CHEK2 Mutations Based on Melting Profile Analysis.
Borun, Pawel; Salanowski, Kacper; Godlewski, Dariusz; Walkowiak, Jaroslaw; Plawski, Andrzej
2015-12-01
CHEK2 is a tumor suppressor gene, and the mutations affecting the functionality of the protein product increase cancer risk in various organs. The elevated risk, in a significant percentage of cases, is determined by the occurrence of one of the four most common mutations in the CHEK2 gene, including c.470T>C (p.I157T), c.444+1G>A (IVS2+1G>A), c.1100delC, and c.1037+1538_1224+328del5395 (del5395). We have developed and validated a rapid and effective method for their detection based on high-resolution melting analysis and comparative-high-resolution melting, a novel approach enabling simultaneous detection of copy number variations. The analysis is performed in two polymerase chain reactions followed by melting analysis, without any additional reagents or handling other than that used in standard high-resolution melting. Validation of the method was conducted in a group of 103 patients with diagnosed breast cancer, a group of 240 unrelated patients with familial history of cancer associated with the CHEK2 gene mutations, and a 100-person control group. The results of the analyses for all three groups were fully consistent with the results from other methods. The method we have developed improves the identification of the CHEK2 mutation carriers, reduces the cost of such analyses, as well as facilitates their implementation. Along with the increased efficiency, the method maintains accuracy and reliability comparable to other more labor-consuming techniques.
Modern methods for the quality management of high-rate melt solidification
NASA Astrophysics Data System (ADS)
Vasiliev, V. A.; Odinokov, S. A.; Serov, M. M.
2016-12-01
The quality management of high-rate melt solidification needs combined solution obtained by methods and approaches adapted to a certain situation. Technological audit is recommended to estimate the possibilities of the process. Statistical methods are proposed with the choice of key parameters. Numerical methods, which can be used to perform simulation under multifactor technological conditions, and an increase in the quality of decisions are of particular importance.
Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.
2015-01-01
Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686
Zaboikin, Michail; Freter, Carl
2018-01-01
We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734
Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Khamyong, Nuttaluck; Pintakum, Danupol; Lamphun, Santisuk Na; Triwitayakorn, Kanokporn; Osathanunkul, Kitisak; Madesis, Panagiotis
2016-01-01
Background: Andrographis paniculata Nees is a medicinal plant with multiple pharmacological properties. It has been used over many centuries as a household remedy. A. paniculata products sold on the markets are in processed forms so it is difficult to authenticate. Therefore buying the herbal products poses a high-risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Materials and Methods: High resolution melting analysis coupled with DNA barcoding (Bar-HRM) was applied to detect adulteration in commercial herbal products. The rbcL barcode was selected to use in primers design for HRM analysis to produce standard melting profile of A. paniculata species. DNA of the tested commercial products was isolated and their melting profiles were then generated and compared with the standard A. paniculata. Results: The melting profiles of the rbcL amplicons of the three closely related herbal species (A. paniculata, Acanthus ebracteatus and Rhinacanthus nasutus) are clearly separated so that they can be distinguished by the developed method. The method was then used to authenticate commercial herbal products. HRM curves of all 10 samples tested are similar to A. paniculata which indicated that all tested products were contained the correct species as labeled. Conclusion: The method described in this study has been proved to be useful in aiding identification and/or authenticating A. paniculata. This Bar-HRM analysis has allowed us easily to determine the A. paniculata species in herbal products on the markets even they are in processed forms. SUMMARY We propose the use of DNA barcoding combined with High Resolution Melting analysis for authenticating of Andrographis paniculata products.The developed method can be used regardless of the type of the DNA template (fresh or dried tissue, leaf, and stem).rbcL region was chosen for the analysis and work well with our samplesWe can easily determine the A. paniculata species in herbal products tested. Abbreviations used: bp: Base pair, Tm: Melting temperature PMID:27041863
Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Every, A. G., E-mail: arthur.every@wits.ac.za; Utegulov, Z. N., E-mail: zhutegulov@nu.edu.kz; Veres, I. A., E-mail: istvan.veres@recendt.at
2015-03-31
The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axiallymore » symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.« less
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
Liang, Bin; Tan, Yaoju; Li, Zi; Tian, Xueshan; Du, Chen; Li, Hui; Li, Guoli; Yao, Xiangyang; Wang, Zhongan; Xu, Ye; Li, Qingge
2018-02-01
Detection of heteroresistance of Mycobacterium tuberculosis remains challenging using current genotypic drug susceptibility testing methods. Here, we described a melting curve analysis-based approach, termed DeepMelt, that can detect less-abundant mutants through selective clamping of the wild type in mixed populations. The singleplex DeepMelt assay detected 0.01% katG S315T in 10 5 M. tuberculosis genomes/μl. The multiplex DeepMelt TB/INH detected 1% of mutant species in the four loci associated with isoniazid resistance in 10 4 M. tuberculosis genomes/μl. The DeepMelt TB/INH assay was tested on a panel of DNA extracted from 602 precharacterized clinical isolates. Using the 1% proportion method as the gold standard, the sensitivity was found to be increased from 93.6% (176/188, 95% confidence interval [CI] = 89.2 to 96.3%) to 95.7% (180/188, 95% CI = 91.8 to 97.8%) compared to the MeltPro TB/INH assay. Further evaluation of 109 smear-positive sputum specimens increased the sensitivity from 83.3% (20/24, 95% CI = 64.2 to 93.3%) to 91.7% (22/24, 95% CI = 74.2 to 97.7%). In both cases, the specificity remained nearly unchanged. All heteroresistant samples newly identified by the DeepMelt TB/INH assay were confirmed by DNA sequencing and even partially by digital PCR. The DeepMelt assay may fill the gap between current genotypic and phenotypic drug susceptibility testing for detecting drug-resistant tuberculosis patients. Copyright © 2018 American Society for Microbiology.
Method for fabricating prescribed flaws in the interior of metals
Hsu, David K.; Thompson, Donald O.
1989-03-07
The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.
Zianni, Michael R; Nikbakhtzadeh, Mahmood R; Jackson, Bryan T; Panescu, Jenny; Foster, Woodbridge A
2013-04-01
There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software.
Zianni, Michael R.; Nikbakhtzadeh, Mahmood R.; Jackson, Bryan T.; Panescu, Jenny; Foster, Woodbridge A.
2013-01-01
There is a need for more cost-effective options to more accurately discriminate among members of the Anopheles gambiae complex, particularly An. gambiae and Anopheles arabiensis. These species are morphologically indistinguishable in the adult stage, have overlapping distributions, but are behaviorally and ecologically different, yet both are efficient vectors of malaria in equatorial Africa. The method described here, High-Resolution Melt (HRM) analysis, takes advantage of minute differences in DNA melting characteristics, depending on the number of incongruent single nucleotide polymorphisms in an intragenic spacer region of the X-chromosome-based ribosomal DNA. The two species in question differ by an average of 13 single-nucleotide polymorphisms giving widely divergent melting curves. A real-time PCR system, Bio-Rad CFX96, was used in combination with a dsDNA-specific dye, EvaGreen, to detect and measure the melting properties of the amplicon generated from leg-extracted DNA of selected mosquitoes. Results with seven individuals from pure colonies of known species, as well as 10 field-captured individuals unambiguously identified by DNA sequencing, demonstrated that the method provided a high level of accuracy. The method was used to identify 86 field mosquitoes through the assignment of each to the two common clusters with a high degree of certainty. Each cluster was defined by individuals from pure colonies. HRM analysis is simpler to use than most other methods and provides comparable or more accurate discrimination between the two sibling species but requires a specialized melt-analysis instrument and software. PMID:23543777
Monitoring transients in low inductance circuits
Guilford, R.P.; Rosborough, J.R.
1985-10-21
The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.
Earth melter and method of disposing of feed materials
Chapman, Christopher C.
1994-01-01
An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.
Earth melter and method of disposing of feed materials
Chapman, C.C.
1994-10-11
An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brueziere, J.; Chauvin, E.; Piroux, J.C.
2013-07-01
AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less
Application of neural network for real-time measurement of electrical resistivity in cold crucible
NASA Astrophysics Data System (ADS)
Votava, Pavel; Poznyak, Igor
2017-08-01
The article describes use of an Induction furnace with cold crucible as a tool for real-time measurement of a melted material electrical resistivity. The measurement is based on an inverse problem solution of a 2D mathematical model, possibly implementable in a microcontroller or a FPGA in a form of a neural network. The 2D mathematical model results has been provided as a training set for the neural network. At the end, the implementation results are discussed together with uncertainty of measurement, which is done by the neural network implementation itself.
Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun
2014-01-15
We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.
Borehole sealing method and apparatus
Hartley, James N.; Jansen, Jr., George
1977-01-01
A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.
