Science.gov

Sample records for induction motor based

  1. Symmetry Based Control of Induction Motor

    NASA Astrophysics Data System (ADS)

    Monika, M.; Singh, N. M.; Bhil, S. K.

    2008-10-01

    In this paper symmetry based control of induction motor is proposed. The fifth order model of Induction motor is reduced to the base coordinates which is decoupled from the fiber dynamics by using a regular static feedback. This makes the control of Induction motor similar to the control of separately excited D.C. motor. This paper shows that the selection of a particular frame of reference for the two phase equivalent model depends on the control objectives which are to be taken as the base coordinates.

  2. An Induction Motor Based Wind Turbine Emulator

    NASA Astrophysics Data System (ADS)

    Sokolovs, A.; Grigans, L.; Kamolins, E.; Voitkans, J.

    2014-04-01

    The authors present a small-scale wind turbine emulator based on the AC drive system and discuss the methods for power coefficient calculation. In the work, the experimental set-up consisting of an AC induction motor, a frequency converter, a synchronous permanent magnet generator, a DC-DC boost converter and DC load was simulated and tested using real-life equipment. The experimentally obtained wind turbine power and torque diagrams using the emulator are in a good agreement with the theoretical ones. Šajā rakstā parādīta mazas jaudas vēja turbīnas emulatora izveide ar maiņstrāvas piedziņas sistēmu, kā arī analizētas vairākas turbīnas jaudas koeficienta analītiskās aprēķina metodes. Vēja turbīnas emulatora eksperimentālais stends, kas sastāv no asinhronā elektromotora, frekvenču pārveidotāja, sinhronā pastāvīgo magnētu ģeneratora, līdzstrāvas paaugstinošā pārveidotāja un slodzes, tika pārbaudīts gan simulēšanas vidē, gan uz reālām iekārtām. Eksperimentāli iegūtās vēja turbīnas emulatora jaudas un momenta diagrammas ir salīdzinātas ar teorētiskajām.

  3. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  4. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries. PMID:24111159

  5. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  6. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  7. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  8. The induction motor

    NASA Astrophysics Data System (ADS)

    Redinz, José Arnaldo

    2015-09-01

    We obtain analytical expressions for the torques and angular speed of an induction motor with a simple geometry, resembling the geometry of the first induction motor investigated by Arago in 1824. The rotor is a conducting disc rotating between the magnetic poles of two off-axis solenoids, displaced in space by 90^\\circ from each other. We apply our results to discuss a theory for the ubiquitous electromechanical watt-hour meter. For comparison of the theoretical result for the angular speed with measurements, we propose a simple experiment in which an induction motor with an aluminum disc rotor is constructed.

  9. Adaptive speed/position control of induction motor based on SPR approach

    NASA Astrophysics Data System (ADS)

    Lee, Hou-Tsan

    2014-11-01

    A sensorless speed/position tracking control scheme for induction motors is proposed subject to unknown load torque via adaptive strictly positive real (SPR) approach design. A special nonlinear coordinate transform is first provided to reform the dynamical model of the induction motor. The information on rotor fluxes can thus be derived from the dynamical model to decide on the proportion of input voltage in the d-q frame under the constraint of the maximum power transfer property of induction motors. Based on the SPR approach, the speed and position control objectives can be achieved. The proposed control scheme is to provide the speed/position control of induction motors while lacking the knowledge of some mechanical system parameters, such as the motor inertia, motor damping coefficient, and the unknown payload. The adaptive control technique is thus involved in the field oriented control scheme to deal with the unknown parameters. The thorough proof is derived to guarantee the stability of the speed and position of control systems of induction motors. Besides, numerical simulation and experimental results are also provided to validate the effectiveness of the proposed control scheme.

  10. Sound based induction motor fault diagnosis using Kohonen self-organizing map

    NASA Astrophysics Data System (ADS)

    Germen, Emin; Başaran, Murat; Fidan, Mehmet

    2014-05-01

    The induction motors, which have simple structures and design, are the essential elements of the industry. Their long-lasting utilization in critical processes possibly causes unavoidable mechanical and electrical defects that can deteriorate the production. The early diagnosis of the defects in induction motors is crucial in order to avoid interruption of manufacturing. In this work, the mechanical and the electrical faults which can be observed frequently on the induction motors are classified by means of analysis of the acoustic data of squirrel cage induction motors recorded by using several microphones simultaneously since the true nature of propagation of sound around the running motor provides specific clues about the types of the faults. In order to reveal the traces of the faults, multiple microphones are placed in a hemispherical shape around the motor. Correlation and wavelet-based analyses are applied for extracting necessary features from the recorded data. The features obtained from same types of motors with different kind of faults are used for the classification using the Self-Organizing Maps method. As it is described in this paper, highly motivating results are obtained both on the separation of healthy motor and faulty one and on the classification of fault types.

  11. Flux-Based Deadbeat Control of Induction-Motor Torque

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  12. Artificial neural network based fault identification scheme implementation for a three-phase induction motor.

    PubMed

    Kolla, Sri R; Altman, Shawn D

    2007-04-01

    This paper presents results from the implementation and testing of a PC based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three-phase voltages and currents from a 1/3 HP squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure using the JavaNNS program. The trained network is placed in a LabVIEW based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor off. The complete system is successfully tested in real time by creating different faults on the motor.

  13. Research on Direct Torque Control of Induction Motor Based on TMS320LF2407A

    NASA Astrophysics Data System (ADS)

    Lufei, Xu; Guangqun, Nan

    The direct torque control of Induction Motor is one of the high performance control system, which was proposed after the vector control scheme. During the recent 20 years, It has been developed rapidly for its concise system scheme, excellent dynamic and static performances. DTC system directly controls the electromagnetic torque and stator flux, using the analyzing method of space vector and stator flux orientation. This paper establishes the mathematical model of direct torque control (DTC) system of induction motor, and direct torque control (DTC) scheme of induction motor based on TMS320LF2407A is introduced. The control scheme gets the switch control signal of inverter with the space voltage vector modulation technology. Finally the approach has been implemented on DSP in a 1.1 kW drive. The results show that the DTC with SVPWM has many merits such as simple realization, good running performance and high voltage utilization ratio.

  14. Neural-network-based speed controller for induction motors using inverse dynamics model

    NASA Astrophysics Data System (ADS)

    Ahmed, Hassanein S.; Mohamed, Kamel

    2016-08-01

    Artificial Neural Networks (ANNs) are excellent tools for controller design. ANNs have many advantages compared to traditional control methods. These advantages include simple architecture, training and generalization and distortion insensitivity to nonlinear approximations and nonexact input data. Induction motors have many excellent features, such as simple and rugged construction, high reliability, high robustness, low cost, minimum maintenance, high efficiency, and good self-starting capabilities. In this paper, we propose a neural-network-based inverse model for speed controllers for induction motors. Simulation results show that the ANNs have a high tracing capability.

  15. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Glowacz, A.

    2014-10-01

    In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  16. RBFN Based Efficiency Optimization Method of Induction Motor Utilized in Electrically Driven Marine Propellers

    NASA Astrophysics Data System (ADS)

    Supari; Syafaruddin; Negara, I. Made Yulistya; Ashari, Mochamad; Hiyama, Takashi

    Thruster controllers of electric propulsion system with fixed pitch propellers are conventionally aimed to control only the shaft speed without utilizing the capabilities of the controllers to apply any other control strategies. In fact, the dynamic operating conditions lead to the fluctuation of motor load. For this reason, utilizing conventional controllers is hard enough due to the critical constraints and limitation of the ship power source. The paper presents study and analysis of efficiency optimization strategy in thruster shaft speed controllers driven by induction motor. The control strategy based on intelligent method called radial basis function neural network (RBFN) is implemented. A set of training data derived from a loss model controller of the induction motor working under indirect field-oriented-control (IFOC) drives is used for training process of RBFN. The loss model controller utilizes schematically the flux generating current as controlling variable. Estimation of the flux generating current through the RBFN process shows significant improvement in motor efficiency especially for low speed and ship transit system.

  17. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    NASA Astrophysics Data System (ADS)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  18. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  19. Observability analysis for model-based fault detection and sensor selection in induction motors

    NASA Astrophysics Data System (ADS)

    Nakhaeinejad, Mohsen; Bryant, Michael D.

    2011-07-01

    Sensors in different types and configurations provide information on the dynamics of a system. For a specific task, the question is whether measurements have enough information or whether the sensor configuration can be changed to improve the performance or to reduce costs. Observability analysis may answer the questions. This paper presents a general algorithm of nonlinear observability analysis with application to model-based diagnostics and sensor selection in three-phase induction motors. A bond graph model of the motor is developed and verified with experiments. A nonlinear observability matrix based on Lie derivatives is obtained from state equations. An observability index based on the singular value decomposition of the observability matrix is obtained. Singular values and singular vectors are used to identify the most and least observable configurations of sensors and parameters. A complex step derivative technique is used in the calculation of Jacobians to improve the computational performance of the observability analysis. The proposed algorithm of observability analysis can be applied to any nonlinear system to select the best configuration of sensors for applications of model-based diagnostics, observer-based controller, or to determine the level of sensor redundancy. Observability analysis on induction motors provides various sensor configurations with corresponding observability indices. Results show the redundancy levels for different sensors, and provide a sensor selection guideline for model-based diagnostics, and for observer-based controllers. The results can also be used for sensor fault detection and to improve the reliability of the system by increasing the redundancy level in measurements.

  20. A Fast Induction Motor Speed Estimation based on Hybrid Particle Swarm Optimization (HPSO)

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Abdallah, Ahmed N.; Khalidin, Zulkeflee bin; Lubis, Zulkarnain; Jie, Ma

    Intelligent control and estimation of power electronic systems by fuzzy logic and neural network techniques with fast torque and flux show tremendous promise in future. This paper proposed the application of Hybrid Particle Swarm Optimization (HPSO) for losses and operating cost minimization control in the induction motor drives. The main advantages of the proposed technique are; its simple structure and its straightforward maximization of induction motor efficiency and its operating cost for a given load torque. As will be demonstrated, Hybrid Particle Swarm Optimization (HPSO) is so efficient in finding the optimum operating machine's flux level. The results demonstrate the good quality and robustness in the system dynamic response and reduction in the steady-state and transient motor ripple torque.

  1. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  2. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  3. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    PubMed

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. PMID:23916869

  4. Gravitational search algorithm based tuning of a PI speed controller for an induction motor drive

    NASA Astrophysics Data System (ADS)

    Abd Ali, Jamal; Hannan, M. A.; Mohamed, Azah

    2016-03-01

    Proportional-integral (PI)-controller is very useful for controlling speed and mechanical load variables for the three-phase induction motor (TIM) operation. However, the conventional PI-controller has a very exhaustive trial and error procedure for obtaining it is parameters. In this paper, PI speed controller has been improved in it is design technique to suite TIM by utilizing a gravitational search algorithm (GSA) optimization technique. The mean absolute error (MAE) of the speed response has been used as an objective function. An optimal GSA based PI speed controller (GSA-PI) objective function is also employed to tune and minimize the MAE for developing the performance of the TIM in terms of changes speed and mechanical load. This experiment use space vector pulse width modulation (SVPWM) technique to create pulse width modulation for switching devices for three phase bridge inverter. Results obtained from the GSA-PI speed controller are compared with those obtained through particle swarm optimization (PSO) to validate the developed controller. Then it has been proved that the robustness of the GSA-PI speed controller is far better than that of the1 PSO controller in all tested cases in terms of damping capability and transient response under different mechanical loads and speeds.

  5. Online Monitoring of Induction Motors

    SciTech Connect

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  6. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  7. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  8. Swarm Intelligence Algorithm for Induction Motor Field Efficiency Evaluation

    NASA Astrophysics Data System (ADS)

    Sakthivel, V. P.; Subramanian, S.

    Determining induction motor field efficiency is imperative in industries for energy conservation and cost savings. The induction motor efficiency is generally tested in a laboratories by certain methods defined in IEEE Standard - 112. But these methods cannot be used for motor efficiency evaluations in the field because it disrupts the production process of the industry. This paper proposes a swarm intelligence algorithm, Particle Swarm Optimization (PSO) for efficiency evaluation of in-service induction motor based on a modified induction motor equivalent circuit model. In this model, stray load losses are considered. The proposed efficiency evaluation method combines the PSO and the equivalent circuit method. First, the equivalent circuit parameters are estimated by minimizing the difference between measured and calculated values of stator current and input power of the motor using the PSO algorithm. Based on these parameters, the efficiency of the motor at various load points are evaluated by using the equivalent circuit method. To exemplify the performance of the PSO based efficiency estimation method, a 5 HP motor has been tested, compared with genetic algorithm (GA), torque gauge method, equivalent circuit method, slip method, current method and segregated loss method and found to be superior. Accordingly, the method will be useful for engineers who implement the energy efficiency programs to the electric motor systems in industries.

  9. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed.

  10. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  11. Soft Computing Application in Fault Detection of Induction Motor

    SciTech Connect

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  12. FORTRAN program for induction motor analysis

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1976-01-01

    A FORTRAN program for induction motor analysis is described. The analysis includes calculations of torque-speed characteristics, efficiency, losses, magnetic flux densities, weights, and various electrical parameters. The program is limited to three-phase Y-connected, squirrel-cage motors. Detailed instructions for using the program are given. The analysis equations are documented, and the sources of the equations are referenced. The appendixes include a FORTRAN symbol list, a complete explanation of input requirements, and a list of error messages.

  13. Bridge Inductance of Induction Motor with Closed Rotor Slots

    NASA Astrophysics Data System (ADS)

    Matsushita, Makoto; Ishibashi, Fuminori; Suzuki, Takao; Noda, Shinichi

    Closed rotor slots are widely employed in low-power squirrel-cage induction motors with die-cast aluminum cage rotors. Die-cast aluminum cages with closed rotor slots can be manufactured commercially. They help reduce flux pulsation in air gaps, attenuate acoustic noises, and achieve high efficiency. However, it is difficult to calculate bridge inductance of a closed rotor slot accurately because the main flux passes through the bridge and iron saturation can be achieved depending upon the bar current. In this study, bridge inductance was investigated by using a search coil and by FEM analysis and conventional equations. The bridge flux density and the bridge linkage flux were measured by using 4P-0.75kW motor with closed rotor slots, and the bridge inductance was calculated as a function of rotor bar current. The bridge inductance was also analyzed by FEM, and the results were analytically checked by using the calculated conventional equations. From these analyses, it is seen that the measured values of the bridge inductance are in good agreement with the values calculated by FEM and conventional methods. It is verified that the bridge inductance shows a trend similar to that of the μ-H curve of the rotor steel sheet.

  14. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  15. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  16. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  17. ANN based Performance Evaluation of BDI for Condition Monitoring of Induction Motor Bearings

    NASA Astrophysics Data System (ADS)

    Patel, Raj Kumar; Giri, V. K.

    2016-07-01

    One of the critical parts in rotating machines is bearings and most of the failure arises from the defective bearings. Bearing failure leads to failure of a machine and the unpredicted productivity loss in the performance. Therefore, bearing fault detection and prognosis is an integral part of the preventive maintenance procedures. In this paper vibration signal for four conditions of a deep groove ball bearing; normal (N), inner race defect (IRD), ball defect (BD) and outer race defect (ORD) were acquired from a customized bearing test rig, under four different conditions and three different fault sizes. Two approaches have been opted for statistical feature extraction from the vibration signal. In the first approach, raw signal is used for statistical feature extraction and in the second approach statistical features extracted are based on bearing damage index (BDI). The proposed BDI technique uses wavelet packet node energy coefficients analysis method. Both the features are used as inputs to an ANN classifier to evaluate its performance. A comparison of ANN performance is made based on raw vibration data and data chosen by using BDI. The ANN performance has been found to be fairly higher when BDI based signals were used as inputs to the classifier.

  18. Analytical calculation of the RFOC method in single-phase induction motor

    NASA Astrophysics Data System (ADS)

    Jannati, M.; Monadi, A.; Idris, N. R. N.; Faudzi, A. A. M.

    2016-05-01

    This study discusses the different techniques for speed control of single-phase induction motor with two asymmetrical main and auxiliary windings based on Rotor Field-Oriented Control (RFOC) method. In the presented methods, transformation matrices are introduced and applied to the equations of single-phase induction motor. It is shown by applying these rotational transformations to the unbalanced equations of single-phase induction motor, equations of single-phase induction motor are transformed into symmetrical equations. These rotational transformations are achieved based from the steady-state equivalent circuit of single-phase induction motor. Finally, a method for RFOC of single-phase induction motor is proposed. Results show the good performance of the proposed method.

  19. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  20. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  1. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  2. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  3. A simplified scheme for induction motor condition monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pedro Vicente Jover; Negrea, Marian; Arkkio, Antero

    2008-07-01

    This work proposes a general scheme to detect induction motor fault by monitoring the motor current. The scheme is based on signal processing (predictive filters) and soft computing technique (fuzzy logic). The predictive filter is used in order to separate the fundamental component from the harmonic components. Fuzzy logic is used to identify the motor state. Finite element method (FEM) is utilised to generate virtual data that allows to test the proposed technique and foresee the change in the current under different motor conditions. A simple and reliable method for the detection of stator winding failures based on the phase current amplitudes is implemented and tested. The layout has been proved in MATLAB/SIMULINK, with both data from FEM motor simulation program and real measurements. The proposed method has the ability to work with variable speed drives and avoids the detailed spectral analysis of the motor current. This work shows the feasibility of spotting broken rotor bars, eccentricities and inter-turn short-circuit by monitoring the motor currents.

  4. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  5. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  6. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  7. Efficiency Optimization of Slitted-Core Induction Motor

    NASA Astrophysics Data System (ADS)

    Yetgin, Asim Gökhan; Turan, Mustafa

    2014-01-01

    In this study, a 3kW squirrel cage induction motor having slits in stator and rotor teeth were examined. The slit depth and width in the 56 different slitted motor models were optimized with Finite Element Method Magnetics (FEMM) software by using Finite Elements Method (FEM). What value the depth and width of optimum slit should be was determined in order to obtain maximum motor efficiency in the new motor models created with the proposed slitted structure, and how the depth and width of slit could affect the performance of motor was demonstrated.