NASA Astrophysics Data System (ADS)
Zhukov, Anton; Barakhtin, Boris; Kuznetsov, Pavel
By the method of selective laser melting of powder materials nanostructured stainless steels 17-4PH, 316L, 321 were obtained. In all experiments the recorded hardness increase depending on the construction parameters. Obtained relationship of hardness increase with the carbon ratio, which explained by the chemical composition of the metal in the melting zone. It is suggested that the effect of hardness increase is associated with structural changes as to the formation and dissolution of hardening nanophases. Methods of metallography were performed in structural studies. Traces of interlayer segregation were detected inside the grains as turbulent eddies in the bands of different saturation tone caused by the migration of convective (mass transfer) metal atoms. It was visible signs of crystallization through the grain places the image (dendrite crystals). These facts revealed structural features suggest that the adhesion layers of melted powder was initiated by the colder layers and going mechanism epitaxy by coherently oriented groups of atoms from layers of melting.
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J
2018-03-01
With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.
Pressurized metallurgy for high performance special steels and alloys
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.
2016-07-01
The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.
Method to decrease loss of aluminum and magnesium melts
Hryn, John N.; Pellin, Michael J.; Calaway, Jr., Wallis F.; Moore, Jerry F.; Krumdick, Gregory K.
2002-01-01
A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.
Lakshman, Jay P; Cao, Yu; Kowalski, James; Serajuddin, Abu T M
2008-01-01
Formulation of active pharmaceutical ingredients (API) in high-energy amorphous forms is a common strategy to enhance solubility, dissolution rate and, consequently, oral bioavailability of poorly water-soluble drugs. Amorphous APIs are, however, susceptible to recrystallization and, therefore, there is a need to physically stabilize them as solid dispersions in polymeric carriers. Hot melt extrusion has in recent years gained wide acceptance as a method of choice for the preparation of solid dispersions. There is a potential that the API, the polymer or both may degrade if excessively high temperature is needed in the melt extrusion process, especially when the melting point of the API is high. This report details a novel method where the API was first converted to an amorphous form by solvent evaporation and then melt-extruded with a suitable polymer at a drug load of at least 20% w/w. By this means, melt extrusion could be performed much below the melting temperature of the drug substance. Since the glass transition temperature of the amorphous drug was lower than that of the polymer used, the drug substance itself served as the plasticizer for the polymer. The addition of surfactants in the matrix enhanced dispersion and subsequent dissolution of the drug in aqueous media. The amorphous melt extrusion formulations showed higher bioavailability than formulations containing the crystalline API. There was no conversion of amorphous solid to its crystalline form during accelerated stability testing of dosage forms.
Tortora, Luana; Lavrentovich, Oleg D.
2011-01-01
In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929
The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch
NASA Astrophysics Data System (ADS)
Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.
2018-02-01
Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.
Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.
Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu
2003-11-01
The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.
Solvent-free melting techniques for the preparation of lipid-based solid oral formulations.
Becker, Karin; Salar-Behzadi, Sharareh; Zimmer, Andreas
2015-05-01
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Shinozuka, Hiroshi; Forster, John W
2016-01-01
Background. Multiplexed sequencing is commonly performed on massively parallel short-read sequencing platforms such as Illumina, and the efficiency of library normalisation can affect the quality of the output dataset. Although several library normalisation approaches have been established, none are ideal for highly multiplexed sequencing due to issues of cost and/or processing time. Methods. An inexpensive and high-throughput library quantification method has been developed, based on an adaptation of the melting curve assay. Sequencing libraries were subjected to the assay using the Bio-Rad Laboratories CFX Connect(TM) Real-Time PCR Detection System. The library quantity was calculated through summation of reduction of relative fluorescence units between 86 and 95 °C. Results.PCR-enriched sequencing libraries are suitable for this quantification without pre-purification of DNA. Short DNA molecules, which ideally should be eliminated from the library for subsequent processing, were differentiated from the target DNA in a mixture on the basis of differences in melting temperature. Quantification results for long sequences targeted using the melting curve assay were correlated with those from existing methods (R (2) > 0.77), and that observed from MiSeq sequencing (R (2) = 0.82). Discussion.The results of multiplexed sequencing suggested that the normalisation performance of the described method is equivalent to that of another recently reported high-throughput bead-based method, BeNUS. However, costs for the melting curve assay are considerably lower and processing times shorter than those of other existing methods, suggesting greater suitability for highly multiplexed sequencing applications.
Method and apparatus for melting glass batch
Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.
1988-01-01
A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.
Melt dumping in string stabilized ribbon growth
Sachs, Emanuel M.
1986-12-09
A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.
Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y
1995-06-01
Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.
Vaikousi, Hariklia; Lazaridou, Athina; Biliaderis, Costas G; Zawistowski, Jerzy
2007-03-07
The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, James A.; Hayden, H. Wayne
1995-01-01
An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses
Pei, Zhipu; Ju, Dongying
2017-01-01
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
Pei, Zhipu; Ju, Dongying
2017-04-17
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, J.A.; Hayden, H.W.
1995-01-10
An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.
High resolution melting (HRM) analysis of DNA--its role and potential in food analysis.
Druml, Barbara; Cichna-Markl, Margit
2014-09-01
DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Three-dimensional numerical simulation for plastic injection-compression molding
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn
2018-03-01
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.
Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou
2015-10-01
An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.
Surface texturing of superconductors by controlled oxygen pressure
Chen, N.; Goretta, K.C.; Dorris, S.E.
1999-01-05
A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.
Surface texturing of superconductors by controlled oxygen pressure
Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.
1999-01-01
A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
Melt-castable energetic compounds comprising oxadiazoles and methods of production thereof
Pagoria, Philip F; Zhang, Mao X
2013-11-12
In one embodiment, a melt-castable energetic material comprises at least one of: 3,5-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DNFO), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-5-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2- ,4-oxadiazole (ANFO). In another embodiment, a method for forming a melt-castable energetic material includes reacting 3,5-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DAFO) with oxygen or an oxygen-containing compound to form a mixture of at least: DNFO, and ANFO.
Di Paola, Cono; P. Brodholt, John
2016-01-01
Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail. PMID:27444854
Sexual intercourse for cervical ripening and induction of labour.
Kavanagh, J; Kelly, A J; Thomas, J
2001-01-01
The role of prostaglandins for cervical ripening and induction of labour has been examined extensively. Human semen is the biological source that is presumed to contain the highest prostaglandin concentration. The role of sexual intercourse in the initiation of labour is uncertain. The action of sexual intercourse in stimulating labour is unclear, it may in part be due to the physical stimulation of the lower uterine segment, or endogenous release of oxytocin as a result of orgasm or from the direct action of prostaglandins in semen. Furthermore nipple stimulation may be part of the process of initiation. This is one of a series of reviews of methods of cervical ripening and labour induction using standardised methodology. To determine the effects of sexual intercourse for third trimester cervical ripening or induction of labour in comparison with other methods of induction. The Cochrane Pregnancy and Childbirth Group trials register, the Cochrane Controlled Trials Register and bibliographies of relevant papers. Last searched: November 2000. (1) clinical trials comparing sexual intercourse for third trimester cervical ripening or labour induction with placebo/no treatment or other methods listed above it on a predefined list of labour induction methods; (2) random allocation to the treatment or control group; (3) adequate allocation concealment; (4) violations of allocated management not sufficient to materially affect conclusions; (5) clinically meaningful outcome measures reported; (6) data available for analysis according to the random allocation; (7) missing data insufficient to materially affect the conclusion. A strategy has been developed to deal with the large volume and complexity of trial data relating to labour induction. This involves a two-stage method of data extraction. There was one included study of 28 women which reported very limited data, from which no meaningful conclusions can be drawn. The role of sexual intercourse as a method of induction of labour is uncertain. Any future trials investigating sexual intercourse as a method of induction need to be of sufficient power to detect clinically relevant differences in standard outcomes. However, it may prove difficult to standardise sexual intercourse as an intervention to allow meaningful comparisons with other methods of induction of labour.
Method for producing metallic microparticles
Phillips, Jonathan; Perry, William L.; Kroenke, William J.
2004-06-29
Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, III, Boyd Mccutchen; Kisner, Roger A.; Ludtka, Gail Mackiewicz
A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference .DELTA.G.sub.m between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30.degree. C./min or higher, and the melt solidifies to form a single crystal of the material.
Diffusion Monte Carlo calculations of Xenon melting under pressure
NASA Astrophysics Data System (ADS)
Shulenburger, L.; Mattsson, T. R.
2011-03-01
The slope of the melting temperature as a function of pressure yields, via the Clausius-Clapeyron equation, important information regarding the changes in density, energy, and entropy. It is therefore crucial to resolve the long-standing differences in melt lines under pressure between Diamond Anvil Cell data (low/flat melt line) and other methods, including density functional theory (DFT) simulations 1 (high/steep melt line). The disagreement for Ta was recently resolved 2 and although a similar situation exists in the literature on Xe,3 the resolution may be quite different. For example, DFT with its lack of van der Waals forces is a prima facie less credible simulation method for Xe, although excellent agreement has been obtained between calculations of the Hugoniot of Xe and experiments.4 We investigate whether this theoretical shortcoming is significant for the melting transition by applying diffusion Monte Carlo. The energy differences obtained in this way are compared to the DFT results in order to address any systematic errors that may be present near the melting transition. 1 Taioli et al. PRB 75, 214103 (2007); 2 Dewaele et al. PRL 104, 255701 (2010); 3 Belonoshko el al. PRB 74, 054114 (2006); 4 Root et al. PRL 105, 085501 (2010) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp. for the US Dep. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Cyclic phase change in a cylindrical thermal energy storage capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.; Mujumdar, A.S.; Weber, M.E.
1983-12-01
This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less
Method for calcining radioactive wastes
Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.
1979-01-01
This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi
1983-01-01
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.
Method for starting operation of a resistance melter
Chapman, Christopher Charles
1977-01-01
A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.
Simple calculation of ab initio melting curves: Application to aluminum.
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
Method for preparing homogeneous single crystal ternary III-V alloys
Ciszek, Theodore F.
1991-01-01
A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo
2000-01-01
In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.
NASA Astrophysics Data System (ADS)
Li, J.; Dong, J.; Zhu, F.
2017-12-01
Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We will examine the effect of solid-state phase transition on the melting curves of halides and test the validity of various melting theories.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.; Lehoczky, S. L.; Zhu, S.
2003-01-01
A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of semiconducting or metallic melts. The experimental setup is similar to that for the oscillation cup technique. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate along its axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with the published data. The main advantage of the technique is that the measurement can be completed in one or two minutes, as opposed to the one or two-hour measurement time required by the oscillation cup technique. The method is non-intrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer if desired.
Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M
2017-04-03
Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution crystallization and is amenable to continuous manufacturing and easy scale up.
Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming
2011-01-01
JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.
Characteristics of a promising new thermoelectric material - Ruthenium silicide
NASA Technical Reports Server (NTRS)
Ohta, Toshitaka; Vining, Cronin B.; Allevato, Camillo E.
1991-01-01
A preliminary study on arc-melted samples has indicated that ruthenium silicide has the potential to obtain figure-of-merit values four times higher than that of conventional silicon-germanium material. In order to realize the high figure-of-merit values, high-quality crystal from the melt is needed. A Bridgman-like method has been employed and has realized much better crystals than arc-melted ones.
Containerless synthesis of amorphous and nanophase organic materials
Benmore, Chris J.; Weber, Johann R.
2016-05-03
The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.
Fujimori, Kiyoshi; Lee, Hans; Sloey, Christopher; Ricci, Margaret S; Wen, Zai-Qing; Phillips, Joseph; Nashed-Samuel, Yasser
2016-01-01
Certain types of glass vials used as primary containers for liquid formulations of biopharmaceutical drug products have been observed with delamination that produced small glass like flakes termed lamellae under certain conditions during storage. The cause of this delamination is in part related to the glass surface defects, which renders the vials susceptible to flaking, and lamellae are formed during the high-temperature melting and annealing used for vial fabrication and shaping. The current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. Four alternative techniques with improved throughput, convenience, and/or comprehension were examined by subjecting seven lots of vials to analysis by all techniques. The first three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the same sample pools as acid titration. All three showed good correlation with alkalinity: conductivity (R(2) = 0.9951), flame photometry sodium (R(2) = 0.9895), and several elements by inductively coupled plasma mass spectrometry [(sodium (R(2) = 0.9869), boron (R(2) = 0.9796), silicon (R(2) = 0.9426), total (R(2) = 0.9639)]. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and then inspected those vials visually for lamellae. The visual inspection results without the lot with different processing condition correlated well with alkalinity (R(2) = 0.9474). Due to vial processing differences affecting alkalinity measurements and delamination propensity differently, the ratio of silicon and sodium measurements from inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality and vial propensity for lamellae formation. The other techniques of conductivity, flame photometry, and accelerated lamellae formation condition may still be suitable for routine screening of vial lots produced under consistent processes. Recently, delamination that produced small glass like flakes termed lamellae has been observed in glass vials that are commonly used as primary containers for pharmaceutical drug products under certain conditions during storage. The main cause of these lamellae was the quality of the glass itself related to the manufacturing process. Current European Pharmacopoeia method to assess glass vial quality utilizes acid titration of vial extract pools to determine hydrolytic resistance or alkalinity. As alternative to the European Pharmacopoeia method, four other techniques were assessed. Three new techniques of conductivity, flame photometry, and inductively coupled plasma mass spectrometry measured the vial extract pool as acid titration to quantify quality, and they demonstrated good correlation with original alkalinity. The fourth technique processed the vials under conditions that promote delamination, termed accelerated lamellae formation, and the vials were then inspected visually for lamellae. The accelerated lamellae formation technique also showed good correlation with alkalinity. Of the new four techniques, inductively coupled plasma mass spectrometry was the most informative technique to assess overall vial quality even with differences in processing between vial lots. Other three techniques were still suitable for routine screening of vial lots produced under consistent processes. © PDA, Inc. 2016.
NASA Astrophysics Data System (ADS)
Batiza, Rodey
1991-12-01
We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and a adiabatic temperature gradient in the subaxial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.
NASA Astrophysics Data System (ADS)
Niu, Yaoling; Batiza, Rodey
1991-12-01
We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad upwelling which diminishes in vigor off axis. In contrast with the EPR axis, mantle temperature correlates well with topography at the MAR, and there is less melting under offsets. The data are consistent with weaker upwelling under offsets and an adiabatic temperature gradient in the sub axial mantle away from offsets. The MAR at 26°S exhibits the so-called local trend of Klein and Langmuir (1989). Our model indicates that the local trend cannot be due solely to intracolumn melting processes. The local trend seems to be genetically associated with slow-spreading ridges, and we suggest it is due to melting of multiple individual domains that differ in initial and final melting pressure within segments fed by buoyant focused mantle flow.
NASA Astrophysics Data System (ADS)
Qi, Y.; Liu, X.; Kang, J.; He, L.
2017-12-01
Equilibrium isotope fractionation factors are essential for using stable isotope data to study many geosciences processes such as planetary differentiation and mantle evolution. The mass-dependent equilibrium isotope fractionation is primarily controlled by the difference in bond energies triggered by the isotope substitution. With the recent advances in computational capabilities, first-principles calculation has become a reliable tool to investigate equilibrium isotopic fractionations, greatly improving our understanding of the factors controlling isotope fractionations. It is important to understand the isotope fractionation between melts and minerals because magmatism is critical for creating and shaping the Earth. However, because isotope fractionation between melts and minerals is small at high temperature, it is difficult to experimentally calibrate such small signature. Due to the disordered and dynamic character of melts, calculations of equilibrium isotope fractionation of melts are more challenging than that for gaseous molecules or minerals. Here, we apply first-principles molecular dynamics method to calculate equilibrium Ca, Mg, Si, and O isotope fractionations between silicate melts and minerals. Our results show that equilibrium Mg, Si, and O isotope fractionations between olivine and pure Mg2SiO4 melt are close to zero at high temperature (e.g. δ26Mgmelt-ol = 0.03 ± 0.04‰, δ30Simelt-ol = -0.06 ± 0.07‰, δ18Omelt-ol = 0.07‰ ± 0.08 at 1500 K). Equilibrium Ca, Mg, Si, and O isotope fractionations between diopside and basalt melt (67% CaMgSi2O6 + 33% CaAl2Si2O8) are also negligible at high temperature (e.g. δ44/40Camelt-cpx = -0.01 ± 0.02‰, δ26Mgmelt-cpx = -0.05 ± 0.14‰, δ30Simelt-cpx = 0.04 ± 0.04‰, δ18Omelt-cpx = 0.03 ± 0.07‰ at 1500 K). These results are consistent with the observations in natural samples that there is no significant Ca, Mg, Si, and O isotope fractionation during mantle partial melting, demonstrating the reliability of our methods. Thus, our results can be used to understand stable isotope fractionation during partial melting of mantle peridotite or fractional crystallization during magmatic differentiation. The first-principles molecular dynamics method is a promising tool to obtain equilibrium fractionation of more isotope systems for complicate liquids.
,; Lowenstern, J. B.
2014-01-01
Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.
2017-12-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.
2016-07-01
This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.
Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals
NASA Astrophysics Data System (ADS)
Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng
2018-04-01
Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.
A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.
1975-01-01
Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.
Growth of early continental crust by water-present eclogite melting in subduction zones
NASA Astrophysics Data System (ADS)
Laurie, A.; Stevens, G.