  8. Integrated Cooling System for Induction Motor Traction Drives, CARAT Program Phase Two Final Report

    SciTech Connect

    Konrad, Charles E.

    2002-12-03

    This Program is directed toward improvements in electric vehicle/hybrid electric vehicle traction systems, and in particular, the development of a low cost, highly efficient, compact traction motor-controller system targeted for high volume automotive use. Because of the complex inter-relationships between the motor and the controller, the combination of motor and controller must be considered as a system in the design and evaluation of overall cost and performance. The induction motor is ideally suited for use as a traction motor because of its basic ruggedness, low cost, and high efficiency. As one can see in Figure 1.1, the induction motor traction drive has been continually evolving through a succession of programs spanning the past fifteen years. VPT marketed an induction motor-based traction drive system, the EV2000, which proved to be a reliable, high performance system that was used in a wide range of vehicles. The EV2000 drives evolved from the Modular Electric Vehicle Program (MEVP) and has been used in vehicles ranging in size from 3,000 lb. autos and utility vans, to 32,000 lb. city transit buses. Vehicles powered by the EV2000 induction motor powertrain have accumulated over 2 million miles of service. The EV2000 induction motor system represents 1993 state-of-the-art technology, and evolved from earlier induction motor programs that drove induction motor speeds up to 15,000 rpm to reduce the motor size and cost. It was recognized that the improvements in power density and motor cost sought in the PNGV program could only be achieved through increases in motor speed. Esson’s Rule for motor power clearly states that the power obtainable from a given motor design is the product of motor speed and volume. In order to meet the CARAT Program objectives, the maximum speed goal of the induction motor designed in this Program was increased from 15,000 rpm to 20,000 rpm while maintaining the efficiency and durability demonstrated by lower speed designs done in

  9. Performance Analysis of Saturated Induction Motors by Virtual Tests

    ERIC Educational Resources Information Center

    Ojaghi, M.; Faiz, J.; Kazemi, M.; Rezaei, M.

    2012-01-01

    Many undergraduate-level electrical machines textbooks give detailed treatments of the performance of induction motors. Students can deepen this understanding of motor performance by performing the appropriate practical work in laboratories or in simulation using proper software packages. This paper considers various common and less-common tests…

  10. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  11. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  12. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  13. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation.

  14. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  15. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  16. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  17. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  18. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  19. Reluctance network analysis of an orthogonal-core type parametric induction motor

    SciTech Connect

    Tajima, Katsubumi; Sato, Kohei; Komukai, Toshihiko; Ichinokura, Osamu

    1999-09-01

    In this paper, an analytical method of an orthogonal-core type parametric induction motor is proposed, based on a reluctance network model of the stator. The model is derived by a similar technique applied to an orthogonal-core transformer. Using this model the parametric oscillation characteristic of the motor, without a rotor, is computed. The simulation results agree well with the experiments. It is obvious that the analytical model of the stator presented here is proper for analysis of the motor and that, by use of this model and suitable analytical model of the rotor, the motor characteristics can be analyzed.

  20. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  1. Demonstration of Lenz's Law with an Induction Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2005-01-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.

  2. Close up of backup exciter showing induction motor at left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up of backup exciter showing induction motor at left and direct current generator at right. View to west - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  3. Dynamical behaviors of a plate activated by an induction motor

    NASA Astrophysics Data System (ADS)

    Tcheutchoua Fossi, D. O.; Woafo, P.

    2010-08-01

    Dynamics and chaotification of a system consisting of an induction motor activating a mobile plate (with variable contents) fixed to a spring are studied. The dynamical model of the device is presented and the electromechanical equations are formulated. The oscillations of the plate are analyzed through variations of the following reliable control parameters: phase voltage supply of the motor, frequency of the external source and mass of the plate. The dynamics of the system near the fundamental resonance region presents jump phenomenon. Mapping of the control parameters planes in terms of types of motion reveals period- n motion, quasi-periodicity and chaos. Anti-control of chaos of the induction motor is also obtained using the field-oriented control associated to the time delay feedback control.

  4. Lightweight type linear induction motor and its characteristics

    SciTech Connect

    Osawa, S.; Yoshimuro, M.; Karita, M.; Ebihara, D.; Yokoi, T.

    1994-08-01

    At the Institute for Posts and Telecommunications Policy, a postal transportation system has been studied. This system would make use of linear induction motor (LIM)-driven vehicles for transporting mail between post offices in the Tokyo Metropolitan area. The system would connect the main post offices in the Tokyo area with tunnels circularly constructed underground and would transport mail with linear induction motor-driven vehicles. In this study, it is found that if vehicle weight is reduced, climbing capability could be considerably improved. Accordingly, the potential for reducing the weight of vehicle-mounted LIMs has been explored, and a prototype lightweight LIM has been manufactured. This paper reports on the lightweight LIM and its characteristics. 8 refs.

  5. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  6. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  7. Evaluation of quasi-square wave inverter as a power source for induction motors

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.

    1977-01-01

    The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

  8. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  9. Offline Parameter Estimation of Induction Motor Using a Meta Heuristic Algorithm

    NASA Astrophysics Data System (ADS)

    Giri, Ritwik; Chowdhury, Aritra; Ghosh, Arnob; Panigrahi, B. K.; Das, Swagatam

    An offline parameter estimation problem of an induction motor using a well known, efficient yet simple meta heuristic algorithm DEGL (Differential Evolution with a neighborhood based mutation scheme) has been presented in this article. Two different induction motor models such as approximate and exact models are considered. The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the manufacturer data or from tests. Differential Evolution is not completely free from the problems of slow or premature convergence, that's why the idea of a much more efficient variant of DE comes. The variant of DE used for solving this problem utilize the concept of the neighborhood of each population member. The feasibility of the proposed method is demonstrated for two different motors and it is compared with the genetic algorithm and the Particle Swarm Optimization algorithm. From the simulation results it is evident that DEGL outperforms both the algorithms (GA and PSO) in the estimation of the parameters of the induction motor.

  10. Sensorless speed estimation of an AC induction motor by using an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Alkhoraif, Abdulelah Ali

    Sensorless speed detection of an induction motor is an attractive area for researchers to enhance the reliability of the system and to reduce the cost of the components. This paper presents a simple method of estimating a rotational speed by utilizing an artificial neural network (ANN) that would be fed by a set of stator current frequencies that contain some saliency harmonics. This approach allows operators to detect the speed in induction motors such an approach also provides reliability, low cost, and simplicity. First, the proposed method is based on converting the stator current signals to the frequency domain and then applying a tracking algorithm to the stator current spectrum in order to detect frequency peaks. Secondly, the ANN has to be trained by the detected peaks; the training data must be from very precise data to provide an accurate rotor speed. Moreover, the desired output of the training is the speed, which is measured by a tachometer simultaneously with the stator current signal. The databases were collected at many different speeds from two different types of AC induction motors, wound rotor and squirrel cage. They were trained and tested, so when the difference between the desired speed value and the ANN output value reached the wanted accuracy, the system does not need to use the tachometer anymore. Eventually, the experimental results show that in an optimal ANN design, the speed of the wound rotor induction motor was estimated accurately, where the testing average error was 1 RPM. The proposed method has not succeeded to predict the rotor speed of the squirrel cage induction motor precisely, where the smallest testing­average error that was achieved was 5 RPM.

  11. Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index

    PubMed Central

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state. PMID:22666016

  12. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  13. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  14. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  15. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  16. Analytical analysis of single- and three-phase induction motors

    SciTech Connect

    Davey, K.R.

    1998-09-01

    The analysis of single and multiphase induction motors continues to represent a challenge to researchers in computational electromagnetics due to the presence of r{Omega} x B electric fields. This contribution cannot be inserted into the Green`s function for boundary element codes; finite difference and finite element approaches are forced to hard code these effects, compensating at high speeds with upwinding techniques. The direct computation of these affects using transfer relations in a linear environment offers an analytical backdrop both for benchmark testing numerical codes and for design assessment criteria. In addition to torque-speed predictions, the terminal relations and total power dissipation in the rotor are computed for an exposed winding three-phase and single-phase machine.

  17. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  18. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  19. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. PMID:26775088

  20. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  1. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  2. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  3. Smart Technique for Induction Motors Diagnosis by Monitoring the Power Factor Using Only the Measured Current

    NASA Astrophysics Data System (ADS)

    Shnibha, R. A.; Albarabar, A. S.

    2012-05-01

    This paper is concerned with accurate, early and reliable induction motor IM fault detection and diagnosis using an enhanced power parameter measurement technique. IM protection devices typically monitor the motor current and/or voltage to provide the motor protection from e.g. current overload, over/under voltage, etc. One of the interesting parameters to monitor is the operating power factor (PF) of the IM which provides better under-load protection compared to the motor current based approaches. The PF of the motor is determined by the level of the current and voltage that are drawn, and offers non-intrusive monitoring. Traditionally, PF estimation would require both voltage and the current measurements to apply the displacement method. This paper will use a method of determining the operating PF of the IM using only the measured current and the manufacturer data that are typically available from the nameplate and/or datasheet for IM monitoring. The novelty of this work lies in detecting very low phase imbalance related faults and misalignment. Much of the previous work has dealt with detecting phase imbalance faults at higher degrees of severity, i.e. voltage drops of 10% or more. The technique was tested by empirical measurements on test rig comprised a 1.1 kW variable speed three phase induction motor with varying output load (No load, 25%, 50%, 75% and 100% load). One common faults was introduced; imbalance in one phase as the electrical fault The experimental results demonstrate that the PF can be successfully applied for IM fault diagnosis and the present study shows that severity fault detection using PF is promising. The proposed method offers a potentially reliable, non-intrusive, and inexpensive CM tool which can be implemented with real-time monitoring systems

  4. Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

    NASA Astrophysics Data System (ADS)

    Bradna, J.; Bauer, J.; Fligl, S.; Hlinovsky, V.

    The algorithms based on separated control of the motor flux and torque is used in order to gain the maximum performance from the induction machine. To push the efficiency and dynamics limits of the IM to its limits mostly FOC or DTC control strategies are used. Both are based on the knowledge of the hardly measurable variable-machine flux. To obtain the information about inner machine flux models based on the machine equivalent circuit are mostly used. Therefore the accuracy of the equivalent circuits has direct influence on the accuracy of the machine control. To reduce the complexity of the mathematical model the resistances and inductances are concentrated to one component and three phase winding is assumed to be symmetrical. In order to design control strategy for the induction motor, system equations and equivalent circuit must be established at first. This paper examines and compares some of the issues of adequate machine modeling and attempts to provide a firmer basis for selection of an appropriate model and to confirm or disprove the equivalence of different approaches. The results of the IM model run up are then compared to the results obtained from the measurements on the real machine and the equivalency is discussed.

  5. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  6. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  7. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  8. The right {mu}P simplifies using induction motors to propel electric cars

    SciTech Connect

    Baum, J.; Berringer, K.

    1994-03-31

    In electric vehicles (EVs), AC induction motors can provide variable speed at low cost. The most common method for controlling induction motors uses a 3-phase AC voltage-source inverter with sine-wave PWM (pulse width modulation). Because the motor`s speed and acceleration depend on amplitude as well as frequency, the inverter must produce sine waves of variable voltage and frequency. The authors describe how a single microcontroller can provide such control functions while generating PWM waveforms in which the modulation is sinusoidal.

  9. The pulsed linear induction motor concept for high-speed trains

    SciTech Connect

    Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

    1995-06-01

    The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

  10. Internal Model Controller of an ANN Speed Sensorless Controlled Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Hamed Mouna, Ben; Lassaad, Sbita

    This study deals with the performance analysis and implementation of a robust sensorless speed controller. The robustness is guaranteed by the use of the Internal Model Controller (IMC). An intelligent algorithm is evolved to eliminate the mechanical speed. It is based on the Artificial Neural Network (ANN) principle. Verification of the proposed robust sensorless controller is provided by experimental realistic tests on a scalar controlled induction motor drive. Sensorless robust speed control at low speeds and in field weakening region (high speeds) is studied in order to show the robustness of the speed controller under a wide range of load.

  11. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    SciTech Connect

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.

  12. Structured attachment of bacterial molecular motors for defined microflow induction

    NASA Astrophysics Data System (ADS)

    Woerdemann, Mike; Hörner, Florian; Denz, Cornelia

    2014-01-01

    Bacterial rotational motor complexes that propel flagellated bacteria possess unique properties like their size of a few nanometres and the ability of selfreproduction that have led to various exciting applications including biohybrid nano-machines. One mandatory prerequisite to utilize bacterial nano motors in fluid applications is the ability to transfer force and torque to the fluid, which usually can be achieved by attachment of the bacterial cell to adequate surfaces. Additionally, for optimal transfer of force or torque, precise control of the position down to the single cell level is of utmost importance. Based on a PIV (particle image velocimetry) evaluation of the induced flow of single bacteria,we propose and demonstrate attachment of arbitrary patterns of motile bacterial cells in a fast light-based two-step process for the first time to our knowledge. First, these cells are pre-structured by holographic optical tweezers and then attached to a homogeneous, polystyrene-coated surface. In contrast to the few approaches that have been implemented up to now and which rely on pre-structured surfaces, our scheme allows for precise control on a single bacterium level, is versatile, interactive and has low requirements with respect to the surface preparation.

  13. A new method for the design optimization of three-phase induction motors

    SciTech Connect

    Daidone, A.; Parasiliti, F.; Villani, M.; Lucidi, S.

    1998-09-01

    The paper deals with the optimization problem of induction motors design. In particular a new global minimization algorithm is described; it tries to take into account all the features of these particular problems. A first numerical comparison between this new algorithm and a method widely used in the design optimization of induction motors has been performed. The obtained results show that the proposed approach is promising.

  14. 29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21INCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21-INCH AND 18-INCH BILLET MILLS. MOTOR WAS MANUFACTURED BY THE GENERAL ELECTRIC COMPANY, SCHENECTADY, NEW YORK. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  15. Voltage harmonic variation in three-phase induction motors with different coil pitches

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-09-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160° coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120° coil pitch motor was increased by 7.5%.

  16. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  17. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L.; Appleton, G.T.

    1993-04-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER&WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  18. Implementation of damped-oscillation crane control for existing ac induction motor-driven cranes

    SciTech Connect

    Noakes, M.W.; Kress, R.L. ); Appleton, G.T. . School of Electrical Engineering)

    1993-01-01

    The Oak Ridge National Laboratory (ORNL) has implemented damped-oscillation crane control on one of its existing ac induction motor-driven facility overhead cranes. The purpose of this engineering grade test has been to determine feasibility, determine control and interfacing specifications, and establish the capability of newly available ac motor-control hardware. A flux vector inverter drive is used in the initial demonstration to investigate acceptability for swing-free crane control. Motor performance and restrictions are also examined. Control hardware design is based upon the Environmental Restoration and Waste Management (ER WM) Robotics Technology Development Program (RTDP) standards. This includes the use of the VME bus and Motorola 680X0-based CPU boards for the hardware and UNIX and VxWorks for the software. However, smaller, cheaper, and more simple embedded controller design constraints are also considered in order to make the technology more attractive for general industrial use. Theoretical background, specific implementation, and recommendations are presented in this paper.

  19. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    NASA Astrophysics Data System (ADS)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  20. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. PMID:25820090

  1. A thermal network model for induction motors of hermetic reciprocating compressors

    NASA Astrophysics Data System (ADS)

    Dutra, T.; Deschamps, C. J.

    2015-08-01

    This paper describes a simulation model for small reciprocating compressors with emphasis on the electrical motor modelling. Heat transfer is solved through algebraic equations derived from lumped thermal energy balances applied to the compressor components. Thermal conductances between the motor components are characterized via a thermal network model. The single-phase induction motor is modelled via an equivalent circuit, allowing predictions for the motor performance and distributed losses. The predicted temperature distribution is used to evaluate the stator and rotor windings resistances. The thermal and electric models are solved in a coupled manner with a model for the compression cycle. Predictions of temperature distribution, motor efficiency, as well as isentropic and volumetric efficiencies, are compared with experimental data at different operating conditions. The model is then applied to analyse the motor temperature as a function of input voltage and stator wire diameter.

  2. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  3. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  4. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  5. Detection of broken rotor bar faults in induction motor at low load using neural network.

    PubMed

    Bessam, B; Menacer, A; Boumehraz, M; Cherif, H

    2016-09-01

    The knowledge of the broken rotor bars characteristic frequencies and amplitudes has a great importance for all related diagnostic methods. The monitoring of motor faults requires a high resolution spectrum to separate different frequency components. The Discrete Fourier Transform (DFT) has been widely used to achieve these requirements. However, at low slip this technique cannot give good results. As a solution for these problems, this paper proposes an efficient technique based on a neural network approach and Hilbert transform (HT) for broken rotor bar diagnosis in induction machines at low load. The Hilbert transform is used to extract the stator current envelope (SCE). Two features are selected from the (SCE) spectrum (the amplitude and frequency of the harmonic). These features will be used as input for neural network. The results obtained are astonishing and it is capable to detect the correct number of broken rotor bars under different load conditions. PMID:27329853

  6. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  7. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  8. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  9. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  10. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  11. Concept for sleeve induction motor with 1-msec mechanical time constant

    NASA Technical Reports Server (NTRS)

    Wiegand, D. E.

    1968-01-01

    Conductive sleeve induction motor having a 1-msec mechanical time constant is used with solid-state devices to control all-electric servo power systems. The servomotor rotor inertia is small compared to the maximum force rating of the servo motion, permitting high no-load acceleration.

  12. Temperature and Light Control of Three phase Induction Motor Speed Drive by PIC

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2010-06-01

    PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "Peripheral Interface Controller". PICs are popular with the developers and the hobbyists due to their low cost, wide availability, large user base, extensive collection of application notes, free development tools, and serial programming (and re-programming with flash memory) capability. In modern days, PIC microcontrollers are used in the industrial world to control many types of equipment, ranging from consumer to specialized devices. They have replaced older types of controllers, including microprocessors. Also, there is a growing need for off-line support of a computer's main processor. The demand is going to grow with more equipment uses more intelligence. In the engineering field for instance, PIC has brought a very positive impact in designing an automation control system and controlling industrial machineries. Accordingly, this paper shows the change in the motor speed by the use of PIC in accordance to the light and level of temperature. The project focuses on programming the PIC by embedded software that detects the temperature and light signals and send it to 3 phase induction motor of 240 volt. A theoretical analysis and the practical approach in achieving this work goal have proved that PIC plays an important role in the field of electronics control.

  13. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    NASA Astrophysics Data System (ADS)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  14. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  15. A single/two-phase, regenerative, variable speed, induction motor drive with sinusoidal input current

    SciTech Connect

    Rahman, M.F.; Zhong, L.

    1995-12-31

    The single phase induction motor with two windings, main and auxiliary, is probably the most widely used motor in the world. The mains operated single-phase motor usually operates at low power factor, low efficiency and at fixed speed. At most, two or three fixed speeds are provided when required, through manual intervention. Such fixed speed operation hinders product designers from incorporating many interesting and useful features in their products. The present concern on harmonic pollution of the supply and low power factor operation, as embodied in the recent IEC555-2 standard, also calls for power factor correction measures to be included in applications where a single phase motor is used. This paper presents a variable speed single-phase motor (with two windings) drive that utilizes just six switches as found in the emerging intelligent power modules (IPM). Just one integrated module with six switches serves to implement the input rectifier with sinusoidal input current, and the two-phase VSI or CSI inverter to drive the two phases of the motor with balanced ampere-turns. The input rectifier is also reversible, so that the motor can be braked with energy return to the mains, thus operating with high efficiency at all times.

  16. Applying adjustable speed drives (ASD`s) to 3 phase induction NEMA frame motors

    SciTech Connect

    Manz, L.

    1995-06-01

    The availability, price, and flexibility of ASD`s for use with three phase induction motors (referred to simply as motors in the rest of this article) has made ASD`s very common items in many applications where AC and DC motors have been applied in the past. Mating the ASD to the motor and the load requirements is the responsibility of a system integrator. In some projects the system integrator may be the equipment supplier. In others, it may be the ASD supplier. In still others, it may be the Engineer in the mill who integrates the system. Regardless of who integrates the system, if any of the parts do not function properly, the plant engineer has the frustration of plant down time while trying to get the system running. It is the intention of the author in writing this paper to first explain why the motor gets hotter on ASD power than it does on sine wave power. Second, he will explain how to determine the derating if any required on standard motors when applied to ASD`s. There are other areas of concern in mating a motor to an ASD including noise, vibration, and insulation related issues. These will not be included in this paper and could easily be the subject of another paper in the future.

  17. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  18. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  19. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  20. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  1. Tuning the stator resistance of induction motors using artificial neural network

    SciTech Connect

    Cabrera, L.A.; Elbuluk, M.E.; Husain, I.

    1997-09-01

    Tuning the stator resistance of induction motors is very important, especially when it is used to implement direct torque control (DTC) in which the stator resistance is a main parameter. In this paper, an artificial network (ANN) is used to accomplish tuning of the stator resistance of an induction motor. The parallel recursive prediction error and backpropagation training algorithms were used in training the neural network for the simulation and experimental results, respectively. The neural network used to tune the stator resistance was trained on-line, making the DTC strategy more robust and accurate. Simulation results are presented for three different neural-network configurations showing the efficiency of the tuning process. Experimental results were obtained for the one of the three neural-network configuration. Both simulation and experimental results showed that the ANN have tuned the stator resistance in the controller to track actual resistance of the machine.

  2. Mixed eccentricity diagnosis in Inverter-Fed Induction Motors via the Adaptive Slope Transform of transient stator currents

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, J.; Antonino-Daviu, J.; Roger-Folch, J.; Moríñigo-Sotelo, D.; Duque-Pérez, O.

    2014-10-01

    This paper researches the detection of mixed eccentricity in Inverter-Fed Induction Motors. The classic FFT method cannot be applied when the stator current captured is not in steady state, which is very common in these motors. Therefore, a transform able to detect the time-frequency evolutions of the components present in the transient signal captured must be applied. In order to optimize the result, a method to calculate the theoretical time-frequency evolution of the stator current components is presented, using only the captured current. This previously obtained information enables the use of the proposed transform: the Adaptive Slope Transform, based on appropriately choosing the atom slope in each point analyzed. Thanks to its adaptive characteristics, the time-frequency evolution of the main components in a stator transient current is traced precisely and with high detail in the 2D time-frequency plot obtained. As a consequence, the time-frequency plane characteristic patterns produced by the Eccentricity Related Harmonics are easily and clearly identified enabling a reliable diagnosis. Moreover, the problem of quantifying the presence of the fault is solved presenting a simple and easy to apply method. The transform capabilities have been shown successfully diagnosing an Inverter-Fed Induction Motor with mixed eccentricity during a startup, a decrease in the assigned frequency, and a load variation with and without slip compensation.

  3. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Zi, Yanyang; Chen, Binqiang; Wu, Feng; He, Zhengjia

    2015-03-01

    Mechanical anomaly is a major failure type of induction motor. It is of great value to detect the resulting fault feature automatically. In this paper, an ensemble super-wavelet transform (ESW) is proposed for investigating vibration features of motor bearing faults. The ESW is put forward based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform such that fault feature adaptability is enabled. Within ESW, a parametric optimization is performed on the measured signal to obtain a quality TQWT basis that best demonstrate the hidden fault feature. TQWT is introduced as it provides a vast wavelet dictionary with time-frequency localization ability. The parametric optimization is guided according to the maximization of fault feature ratio, which is a new quantitative measure of periodic fault signatures. The fault feature ratio is derived from the digital Hilbert demodulation analysis with an insightful quantitative interpretation. The output of ESW on the measured signal is a selected wavelet scale with indicated fault features. It is verified via numerical simulations that ESW can match the oscillatory behavior of signals without artificially specified. The proposed method is applied to two engineering cases, signals of which were collected from wind turbine and steel temper mill, to verify its effectiveness. The processed results demonstrate that the proposed method is more effective in extracting weak fault features of induction motor bearings compared with Fourier transform, direct Hilbert envelope spectrum, different wavelet transforms and spectral kurtosis.

  4. Sliding-mode control of a six-phase series/parallel connected two induction motors drive.

    PubMed

    Abjadi, Navid R

    2014-11-01

    In this paper, a parallel configuration is proposed for two quasi six-phase induction motors (QIMs) to feed them from a single six-phase voltage source inverter (VSI). A direct torque control (DTC) based on input-output feedback linearization (IOFL) combined with sliding mode (SM) control is used for each QIM in stationary reference frame. In addition, an adaptive scheme is employed to solve the motor resistances mismatching problem. The effectiveness and capability of the proposed method are shown by practical results obtained for two QIMs in series/parallel connections supplied from a single VSI. The decoupling control of QIMs and the feasibility of their torque and flux control are investigated. Moreover, a complete comparison between series and parallel connections of two QIMs is given.

  5. Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT

    NASA Astrophysics Data System (ADS)

    Liu, Yukun; Guo, Liwei; Wang, Qixiang; An, Guoqing; Guo, Ming; Lian, Hao

    2010-11-01

    This paper presents a signal processing method - amplitude recovery method (abbreviated to ARM) - that can be used as the signal pre-processing for fast Fourier transform (FFT) in order to analyze the spectrum of the other-order harmonics rather than the fundamental frequency in stator currents and diagnose subtle faults in induction motors. In this situation, the ARM functions as a filter that can filter out the component of the fundamental frequency from three phases of stator currents of the induction motor. The filtering result of the ARM can be provided to FFT to do further spectrum analysis. In this way, the amplitudes of other-order frequencies can be extracted and analyzed independently. If the FFT is used without the ARM pre-processing and the components of other-order frequencies, compared to the fundamental frequency, are fainter, the amplitudes of other-order frequencies are not able easily to extract out from stator currents. The reason is when the FFT is used direct to analyze the original signal, all the frequencies in the spectrum analysis of original stator current signal have the same weight. The ARM is capable of separating the other-order part in stator currents from the fundamental-order part. Compared to the existent digital filters, the ARM has the benefits, including its stop-band narrow enough just to stop the fundamental frequency, its simple operations of algebra and trigonometry without any integration, and its deduction direct from mathematics equations without any artificial adjustment. The ARM can be also used by itself as a coarse-grained diagnosis of faults in induction motors when they are working. These features can be applied to monitor and diagnose the subtle faults in induction motors to guard them from some damages when they are in operation. The diagnosis application of ARM combined with FFT is also displayed in this paper with the experimented induction motor. The test results verify the rationality and feasibility of the

  6. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  7. Induction of plasticity in the dominant and non-dominant motor cortices of humans.

    PubMed

    Ridding, M C; Flavel, S C

    2006-06-01

    There are clear hemispheric differences in the human motor system. Studies using magnetic resonance morphometry have shown that representation of hand muscles is larger in the dominant hemisphere than the non-dominant hemisphere. There is some limited evidence of electrophysiological differences between hemispheres. For example, it has been reported recently that there is less intracortical inhibition in the dominant hemisphere than the non-dominant hemisphere, and it has been hypothesised that this reduction in inhibition may facilitate use-dependent plasticity in the dominant motor cortex. In the present study we examined this hypothesis in human subjects by examining plasticity induction in both dominant and non-dominant hemispheres using an experimental paradigm known to induce motor cortical plasticity, namely paired associative stimulation (PAS). Additionally, we investigated changes in dominant and non-dominant hand performance on a simple ballistic training task. Short-interval intracortical inhibition (SICI) was also measured for both dominant and non-dominant hands at a range of conditioning intensities. There was significantly less SICI in the dominant motor cortical hand area than in the non-dominant hand area. PAS induced a significant, and similar, increase in motor cortical excitability in both the dominant and non-dominant hemispheres. Motor training resulted in significant performance improvement in both dominant and non-dominant hands. However, there was significantly more improvement in the non-dominant hand. The results from these studies provide some further evidence of electrophysiological differences between the motor cortices of the two hemispheres. Additionally, these findings offer no support for the hypothesis that the dominant hemisphere is positioned more favourably, due to decreased inhibitory tone, than the non-dominant hemisphere for use-dependent plasticity. PMID:16501966

  8. High Ripples Reduction in DTC of Induction Motor by Using a New Reduced Switching Table

    NASA Astrophysics Data System (ADS)

    Mokhtari, Bachir; Benkhoris, Mohamed F.

    2016-05-01

    The direct torque and flux control (DTC) of electrical motors is characterized by ripples of torque and flux. Among the many solutions proposed to reduce them is to use modified switching tables which is very advantageous; because its implementation is easy and requires no additional cost compared to other solutions. This paper proposes a new reduced switching table (RST) to improve the DTC by reducing harmful ripples of torque and flux. This new switching table is smaller than the conventional one (CST) and depends principally at the flux error. This solution is studied by simulation under Matlab/Simulink and experimentally validated on a testbed with DSPACE1103. The results obtained of a DTC with RST applied to a three-phase induction motor (IM) show a good improvement and an effectiveness of proposed solution, the torque ripple decreases about 47% and 3% for the stator flux compared with a basic DTC.

  9. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  10. A method of optimal design of single-sided linear induction motor for transit

    SciTech Connect

    Yoon, S.B.; Hur, J.; Hyun, D.S.

    1997-09-01

    An optimal design method for a single-sided linear induction motor (SLIM) for transit is described. The authors propose the method which determines the overall parameters of SLIM for transit using only the rated mechanical output. When the optimization is carried out, the slot depth is used as the initial value so that the exact slot depth is calculated iteratively from the circuit equation. The optimization problem of a SLIM design is approached by use of the sequential quadratic programming (SQP). The influence of design variables is analyzed by the rated thrust and the rated velocity respectively.

  11. Numerical inductance calculations based on first principles.

    PubMed

    Shatz, Lisa F; Christensen, Craig W

    2014-01-01

    A method of calculating inductances based on first principles is presented, which has the advantage over the more popular simulators in that fundamental formulas are explicitly used so that a deeper understanding of the inductance calculation is obtained with no need for explicit discretization of the inductor. It also has the advantage over the traditional method of formulas or table lookups in that it can be used for a wider range of configurations. It relies on the use of fast computers with a sophisticated mathematical computing language such as Mathematica to perform the required integration numerically so that the researcher can focus on the physics of the inductance calculation and not on the numerical integration.

  12. Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors

    NASA Astrophysics Data System (ADS)

    Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.

    2015-08-01

    The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.

  13. Immediate Effects of Kinesiology Taping of Quadriceps on Motor Performance after Muscle Fatigued Induction

    PubMed Central

    Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min

    2015-01-01

    Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles. PMID:26246835

  14. Immediate Effects of Kinesiology Taping of Quadriceps on Motor Performance after Muscle Fatigued Induction.

    PubMed

    Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min

    2015-01-01

    Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles.

  15. Design of an advanced non linear controller for induction motors and experimental validation on an industrial benchmark

    NASA Astrophysics Data System (ADS)

    Lubineau, D.; Dion, J. M.; Dugard, L.; Roye, D.

    2000-02-01

    This paper mainly deals with the design of an advanced control law for induction motors and its real-time implementation on an experimental test benchmark. First, relationship between the classical field oriented control (FOC) and non linear linearizing control laws is studied. It is shown that both control laws are similar. Classical non linear linearizing control improves the performances but not in a spectacular way when the observer and the controller are designed independently. A new non linear observer based control law is designed, which is shown to be globally stable and is implemented on an experimental test-bench. The control algorithm is studied and applied in many configurations (various set-points, flux and speed profiles and torque disturbances) and is shown to be very efficient.

  16. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  17. Conceptual influences on category-based induction.

    PubMed

    Gelman, Susan A; Davidson, Natalie S

    2013-05-01

    One important function of categories is to permit rich inductive inferences. Prior work shows that children use category labels to guide their inductive inferences. However, there are competing theories to explain this phenomenon, differing in the roles attributed to conceptual information vs. perceptual similarity. Seven experiments with 4- to 5-year-old children and adults (N=344) test these theories by teaching categories for which category membership and perceptual similarity are in conflict, and varying the conceptual basis of the novel categories. Results indicate that for non-natural kind categories that have little conceptual coherence, children make inferences based on perceptual similarity, whereas adults make inferences based on category membership. In contrast, for basic- and ontological-level categories that have a principled conceptual basis, children and adults alike make use of category membership more than perceptual similarity as the basis of their inferences. These findings provide evidence in favor of the role of conceptual information in preschoolers' inferences, and further demonstrate that labeled categories are not all equivalent; they differ in their inductive potential.

  18. Conceptual influences on category-based induction

    PubMed Central

    Gelman, Susan A.; Davidson, Natalie S.

    2013-01-01

    One important function of categories is to permit rich inductive inferences. Prior work shows that children use category labels to guide their inductive inferences. However, there are competing theories to explain this phenomenon, differing in the roles attributed to conceptual information versus perceptual similarity. Seven experiments with 4- to 5-year-old children and adults (N = 344) test these theories by teaching categories for which category membership and perceptual similarity are in conflict, and varying the conceptual basis of the novel categories. Results indicate that for non-natural kind categories that have little conceptual coherence, children make inferences based on perceptual similarity, whereas adults make inferences based on category membership. In contrast, for basic- and ontological-level categories that have a principled conceptual basis, children and adults alike make use of category membership more than perceptual similarity as the basis of their inferences. These findings provide evidence in favor of the role of conceptual information in preschoolers’ inferences, and further demonstrate that labeled categories are not all equivalent; they differ in their inductive potential. PMID:23517863

  19. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  20. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation

    PubMed Central

    Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W.; Taylor, Denise; Haavik, Heidi; Niazi, Imran K.

    2015-01-01

    Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement. PMID:26648859

  1. Measurement of position deviation and eccentricity for μ-disc-type inductive micro-motor

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Che; Tsai, Nan-Chyuan

    2015-12-01

    An innovative capacitive gap-sensing readout circuit to replace traditional gap sensor is designed to measure the motion of the levitated micro-disc embedded in an inductive micro-motor. Twelve equivalent capacitor pairs are constructed to detect the position deviation of the disc. As the position deviation of disc occurs, the capacitances of the corresponding capacitor pairs are altered. In addition, by applying the effects of inertial force and centrifugal force, an innovative non-contact measurement method to quantify the unbalance degree of the micro-disc, i.e., eccentricity, is also proposed. By commercial computer simulations and realistic experiments undertaken, the performance of the proposed capacitive gap-sensing readout circuit has been successfully verified. The mean of output voltage of gap-sensing readout circuit is about 327 mV under the position deviation of the disc being 8 μm. Moreover, the unbalance degree of the disc is approximately proportional to the square of the position deviation of the disc.

  2. Conceptual Influences on Category-Based Induction

    ERIC Educational Resources Information Center

    Gelman, Susan A.; Davidson, Natalie S.

    2013-01-01

    One important function of categories is to permit rich inductive inferences. Prior work shows that children use category labels to guide their inductive inferences. However, there are competing theories to explain this phenomenon, differing in the roles attributed to conceptual information vs. perceptual similarity. Seven experiments with 4- to…

  3. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    NASA Astrophysics Data System (ADS)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  4. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  5. Observation of microtubule-based motor protein activity.