2011-12-01
The geochemistry of well preserved Paleo- to Meso-Archaean Tonalite-Trondhjemite-Granodiorite (TTG) suite rocks, such as the ca 3.45 Ga trondhjemites from the Barberton greenstone belt in South Africa, provides insight into the origins of Earth's early felsic continental crust. This is particularly well demonstrated by the high-Al2O3 variety of these magmas, such as the Barberton rocks, where the geochemistry requires that they are formed by high pressure (HP) melting of a garnet-rich metamafic source. This has been interpreted as evidence for the formation of these magmas by anatexis of the upper portions of slabs within Archaean subduction zones. Most of the experimental data relevant to Archaean TTG genesis has been generated by studies of fluid-absent melting of metabasaltic sources. However, water drives arc magmatism within Phanerozoic subduction zones and thus, understanding the behaviour of water in Archaean subduction zones, may have considerable value for understanding the genesis of these TTG magmas. Consequently, this study investigates the role of HP water-present melting of an eclogite-facies starting material, in the production of high-Al2O3 type TTG melts. Water-saturated partial melting experiments were conducted between 1.9 and 3.0GPa; and, 870°C and 900°C. The melting reaction is characterized by the breakdown of sodic Cpx, together with Qtz and H2O, to form melt in conjunction with a less sodic Cpx: Qtz + Cpx1 + Grt1 + H2O = Melt + Cpx2 + Grt2. In many of the experimental run products, melt segregated efficiently from residual crystals, allowing for the measurement of a full range of trace elements via Laser Ablation Inductively Coupled Plasma Mass Spectroscopy. The experimental glasses produced by this study have the compositions of peraluminous trondhjemites; and they are light rare earth element, Zr and Sr enriched; and heavy rare earth element, Y and Nb depleted. The compositions of the experimental glasses are similar to high-Al2O3 type Archaean TTG rocks in general and similar to the Barberton trondhjemites in particular. Additionally, due to Cpx being a major reactant, Ni and Cr contents of the glasses are high and match those of high-Al2O3 type TTG compositions. This challenges the notion that this aspect of TTG geochemistry indicates interaction of the magma with the mantle wedge. Consequently, we propose that water-present melting of an eclogitic source is a viable mechanism for the genesis of Paleo- to Meso-Archaean felsic continental crust. Importantly, this mechanism of TTG formation involves the upper surface of the subducting slab acting as an anatectic capture site for metamorphic fluid which evolved from cooler domains slightly deeper within the hydrated upper portion of the slab. This explains both TTG genesis and the lack of characteristic products of mantle wedge metasomatism, such as andesites, concurrent with TTG magmatism of this type during the Paleo- to Meso-Archaean. Cooling of the upper mantle by only a small amount towards to end of the Archaean Eon acted to "turn off" water-present melting of the slab, allowing water to metasomatise the mantle wedge and induce calc-alkaline magmatism in association with volcanic arcs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu
2013-08-15
Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary formore » reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.« less
NASA Astrophysics Data System (ADS)
Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.
2017-04-01
The evolution of crustal magma chambers can be considered from a range of different physical and chemical perspectives. Most previous studies focus either on the petrological side (assuming only thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we develop a method that fully couples petrological with geodynamic modelling, by combining a finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X) that takes the evolving chemistry into account. The evolution of melt chemistry in a crustal magma chamber is analyzed by focusing on the effects of depth and temperature as well as size and shape of the magma chamber(s). The models show that each of these factors influences the melting behavior of rocks, the magma composition and their effects on the mechanics in the upper lithosphere. Interactions with country rocks (assimilation), ongoing rock depletion (fractional melting) and a possible open system behavior (fractional crystallization) and their effects on magma chemistry are taken into account. The chemical and mineralogical evolution of the melt source, composition (10 oxide component system) of intrusive and extrusive rocks as well as melt fraction and density are tracked on particles using a marker-in-cell-method in the geodynamic code. After each melt extraction event, the employed phase diagram is updated or recalculated based on the residuum chemistry that shifts the solidus to higher temperatures with sequential melt extraction. The resulting wide range in chemical compositions and the volume of intrusive and extrusive rocks are tracked in time and space over the melting region. The newly generated crust employs phase diagrams which are directly computed from the chemistry of extracted melts. Plutons are able to melt again as long as the local temperature is higher in the model than the solidus temperature in the employed phase diagram. As a result, our models make testable predictions on types of erupted lavas. We show an application to the plume-related intracontinental West Eifel volcanism (Germany), where our models explain a sudden change in K2O/Na2O-ratios in the volcanic rocks by a transition between melting a metasomatized and a pyrolitic mantle. We also show initial results from crustal melt extraction in an arc system.
NASA Astrophysics Data System (ADS)
Arató, Róbert; Audétat, Andreas
2016-04-01
Oxygen fugacity is an important parameter in magmatic systems that affects the stability of mineral phases and fluid species. However, there is no well-established method to reconstruct the oxygen fugacity of slowly cooled magmas such as granite, for example, because existing oxybarometers (e.g., magnetite-ilmenite method) are susceptible to re-equilibration processes during slow cooling and thus lead to erroneous results when applied for granitic rocks. In this study, we aim at developing an oxybarometer that is based on the partitioning of vanadium (a redox-sensitive element) between magnetite inclusions and silicate melt inclusions preserved in quartz phenocrysts, where they were protected from subsolidus alteration and can be measured as entities by LA-ICP-MS. In the first - experimental - part of this study we investigated the effects of temperature (800-950 ° C), pressure (1-2 kbar), oxygen fugacity (from ΔFMQ+0.7 to ΔFMQ+4.0), magnetite composition, and melt composition on the partition coefficient of vanadium between magnetite and melt (DVmgt-melt). The experiments were carried out in cold-seal pressure vessels and the starting material was a mixture of V-doped haplogranite glasses or natural obsidian powder with variable aluminum saturation index (ASI), and synthetic, V-free magnetite of 10-20 μm grain size. The vanadium partition coefficient was found to depend strongly on oxygen fugacity, and to lesser (but still considerable) degrees on melt composition and temperature. A more than 1.5 log unit decrease in DVmgt-melt values with increasing oxygen fugacity can be explained by a change of the dominant valence state of V in the silicate melt. For a given oxygen fugacity buffer DVmgt-melt decreases with increasing temperature, but this reflects mostly the change in absolute fO2 values while the net temperature effect is in fact positive. DVmgt-melt depends significantly on melt composition, resulting in higher D-values with increasing aluminum saturation index (ASI). This seems to reflect less favorable incorporation of V into peraluminous melts compared to depolymerized, peralkaline melts. Changing pressure from 1 to 2 kbar had an effect only at NNO, causing 0.3 log unit increase in D, whereas the Ti-content of magnetite turned out to have negligible effect on the V partitioning. In summary, the dependence of DVmgt-melt on temperature, ASI and oxygen fugacity can be described by the following regression equation: logD(V)mgt/melt=-1.22+0.31*10^5/T(° K) +1.73*ASI -0.49*ΔFMQ First tests of the equation on natural samples were carried out on rapidly cooled tuffs and vitrophyres from variable tectonic settings, for which fO2 could be constrained independently by the magnetite-ilmenite method. All calculated fO2 values fall within ± 0.75 log unit within those suggested by the Fe-Ti oxybarometer, whereas 12 out of 16 samples agree within 0.5 log units .
Method for producing melt-infiltrated ceramic composites using formed supports
Corman, Gregory Scot; Brun, Milivoj Konstantin; McGuigan, Henry Charles
2003-01-01
A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.
Method and apparatus for melting metals
Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley
2006-03-14
A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.
Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn
The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less
DNA melting profiles from a matrix method.
Poland, Douglas
2004-02-05
In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae. Copyright 2003 Wiley Periodicals, Inc.
Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS
NASA Technical Reports Server (NTRS)
Jenner, Frances E.; Arevalo, Ricardo D., Jr.
2016-01-01
Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).
Effect of Cooling Rate on Microstructure of Two Kinds of High Nb Containing Tial Alloys
NASA Astrophysics Data System (ADS)
Chai, L. H.; Feng, Z. Y.; Xiang, Z. L.; Cui, Y. S.; Zhou, F.; Chen, Z. Y.
2017-09-01
In this paper, high Nb-TiAl alloys with Cr and W additions were prepared by Vacuum induction melting method, and then were heat treated under three different cooling rates of slow cooling, furnace cooling and air cooling. The phase composition of the alloy was analyzed by X ray diffraction, and the microstructure of the alloy was observed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive analyzer. The results show that the microstructure of Ti45Al8Nb0.2Cr and Ti45Al8Nb0.2W are fully lamellar structure with the main phase composition of α+γ after 3 different heat treatment conditions. The grain size of the two alloys decreases with decreasing of cooling rate, and the grain size of the alloyed with Cr alloy is smaller than that of the alloyed with W alloy. Most of the original massive β phase at grain boundaries and lamellar interfaces dissolved after heat treatment, and the transformation of β phase is easier for Ti45Al8Nb0.2Cr.
Method for forming glass-to-metal seals
Kramer, Daniel P.; Massey, Richard T.
1986-01-01
A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, Akira
1997-12-31
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. In recent years, close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). However, there is no theoreticalmore » solution considering the inner wall temperature variation within cylindrical or spherical capsules. In this report close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations are presented, which facilitates designing of the practical capsule bed LHTES systems. The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition, the effects of variable inner wall temperature on molten mass fraction were investigated.« less
Diagnosis of the three-phase induction motor using thermal imaging
NASA Astrophysics Data System (ADS)
Glowacz, Adam; Glowacz, Zygfryd
2017-03-01
Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.
NASA Astrophysics Data System (ADS)
Zhuang, Jyun-Rong; Lee, Yee-Ting; Hsieh, Wen-Hsin; Yang, An-Shik
2018-07-01
Selective laser melting (SLM) shows a positive prospect as an additive manufacturing (AM) technique for fabrication of 3D parts with complicated structures. A transient thermal model was developed by the finite element method (FEM) to simulate the thermal behavior for predicting the time evolution of temperature field and melt pool dimensions of Ti6Al4V powder during SLM. The FEM predictions were then compared with published experimental measurements and calculation results for model validation. This study applied the design of experiment (DOE) scheme together with the response surface method (RSM) to conduct the regression analysis based on four processing parameters (exactly, the laser power, scanning speed, preheating temperature and hatch space) for predicting the dimensions of the melt pool in SLM. The preliminary RSM results were used to quantify the effects of those parameters on the melt pool size. The process window was further implemented via two criteria of the width and depth of the molten pool to screen impractical conditions of four parameters for including the practical ranges of processing parameters. The FEM simulations confirmed the good accuracy of the critical RSM models in the predictions of melt pool dimensions for three typical SLM working scenarios.
NASA Technical Reports Server (NTRS)
Turnbull, D.
1984-01-01
The formation by melt quenching of such metastable structures as glassy or microcrystalline solids and highly supersaturated solutions is made possible by the extreme resistance of most melts to homophase crystal nucleation at deep undercooling. This nucleation resistance contrasts sharply with the very low kinetic resistance to the movement of crystal-melt interfaces, once formed, in metals and other fluid systems at even minute undercooling. The methods of nucleation study which have proven especially effective in bypassing nucleation by heterophase impurities thereby exposing the high resistance of melts to homophase nucleation may be summarized as follows: observation of the crystallization behavior of dispersed small droplets; drop tube experiments in which liquid drops solidify, under containerless conditions, during their fall in the tube; and observation of the crystallization of bulk specimens immersed in fluxes chosen to dissolve or otherwise deactivate (e.g., by wetting) heterophase nucleants. This method has proven to be remarkably effective in deactivating such nucleants in certain pure metals.
Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias
NASA Astrophysics Data System (ADS)
Mercer, Cameron M.; Hodges, Kip V.
2017-08-01
Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.
HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.
2010-01-01
High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157
Metals processing control by counting molten metal droplets
Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.
2000-01-01
Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.
Study Of Phase Separation In Glass
NASA Technical Reports Server (NTRS)
Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.
1989-01-01
Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi.
1983-08-16
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Wu, Sangwook
2009-03-01
We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2015-12-29
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composties produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
Methods of viscosity measurements in sealed ampoules
NASA Astrophysics Data System (ADS)
Mazuruk, Konstantin
1999-07-01
Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi
2014-12-01
Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, J.C.; Shin, W.K.; Choi, C.Y.
Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach providedmore » in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available.« less
Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Ibrahem, Ahmed M.; El-Amin, Mohamed F.; Sun, Shuyu
In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103-105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.
Assessment for Melting Temperature Measurement of Nucleic Acid by HRM.
Wang, Jing; Pan, Xiaoming; Liang, Xingguo
2016-01-01
High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature ( T m ) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m , showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T m s of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present).
NASA Astrophysics Data System (ADS)
Belchansky, G.; Eremeev, V.; Mordvintsev, I.; Platonov, N.; Douglas, D.
The melting events (early melt, melt onset, melt ponding, freeze-up onset) over Arctic sea-ice area are critical for climate and global change studies. They are combined with accuracy of surface energy balances estimates (due to contrasts in the short wave albedo of snow and ice, open water or melt ponds) and drives a number of important processes (onset of snow melt, thawing of boreal forest, etc). M icrowave measurements identify seasonal transition zones due to large differences in emissivity during melt onset, melt ponding and freeze-up periods. This report presents near coincident observation of backscatter cross section (0 ) and brightness temperature (Tb) from Russian OKEAN 01 satellite series, backscatter cross section (0) from RADARSAT-1, brightness temperatures (Tbs) from SSM/I sensors, and near-surface temperature derived from the International Arctic Buoy Program data (IABP) (Belchansky and Douglas, 2000, 2002). To determine the melt duration (time of freeze-up onset minus time of melt onset) passive and active microwave methods were developed. These methods used differences between SSM /I 19.3GHz,H and SSM/I 37.0 GHz, H channels (SSM/I Tb), OKEAN 0 (9.52GHz, VV) and Tb (37.47 GHz, H) channels, RADARSAT-1 0 (5.3GHz, HH), and a threshold technique. An evolution of the SSM/I Tb, OKEAN-01 0 and Tb, RADARSAT ScanSAR 0, MEAN ( 0), SD(0) and SD(0 ) / MEAN(0 ) as function of time was investigated along FY and MY dominant type ice areas during January 1996 through December 1998. The SSM/I, OKEAN and RADARSAT melt onset and freeze up onset algorithms were constructed. The SSM/I algorithm was based- on analysis of the SSM/I Tb. The OKEAN and RADARSAT ScanSAR algorithms were based, respectively, on analysis of OKEAN 0 and Tb of MY and FY sea ice at each MY and FY ice region (200 km by 200 km) determined in OKEAN imagery prior to melting period and changes in RADARSAT SD(0 ) / MEAN(0) of sea-ice during different stages of melting processes at each ice site (75 km by 75 km) determined prior to spring period in ScanSAR imagery. The averaged 12-h near surface temperatures derived from the IABP wer e used to analyze changes in the SSM/I Tb, OKEAN 0 and OKEAN Tb, RADARSAT SD(0) / MEAN(0), and to estimate respective thresholds associated with the melt onset and freeze-up onset. To highlight the sources of differences among various sensors results were compared to understand how the average the melt onset, melt duration and freeze-up onset estimates varied between different instruments and algorithms. A discrepancy in estimates resulted due to the nature of active and passive microwave measurements, frequency and polarization, number of channels, temperature and emissivity effects, and algorithm types. Higher spatial resolution of OKEAN-01 and RADARSAT-1 SAR was an important characteristic for obtaining better estimates of melting parameters. The SSM/ data provide a spatial resolution with global coverageI suitable for circulation models. Therefore OKEAN-01 and RADARSAT measurements can complement SSM/I data. These studies contribute to the growing body of documentation about the levels of disparity obtained when Arctic seasonal transition parameters are calculated using various types of satellite sensors and algorithms. ACKNOWLEDGEMENTS This work was carried out with the support from the International Arctic Research Center and Cooperative Institute for Arctic Research (IARC/CIFAR), University of Alaska Fairbanks. We would like to acknowledge the Alaska SAR Facility (Fairbanks), the National Snow and Ice Data Center (University of Colorado), and the Global Hydrology Resource Center, respectively, for providing RADARSAT images, the DMSP SSM/I Daily Polar Gridded Tb and Sea Ice Concentrations, the single-pass SSM/I brightness temperature data. REFERENCES Belchansky, G. I. and Douglas, D. C. (2000). Classification methods for monitoring Arctic sea-ice using OKEAN passive / active two-channel microwave data. J. Remote Sensing of Environment, Elsevier Science, New York. 73 (3): 307 -322. Belchansky, G. I. and Douglas, D. C. (2002). Seasonal comparisons of sea ice concentration estimates derived from SSM /I, OKEAN, and RADARSAT data. J. Remote Sensing of Environment, Elsevier Science, New York, 81 (1): 67-81.
Structure, thermodynamics, and properties of hydrous aluminosilicate melt in the deep Earth
NASA Astrophysics Data System (ADS)
Bajgain, S. K.; Mookherjee, M.
2017-12-01
In this study, we use first-principles molecular dynamics (FPMD) simulations to explore the structure, thermodynamics, and transport properties of alkali bearing aluminosliciate melt (NaAlSi2O6) with 4 wt.% H2O. We explored physical properties of the hydrous jadeite melt at temperatures and pressures relevant for the Earth's mantle, i.e., 2500- 4000 K and up to 50 GPa. Our results indicate that the fundamental structural units of jadeite, i.e., one dimensional (1-D) chain with a repeat of [Si2O6]4- is well preserved in anhydrous jadeite melt at low pressures. However, the 1-D chains are nonlinear and the silicate tetrahedral units are very distorted. We also note that in the hydrous jadeite melt, the dominant hydrogen bearing species are hydroxyl (OH) and water molecules (H2O). We do not find any evidence of OH attached to the bridging oxygen atoms. However, we do find OH groups attached to the non-bridging oxygen atoms at the terminal sites of the tetrahedral units associated with the distorted 1-D chains. It is possible that these terminal OH groups were former bridging oxygen atoms. Pressure-volume-temperature results of hydrous jadeite melt could be adequately described with a finite-strain equation of state with ρ0, K0, and K'0 being 2.0 g/cm3, 13.0 GPa, and 4.0, respectively. Our FPMD results also indicate that the diffusivity of alkali (Na) ions is comparable to the hydrogen atoms at lower pressures ( 90 ×10-10 m2/s at 6 GPa and 2500 K). The self diffusion of aluminum (6.5 ×10-10 m2/s) and silicon (4.5 ×10-10 m2/s) ions are significantly lower compared to the alkali ions and proton at the similar P-T condition. At higher pressures i.e., P> 20 GPa, the diffusivity of Na reduces significantly. At P> 20 GPa, the proton diffusivity remains higher than the other cation species. Therefore, a small fraction of hydrous melt at mantle transition zone conditions may explain the observed elevated electrical conductivity in specific regions such as in Japan and in the Northeastern China [1]. Acknowledgment: This work is supported by US NSF award EAR 1639552. Reference: [1] Kelbert et al., 2009, Global electromagnetic induction constraints on transition-zone water content variations, Nature, 460, 103-107.