    PubMed

    Sloboda, Roger D

    2015-02-01

    It is possible to detect the presence of motor proteins that have the ability to translocate particles along microtubules. The two procedures described here were developed to detect microtubule-dependent motor protein activity in cell lysates or of purified proteins. In the first procedure, latex beads bound to the putative motor protein are assayed for their ability to translocate along microtubules in an ATP-dependent fashion. If motor protein activity is present, it will bind to the beads and translocate them unidirectionally along the microtubules. In the second procedure, motor proteins induce microtubule gliding over a glass coverslip surface that is coated with active motor protein. Because the mass of a microtubule is negligible compared to that of a coverslip or slide, the microtubule glides over the glass surface when the surface is coated with active motor protein. Also included here are descriptions of assays designed to determine the directionality of movement of microtubule-based motor proteins. PMID:25646501

  6. Development of Category-based Induction and Semantic Knowledge

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla

    2015-01-01

    Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…

  7. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  8. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  9. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2016-06-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  10. Comparative analysis of two methods for time-harmonic solution of the steady state in induction motors (abstract)

    NASA Astrophysics Data System (ADS)

    DeWeerdt, Robrecht; Brandisky, Kostadin; Pahner, Uwe; Belmans, Ronnie

    1994-05-01

    The abstract presents two methods of solving induction motor problems using a time-harmonic approach, taking into account the saturation of the iron material. The first method uses the following algorithm. Initially, two static nonlinear problems are solved: one problem using the real part of the stator currents, and the other using the imaginary part. From both solutions, a reluctivity vector is generated. This reluctivity vector is then used in solving a time-harmonic problem to calculate the induced rotor currents. These currents are used to solve two new static problems. From the solution, a more accurate reluctivity vector can be generated. Convergence of this method occurs after 4 or 5 steps. The second method is an iterative method of solving nonlinear time-dependent problems by harmonic representation. It is assumed that H(t) is a sinusoidal function of time. A new sinusoidal Beq is introduced based on energy equivalence with the real nonsinusoidal B. This new Beq is used to calculate the new B-H curve for the iron materials involved and after that an equivalent reluctivity. The nonlinear algorithm represents under-relaxation of the equivalent reluctivity, based on the formula: RELUCTnew=RELUCTold+ALPHA*(RELUCTcrnt-RELUCTold), where ALPHA is a relaxation factor usually chosen between 0 and 1. The algorithm shows a good convergence rate (from 10 to 20 steps) if the initial starting vector for reluctivities and the relaxation factor are chosen appropriately. Rules for this choice are given. Both methods are compared. The difference between the induced currents in both methods is about 1%, with a linear solution it is about 300%. Also stored energy, losses, reluctivities, and other quantities are compared.

  11. An investigation on the characteristics of a single-sided linear induction motor at standstill for maglev vehicles

    SciTech Connect

    Cho, Y.; Lee, J.

    1997-03-01

    This paper presents the single-sided linear induction motor (SLIM) developed as electrical drives for magnetic levitation vehicle with a cruising speed 40--100Km/h for EXPO`93 in Taejon, Korea. The SLIM is designed to produce a 2,440 Newtons thrust from an active area of 2,836mm long by 235 mm wide at the airgap of 14 mm. In order to investigate its performance characteristics both experimentally and theoretically, the static test facilities was designed and equipped. At standstill, the experimental results are compared with the analytical ones.

  12. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    ERIC Educational Resources Information Center

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  13. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  14. Finite element based electric motor design optimization

    NASA Astrophysics Data System (ADS)

    Campbell, C. Warren

    1993-11-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  15. City motor vehicle management system based on RFID

    NASA Astrophysics Data System (ADS)

    Yi, Zheng-jiang; Liu, San-jun

    2013-03-01

    Aiming at the shortcomings of the traditional vehicle management, a new motor vehicle management solutions is provided. The system manage the vehicles using the radio frequency long-range identification based on RFID technology.The system can identify the vehicles in 12 meters with a maximum speed of 100km/h and provides a new solution for the city motor vehicle management.

  16. Feature-Based versus Category-Based Induction with Uncertain Categories

    ERIC Educational Resources Information Center

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…

  17. Perspectives of Increasing Efficiency and Productivity of Electromagnetic Induction Pumps for Mercury Basing on Permanent Magnets

    SciTech Connect

    Bucenieks, I.

    2006-07-01

    In the next generation neutron sources the HLM (heavy liquid metals) such as lead, lead based eutectic alloys and mercury will be used both as spallation target material and simultaneously as the cooling liquid. In this aspect the design of safe and effective pumps for HLM recirculation at high pressure heads and big flow rates becomes important. For this purpose electromagnetic inductions pumps having no problems of hydraulic seals being in contact with liquid metal (electromagnetic forces in the liquid metal are induced by magnetic system located outside of the channel of pump) are more perspective from the point of view of their safety for operation at high temperature and radiation conditions in comparison with mechanical pumps. At the Institute of Physics of University of Latvia (IPUL) the design concept of electromagnetic induction pumps basing on the principle of rotating permanent magnets (PMP) have been developed. Such design concept of electromagnetic induction pumps has many advantages in comparison with traditionally used electromagnetic induction pumps basing on 3-phase linear flat or cylindrical inductors. The estimations of parameters of powerful pumps (such as overall dimensions of the active magnetic system, power of motor needed for pump drive, the efficiency of pump) for mercury for the developed by pump pressure heads in the range up to 10.0 bar and provided flow rates in the range up to 20 litres per second are demonstrated. (author)

  18. ARDOLORES: an Arduino based motors control system for DOLORES

    NASA Astrophysics Data System (ADS)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  19. Cortical oscillatory activity and the induction of plasticity in the human motor cortex.

    PubMed

    McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C

    2011-05-01

    Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. PMID:21488985

  20. Harmonic reduction of Direct Torque Control of six-phase induction motor.

    PubMed

    Taheri, A

    2016-07-01

    In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method.

  1. Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using Artificial Neural Networks.

    PubMed

    Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri

    2015-11-01

    The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method.

  2. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  3. Category vs. Object Knowledge in Category-based Induction

    PubMed Central

    Murphy, Gregory L.; Ross, Brian H.

    2009-01-01

    In one form of category-based induction, people make predictions about unknown properties of objects. There is a tension between predictions made based on the object’s specific features (e.g., objects above a certain size tend not to fly) and those made by reference to category-level knowledge (e.g., birds fly). Seven experiments with artificial categories investigated these two sources of induction by looking at whether people used information about correlated features within categories, suggesting that they focused on feature-feature relations rather than summary categorical information. The results showed that people relied heavily on such correlations, even when there was no reason to think that the correlations exist in the population. The results suggested that people’s use of this strategy is largely unreflective, rather than strategically chosen. These findings have important implications for models of category-based induction, which generally ignore feature-feature relations. PMID:20526447

  4. Category vs. Object Knowledge in Category-Based Induction

    ERIC Educational Resources Information Center

    Murphy, Gregory L.; Ross, Brian H.

    2010-01-01

    In one form of category-based induction, people make predictions about unknown properties of objects. There is a tension between predictions made based on the object's specific features (e.g., objects above a certain size tend not to fly) and those made by reference to category-level knowledge (e.g., birds fly). Seven experiments with artificial…

  5. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing

  6. Induction motor speed drive improvement using fuzzy IP-self-tuning controller. A real time implementation.

    PubMed

    Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said; Zidani, Youssef

    2013-05-01

    An IP-self-tuning controller tuned by a fuzzy adjustor, is proposed to improve induction machine speed control. The interest of such controller is the possibility to adjust only one gain, instead of two gains for the case of the PI-self-tuning controllers commonly used in the literature. This paper presents simulation and experimental results. These latter were obtained by practical implementation on a DSPace 1104 board of three different speed controllers (the classical IP, the fuzzy-like-PI and the IP-self-tuning), for a 1.5KW induction machine. The paper presents different tests used to compare the performances of the proposed controller to the two others in terms of computation time, tracking performances and disturbances rejection. PMID:23317661

  7. Rule induction based on frequencies of attribute values

    NASA Astrophysics Data System (ADS)

    Borowik, Grzegorz; Kowalski, Karol

    2015-09-01

    Rule induction is one of the most significant issues in data mining. This is due to the fact that decision rules induced from the training data are used to classify new objects. The classification is based on matching the object with the decision rules. Specifically, the generated rules are used to resolve whether or not the object satisfies the conditions specified by the subset of attributes belonging to a given decision class. Most of the rule induction methods are insufficient for large databases and hence do not support today's Big Data issues. This is mainly due to the use of so-called discernibility matrices during calculations. The purpose of this paper is the idea of the implementation of a new efficient rule induction algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Tests have shown that the implementation is much more efficient than currently available solutions for large data sets.

  8. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    PubMed

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  9. Virtual induction loops based on cooperative vehicular communications.

    PubMed

    Gramaglia, Marco; Bernardos, Carlos J; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  10. Virtual Induction Loops Based on Cooperative Vehicular Communications

    PubMed Central

    Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria

    2013-01-01

    Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033

  11. Induction of phase 3 of the migrating motor complex in human small intestine by trimebutine.

    PubMed

    Chaussade, S; Grandjouan, S; Couturier, D; Thierman-Duffaud, D; Henry, J F

    1987-01-01

    The effects of trimebutine, a drug used in the treatment of various gastrointestinal motility disorders, have been investigated fed and fasted healthy subjects. Duodenojejunal motility was recorded manometrically with a 4-lumen probe. Trimebutine 50 or 100 mg was injected i.v. 3 or 25 min after observing a spontaneous Phase 3 complex in the fasted state. Other experiments were done in the postprandial state and after intravenous naloxone 0.8 mg. In the fasted state, trimebutine 100 mg, injected 25 min after a spontaneous Phase 3 complex consistently induced a premature Phase 3 complex. The mean duration of the migrating motor complex cycle decreased from 86.4 +/- 10.8 min to 32.5 +/- 1.0 min. Trimebutine 50 mg injected 3 and 25 min after a spontaneous Phase 3 complex did not significantly modify the periodicity of the migrating motor complex. Trimebutine 100 mg initiated Phase 3-like activity in the post-prandial state. Previous intravenous administration of naloxone 0.8 mg (Narcan) suppressed the stimulatory action of TMB. Thus, trimebutine is able to modify the motility pattern in the small intestine of man, possibly by acting at opioid receptors. PMID:2820749

  12. Multiple-motor based transport and its regulation by Tau

    PubMed Central

    Vershinin, Michael; Carter, Brian C.; Razafsky, David S.; King, Stephen J.; Gross, Steven P.

    2007-01-01

    Motor-based intracellular transport and its regulation are crucial to the functioning of a cell. Disruption of transport is linked to Alzheimer's and other neurodegenerative diseases. However, many fundamental aspects of transport are poorly understood. An important issue is how cells achieve and regulate efficient long-distance transport. Mounting evidence suggests that many in vivo cargoes are transported along microtubules by more than one motor, but we do not know how multiple motors work together or can be regulated. Here we first show that multiple kinesin motors, working in conjunction, can achieve very long distance transport and apply significantly larger forces without the need of additional factors. We then demonstrate in vitro that the important microtubule-associated protein, tau, regulates the number of engaged kinesin motors per cargo via its local concentration on microtubules. This function of tau provides a previously unappreciated mechanism to regulate transport. By reducing motor reattachment rates, tau affects cargo travel distance, motive force, and cargo dispersal. We also show that different isoforms of tau, at concentrations similar to those in cells, have dramatically different potency. These results provide a well defined mechanism for how altered tau isoform levels could impair transport and thereby lead to neurodegeneration without the need of any other pathway. PMID:17190808

  13. Artificial neural network based permanent magnet DC motor drives

    SciTech Connect

    Hoque, M.A. Zaman, M.R.; Rahman, M.A.

    1995-12-31

    A novel scheme for the speed control of a permanent magnet (PM) dc motor drive incorporating artificial neural network (ANN) is proposed. The drive system includes an ANN speed controller, micro-processor based dc-dc converter and a laboratory PM dc motor. A multi-layer artificial neural network structure with a feedback loop is designed in order to precisely operate the control circuit for the dc-dc converter. The complete drive system is simulated and implemented in real time. Both the simulation and experimental results prove the inherent capability of the ANN which makes it possible to maintain desired speed control in the presence of parameter variations and load disturbances. The performances of the ANN based PM dc drive system are compared with the simulated results of the conventionally controlled drive system. This clearly indicates the better performance of the ANN based PM dc motor drive system, particularly in case of parameter and load variations.

  14. Category-based induction from similarity of neural activation.

    PubMed

    Weber, Matthew J; Osherson, Daniel

    2014-03-01

    The idea that similarity might be an engine of inductive inference dates back at least as far as David Hume. However, Hume's thesis is difficult to test without begging the question, since judgments of similarity may be infected by inferential processes. We present a one-parameter model of category-based induction that generates predictions about arbitrary statements of conditional probability over a predicate and a set of items. The prediction is based on the unconditional probabilities and similarities that characterize that predicate and those items. To test Hume's thesis, we collected brain activation from various regions of the ventral visual stream during a categorization task that did not invite comparison of categories. We then calculated the similarity of those activation patterns using a simple measure of vectorwise similarity and supplied those similarities to the model. The model's outputs correlated well with subjects' judgments of conditional probability. Our results represent a promising first step toward confirming Hume's thesis; similarity, assessed without reference to induction, may well drive inductive inference.

  15. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  16. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives

    PubMed Central

    Todd, Neil P. M.; Lee, Christopher S.

    2015-01-01

    Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd, 1994a, 1995), and that a sense of motion from sound is mediated by the vestibular system (Todd, 1992a, 1993b). These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al., 1999). A neurological substrate was proposed which might form the biological basis of the theory (Todd et al., 2002). The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al., 2014a,b). These behavioral and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1) Rhythm perception is a form of vestibular perception; (2) Rhythm perception evokes both external and internal guidance of somatotopic representations; (3) A link from the limbic system to the internal guidance pathway mediates the “dance habit”; (4) The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research. PMID:26379522

  17. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.

  18. BASE OF BULLWHEEL DRIVE SHAFT IN VAULT MOTOR ROOM, CONNECTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BASE OF BULLWHEEL DRIVE SHAFT IN VAULT MOTOR ROOM, CONNECTING TO REDUCTION GEAR SHAFTING. FERREL SPEED REDUCER IN FOREGROUND, FACING WEST. NOTE TWO DIAGONAL LINES: TORQUE CONVERTER CABLE (IN PIECE OF WHITE GUTTER), THROTTLE CABLE (IN LOWER STEEL TUBING). - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  19. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  20. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  1. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  2. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-03-14

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.

  3. Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops

    PubMed Central

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  4. Air-Cored Linear Induction Motor for Earth-to-Orbit Systems

    NASA Technical Reports Server (NTRS)

    Zabar, Zivan; Levi, Enrico; Birenbaum, Leo

    1996-01-01

    The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.

  5. Experimental implementation of a robust damped-oscillation control algorithm on a full-sized, two-degree-of-freedom, AC induction motor-driven crane

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Noakes, M.W.

    1994-05-01

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller.

  6. Enhancement in Steady State and Dynamic Performance of Direct Torque Control Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhoopendra; Jain, Shailendra; Dwivedi, Sanjeet

    2013-09-01

    An enhancement in dynamic performance of a traditional DTC drive can be achieved by a robust speed control algorithm while the steady state performance depends upon the switching strategy selected for minimization of torque ripples and an efficient flux control loop. In this paper a new torque ripple reduction technique with a modified look up table incorporating a larger number of synthesized non zero active voltage vectors is utilized to overcome the limitations of the conventionally controlled DTC drive. A fuzzy logic based speed controller and a low pass filter with tunable cutoff frequency for flux estimation is proposed in this paper. The proposed study is investigated through simulation and experimentally validated on a test drive.

  7. Inversion-based propofol dosing for intravenous induction of hypnosis

    NASA Astrophysics Data System (ADS)

    Padula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G.

    2016-10-01

    In this paper we propose an inversion-based methodology for the computation of a feedforward action for the propofol intravenous administration during the induction of hypnosis in general anesthesia. In particular, the typical initial bolus is substituted with a command signal that is obtained by predefining a desired output and by applying an input-output inversion procedure. The robustness of the method has been tested by considering a set of patients with different model parameters, which is representative of a large population.

  8. Fuzzy logic controllers for electric motors and wind turbines. Report for October 1996-April 1997

    SciTech Connect

    Spiegel, R.J.

    1997-04-01

    The paper discusses a precision laboratory test facility that has been assempbled to test the performance of two fuzzy-logic based controllers for electric motors and wind turbines. Commercial induction motors up to 10 hp (7.46 kWe) in motors and equipped with adjustable-speed drives (ASDs) were used to test the motor optimizers.

  9. Motor Schema-Based Cellular Automaton Model for Pedestrian Dynamics

    NASA Astrophysics Data System (ADS)

    Weng, Wenguo; Hasemi, Yuji; Fan, Weicheng

    A new cellular automaton model for pedestrian dynamics based on motor schema is presented. Each pedestrian is treated as an intelligent mobile robot, and motor schemas including move-to-goal, avoid-away and avoid-around drive pedestrians to interact with their environment. We investigate the phenomenon of many pedestrians with different move velocities escaping from a room. The results show that the pedestrian with high velocity have predominance in competitive evacuation, if we only consider repulsion from or avoiding around other pedestrians, and interaction with each other leads to disordered evacuation, i.e., decreased evacuation efficiency. Extensions of the model using learning algorithms for controlling pedestrians, i.e., reinforcement learning, neural network and genetic algorithms, etc. are noted.

  10. 10 CFR Appendix A to Subpart B of... - Policy Statement for Electric Motors Covered Under the Energy Policy and Conservation Act

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with explosion-proof construction 2 ; (2) is a single speed, induction motor; (3) is rated for... variable speed motors operated on a variable frequency power supply. Similarly, multi speed motors and variable speed motors, such as inverter duty motors, are not covered equipment, based on their...

  11. Defect characterisation based on heat diffusion using induction thermography testing.

    PubMed

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  12. Defect characterisation based on heat diffusion using induction thermography testing

    NASA Astrophysics Data System (ADS)

    He, Yunze; Pan, Mengchun; Luo, Feilu

    2012-10-01

    Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.

  13. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  14. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  15. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory.

    PubMed

    Xu, L; Zhang, H; Hui, M; Long, Z; Jin, Z; Liu, Y; Yao, L

    2014-03-01

    Motor execution and imagery (ME and MI), as the basic abilities of human beings, have been considered to be effective strategies in motor skill learning and motor abilities rehabilitation. Neuroimaging studies have revealed several critical regions from functional activation for ME as well as MI. Recently, investigations have probed into functional connectivity of ME; however, few explorations compared the functional connectivity between the two tasks. With betweenness centrality (BC) of graph theory, we explored and compared the functional connectivity between two finger tapping tasks of ME and MI. Our results showed that using BC, the key node for the ME task mainly focused on the supplementary motor area, while the key node for the MI task mainly located in the right premotor area. These results characterized the connectivity patterns of ME and MI and may provide new insights into the neural mechanism underlying motor execution and imagination of movements.