Permeability and 3-Dimensional Melt Distribution in Partially Molten Rocks
NASA Astrophysics Data System (ADS)
Zhu, Wen-Lu; Gaetani, Glenn; Fusseis, Florian
2010-05-01
Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle, as well as interpretations of the geochemical and geophysical observations at ocean ridges. For a system containing a single solid phase of isotropic interfacial energy, chemical and mechanical equilibrium requires a constant mean curvature of solid-melt interfaces and a single dihedral angle. Under these conditions, a simple power-law relationship between permeability, grain size and melt fraction, has been derived [e.g., von Bargen and Waff, 1986]. However, microstructural observations on texturally equilibrated, partially molten rocks reveal that the melt distribution is more complex than predicted by the isotropic model. Several factors, such as non-hydrostatic stress, anisotropic interfacial energy, or the presence of a second solid phase, will alter the power-law relationship. Better estimates for the permeability of partially molten rock require an accurate assessment of 3-dimensional melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2-D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along 3-grain junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have carried out the first high quality non-destructive imaging of 3-dimensional melt distribution in experimentally equilibrated olivine-basalt aggregates [Zhu et al., 2009]. Microtomographic images of melt distribution were obtained on 1 mm cylindrical cores with melt fractions of 0.2, 0.1, and 0.02, at a spatial resolution of 0.7 microns. Textual information such as melt channel size and channel connectivity was determined using AVIZO and MATLAB. Our data indicate that as melt fraction decreases from 0.2 to 0.02, grain size increases slightly whereas melt interconnectivity decreases. Network modeling and the Lattice Boltzmann method provide a quantitative link between the macroscale transport properties and microscale melt distribtution. Incorporating our quantitative 3-D melt distribution data into these models allow us to simulate melt transport and, thereby, calculate the permeability and electrical conductivity of partially molten peridotite, especially at low melt fractions.
High resolution melt curve analysis based on methylation status for human semen identification.
Fachet, Caitlyn; Quarino, Lawrence; Karnas, K Joy
2017-03-01
A high resolution melt curve assay to differentiate semen from blood, saliva, urine, and vaginal fluid based on methylation status at the Dapper Isoform 1 (DACT1) gene was developed. Stains made from blood, saliva, urine, semen, and vaginal fluid were obtained from volunteers and DNA was isolated using either organic extraction (saliva, urine, and vaginal fluid) or Chelex ® 100 extraction (blood and semen). Extracts were then subjected to bisulfite modification in order to convert unmethylated cytosines to uracil, consequently creating sequences whose amplicons have melt curves that vary depending on their initial methylation status. When primers designed to amplify the promoter region of the DACT1 gene were used, DNA from semen samples was distinguishable from other fluids by a having a statistically significant lower melting temperature. The assay was found to be sperm-significant since semen from a vasectomized man produced a melting temperature similar to the non-semen body fluids. Blood and semen stains stored up to 5 months and tested at various intervals showed little variation in melt temperature indicating the methylation status was stable during the course of the study. The assay is a more viable method for forensic science practice than most molecular-based methods for body fluid stain identification since it is time efficient and utilizes instrumentation common to forensic biology laboratories. In addition, the assay is advantageous over traditional presumptive chemical methods for body fluid identification since results are confirmatory and the assay offers the possibility of multiplexing which may test for multiple body fluids simultaneously.
Thermal Diffusivity for III-VI Semiconductor Melts at Different Temperatures
NASA Technical Reports Server (NTRS)
Ban, H.; Li, C.; Lin, B.; Emoto, K.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.
2004-01-01
The change of the thermal properties of semiconductor melts reflects the structural changes inside the melts, and a fundamental understanding of this structural transformation is essential for high quality semiconductor crystal growth process. This paper focused on the technical development and the measurement of thermal properties of III-VI semiconductor melts at high temperatures. Our previous work has improved the laser flash method for the specialized quartz sample cell. In this paper, we reported the results of our recent progress in further improvements of the measurement system by minimizing the free convection of the melt, adding a front IR detector, and placing the sample cell in a vacuum environment. The results for tellurium and selenium based compounds, some of which have never been reported in the literature, were obtained at different temperatures as a function of time. The data were compared with other measured thermophysical properties to shed light on the structural transformations of the melt.
A multi-component evaporation model for beam melting processes
NASA Astrophysics Data System (ADS)
Klassen, Alexander; Forster, Vera E.; Körner, Carolin
2017-02-01
In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.
Thermal Diffusivity and Conductivity of Hg(1-x)Zn(x)Te Solids and Melts
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Mazuruk, K.; Lehoczky, S. L.
1996-01-01
The thermal diffusivity of pseudobinary Hg(1-x)Zn(x)Te solids and melts was measured by the laser flash method. The measured diffusivities for the solids of 0.10 less than or equal to x less than or equal to 0.30 are about 60% of that of the HgTe solid. Those for the melts rise rapidly with temperature but less so with increasing x. For x = 0.30, the diffusivity of the melt is about one third of that of the HgTe melt. Using the calculated beat capacity data from the associated solution model and measured density values, the thermal conductivity for the pseudobinary Hg(1-x)Zn(x)Te solids of 0.10 less than or equal to x less than or equal to 0.30 and for the melts of x = O.10, 0.16, and 0.30 was determined.
Application of enthalpy model for floating zone silicon crystal growth
NASA Astrophysics Data System (ADS)
Krauze, A.; Bergfelds, K.; Virbulis, J.
2017-09-01
A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the polycrystalline rod show the development of melt-filled grooves at the open melting front surface. The distance between the grooves is shown to grow with the increase of the skin-layer depth in the solid material.
Properties of TiNi intermetallic compound industrially produced by combustion synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaieda, Yoshinari
Most TiNi shape memory intermetallic compounds are conventionally produced by the process including high frequency induction vacuum melting and casting. A gravity segregation occurs in a cast TiNi ingot because of the big difference in the specific gravity between Ti and Ni. It is difficult to control accurately the phase transformation temperature of TiNi shape memory intermetallic compound produced by the conventional process, because the martensitic transformation temperature shifts by 10K due to the change in 0.1 % of Ni content. Homogeneous TiNi intermetallic compound is produced by the industrial process including combustion synthesis method, which is a newly developedmore » manufacturing process. In the new process, phase transformation temperatures of TiNi can be controlled accurately by controlling the ratio of Ti and Ni elemental starting powders. The chemical component, the impurities and the phase transformation temperatures of the TiNi products industrially produced by the process are revealed. These properties are vitally important when combustion synthesis method is applied to an industrial mass production process for producing TiNi shape memory intermetallic compounds. TiNi shape memory products are industrially and commercially produced today the industrial process including combustion synthesis. The total production weight in a year is 30 tins in 1994.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, T.S.; Hoshi, A.
1998-07-01
Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less
NASA Astrophysics Data System (ADS)
Khan, A.; Shankland, T. J.
2012-02-01
This paper applies electromagnetic sounding methods for Earth's mantle to constrain its thermal state, chemical composition, and "water" content. We consider long-period inductive response functions in the form of C-responses from four stations distributed across the Earth (Europe, North America, Asia and Australia) covering a period range from 3.9 to 95.2 days and sensitivity to ~ 1200 km depth. We invert C-responses directly for thermo-chemical state using a self-consistent thermodynamic method that computes phase equilibria as functions of pressure, temperature, and composition (in the Na2O-CaO-FeO-MgO-Al2O3-SiO2 model system). Computed mineral modes are combined with recent laboratory-based electrical conductivity models from independent experimental research groups (Yoshino (2010) and Karato (2011)) to compute bulk conductivity structure beneath each of the four stations from which C-responses are estimated. To reliably allocate water between the various mineral phases we include laboratory-measured water partition coefficients for major upper mantle and transition zone minerals. This scheme is interfaced with a sampling-based algorithm to solve the resulting non-linear inverse problem. This approach has two advantages: (1) It anchors temperatures, composition, electrical conductivities, and discontinuities that are in laboratory-based forward models, and (2) At the same time it permits the use of geophysical inverse methods to optimize conductivity profiles to match geophysical data. The results show lateral variations in upper mantle temperatures beneath the four stations that appear to persist throughout the upper mantle and parts of the transition zone. Calculated mantle temperatures at 410 and 660 km depth lie in the range 1250-1650 °C and 1500-1750 °C, respectively, and generally agree with the experimentally-determined temperatures at which the measured phase reactions olivine → β-spinel and γ-spinel → ferropericlase + perovskite occur. The retrieved conductivity structures beneath the various stations tend to follow trends observed for temperature with the strongest lateral variations in the uppermost mantle; for depths > 300 km conductivities appear to depend less on the particular conductivity database. Conductivities at 410 km and at 660 km depth are found to agree overall with purely geophysically-derived global and semi-global one-dimensional conductivity models. Both electrical conductivity databases point to < 0.01 wt.% H2O in the upper mantle. For transition zone minerals results from the laboratory database of Yoshino (2010) suggest that a much higher water content (up to 2 wt.% H2O) is required than in the other database (Karato, 2011), which favors a relatively "dry" transition zone (< 0.01 wt.% H2O). Incorporating laboratory measurements of hydrous silicate melting relations and available conductivity data allows us to consider the possibility of hydration melting and a high-conductivity melt layer above the 410-km discontinuity. The latter appears to be 1) regionally localized and 2) principally a feature from the Yoshino (2010) database. Further, there is evidence of lateral heterogeneity: The mantle beneath southwestern North America and central China appears "wetter" than that beneath central Europe or Australia.