  16. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. PMID:26382749

  17. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system.

  18. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  19. Traveling wave ultrasonic motor using polymer-based vibrator

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-01-01

    With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.

  20. Motor execution detection based on autonomic nervous system responses.

    PubMed

    Marchal-Crespo, Laura; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Wolf, Martin; Gassert, Roger; Riener, Robert

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients' active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body-computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body-machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body-machine interfaces. PMID:23248174

  1. Intraoperative monitoring of motor cranial nerves in skull base surgery.

    PubMed

    Maurer, J; Pelster, H; Amedee, R G; Mann, W J

    1995-01-01

    Intraoperative monitoring of cranial nerves is performed to minimize postoperative cranial nerve dysfunction. We performed electrophysiologic monitoring of motor cranial nerves with a NIM 2 unit from Xomed Treace and a patient multiplexer developed in our clinic. This multiplexer allows simultaneous monitoring of four cranial nerves and is additionally equipped with a bipolar stimulation mode. This intraoperative monitoring was used during 102 skull base operations. Of these, 44 operations were acoustic neuroma removals by translabyrinthine approach and 36 by a middle fossa approach. Various operations, including removal of tumors of the jugular foramen and the infratemporal fossa, were performed in the remaining 22 patients. The facial nerve, being the most frequently monitored nerve, was evaluated both preoperatively and intraoperatively. Electrophysiologic data were evaluated with respect to their predictive value for postoperative facial nerve function. The relative percent decrease in amplitude of the electromyogram after resection compared to that observed before resection seems to be of some predictive value for the postoperative facial nerve function. A 50 to 60% decrease or more is associated with an increase in the House classification. Intraoperative monitoring is a useful tool in skull base surgery, allowing for safer and faster identification of motor nerves in pathologic-anatomic conditions. It allows the surgeon a degree of comfort by providing immediate information regarding the status of the nerve. It may also improve postoperative nerve function and shorten operating time. Additionally, neuromonitoring provides some information about expected postoperative facial nerve function.

  2. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. PMID:27038887

  3. Universal adaptive torque control for PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon; Harbaugh, Mark M.; Breitzmann, Robert J.; Nondahl, Thomas A.; Schmidt, Peter B.; Liu, Jingbo

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  4. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  5. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  6. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  7. The Study of Object-Oriented Motor Imagery Based on EEG Suppression

    PubMed Central

    Li, Lili; Wang, Jing; Xu, Guanghua; Li, Min; Xie, Jun

    2015-01-01

    Motor imagery is a conventional method for brain computer interface and motor learning. To avoid the great individual difference of the motor imagery ability, object-oriented motor imagery was applied, and the effects were studied. Kinesthetic motor imagery and visual observation were administered to 15 healthy volunteers. The EEG during cue-based simple imagery (SI), object-oriented motor imagery (OI), non-object-oriented motor imagery (NI) and visual observation (VO) was recorded. Study results showed that OI and NI presented significant contralateral suppression in mu rhythm (p < 0.05). Besides, OI exhibited significant contralateral suppression in beta rhythm (p < 0.05). While no significant mu or beta contralateral suppression could be found during VO or SI (p > 0.05). Compared with NI, OI showed significant difference (p < 0.05) in mu rhythm and weak significant difference (p = 0.0612) in beta rhythm over the contralateral hemisphere. The ability of motor imagery can be reflected by the suppression degree of mu and beta frequencies which are the motor related rhythms. Thus, greater enhancement of activation in mirror neuron system is involved in response to object-oriented motor imagery. The object-oriented motor imagery is favorable for improvement of motor imagery ability. PMID:26641241

  8. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    SciTech Connect

    Hwang, Don-Ha; Woo, Byung-Chul; Sun, Jong-Ho; Kang, Dong-Sik; Han, Sang-Bo; Kim, Byung-Kuk; Cho, Youn-Hyun

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3 T. On the other hand, the eccentric air-gap condition displays about 1.1 T at 60 deg. and 1.6 T at 240 deg. A difference of flux density is 0.5 T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65 deg. and 155 deg. are about 0.4 T and 0.8 T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.

  9. Detection of air-gap eccentricity and broken-rotor bar conditions in a squirrel-cage induction motor using the radial flux sensor

    NASA Astrophysics Data System (ADS)

    Hwang, Don-Ha; Han, Sang-Bo; Woo, Byung-Chul; Sun, Jong-Ho; Kang, Dong-Sik; Kim, Byung-Kuk; Cho, Youn-Hyun

    2008-04-01

    A new method for detecting eccentricity and broken rotor bar conditions in a squirrel-cage induction motor is proposed. Air-gap flux variation analysis is done using search coils, which are inserted at stator slots. Using this method, the leakage flux in radial direction can be directly detected. Using finite element method, the air-gap flux variation is accurately modeled and analyzed. From the results of the simulation, a motor under normal condition shows maximum magnetic flux density of 1.3T. On the other hand, the eccentric air-gap condition displays about 1.1T at 60° and 1.6T at 240°. A difference of flux density is 0.5T in the abnormal condition, whereas no difference is detected in the normal motor. In the broken rotor bar conditions, the flux densities at 65° and 155° are about 0.4 T and 0.8T, respectively. These simulation results are coincided with those of experiment. Consequently, the measurement of the magnetic flux at air gap is one of effective ways to discriminate the faulted conditions of the eccentricity and broken rotor bars.

  10. Implantable flexible pressure measurement system based on inductive coupling.

    PubMed

    Oliveira, Cristina C; Sepúlveda, Alexandra T; Almeida, Nuno; Wardle, Brian L; da Silva, José Machado; Rocha, Luís A

    2015-02-01

    One of the currently available treatments for aortic aneurysms is endovascular aneurysm repair (EVAR). In spite of major advances in the operating techniques, complications still occur and lifelong surveillance is recommended. In order to reduce and even eliminate the commonly used surveillance imaging exams, as well as to reduce follow-up costs, new technological solutions are being pursued. In this paper, we describe the development, including design and performance characterization, of a flexible remote pressure measurement system based on inductive-coupling for post-EVAR monitoring purposes. The telemetry system architecture and operation are described and main performance characteristics discussed. The implantable sensor details are provided and its model is presented. Simulations with the reading circuit and the sensor's model were performed and compared with measurements carried out with air and a phantom as media, in order to characterize the telemetry system and validate the models. The transfer characteristic curve (pressure versus frequency) of the monitoring system was obtained with measurements performed with the sensor inside a controlled pressure vacuum chamber. Additional experimental results which proof the system functionality were obtained within a hydraulic test bench that emulates the aorta. Several innovative aspects, when compared to the state of the art, both in the sensor and in the telemetry system were achieved. PMID:25347867

  11. Rotational actuator of motor based on carbon nanotubes

    DOEpatents

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  12. Rotational actuator or motor based on carbon nanotubes

    DOEpatents

    Zetti, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2006-05-30

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  13. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The CHAMPS Motor Skills Protocol (CMSP)

    PubMed Central

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2010-01-01

    The purpose of the study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field based settings. The development of the CHAMPS (Children’s Activity and Movement in Preschool Study) Motor Skills Protocol (CMSP) included evidence of its reliability and validity for use in field-based environments as part of large epidemiological studies. Following pilot work, 297 children (3-5 years old) from 22 preschools were tested using the final version of the CMSP and the TGMD-2. Reliability of the CMSP and interobserver reliability were determined using intraclass correlation procedures (ICC; ANOVA). Concurrent validity was assessed using Pearson correlation coefficients to compare the CMSP to the original Test of Gross Motor Development (2nd Edition) (TGMD-2). Results indicated that test reliability, interobserver reliability and validity coefficients were all high, generally above R/r = 0.90. Significant age differences were found. Outcomes indicate that the CMSP is an appropriate tool for assessing motor development of 3-, 4-, and 5-year-old children in field-based settings that are consistent with large-scale trials. PMID:21532999

  14. Auditory feedback in error-based learning of motor regularity.

    PubMed

    van Vugt, Floris T; Tillmann, Barbara

    2015-05-01

    Music and speech are skills that require high temporal precision of motor output. A key question is how humans achieve this timing precision given the poor temporal resolution of somatosensory feedback, which is classically considered to drive motor learning. We hypothesise that auditory feedback critically contributes to learn timing, and that, similarly to visuo-spatial learning models, learning proceeds by correcting a proportion of perceived timing errors. Thirty-six participants learned to tap a sequence regularly in time. For participants in the synchronous-sound group, a tone was presented simultaneously with every keystroke. For the jittered-sound group, the tone was presented after a random delay of 10-190 ms following the keystroke, thus degrading the temporal information that the sound provided about the movement. For the mute group, no keystroke-triggered sound was presented. In line with the model predictions, participants in the synchronous-sound group were able to improve tapping regularity, whereas the jittered-sound and mute group were not. The improved tapping regularity of the synchronous-sound group also transferred to a novel sequence and was maintained when sound was subsequently removed. The present findings provide evidence that humans engage in auditory feedback error-based learning to improve movement quality (here reduce variability in sequence tapping). We thus elucidate the mechanism by which high temporal precision of movement can be achieved through sound in a way that may not be possible with less temporally precise somatosensory modalities. Furthermore, the finding that sound-supported learning generalises to novel sequences suggests potential rehabilitation applications.

  15. Category Coherence and Category-Based Property Induction

    ERIC Educational Resources Information Center

    Rehder, Bob; Hastie, Reid

    2004-01-01

    One important property of human object categories is that they define the sets of exemplars to which newly observed properties are generalized. We manipulated the causal knowledge associated with novel categories and assessed the resulting strength of property inductions. We found that the theoretical coherence afforded to a category by…

  16. Connectivity-Based Predictions of Hand Motor Outcome for Patients at the Subacute Stage After Stroke

    PubMed Central

    Lindow, Julia; Domin, Martin; Grothe, Matthias; Horn, Ulrike; Eickhoff, Simon B.; Lotze, Martin

    2016-01-01

    Background: Connectivity-based predictions of hand motor outcome have been proposed to be useful in stroke patients. We intended to assess the prognostic value of different imaging methods on short-term (3 months) and long-term (6 months) motor outcome after stroke. Methods: We measured resting state functional connectivity (rsFC), diffusion weighted imaging (DWI) and grip strength in 19 stroke patients within the first days (5–9 days) after stroke. Outcome measurements for short-term (3 months) and long-term (6 months) motor function was assessed by the Motricity Index (MI) of the upper limb and the box and block test (BB). Patients were predominantly mildly affected since signed consent was necessary at inclusion. We performed a multiple stepwise regression analysis to compare the predictive value of rsFC, DWI and clinical measurements. Results: Patients showed relevant improvement in both motor outcome tests. As expected grip strength at inclusion was a predictor for short- and long-term motor outcome as assessed by MI. Diffusion-based tract volume (DTV) of the tracts between ipsilesional primary motor cortex and contralesional anterior cerebellar hemisphere showed a strong trend (p = 0.05) for a predictive power for long-term motor outcome as measured by MI. DTV of the interhemispheric tracts between both primary motor cortices was predictive for both short- and long-term motor outcome in BB. rsFC was not associated with motor outcome. Conclusions: Grip strength is a good predictor of hand motor outcome concerning strength-related measurements (MI) for mildly affected subacute patients. Therefore additional connectivity measurements seem to be redundant in this group. Using more complex movement recruiting bilateral motor areas as an outcome parameter, DTV and in particular interhemispheric pathways might enhance predictive value of hand motor outcome. PMID:27014032

  17. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N.

  18. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N. PMID:27400216

  19. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface.

    PubMed

    Lin, Bor-Shing; Pan, Jeng-Shyang; Chu, Tso-Yao; Lin, Bor-Shyh

    2016-03-01

    A motor-imagery-based brain-computer interface (BCI) is a translator that converts the motor intention of the brain into a control command to control external machines without muscles. Numerous motor-imagery-based BCIs have been successfully proposed in previous studies. However, several electroencephalogram (EEG) channels are typically required for providing sufficient information to maintain a specific accuracy and bit rate, and the bulk volume of these EEG machines is also inconvenient. A wearable motor imagery-based BCI system was proposed and implemented in this study. A wearable mechanical design with novel active comb-shaped dry electrodes was developed to measure EEG signals without conductive gels at hair sites, which is easy and convenient for users wearing the EEG machine. In addition, a wireless EEG acquisition module was also designed to measure EEG signals, which provides a user with more freedom of motion. The proposed wearable motor-imagery-based BCI system was validated using an electrical specifications test and a hand motor imagery experiment. Experimental results showed that the proposed wearable motor-imagery-based BCI system provides favorable signal quality for measuring EEG signals and detecting motor imagery. PMID:26748791

  20. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  1. Design of an integral computer-based wheelchair controller/linear synchronous motor system.

    PubMed

    Kelly, G W; Ross, D A; Bass, R M; Davey, K R

    1986-06-01

    The purpose of this paper is to illustrate the advantages of designing computer-based motor controllers together with innovative motors, such that maximum controller/motor system benefits are obtained. Specifically, this paper describes how a computer-based controller/drive system for powered wheelchairs has been designed and is being built and tested. This type of integral controller/drive system has been possible to build into a wheelchair only with the advent of the microprocessor-based feedback motor controller. The type of motor chosen for this project was a linear synchronous motor (LSM), which is highly efficient (90%+) and could easily be made an integral part of a wheelchair wheel, providing a "no-moving-parts" drive system. However, an LSM cannot be variable-speed-controlled without knowledge of, and controlled adjustment to, the absolute rotor versus stator position at each point in time. Microprocessor-based feedback motor controllers make precise, efficient control of LSMs possible at a reasonable cost. In addition, this combination of controller and motor provides a very flexible wheelchair control/drive system that may be easily programmed to suit the needs and necessities of the wide variety of over 200,000 persons now using powered wheelchairs. PMID:3537184

  2. Does Computer-Based Motor Skill Assessment Training Transfer to Live Assessing?

    ERIC Educational Resources Information Center

    Kelly, Luke E.; Taliaferro, Andrea; Krause, Jennifer

    2012-01-01

    Developing competency in motor skill assessment has been identified as a critical need in physical educator preparation. We conducted this study to evaluate (a) the effectiveness of a web-based instructional program--Motor Skill Assessment Program (MSAP)--for developing assessment competency, and specifically (b) whether competency developed by…

  3. A School-Based Movement Programme for Children with Motor Learning Difficulty

    ERIC Educational Resources Information Center

    Mannisto, Juha-Pekka; Cantell, Marja; Huovinen, Tommi; Kooistra, Libbe; Larkin, Dawne

    2006-01-01

    The study investigated the effectiveness of a school-based movement programme for a population of 5 to 7 year old children. Performance profiles on the Movement ABC were used to classify the children and to assess skill changes over time. Children were assigned to four different groups: motor learning difficulty (n = 10), borderline motor learning…

  4. Uncertain induction of knowledge based on cloud model in complex system simulation

    NASA Astrophysics Data System (ADS)

    Wang, Hongli

    2011-10-01

    On the key problem of ineffective representation of uncertain variables in complex system simulation, the semi-quantitative method of uncertain variable based on group decision and cloud model is proposed to process the uncertain data. Then the uncertain knowledge induction based on cloud model is proposed. The induction process and method is given in the paper. This method is combined with the merit of conversion and fusion quantitative and qualitative of cloud model in induction. Lastly the summary and future research is given at the end of study.

  5. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    ERIC Educational Resources Information Center

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  6. Clamped-filament elongation model for actin-based motors.

    PubMed Central

    Dickinson, Richard B; Purich, Daniel L

    2002-01-01

    Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility. PMID:11806905

  7. Motor-based intervention protocols in treatment of childhood apraxia of speech (CAS)

    PubMed Central

    Maas, Edwin; Gildersleeve-Neumann, Christina; Jakielski, Kathy J.; Stoeckel, Ruth

    2014-01-01

    This paper reviews current trends in treatment for childhood apraxia of speech (CAS), with a particular emphasis on motor-based intervention protocols. The paper first briefly discusses how CAS fits into the typology of speech sound disorders, followed by a discussion of the potential relevance of principles derived from the motor learning literature for CAS treatment. Next, different motor-based treatment protocols are reviewed, along with their evidence base. The paper concludes with a summary and discussion of future research needs. PMID:25313348

  8. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor.

    PubMed

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-04-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268

  9. Structural and Functional Bases for Individual Differences in Motor Learning

    PubMed Central

    Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi

    2013-01-01

    People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562

  10. Interrater Objectivity for Field-Based Fundamental Motor Skill Assessment

    ERIC Educational Resources Information Center

    Barnett, Lisa; van Beurden, Eric; Morgan, Philip J.; Lincoln, Doug; Zask, Avigdor; Beard, John

    2009-01-01

    An important aspect in studies concerning fundamental motor skills (FMS) proficiency is interrater objectivity (or interrater reliability), defined as the consistency or agreement in scores obtained from two or more raters. In a training setting, interrater objectivity is commonly determined as the relative number of times raters agree with an…

  11. The effect of textile-based inductive coil sensor positions for heart rate monitoring.

    PubMed

    Koo, Hye Ran; Lee, Young-Jae; Gi, Sunok; Khang, Seonah; Lee, Joo Hyeon; Lee, Jae-Ho; Lim, Min-Gyu; Park, Hee-Jung; Lee, Jeong-Whan

    2014-02-01

    In the research related to heart rate measurement, few studies have been done using magnetic-induced conductivity sensing methods to measure the heart rate. The aim of this study was to analyze the effect of the position of a textile-based inductive coil sensor on the measurement of the heart rate. In order to assess the capability of the textile-based inductive coil sensor and the repeatability of measured cardiac muscle contractions, we proposed a new quality index based on the morphology of measured signals using a textile-based inductive coil sensor. We initially explored eight potential positions of the inductive sensor in a pilot experiment, followed by three sensor positions in the main experiment. A simultaneously measured electrocardiography (ECG) signal (Lead II) which was used as a reference signal for a comparison of the R-peak location with signals obtained from selected positions of the textile-based inductive coil sensor. The result of the main experiment indicated that the total quality index obtained from the sensor position 'P3', which was located 3 cm away from the left side from the center front line on the chest circumference line, was the highest (QI value = 1.30) among the three positions across all the subjects. This finding led us to conclude that (1) the position of the textile-based inductive coil sensor significantly affected the quality of the measurement results, and that (2) P3 would be the most appropriate position for the textile-based inductive coil sensor for heart rate measurements based on the magnetic-induced conductivity sensing principle.