Dendritic microstructure in argon atomized superalloy powders
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Kumar, Mahundra
1986-01-01
The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.
Northwest Africa 5298: A Basaltic Shergottite
NASA Technical Reports Server (NTRS)
Hui, Hejiu; Peslier, Anne; Lapen, Thomas J.; Brandon, Alan; Shafer, John
2009-01-01
NWA 5298 is a single 445 g meteorite found near Bir Gandouz, Morocco in March 2008 [1]. This rock has a brown exterior weathered surface instead of a fusion crust and the interior is composed of green mineral grains with interstitial dark patches containing small vesicles and shock melts [1]. This meteorite is classified as a basaltic shergottite [2]. A petrologic study of this Martian meteorite is being carried out with electron microprobe analysis and soon trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Oxygen fugacity is calculated from Fe-Ti oxides pairs in the sample. The data from this study constrains the petrogenesis of basaltic shergottites.
Diminishing detonator effectiveness through electromagnetic effects
Schill, Jr, Robert A.
2016-09-20
An inductively coupled transmission line with distributed electromotive force source and an alternative coupling model based on empirical data and theory were developed to initiate bridge wire melt for a detonator with an open and a short circuit detonator load. In the latter technique, the model was developed to exploit incomplete knowledge of the open circuited detonator using tendencies common to all of the open circuit loads examined. Military, commercial, and improvised detonators were examined and modeled. Nichrome, copper, platinum, and tungsten are the detonator specific bridge wire materials studied. The improvised detonators were made typically made with tungsten wire and copper (.about.40 AWG wire strands) wire.
Development and quality assessments of commercial heat production of ATF FeCrAl tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori
2015-09-01
Development and quality assessment of the 2 nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.
Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András
2017-12-01
Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Controlling electrode gap during vacuum arc remelting at low melting current
Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.
1997-01-01
An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotovchikov, V.T.; Seredenko, V.A.; Shatalov, V.V.
2007-07-01
This paper describes the results of a joint research program between the Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory in the United States to develop new radiation shielding materials for use in the construction of casks for spent nuclear fuel (SNF) and radioactive wastes. Research and development is underway to develop SNF storage, transport, and disposal casks using shielding made with two new depleted uranium dioxide (DUO{sub 2}) materials: a DUO{sub 2}-steel cermet, and, DUCRETE with DUAGG (DUO{sub 2} aggregate). Melting the DUO{sub 2} and allowing it to freeze will produce a near 100% theoretical densitymore » product and assures that the product produces no volatile materials upon subsequent heating. Induction cold-crucible melters (ICCM) are being developed for this specific application. An ICCM is, potentially, a high throughput low-cost process. Schematics of a pilot facility were developed for the production of molten DUO{sub 2} from DU{sub 3}O{sub 8} to produce granules <1 mm in diameter in a continuous mode of operation. Thermodynamic analysis was conducted for uranium-oxygen system in the temperature range from 300 to 4000 K in various gas mediums. Temperature limits of stability for various uranium oxides were determined. Experiments on melting DUO{sub 2} were carried out in a high frequency ICCM in a cold crucible with a 120 mm in diameter. The microstructure of molten DUO{sub 2} was studied and lattice parameters were determined. It was experimentally proved, and validated by X-ray analysis, that an opportunity exists to produce molten DUO{sub 2} from mixed oxides (primarily DU{sub 3}O{sub 8}) by reduction melting in ICCM. This will allow using DU{sub 3}O{sub 8} directly to make DUO{sub 2}-a separate unit operation to produce UO{sub 2} feed material is not needed. Experiments were conducted concerning the addition of alloying components, gadolinium et al. oxides, into the DUO{sub 2} melt while in the crucible. These additives improve neutron and gamma radiation shielding and operation properties of the final solids. Cermet samples of 50 wt % DUO{sub 2} were produced. (authors)« less
Influence of Melting and Hydrothermal Alteration on Lead in Abyssal Peridotites
NASA Astrophysics Data System (ADS)
Warren, J. M.; D'Errico, M. E.; Godard, M.; Coble, M. A.; Horan, M.
2017-12-01
The lead isotopic system is a key tracer of mantle convection, yet the abundance and mineralogical hosts of Pb in the upper mantle are poorly constrained. To address this, we analyzed the concentration of Pb in minerals and bulk rock powders of abyssal peridotites. These samples represent the oceanic upper mantle following melt extraction. They can be used to explore the mantle Pb budget, assuming that the amount of Pb lost during mantle melting and gained during seafloor alteration can be determined. We performed in situ analysis of the three main silicate phases (olivine, orthopyroxene, and clinopyroxene), which yield Pb concentrations of 2-30 ppb. Olivine is the main mineralogical host of Pb, unlike other trace elements, which are predominantly hosted in clinopyroxene. Sulfide contains an average of 3 ppm Pb, but these high concentrations are offset by low modal abundances (<0.01%), making this mineral a minor source of peridotite Pb. Whole rock Pb concentrations of abyssal peridotites measured by thermal ionization mass spectrometry range from 3 to 38 ppb. These values are close to the reconstructed whole rock values of 2 to 14 ppb, calculated from the mineral concentrations of Pb multiplied by their modes. In contrast, the average value among literature data for whole rock abyssal peridotites is >100 ppb [1, 2], measured by inductively-coupled plasma mass spectrometry. The higher values among literature data may reflect a combination of lower analytical sensitivity and effects of alteration. Samples in this study include an unaltered peridotite from the Gakkel Ridge, which shows the closest agreement between reconstructed and measured whole rock values. We estimate that our peridotites have undergone 5 to 9% melting [3], based on non-modal fractional melt modeling of rare earth element abundances. Assuming 18 to 23 ppb Pb in the depleted source mantle [4, 5], expected concentrations in abyssal peridotites after melting are <1 ppb. However, as suggested by [5], mantle Pb abundance is poorly constrained by the Ce/Pb ratio of mid-ocean ridge basalt and the amount of Pb in the depleted mantle may be higher than current estimates. [1] Niu, 2004, J. Pet.; [2] Paulick et al., 2006, Chem. Geol.; [3] D'Errico et al., 2016, GCA; [4] Salters and Stracke, 2004, G-Cubed; [5] Workman and Hart, 2005 EPSL.
Method for forming glass-to-metal seals
Kramer, D.P.; Massey, R.T.
1985-08-26
Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.
Method of making silicon carbide-silicon composite having improved oxidation resistance
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2002-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Silicon carbide-silicon composite having improved oxidation resistance and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
1999-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Rapid and efficient differentiation of Yersinia species using high-resolution melting analysis.
Souza, Roberto A; Frazão, Miliane R; Almeida, Alzira M P; Falcão, Juliana P
2015-08-01
The primary goal of clinical microbiology is the accurate identification of the causative agent of the disease. Here, we describe a method for differentiation between Yersinia species using PCR-HRMA. The results revealed species-specific melting profiles. The herein developed assay can be used as an effective method to differentiate Yersinia species. Copyright © 2015 Elsevier B.V. All rights reserved.
Nitric oxide donors for cervical ripening and induction of labour.