  12. Fourier-based magnetic induction tomography for mapping resistivity

    SciTech Connect

    Puwal, Steffan; Roth, Bradley J.

    2011-01-01

    Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.

  13. Rebuilding motor function of the spinal cord based on functional electrical stimulation

    PubMed Central

    Shen, Xiao-yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-01-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

  14. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

    PubMed

    Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-08-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. PMID:27651782

  15. Rebuilding motor function of the spinal cord based on functional electrical stimulation.

    PubMed

    Shen, Xiao-Yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-08-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury.

  16. Rebuilding motor function of the spinal cord based on functional electrical stimulation

    PubMed Central

    Shen, Xiao-yan; Du, Wei; Huang, Wei; Chen, Yi

    2016-01-01

    Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience. The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology. In this study, the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology. A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn. Based on the individual experimental parameters and normalized coordinates of the motor function sites, the motor function sites that control a certain muscle were calculated. Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension, hip flexion, ankle plantarflexion, and ankle dorsiflexion movements were successfully achieved. The results show that the map of the spinal cord motor function sites was valid. This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. PMID:27651782

  17. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. PMID:27269192

  18. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results.

  19. Artificial neural network based torque calculation of switched reluctance motor without locking the rotor

    NASA Astrophysics Data System (ADS)

    Kucuk, Fuat; Goto, Hiroki; Guo, Hai-Jiao; Ichinokura, Osamu

    2009-04-01

    Feedback of motor torque is required in most of switched reluctance (SR) motor applications in order to control torque and its ripple. An SR motor shows highly nonlinear property which does not allow calculating torque analytically. Torque can be directly measured by torque sensor, but it inevitably increases the cost and has to be properly mounted on the motor shaft. Instead of torque sensor, finite element analysis (FEA) may be employed for torque calculation. However, motor modeling and calculation takes relatively long time. The results of FEA may also differ from the actual results. The most convenient way seems to calculate torque from the measured values of rotor position, current, and flux linkage while locking the rotor at definite positions. However, this method needs an extra assembly to lock the rotor. In this study, a novel torque calculation based on artificial neural networks (ANNs) is presented. Magnetizing data are collected while a 6/4 SR motor is running. They need to be interpolated for torque calculation. ANN is very strong tool for data interpolation. ANN based torque estimation is verified on the 6/4 SR motor and is compared by FEA based torque estimation to show its validity.

  20. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  1. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  2. Oral and infusion levodopa-based strategies for managing motor complications in patients with Parkinson's disease.

    PubMed

    Antonini, Angelo; Chaudhuri, K Ray; Martinez-Martin, Pablo; Odin, Per

    2010-02-01

    Levodopa is the most effective treatment for Parkinson's disease (PD) signs and symptoms, and patients invariably will require it during the course of the disease. It also provides benefits in activities of daily living, quality of life and life expectancy. However, after a few years of levodopa treatment the majority of patients will experience motor fluctuations and dyskinesia. Initial use of a dopamine receptor agonist may delay the emergence of motor fluctuations but at the cost of reduced symptomatic control compared with the use of levodopa in some cases. Adequate management of motor fluctuations and dyskinesia is essential to maintaining satisfactory quality of life at the advanced stage of disease. Various levodopa-based strategies are currently available that aim to control motor complications (wearing-off and dyskinesia) in PD and each approach has its own unique benefit and risk profile. Strategies such as dose fragmentation (smaller, more frequent dosing) or the use of orally administered, liquid levodopa formulations or melevodopa can reduce off-time intervals or facilitate absorption. More recently introduced, continuous delivery of dopaminergic medications may represent a more effective approach to treat motor complications in advanced PD and its effect can be perceived from improvement in clinical scales, as well as in health-related items. Indeed, continuous levodopa delivery by duodenal infusion may stabilize and significantly improve motor function as well as patients' quality of life. We propose a treatment algorithm that takes into account all currently available levodopa-based treatment strategies for motor complications in patients with PD.

  3. Neurofeedback-based motor imagery training for brain-computer interface (BCI).

    PubMed

    Hwang, Han-Jeong; Kwon, Kiwoon; Im, Chang-Hwang

    2009-04-30

    In the present study, we propose a neurofeedback-based motor imagery training system for EEG-based brain-computer interface (BCI). The proposed system can help individuals get the feel of motor imagery by presenting them with real-time brain activation maps on their cortex. Ten healthy participants took part in our experiment, half of whom were trained by the suggested training system and the others did not use any training. All participants in the trained group succeeded in performing motor imagery after a series of trials to activate their motor cortex without any physical movements of their limbs. To confirm the effect of the suggested system, we recorded EEG signals for the trained group around sensorimotor cortex while they were imagining either left or right hand movements according to our experimental design, before and after the motor imagery training. For the control group, we also recorded EEG signals twice without any training sessions. The participants' intentions were then classified using a time-frequency analysis technique, and the results of the trained group showed significant differences in the sensorimotor rhythms between the signals recorded before and after training. Classification accuracy was also enhanced considerably in all participants after motor imagery training, compared to the accuracy before training. On the other hand, the analysis results for the control EEG data set did not show consistent increment in both the number of meaningful time-frequency combinations and the classification accuracy, demonstrating that the suggested system can be used as a tool for training motor imagery tasks in BCI applications. Further, we expect that the motor imagery training system will be useful not only for BCI applications, but for functional brain mapping studies that utilize motor imagery tasks as well.

  4. Artificial neural network based controller for permanent magnet DC motor drives

    SciTech Connect

    Hoque, M.A.; Zaman, M.R.; Rahman, M.A.

    1995-12-31

    This paper introduces a novel approach of designing a controller using multi-layer feed-forward neural network (FFNN) for the speed control of a permanent magnet (PM) dc motor. Artificial neural network (ANN) controller with its massive parallel properties and learning capabilities offers a promising way to solving the problem of system non-linearity, parameter variations and unexpected load excursions associated with a PM dc motor drive system. Self-tuning technique of the controller in real time is achieved through an improved on-line back-propagation training algorithm based on an output error propagation. The proposed ANN controller is implemented with a PM dc motor drive system in the laboratory. The laboratory test results validate the efficacy of the based controller for a high performance PM dc motor drive.

  5. A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies.

    ERIC Educational Resources Information Center

    Holyoak, Keith J.; And Others

    1989-01-01

    A theory of classical conditioning is presented, which is based on a parallel, rule-based performance system integrated with mechanisms for inductive learning. A major inferential heuristic incorporated into the theory involves "unusualness," which is focused on novel cues. The theory is implemented via computer simulation. (TJH)

  6. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.

    PubMed

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2012-09-01

    The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator.

  7. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.

    PubMed

    Stepanenko, Dmitry A; Minchenya, Vladimir T

    2012-09-01

    The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator. PMID:22520741

  8. Design of motion adjusting system for space camera based on ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan

    2011-08-01

    Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.

  9. fMRI analysis for motor paradigms using EMG-based designs: a validation study.

    PubMed

    van Rootselaar, Anne-Fleur; Renken, Remco; de Jong, Bauke M; Hoogduin, Johannes M; Tijssen, Marina A J; Maurits, Natasha M

    2007-11-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five healthy participants performed a motor task, consisting of posture (low EMG power), and slow (medium EMG power) and fast (high EMG power) wrist flexion-extension movements. Brain activation maps derived from a conventional block design analysis (block-only design) were compared with brain activation maps derived using EMG-based regressors: (1) using the continuous EMG power as a single regressor of interest (EMG-only design) to relate motor performance and brain activity, and (2) using EMG power variability as an additional regressor in the fMRI block design analysis to relate movement variability and brain activity (mathematically) independent of the motor task. The agreement between the identified brain areas for the block-only design and the EMG-only design was excellent for all participants. Additionally, we showed that EMG power variability correlated well with activity in brain areas known to be involved in movement modulation. These innovative EMG-fMRI analysis techniques will allow the application of novel motor paradigms. This is an important step forward in the study of both the normally functioning motor system and the pathophysiological mechanisms in movement disorders.

  10. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  11. Improving catalase-based propelled motor endurance by enzyme encapsulation.

    PubMed

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-08-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.

  12. Steady-state analysis of a faulted three-phase four-wire system supplying induction motors with neutrals connected and other single-phase line-to-neutral loads

    NASA Technical Reports Server (NTRS)

    Wood, M. E.

    1980-01-01

    Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.

  13. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.

    PubMed

    Li, Mingfen; Liu, Ye; Wu, Yi; Liu, Sirao; Jia, Jie; Zhang, Liqing

    2014-06-01

    We investigated the efficacy of motor imagery-based Brain Computer Interface (MI-based BCI) training for eight stroke patients with severe upper extremity paralysis using longitudinal clinical assessments. The results were compared with those of a control group (n = 7) that only received FES (Functional Electrical Stimulation) treatment besides conventional therapies. During rehabilitation training, changes in the motor function of the upper extremity and in the neurophysiologic electroencephalographic (EEG) were observed for two groups. After 8 weeks of training, a significant improvement in the motor function of the upper extremity for the BCI group was confirmed (p < 0.05 for ARAT), simultaneously with the activation of bilateral cerebral hemispheres. Additionally, event-related desynchronization (ERD) of the affected sensorimotor cortexes (SMCs) was significantly enhanced when compared to the pretraining course, which was only observed in the BCI group (p < 0.05). Furthermore, the activation of affected SMC and parietal lobe were determined to contribute to motor function recovery (p < 0.05). In brief, our findings demonstrate that MI-based BCI training can enhance the motor function of the upper extremity for stroke patients by inducing the optimal cerebral motor functional reorganization.

  14. Capacitance and Inductance based Rotor Ground Fault Location Method for Synchronous Machines

    NASA Astrophysics Data System (ADS)

    Palanisamy, Ramanathan

    2016-06-01

    This paper presents a capacitance and inductance based rotor ground fault location method for synchronous machines, which can detect and locate the ground fault in the rotor. The main contribution of this technique is to find the location of the ground fault in the rotor winding and reduce the repair time. This detection method is based on the measurement of inductance and capacitance of the rotor winding. It is suitable for salient pole synchronous machines. This method has been validated through experimental tests at the site.

  15. Improving catalase-based propelled motor endurance by enzyme encapsulation

    NASA Astrophysics Data System (ADS)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-07-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  16. Propellant removal from rocket motors containing double-base compositions

    SciTech Connect

    Whinnery, L.; Griffiths, S.; Hruby, J.; Larson, R.; Lipkin, J.; Long, B.; Schoenfelder, C.

    1992-01-01

    The uncertain environmental consequences and regulations associated with using open burning/open detonation for the disposal of energetic materials are forcing both manufacturers and users to examine alternative disposal technologies. In general, these alternatives involve a material removal operation followed by processing steps that lead to reuse of valuable constituents and/or disposal of waste. While a number of post-removal processing options appear to be viable, the initial step of removing an energetic material, such as a solid rocket motor propellant, from its container remains a significant technological challenge. Large rocket motors containing highly energetic propellant, hazard class 1.1, are of particular concern because of their inherent handling hazards. We will describe the results of a study using thermal cycling to increase the surface area of inert propellant formulations. The propellant removal method studied employs thermal cycling to cryogenic temperatures (cryocycling). Using inert propellants and liquid nitrogen we have demonstrated that this process produces multiple cracks throughout the bulk of the grain. The properties of the actual and inert propellants are being measured, and a model is being developed to relate experiments on inert material to actual propellant. Possible methods to increase thermal gradients, crack propagation and initiation are also presented.

  17. Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems

    NASA Astrophysics Data System (ADS)

    Shin, Younghak; Lee, Seungchan; Lee, Junho; Lee, Heung-No

    2012-10-01

    Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their performance. The common spatial pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this work, we propose a new sparse representation-based classification (SRC) scheme for MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms and used for classification. The proposed SRC method utilizes the frequency band power and CSP algorithm to extract features for classification. We analyzed the performance of the new method using experimental datasets. The results showed that the SRC scheme provides highly accurate classification results, which were better than those obtained using the well-known linear discriminant analysis classification method. The enhancement of the proposed method in terms of the classification accuracy was verified using cross-validation and a statistical paired t-test (p < 0.001).

  18. Damage to Fronto-Parietal Networks Impairs Motor Imagery Ability after Stroke: A Voxel-Based Lesion Symptom Mapping Study

    PubMed Central

    Oostra, Kristine M.; Van Bladel, Anke; Vanhoonacker, Ann C. L.; Vingerhoets, Guy

    2016-01-01

    Background: Mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients. Aim: To identify brain regions that are mandatory for preserved motor imagery ability after stroke. Method: Thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke. Results: Poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibers linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. Conclusion: This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks. PMID:26869894

  19. DTC Based Induction Motor Speed Control Using 10-Sector Methodology for Torque Ripple Reduction

    NASA Astrophysics Data System (ADS)

    Pavithra, S.; Dinesh Krishna, A. S.; Shridharan, S.

    2014-09-01

    A direct torque control (DTC) drive allows direct and independent control of flux linkage and electromagnetic torque by the selection of optimum inverter switching modes. It is a simple method of signal processing which gives excellent dynamic performance. Also transformation of coordinates and voltage decoupling are not required. However, the possible discrete inverter switching vectors cannot always generate exact stator voltage required, to obtain the demanded electromagnetic torque and flux linkages. This results in the production of ripples in the torque as well as flux waveforms. In the present paper a torque ripple reduction methodology is proposed. In this method the circular locus of flux phasor is divided into 10 sector as compared to six sector divisions in conventional DTC method. The basic DTC scheme and the 10-sector method are simulated and compared for their performance. An analysis is done with sector increment so that finally the torque ripple varies slightly as the sector is increased.

  20. Motor Consciousness during Intention-Based and Stimulus-Based Actions: Modulating Attention Resources through Mindfulness Meditation

    PubMed Central

    Delevoye-Turrell, Yvonne Nathalie; Bobineau, Claudie

    2012-01-01

    Mindfulness-Based Stress Reduction meditation (MBSR) may offer optimal performance through heightened attention for increased body consciousness. To test this hypothesis, MBSR effects were assessed on the simple task of lifting an object. A dual task paradigm was included to assess the opposite effect of a limited amount of attention on motor consciousness. In a stimulus-based condition, the subjects’ task was to lift an object that was hefted with weights. In an intentional-based condition, subjects were required to lift a light object while imagining that the object was virtually heavier and thus, adjust their grip voluntarily. The degree of motor consciousness was evaluated by calculating correlation factors for each participant between the grip force level used during the lift trial (“lift the object”) and that used during its associated reproduce trial (“without lifting, indicate the force you think you used in the previous trial”). Under dual task condition, motor consciousness decreased for intention- and stimulus-based actions, revealing the importance of top-down attention for building the motor representation that guides action planning. For MBSR-experts, heightened attention provided stronger levels of motor consciousness; this was true for both intention and stimulus-based actions. For controls, heightened attention decreased the capacity to reproduce force levels, suggesting that voluntary top-down attention interfered with the automatic bottom-up emergence of body sensations. Our results provide strong arguments for involvement of two types of attention for the emergence of motor consciousness. Bottom-up attention would serve as an amplifier of motor-sensory afferences; top-down attention would help transfer the motor-sensory content from a preconscious to a conscious state of processing. MBSR would be a specific state for which both types of attention are optimally combined to provide experts with total experiences of their body in movement

  1. An adaptive filter bank for motor imagery based Brain Computer Interface.

    PubMed

    Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A

    2008-01-01

    Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856

  2. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... methods, marking requirements, and energy efficiency levels for three-phase induction motors, March 2010... Performance of Single-Speed Three-Phase Cage Induction Motors, clauses 5.2, 5.4, 6, and 8, and Tables 1, 2, 3... Procedure for Polyphase Induction Motors and Generators, approved February 9, 2004: (i) Section...

  3. Connecting the Continuum: A University-Based Induction Program to Improve Teacher Quality

    ERIC Educational Resources Information Center

    Van Zandt Allen, Laura

    2014-01-01

    The Summer Curriculum Writing Institute (SCWI) supports graduates of a university-based teacher education program during the induction years and beyond with the aim of impacting teacher quality. The purpose of this article is to describe the development, goals, research, and lessons learned during SCWI from 2005-12. The week focuses around the…

  4. Magnetism Teaching Sequences Based on an Inductive Approach for First-Year Thai University Science Students

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Emarat, Narumon; Arayathanitkul, Kwan; Cowie, Bronwen

    2010-01-01

    The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after…

  5. Cogging force rejection method of linear motor based on internal model principle

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Chen, Zhenyu; Yang, Tianbo

    2015-02-01

    The cogging force disturbance of linear motor is one of the main factors affecting the positioning accuracy of ultraprecision moving platform. And this drawback could not be completely overcome by improving the design of motor body, such as location modification of permanent magnet array, or optimization design of the shape of teeth-slot. So the active compensation algorithms become prevalent in cogging force rejection area. This paper proposed a control structure based on internal mode principle to attenuate the cogging force of linear motor which deteriorated the accuracy of position, and this structure could make tracking and anti-disturbing performance of close-loop designed respectively. In the first place, the cogging force was seen as the intrinsic property of linear motor and its model constituting controlled object with motor ontology model was obtained by data driven recursive identification method. Then, a control structure was designed to accommodate tracking and anti-interference ability separately by using internal model principle. Finally, the proposed method was verified in a long stroke moving platform driven by linear motor. The experiment results show that, by employing this control strategy, the positioning error caused by cogging force was decreased by 70%.