Kelly, Anthony J; Munson, Christopher; Minden, Lucy
2011-06-15
Sometimes it is necessary to bring on labour artificially because of safety concerns for the mother or baby. This review is one of a series of reviews of methods of labour induction using a standardised protocol.Induction of labour occurs in approximately 20% of pregnancies in the UK. The ideal agent for induction of labour would induce cervical ripening without causing uterine contractions. Currently most commonly used cervical ripening or induction agents result in uterine activity or contractions, or both. Cervical ripening without uterine contractility could occur safely in an outpatient setting and it may be expected that this would result in greater maternal satisfaction and lower costs. To determine the effects of nitric oxide (NO) donors for third trimester cervical ripening or induction of labour, in comparison with placebo or no treatment or other treatments from a predefined hierarchy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 December 2010) and the reference lists of trial reports and reviews. Clinical trials comparing NO donors for cervical ripening or labour induction to other methods listed above it on a predefined list of methods of labour induction. The trials include some form of random allocation to either group; and report one or more of the prestated outcomes. NO donors (isosorbide mononitrate, nitroglycerin and sodium nitroprusside) are compared to other methods listed above it on a predefined list of methods of labour induction. This review is part of a series of reviews focusing on methods of induction of labour. Three review authors independently assessed trials for inclusion, assessed risk of bias and extracted data. We considered 19 trials; we included 10 (including a total of 1889 women) trials, excluded eight trials and one trial report is awaiting classification. Included studies compared NO donors to placebo, vaginal prostaglandin E2, intracervical PGE2 and vaginal misoprostol. All included studies were of a generally high standard with a low risk of bias.There are very limited data available to compare nitric oxide donors to any other induction agent. There is no evidence of any difference between any of the prespecified outcomes when comparing NO donors to other induction agents, with the exception of an increase in maternal side effects. NO donors do not appear currently to be a useful tool in the process of induction of labour. More studies are required to examine how NO donors may work alongside established induction of labour protocols, especially those based in outpatient settings.
Hui, Hui; Ma, Wenjun; Cui, Jiejie; Gong, Mengjia; Wang, Yi; Zhang, Yuanyuan; He, Tongchuan; Bi, Yang; He, Yun
2017-12-01
Developing a thorough understanding of experimental methods of hepatic differentiation in hepatic progenitor cells (HPCs) should expand the knowledge of hepatocyte induction in vitro and may help to develop cell transplantation therapies for the clinical usage of HPCs in liver diseases. A previous induction method effectively induced differentiation and metabolic abilities in HPCs. Periodic acid‑Schiff (PAS) staining is used to identify glycogen synthesis and hepatocyte function; however, this method failed to detect induced hepatocytes. The present study aimed to investigate the possible factors affecting the previous confusing results of PAS staining. Removal of single induction factors, including dexamethasone, hepatic growth factor and fibroblast growth factor 4 from the induction media did not restore PAS staining, whereas replacement of 2% horse serum (HS) with 10% fetal bovine serum (FBS) significantly increased the number of PAS positive cells. Following 12 days of basal induction, replacing the induction medium with media containing 10% FBS for 12‑72 h significantly improved PAS staining, but did not influence indocyanine green uptake. Furthermore, incubation in induction medium with 10% FBS following 12 days of normal induction did not affect the expression of hepatic markers and mature function of HPCs. Therefore, the present study suggested that 2% HS in the induction medium did not affect the hepatic function of induced cells, but did affect glycogen storage, whereas replacement of medium with 10% FBS in advance of PAS staining may restore the failure of PAS staining in low serum concentrations of induced hepatocytes.
Ting, Jason; Anderson, Iver E.; Terpstra, Robert L.
2000-03-16
A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.
Nucleation and growth of metal nanocrystals during electrocrystallization in melts
NASA Astrophysics Data System (ADS)
Isaev, V. A.; Grishenkova, O. V.; Semerikova, O. L.; Kosov, A. V.; Zaykov, Yu. P.
2016-08-01
The initial stages of electrocrystallization in melts are considered. The nucleation and growth rates of metal nanocrystals during electrodeposition are calculated. The diffusion coefficients in the size space in the Fokker-Planck equation, which describes phase formation, are found. The method of calculating the number of nanoclusters formed on an electrode has been proposed. The concentration dependence of the phase formation under potentiostatic and galvanostatic electrodeposition conditions in melts is considered.
Apparatus for melt growth of crystalline semiconductor sheets
Ciszek, Theodore F.; Hurd, Jeffery L.
1986-01-01
An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.
Melting curve of metals Cu, Ag and Au under pressure
NASA Astrophysics Data System (ADS)
Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy
2016-01-01
In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.
Phadtare, Sangita; Severinov, Konstantin
2009-11-01
In Escherichia coli, temperature downshift elicits cold shock response, which is characterized by induction of cold shock proteins. CspA, the major cold shock protein of E. coli, helps cells to acclimatize to low temperature by melting the secondary structures in nucleic acids and acting as a transcription antiterminator. CspA and its homologues contain the cold shock domain and belong to the oligomer binding protein family, which also includes S1 domain proteins such as IF1. Structural similarity between IF1 and CspA homologues suggested a functional overlap between these proteins. Indeed IF1 can melt secondary structures in RNA and acts as transcription antiterminator in vivo and in vitro. Here, we show that in spite of having these critical activities, IF1 does not complement cold-sensitivity of a csp quadruple deletion strain. DNA microarray analysis shows that overproduction of IF1 and Csp leads to changes in expression of different sets of genes. Importantly, several genes which were previously shown to require Csp proteins for their expression at low temperature did not respond to IF1. Moreover, in vitro, we show that a transcription terminator responsive to Csp does not respond to IF1. Our results suggest that Csp proteins and IF1 have different sets of target genes as they may be suppressing the function of different types of transcription termination elements in specific genes.
NASA Astrophysics Data System (ADS)
Baldwin, L. C.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R. O. C.; Wirth, R.; Geisler, T.; Nagel, T.
2017-06-01
Megacrystic sapphires are frequently associated with alkaline basalts, most notably in Asia and Australia, although basalt is not generally normative in corundum. Most of these sapphire occurrences are located in alluvial or eluvial deposits, making it difficult to study the enigmatic relationship between the sapphires and their host rocks. Here, we present detailed petrological and geochemical investigations of in situ megacrystic sapphires within alkaline basalts from the Cenozoic Siebengebirge Volcanic Field (SVF) in Germany. Markedly, the sapphires show several micrometer thick spinel coronas at the contact with the host basalt, indicating chemical disequilibrium between the sapphire and the basaltic melt, supporting a xenogenetic relationship. However, in situ U-Pb dating of a Columbite Group inclusion within one Siebengebirge sapphire using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) indicates a close genetic relationship between sapphire crystallization and alkaline mafic volcanism in the SVF. The syngenetic mineral inclusion suite including carbonates, members of the Pyrochlore, Betafite and Columbite Groupe minerals, as well as a high abundance of HFSE and of gaseous low-density CO2 inclusions support a parentage of a highly evolved, MgO and FeO deficient carbonatitic melt. We identified CO2 to be the link between alkaline basaltic volcanism and the xenocrystic sapphires. Only alkaline volcanic suites can build up enough CO2 in this magma chamber upon fractionation so that at high degrees of fractionation a carbonatitic melt exsolves which in turn can crystallize sapphires.
NASA Astrophysics Data System (ADS)
Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang
2017-03-01
In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.
Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods
ERIC Educational Resources Information Center
Soroush, Masoud; Weinberger, Charles B.
2010-01-01
This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…
Recruiting Unmotivated Smokers into a Smoking Induction Trial
ERIC Educational Resources Information Center
Harris, Kari Jo; Bradley-Ewing, Andrea; Goggin, Kathy; Richter, Kimber P.; Patten, Christi; Williams, Karen; Lee, Hyoung S.; Staggs, Vincent S.; Catley, Delwyn
2016-01-01
Little is known about effective methods to recruit unmotivated smokers into cessation induction trials, the reasons unmotivated smokers agree to participate, and the impact of those reasons on study outcomes. A mixed-method approach was used to examine recruitment data from a randomized controlled cessation induction trial that enrolled 255 adult…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp; Aisaki, Ken-ichi; Igarashi, Katsuhide
2011-08-26
Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN onmore » mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.« less
Biopolymers production with carbon source from the wastes of a beer brewery industry
NASA Astrophysics Data System (ADS)
Wong, Phoeby Ai Ling
The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)
Use of non-medical methods of labor induction and pain management among U.S. women
Kozhimanil, Katy Backes; Johnson, Pamela Jo; Attanasio, Laura B.; Gjerdingen, Dwenda K.; McGovern, Patricia M.
2013-01-01
Background There is limited documentation of non-medical methods of labor induction and pain management during childbirth in the U.S. We estimated the prevalence of non-medical interventions for induction and pain management and examined the association between medical and non-medical care during labor. Methods We used a nationally-representative survey of U.S. women who gave birth in 2005 (N=1,382) to examine use of non-medical methods of labor induction and pain management. Using logistic regression, we calculated odds of non-medical and medical interventions to induce labor or mitigate pain, and the odds of medical induction and obstetric analgesia by whether non-medical methods were used. Results Nearly 30% of women used non-medical methods to start labor, and over 70% of women used non-medical pain management. Doula support was the strongest predictor of non-medical methods of labor induction (Adjusted Odds Ratio (AOR) = 3.0) and labor pain management (AOR = 5.7). Use of non-medical pain management was significantly associated with decreased odds of medical pain management (OR = 0.65); this relationship was attenuated with covariate adjustment. Conclusions Non-medical methods to induce labor and manage pain during childbirth are commonly used by U.S. women. Future research should examine effectiveness of these strategies and their influence on medical services use. PMID:24344703
Density Determination of Metallic Melts from Diffuse X-Ray Scattering
NASA Astrophysics Data System (ADS)
Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.
2017-12-01
Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.