  6. Stages in Learning Motor Synergies: A View Based on the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2009-01-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s), and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable (“good variability”). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the “good variability”. Experimental support for the suggested scheme is reviewed. PMID:20060610

  7. Induction of Fish Biomarkers by Synthetic-Based Drilling Muds

    PubMed Central

    Gagnon, Marthe Monique; Bakhtyar, Sajida

    2013-01-01

    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs. PMID:23894492

  8. The Application of Evidence-Based Practice to Nonspeech Oral Motor Treatments

    ERIC Educational Resources Information Center

    Lass, Norman J.; Pannbacker, Mary

    2008-01-01

    Purpose: The purpose of this article is to help speech-language pathologists (SLPs) apply the principles of evidence-based practice (EBP) to nonspeech oral motor treatments (NSOMTs) in order to make valid, evidence-based decisions about NSOMTs and thus determine if they are viable treatment approaches for the management of communication disorders.…

  9. Using Video-Based Modeling to Promote Acquisition of Fundamental Motor Skills

    ERIC Educational Resources Information Center

    Obrusnikova, Iva; Rattigan, Peter J.

    2016-01-01

    Video-based modeling is becoming increasingly popular for teaching fundamental motor skills to children in physical education. Two frequently used video-based instructional strategies that incorporate modeling are video prompting (VP) and video modeling (VM). Both strategies have been used across multiple disciplines and populations to teach a…

  10. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    ERIC Educational Resources Information Center

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  11. Conceptually coherent categories support label-based inductive generalization in preschoolers.

    PubMed

    Booth, Amy E

    2014-07-01

    Why do words support inductive generalization in preschoolers? The current study provides evidence that they do so, at least in part, by working with conceptual knowledge to establish kind membership. A sample of 30 4-year-olds learned new labels for novel items, sometimes along with additional non-obvious information, and were then asked to generalize a novel object property to a target item based on either visual similarity or shared label. Children were more likely to generalize properties based on shared labels (over perceptual similarity) if they initially learned causally coherent properties of items referenced by those labels than if they initially learned non-causal properties of those items or learned no properties at all. This finding suggests that novel words best support inductive inference when they are known by children to reference conceptually coherent categories. Therefore, conceptual information permeates the process of inductive inference in young children. Results are discussed with respect to their implications for the "word-as-feature" and "knowledge-based" accounts of early inductive inference. PMID:24632505

  12. Electronically commutated motors for vehicle applications

    NASA Astrophysics Data System (ADS)

    Echolds, E. F.

    1980-02-01

    Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.

  13. Preliminary development and evaluation of an appearance-based dissonance induction intervention for reducing UV exposure.

    PubMed

    Chait, Sari R; Thompson, J Kevin; Jacobsen, Paul B

    2015-01-01

    The current study examined the feasibility of an appearance-based dissonance induction approach for the modification of tanning and sunscreen use behaviors. Undergraduate female students were randomized to: a healthy lifestyle condition, an appearance-based dissonance condition, or an appearance-based psychoeducation condition. Reports of tanning and sunscreen use were collected immediately before and 1 month following intervention (N=225). Relative to the healthy lifestyle condition, participants in the dissonance condition reported a significant reduction in daily hours spent tanning. Additionally, sunscreen use on the body decreased significantly for the healthy lifestyle group, but did not change for the dissonance group. The psychoeducation condition did not differ from the healthy lifestyle condition on any measure. These findings should encourage additional research into the use of dissonance induction as an appearance-based strategy for promoting reductions in UV exposure.

  14. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  15. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  16. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.

    PubMed

    Pichiorri, F; De Vico Fallani, F; Cincotti, F; Babiloni, F; Molinari, M; Kleih, S C; Neuper, C; Kübler, A; Mattia, D

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  17. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  18. Design, Fabrication and Testing of Two Different Laboratory Prototypes of CSI-based Induction Heating Units

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2012-09-01

    Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.

  19. Sensorless load torque estimation and passivity based control of buck converter fed DC motor.

    PubMed

    Kumar, S Ganesh; Thilagar, S Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper.

  20. Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor

    PubMed Central

    Kumar, S. Ganesh; Thilagar, S. Hosimin

    2015-01-01

    Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper. PMID:25893208

  1. Enhancing the Motor Skills of Children with Autism Spectrum Disorders: A Pool-Based Approach

    ERIC Educational Resources Information Center

    Lee, Jihyun; Porretta, David L.

    2013-01-01

    Children with autism spectrum disorders (ASDs) often experience difficulties with motor skill learning and performance. The pool is a unique learning environment that can help children with ASDs learn or improve aquatic skills, fitness, and social skills. A pool-based approach is also aligned with the elements of dynamic systems theory, which…

  2. The Effectiveness of a Web-Based Motor Skill Assessment Training Program

    ERIC Educational Resources Information Center

    Kelly, Luke E.; Moran, Thomas E.

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of a web-based, intereactive video assessment program on teaching preservice physical education majors to assess the motor skill of kicking. The program provided component specific feedback through tutorial, guided practice, and competency training options. The 72 participants were…

  3. An Internet-Based Telerehabilitation System for the Assessment of Motor Speech Disorders: A Pilot Study

    ERIC Educational Resources Information Center

    Hill, Anne J.; Theodoros, Deborah G.; Russell, Trevor G.; Cahill, Louise M.; Ward, Elizabeth C.; Clark, Kathy M.

    2006-01-01

    Purpose: This pilot study explored the feasibility and effectiveness of an Internet-based telerehabilitation application for the assessment of motor speech disorders in adults with acquired neurological impairment. Method: Using a counterbalanced, repeated measures research design, 2 speech-language pathologists assessed 19 speakers with…

  4. Evidence-Based Systematic Review: Effects of Nonspeech Oral Motor Exercises on Speech

    ERIC Educational Resources Information Center

    McCauley, Rebecca J.; Strand, Edythe; Lof, Gregory L.; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: The purpose of this systematic review was to examine the current evidence for the use of oral motor exercises (OMEs) on speech (i.e., speech physiology, speech production, and functional speech outcomes) as a means of supporting further research and clinicians' use of evidence-based practice. Method: The peer-reviewed literature from 1960…

  5. Evaluating the Sensory-Motor Bases of Behavior in the Profoundly Retarded.

    ERIC Educational Resources Information Center

    Webb, Ruth C.; And Others

    Discussed are the theoretical background and evaluation procedures of the Glenwood Awareness, Manipulation, and Posture Index Number One, an instrument for measuring the sensory-motor bases of behavior in the profoundly retarded. The authors maintain that, by using the processes of recognition, interaction, and mobility as criteria for the…

  6. Are Cortical Motor Maps Based on Body Parts or Coordinated Actions? Implications for Embodied Semantics

    ERIC Educational Resources Information Center

    Fernandino, Leonardo; Iacoboni, Marco

    2010-01-01

    The embodied cognition approach to the study of the mind proposes that higher order mental processes such as concept formation and language are essentially based on perceptual and motor processes. Contrary to the classical approach in cognitive science, in which concepts are viewed as amodal, arbitrary symbols, embodied semantics argues that…

  7. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  8. Asymptotic analysis of microtubule-based transport by multiple identical molecular motors.

    PubMed

    McKinley, Scott A; Athreya, Avanti; Fricks, John; Kramer, Peter R

    2012-07-21

    We describe a system of stochastic differential equations (SDEs) which model the interaction between processive molecular motors, such as kinesin and dynein, and the biomolecular cargo they tow as part of microtubule-based intracellular transport. We show that the classical experimental environment fits within a parameter regime which is qualitatively distinct from conditions one expects to find in living cells. Through an asymptotic analysis of our system of SDEs, we develop a means for applying in vitro observations of the nonlinear response by motors to forces induced on the attached cargo to make analytical predictions for two parameter regimes that have thus far eluded direct experimental observation: (1) highly viscous in vivo transport and (2) dynamics when multiple identical motors are attached to the cargo and microtubule.

  9. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM.

  10. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice

    PubMed Central

    Shumar, Stephanie A.; Fagone, Paolo; Alfonso-Pecchio, Adolfo; Gray, John T.; Rehg, Jerold E.; Jackowski, Suzanne; Leonardi, Roberta

    2015-01-01

    Background Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK) isoforms. PanK initiates the synthesis of coenzyme A (CoA), an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease. Objective, Methods, Results and Conclusions Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn) promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt) exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN. PMID:26052948

  11. Continuity and change in the development of category-based induction: The test case of diversity-based reasoning.

    PubMed

    Rhodes, Marjorie; Liebenson, Peter

    2015-11-01

    The present research examined the extent to which the cognitive mechanisms available to support inductive inference stay constant across development or undergo fundamental change. Four studies tested how children (ages 5-10) incorporate information about sample composition into their category-based generalizations. Children's use of sample composition varied across age and type of category. For familiar natural kinds, children ages 5-8 generalized similarly from diverse and non-diverse samples of evidence, whereas older children generalized more broadly from more diverse sets. In contrast, for novel categories, children of each age made broader generalizations from diverse than non-diverse samples. These studies provide the first clear evidence that young children are able to incorporate sample diversity into their inductive reasoning. These findings suggest developmental continuity in the cognitive mechanisms available for inductive inference, but developmental changes in the role that prior knowledge plays in shaping these processes.

  12. Target localization techniques for vehicle-based electromagnetic induction array applications

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan S.; Schultz, Gregory M.; Shubitidze, Fridon; Marble, Jay A.

    2010-04-01

    State-of-the-art electromagnetic induction (EMI) arrays provide significant capability enhancement to landmine, unexploded ordnance (UXO), and buried explosives detection applications. Arrays that are easily configured for integration with a variety of mobile platforms offer improved safety and efficiency to personnel conducting detection operations including site remediation, explosive ordnance disposal, and humanitarian demining missions. We present results from an evaluation of two vehicle-based frequency domain EMI arrays. Our research includes implementation of a simple circuit model to estimate target location from sensor measurements of the scattered vertical magnetic field component. Specifically, we characterize any conductive or magnetic target using a set of parameters that describe the eddy current and magnetic polarizations induced about a set of orthogonal axes. Parameter estimations are based on the fundamental resonance mode of a series inductance and resistance circuit. This technique can be adapted to a variety of EMI array configurations, and thus offers target localization capabilities to a number of applications.

  13. High-speed DNA-based rolling motors powered by RNase H

    NASA Astrophysics Data System (ADS)

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.; Salaita, Khalid

    2016-02-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next-generation sensors, drug-delivery platforms and biological computing. Despite their exquisite programmability, DNA-based walkers are challenging to work with because of their low fidelity and slow rates (˜1 nm min-1). Here we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three orders of magnitude greater than the maximum for conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridize to a surface modified with complementary RNA; the motion is achieved through the addition of RNase H, which selectively hydrolyses the hybridized RNA. The spherical motors can move in a self-avoiding manner, and anisotropic particles, such as dimerized or rod-shaped particles, can travel linearly without a track or external force. We also show that the motors can be used to detect single nucleotide polymorphism by measuring particle displacement using a smartphone camera.

  14. High-speed DNA-based rolling motors powered by RNase H.

    PubMed

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R; Salaita, Khalid

    2016-02-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next-generation sensors, drug-delivery platforms and biological computing. Despite their exquisite programmability, DNA-based walkers are challenging to work with because of their low fidelity and slow rates (∼1 nm min(-1)). Here we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three orders of magnitude greater than the maximum for conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridize to a surface modified with complementary RNA; the motion is achieved through the addition of RNase H, which selectively hydrolyses the hybridized RNA. The spherical motors can move in a self-avoiding manner, and anisotropic particles, such as dimerized or rod-shaped particles, can travel linearly without a track or external force. We also show that the motors can be used to detect single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  15. Match explosionproof motors with variable-frequency controllers

    SciTech Connect

    Petro, D.; Basso, D.

    1995-10-01

    The correct application of variable-frequency drive controllers to AC induction motors can be difficult, even for relatively simple applications. When using a variable-frequency controller (inverter), the non-pure sine-wave power output cases additional motor heating, primarily because of harmonics and below-base-speed operation. Add to that a hazardous environment requiring an explosion proof (XP) motor and the selection of a suitable, as well as efficient, motor and variable-frequency controller combination, and selection becomes even more complicated. Hazardous locations are found in a wide range of chemical process industries (CPI) plants, including chemical, petrochemical textile, rubber-making,, agriculture, food-processing, and metalworking facilities. Because standard constant-speed XP motors are not designed of use with variable-frequency controllers in these potentially explosive applications, it is necessary to understand how drive controllers affect motor performance. The multitude of motors and controllers--which can be purchased separately--and the numerous hazardous-application restrictions make it difficult to select the right XP motor/controller combination. The paper discusses how variable frequency affects motors, hazardous environments as found in UL 674 and UL 1836, matching XP motors with variable-frequency controllers, preventing motor overheating, motor and controller packaging, and non-thermostat applications in the CPI.

  16. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  17. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  18. An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2014-01-01

    This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.

  19. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  20. The use of a skill-based activity in therapeutic induction.

    PubMed

    Winter, W E

    2001-10-01

    This paper describes a hypnotherapeutic intervention for a brain damaged 36-year-old male who has suffered from asthma since infancy and seizure disorder from the age of eight. In early sessions it was discovered that conventional "passive-relaxation" induction techniques seemed to exacerbate certain disturbing somatic experiences, which he refers to as scary feelings. It was found that his performance of a previously learned skilled activity (the playing of the computer game Tetris) permitted the experience of a highly focused but relaxed state that was conducive to therapeutic interaction. This approach to induction bears similarity to "active-alert" procedures but may be more importantly related to Mihaly Csikszentmihalyi's principle of flow, in that it involves engagement in a subjectively meaningful, skill-based activity.

  1. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. PMID:26616311

  2. Motor Skill Assessment of Children: Is There an Association between Performance-Based, Child-Report, and Parent-Report Measures of Children's Motor Skills?

    ERIC Educational Resources Information Center

    Kennedy, Johanna; Brown, Ted; Chien, Chi-Wen

    2012-01-01

    Client-centered practice requires therapists to actively seek the perspectives of children and families. Several assessment tools are available to facilitate this process. However, when evaluating motor skill performance, therapists typically concentrate on performance-based assessment. To improve understanding of the information provided by the…

  3. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  4. Examining the Potential of Web-Based Multimedia to Support Complex Fine Motor Skill Learning: An Empirical Study

    ERIC Educational Resources Information Center

    Papastergiou, Marina; Pollatou, Elisana; Theofylaktou, Ioannis; Karadimou, Konstantina

    2014-01-01

    Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an…

  5. A piezoelectric motor-based microactuator-generated distractor for continuous jaw bone distraction.

    PubMed

    Park, Jong-Tae; Lee, Jae-Gi; Kim, Soo-Yeon; Kim, Gyu-Hag; Hu, Kyung-Seok; Cha, Jung-Yul; Kim, Hyung Jun; Kim, Hee-Jin

    2011-07-01

    Distraction osteogenesis is widely applied to correct oral and maxillofacial deformities, and intermittent distraction protocols have been used in various clinical applications. There are many challenges for continuous distraction of the jaw bone such as when using hydraulic motors and motor-driven plates. The size of the motor is critical to the ability to miniaturize the complete distractor system, and the importance of size makes it difficult to extrapolate the results of animal models to the clinical situation. This study developed a microactuator-generated distractor (MAGD) for continuous jaw bone distraction. The MAGD system consists of control software based on Microsoft Windows and a Squiggle piezoelectric motor. The system allows various intermittent and continuous distraction protocols to be simply selected using the control software. The maximum force of the laboratory-scale MAGD is 3 N, and the device is ready for adoption in small-animal distraction models such as the rat and mouse. The MAGD needs further refinement before it can be applied to humans, but a fully implanted MAGD system will reduce soft-tissue complications resulting from exposure of the extraoral component. Moreover, the MAGD will support the patient's social activities and require only minimal cooperation from the patient.

  6. Wearable sensor-based objective assessment of motor symptoms in Parkinson's disease.

    PubMed

    Ossig, Christiana; Antonini, Angelo; Buhmann, Carsten; Classen, Joseph; Csoti, Ilona; Falkenburger, Björn; Schwarz, Michael; Winkler, Jürgen; Storch, Alexander

    2016-01-01

    Effective management and development of new treatment strategies of motor symptoms in Parkinson's disease (PD) largely depend on clinical rating instruments like the Unified PD rating scale (UPDRS) and the modified abnormal involuntary movement scale (mAIMS). Regarding inter-rater variability and continuous monitoring, clinical rating scales have various limitations. Patient-administered questionnaires such as the PD home diary to assess motor stages and fluctuations in late-stage PD are frequently used in clinical routine and as clinical trial endpoints, but diary/questionnaire are tiring, and recall bias impacts on data quality, particularly in patients with cognitive dysfunction or depression. Consequently, there is a strong need for continuous and objective monitoring of motor symptoms in PD for improving therapeutic regimen and for usage in clinical trials. Recent advances in battery technology, movement sensors such as gyroscopes, accelerometers and information technology boosted the field of objective measurement of movement in everyday life and medicine using wearable sensors allowing continuous (long-term) monitoring. This systematic review summarizes the current wearable sensor-based devices to objectively assess the various motor symptoms of PD.

  7. Prediction of motor imagery based brain computer interface performance using a reaction time test.

    PubMed

    Darvishi, Sam; Abbott, Derek; Baumert, Mathias

    2015-08-01

    Brain computer interfaces (BCIs) enable human brains to interact directly with machines. Motor imagery based BCI (MI-BCI) encodes the motor intentions of human agents and provides feedback accordingly. However, 15-30% of people are not able to perform vivid motor imagery. To save time and monetary resources, a number of predictors have been proposed to screen for users with low BCI aptitude. While the proposed predictors provide some level of correlation with MI-BCI performance, simple, objective and accurate predictors are currently not available. Thus, in this study we have examined the utility of a simple reaction time (SRT) test for predicting MI-BCI performance. We enrolled 10 subjects and measured their motor imagery performance with either visual or proprioceptive feedback. Their reaction time was also measured using a SRT test. The results show a significant negative correlation (r ≈ -0.67) between SRT and MI-BCI performance. Therefore SRT may be used as a simple and reliable predictor of MI-BCI performance. PMID:26736893

  8. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Sun, Xingliang; Tian, Hui; Li, Yuelong; Yu, Nanjia; Cai, Guobiao

    2016-02-01

    The purpose of this paper is to characterize the regression rate behavior of hybrid rocket motor propellant combinations, using hydrogen peroxide (HP), gaseous oxygen (GOX), nitrous oxide (N2O) as the oxidizer and hydroxyl-terminated poly-butadiene (HTPB) as the based fuel. In order to complete this research by experiment and simulation, a hybrid rocket motor test system and a numerical simulation model are established. Series of hybrid rocket motor firing tests are conducted burning different propellant combinations, and several of those are used as references for numerical simulations. The numerical simulation model is developed by combining the Navies-Stokes equations with the turbulence model, one-step global reaction model, and solid-gas coupling model. The distribution of regression rate along the axis is determined by applying simulation mode to predict the combustion process and heat transfer inside the hybrid rocket motor. The time-space averaged regression rate has a good agreement between the numerical value and experimental data. The results indicate that the N2O/HTPB and GOX/HTPB propellant combinations have a higher regression rate, since the enhancement effect of latter is significant due to its higher flame temperature. Furthermore, the containing of aluminum (Al) and/or ammonium perchlorate(AP) in the grain does enhance the regression rate, mainly due to the more energy released inside the chamber and heat feedback to the grain surface by the aluminum combustion.

  9. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  10. Orientation measurement based on magnetic inductance by the extended distributed multi-pole model.

    PubMed

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-06-27

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation.

  11. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model

    PubMed Central

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-01-01

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation. PMID:24977389

  12. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  13. Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations.

    PubMed

    Kraeutner, Sarah; Gionfriddo, Alicia; Bardouille, Timothy; Boe, Shaun

    2014-11-01

    Motor imagery (MI) is a form of practice in which an individual mentally performs a motor task. Previous research suggests that skill acquisition via MI is facilitated by repetitive activation of brain regions in the sensorimotor network similar to that of motor execution, however this evidence is conflicting. Further, many studies do not control for overt muscle activity and thus the activation patterns reported for MI may be driven in part by actual movement. The purpose of the current research is to further establish MI as a secondary modality of skill acquisition by providing electrophysiological evidence of an overlap between brain areas recruited for motor execution and imagery. Non-disabled participants (N=18; 24.7±3.8 years) performed both execution and imagery of a unilateral sequence button-press task. Magnetoencephalography (MEG) was utilized to capture neural activity, while electromyography used to rigorously monitor muscle activity. Event-related synchronization/desynchronization (ERS/ERD) analysis was conducted in the beta frequency band (15-30 Hz). Whole head dual-state beamformer analysis was applied to MEG data and 3D t-tests were conducted after Talairach normalization. Source-level analysis showed that MI has similar patterns of spatial activity as ME, including activation of contralateral primary motor and somatosensory cortices. However, this activation is significantly less intense during MI (p<0.05). As well, activation during ME was more lateralized (i.e., within the contralateral hemisphere). These results confirm that ME and MI have similar spatial activation patterns. Thus, the current research provides direct electrophysiological evidence to further establish MI as a secondary form of skill acquisition.

  14. High-speed DNA-based rolling motors powered by RNase H

    PubMed Central

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.

    2016-01-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  15. Micro motor OCT enables catheter based assessment of vascular elasticity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Pfeiffer, Tom; Wieser, Wolfgang; Lancee, Charles T.; van der Steen, Antonius F. W.; Huber, Robert; van Soest, Gijs

    2016-03-01

    Here, we present the first catheter-based optical coherence elasticity measurement using a newly developed super fast intravascular optical coherence tomography (OCT) system. The system is based on a 1.5 MHz Fourier Domain Mode Locked laser and a 1.2 mm outer diameter motorized catheter. To detect the local elastic properties, the micro-motor is programmed to actuate the laser beam in a "step-by-step" mode at 1 revolution per second; which can potentially be increased to > 10 revolutions/s. The beam is scanned in a limited number (up to 50) of angular steps, at each of which the beam position is held stable. When the laser beam is stable, the phase difference across a variable number of A-lines can be computed to assess the elastic displacement. Choosing a proper window delay, local elastic tissue displacement and strain can be quantified based on the phase shift. We conducted ex-vivo experiments with a cylindrical phantom where the elastic property changes at different angular positions. A syringe pump was used to generate variable pressure loading, which is synchronized to the motor driving signal. The experimental results show that the elastic displacements are detected to be different at different angular positions. The results of elastic properties detection in human artery will also be demonstrated.

  16. Identification and speed control of ultrasonic motors based on neural networks

    NASA Astrophysics Data System (ADS)

    Xu, X.; Liang, Y. C.; Lee, H. P.; Lin, W. Z.; Lim, S. P.; Lee, K. H.; Shi, X. H.

    2003-01-01

    An ultrasonic motor (USM) is a newly developed motor that has many excellent performances, useful features and extensive applications. The operational characteristics of the USM are affected by many factors. Strongly nonlinear characteristics could be caused by the increase of temperature, the changes of load, driving frequency and voltage and many other factors. Therefore, it is difficult to perform effective control on USMs using traditional control methods based on mathematical models of systems. Recently, artificial intelligent methods based on neural networks have become the main approaches to perform USM control. However, the existing neural-network-based methods for USM control have some shortcomings, such as complex network structures, slower convergent speeds and lower convergent precision, as well as no theoretical guarantee on the convergence of control. Furthermore, it is difficult to obtain accurate control input for the USM by using a speed controller with a single control variable. In this paper, a bimodal controller is designed where both the driving frequency and amplitude of the applied voltage are used as control inputs. A novel input-output recurrent neural network (IORNN) identifier is constructed to dynamically identify the input-output relation of the ultrasonic motors. To guarantee convergence and for faster learning, the adaptive learning rates are derived using discrete-type Lyapunov stability analysis. Numerical results show that the proposed IORNN identifier can approximate the nonlinear input-output mapping of ultrasonic motors quite well. Compared with the existing method, the control precision can be increased by about three times and the convergence time can be decreased by about two times when the proposed method is employed. Good effectiveness of the proposed control scheme is also obtained for various reference speeds.

  17. Effects of A School-Based Intervention on BMI and Motor Abilities in Childhood

    PubMed Central

    Graf, Christine; Koch, Benjamin; Falkowski, Gisa; Jouck, Stefanie; Christ, Hildegard; Stauenmaier, Kathrin; Bjarnason-Wehrens, Birna; Tokarski, Walter; Dordel, Sigrid; Predel, Hans-Georg

    2005-01-01

    Obesity in childhood is increasing worldwide. To combat overweight and obesity in childhood, the school-based Children’s Health InterventionaL Trial (CHILT) project combines health education and physical activity. This paper examines the effect of intervention on the body mass index (BMI) and motor abilities after 20.8 ± 1.0 months in 12 randomly selected primary schools compared with 5 randomly selected control schools. The anthropometric data were assessed, BMI was calculated. Coordination was determined by lateral jumping and endurance performance by a 6-minute run. No difference in the prevalence of overweight and obesity was found between the intervention (IS) and control schools (CS) either at baseline or following intervention (each p > 0.05). The increase in the number of lateral jumps was significantly higher in the IS than in the CS (p < 0.001). For the 6-minute run the increase in distance run was significantly improved in IS (p = 0.020). All variables were controlled for gender and age. Overweight and obese children in both IS and CS produced significantly lower scores in coordination and endurance tasks than normal and underweight children during both examinations (each p ≤ 0.001), adjusted for gender and age. Preventive intervention in primary schools offers an effective means to improve motor skills in childhood and to break through the vicious circle of physical inactivity - motor deficits - frustration - increasing inactivity possibly combined with an excess energy intake and weight gain. To prevent overweight and obesity these measures have to be intensified. Key Points School-based prevention improves motor abilities in primary school children. The incidence of obesity is not influenced by school-based intervention. To prevent obesity in early childhood the measures have to be intensified and parents should be included. PMID:24453534

  18. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  19. Magneto-inductive heating of water-based iron oxide ferrofluids

    NASA Astrophysics Data System (ADS)

    Novoselova, Iu. P.; Safronov, A. P.; Samatov, O. M.; Kurlyandskaya, G. V.

    2016-09-01

    Spherical magnetic nanoparticles (MNPs) of iron oxide were fabricated by laser target evaporation technique. Water-based ferrofluids were prepared on the basis of obtained MNPs. Their structure and magnetic properties were studied by a number of methods including transmission electron microscopy, X-ray diffraction, SQUID-magnetometry and magnetic relaxation losses measurements. Magneto-inductive heating experiment showed the specific power loss value of 2 W/g for 1.8 kA/m alternating magnetic field of 214 kHz frequency. These parameters indicate that LTE MNPs are perspective materials for biomedical applications such as hyperthermia.

  20. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  1. Instrument for analysis of electric motors based on slip-poles component

    DOEpatents

    Haynes, H.D.; Ayers, C.W.; Casada, D.A.

    1996-11-26

    A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.

  2. Instrument for analysis of electric motors based on slip-poles component

    DOEpatents

    Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.

    1996-01-01

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  3. A new standing-wave-type linear ultrasonic motor based on in-plane modes.

    PubMed

    Shi, Yunlai; Zhao, Chunsheng

    2011-05-01

    This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization.

  4. A neural network-based exploratory learning and motor planning system for co-robots

    PubMed Central

    Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640

  5. A neural network-based exploratory learning and motor planning system for co-robots.

    PubMed

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640

  6. The Effect of Temperature on Microtubule-Based Transport by Cytoplasmic Dynein and Kinesin-1 Motors.

    PubMed

    Hong, Weili; Takshak, Anjneya; Osunbayo, Olaolu; Kunwar, Ambarish; Vershinin, Michael

    2016-09-20

    Cytoplasmic dynein and kinesin are both microtubule-based molecular motors but are structurally and evolutionarily unrelated. Under standard conditions, both move with comparable unloaded velocities toward either the microtubule minus (dynein) or plus (most kinesins) end. This similarity is important because it is often implicitly incorporated into models that examine the balance of cargo fluxes in cells and into models of the bidirectional motility of individual cargos. We examined whether this similarity is a robust feature, and specifically whether it persists across the biologically relevant temperature range. The velocity of mammalian cytoplasmic dynein, but not of mammalian kinesin-1, exhibited a break from simple Arrhenius behavior below 15°C-just above the restrictive temperature of mammalian fast axonal transport. In contrast, the velocity of yeast cytoplasmic dynein showed a break from Arrhenius behavior at a lower temperature (∼8°C). Our studies implicate cytoplasmic dynein as a more thermally tunable motor and therefore a potential thermal regulator of microtubule-based transport. Our theoretical analysis further suggests that motor velocity changes can lead to qualitative changes in individual cargo motion and hence net intracellular cargo fluxes. We propose that temperature can potentially be used as a noninvasive probe of intracellular transport. PMID:27653487

  7. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection

    PubMed Central

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-01-01

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype. PMID:26861347

  8. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  9. A neural network-based exploratory learning and motor planning system for co-robots.

    PubMed

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  10. Passivity-based current controller design for a permanent-magnet synchronous motor.

    PubMed

    Achour, A Y; Mendil, B; Bacha, S; Munteanu, I

    2009-07-01

    The control of a permanent-magnet synchronous motor is a nontrivial issue in AC drives, because of its nonlinear dynamics and time-varying parameters. Within this paper, a new passivity-based controller designed to force the motor to track time-varying speed and torque trajectories is presented. Its design avoids the use of the Euler-Lagrange model and destructuring since it uses a flux-based dq modelling, independent of the rotor angular position. This dq model is obtained through the three-phase abc model of the motor, using a Park transform. The proposed control law does not compensate the model's workless force terms which appear in the machine's dq model, as they have no effect on the system's energy balance and they do not influence the system's stability properties. Another feature is that the cancellation of the plant's primary dynamics and nonlinearities is not done by exact zeroing, but by imposing a desired damped transient. The effectiveness of the proposed control is illustrated by numerical simulation results.

  11. FPGA-based Elman neural network control system for linear ultrasonic motor.

    PubMed

    Lin, Faa-Jeng; Hung, Ying-Chih

    2009-01-01

    A field-programmable gate array (FPGA)-based Elman neural network (ENN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principle of the LUSM are introduced. Because the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an ENN control system is designed to achieve precision position control. The network structure and online learning algorithm using delta adaptation law of the ENN are described in detail. Then, a piecewise continuous function is adopted to replace the sigmoid function in the hidden layer of the ENN to facilitate hardware implementation. In addition, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some experimental results.

  12. Bipolar electrode selection for a motor imagery based brain computer interface

    NASA Astrophysics Data System (ADS)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  13. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. PMID:26880543

  14. A direct torque control scheme for permanent magnet synchronous motors based on space vector modulation

    NASA Astrophysics Data System (ADS)

    Su, Xiao-hui; Xu, Shu-Ping

    2013-03-01

    In order to solve the problem of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) related to the flux and the torque ripple and the uncertainty of switching frequency, A novel direct torque control system based on space vector modulation(SVM-DTC) for permanent magnet synchronous motor was proposed. In this method flux and torque are controlled through stator voltage components in stator flux linkage coordinate axes and space vector modulation is used to control inverters. Therefore, the errors of torque and flux linkage could be compensated accurately. The whole system has only one easily adjustable PI adjuster and needs no high for hardware and easy for realize. The simulation results verify the feasibility of this method, reduction of the flux and the torque ripple, and the good performance of DTC.

  15. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes

    PubMed Central

    Fernandino, Leonardo; Humphries, Colin J.; Seidenberg, Mark S.; Gross, William L.; Conant, Lisa L.; Binder, Jeffrey R.

    2015-01-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience – sound, color, visual motion, shape, and manipulation – can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  16. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  17. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Seidenberg, Mark S; Gross, William L; Conant, Lisa L; Binder, Jeffrey R

    2015-09-01

    While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts. We collected ratings on the relevance of these five attributes to the meaning of 820 words, and used these ratings as predictors in a multiple regression model of the fMRI signal associated with the words in a separate group of participants. The five resulting activation maps were then combined by linear summation to predict the distributed activation pattern elicited by a novel set of 80 test words. The encoding model predicted the activation patterns elicited by the test words significantly better than chance. As expected, prediction was successful for concrete but not for abstract concepts. Comparisons between encoding models based on different combinations of attributes indicate that all five attributes contribute to the representation of concrete concepts. Consistent with embodied theories of semantics, these results show, for the first time, that the distributed activation pattern associated with a concept combines information about different sensory-motor attributes according to their respective relevance. Future research should investigate how additional features of phenomenal experience contribute to the neural representation of conceptual

  18. System and method for motor parameter estimation

    SciTech Connect

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  19. A liquid phase based C. elegans behavioral analysis system identifies motor activity loss in a nematode Parkinson's disease model.

    PubMed

    Zheng, Maohua; Gorelenkova, Olga; Yang, Jiong; Feng, Zhaoyang

    2012-03-15

    Motor activity of Caenorhabditis elegans is widely used to study the mechanisms ranging from basic neuronal functions to human neurodegenerative diseases. It may also serve as a paradigm to screen for potential therapeutic reagents treating these diseases. Here, we developed an automated, 96-well plate and liquid phase based system that quantifies nematode motor activity in real time. Using this system, we identified an adult-onset, ageing-associated motor activity loss in a transgenic nematode line expressing human pathogenic G2019S mutant LRRK2 (leucine-rich repeat kinase 2), the leading genetic cause of Parkinson's disease characterized by dopaminergic neurodegeneration associated motor deficient mainly in elder citizens. Thus, our system may be used as a platform to screen for potential therapeutic drugs treating Parkinson's disease. It can also be used to monitor motor activity of nematodes in liquid phase at similar scenario.

  20. Reducing youth internalizing symptoms: Effects of a family-based preventive intervention on parental guilt induction and youth cognitive style

    PubMed Central

    McKEE, LAURA G.; PARENT, JUSTIN; FOREHAND, REX; RAKOW, AARON; WATSON, KELLY H.; DUNBAR, JENNIFER P.; REISING, MICHELLE M.; HARDCASTLE, EMILY; COMPAS, BRUCE E.

    2014-01-01

    This study utilized structural equation modeling to examine the associations among parental guilt induction (a form of psychological control), youth cognitive style, and youth internalizing symptoms, with parents and youth participating in a randomized controlled trial of a family-based group cognitive–behavioral preventive intervention targeting families with a history of caregiver depression. The authors present separate models utilizing parent report and youth report of internalizing symptoms. Findings suggest that families in the active condition (family-based group cognitive–behavioral group) relative to the comparison condition showed a significant decline in parent use of guilt induction at the conclusion of the intervention (6 months postbaseline). Furthermore, reductions in parental guilt induction at 6 months were associated with significantly lower levels of youth negative cognitive style at 12 months. Finally, reductions in parental use of guilt induction were associated with lower youth internalizing symptoms 1 year following the conclusion of the intervention (18 months postbaseline). PMID:24438999

  1. Reducing youth internalizing symptoms: effects of a family-based preventive intervention on parental guilt induction and youth cognitive style.

    PubMed

    McKee, Laura G; Parent, Justin; Forehand, Rex; Rakow, Aaron; Watson, Kelly H; Dunbar, Jennifer P; Reising, Michelle M; Hardcastle, Emily; Compas, Bruce E

    2014-05-01

    This study utilized structural equation modeling to examine the associations among parental guilt induction (a form of psychological control), youth cognitive style, and youth internalizing symptoms, with parents and youth participating in a randomized controlled trial of a family-based group cognitive-behavioral preventive intervention targeting families with a history of caregiver depression. The authors present separate models utilizing parent report and youth report of internalizing symptoms. Findings suggest that families in the active condition (family-based group cognitive-behavioral group) relative to the comparison condition showed a significant decline in parent use of guilt induction at the conclusion of the intervention (6 months postbaseline). Furthermore, reductions in parental guilt induction at 6 months were associated with significantly lower levels of youth negative cognitive style at 12 months. Finally, reductions in parental use of guilt induction were associated with lower youth internalizing symptoms 1 year following the conclusion of the intervention (18 months postbaseline).

  2. Knowledge-based control of grasping in robot hands using heuristics from human motor skills

    SciTech Connect

    Bekey, G.A. . Computer Science Dept.); Liu, H. . Artificial Intelligence Systems Section); Tomovic, R. . Dept. of Electrical Engineering); Karplus, W.J. . Computer Science Dept.)

    1993-12-01

    The development of a grasp planner for multifingered robot hands is described. The planner is knowledge-based, selecting grasp postures by reasoning from symbolic information on target object geometry and the nature of the task. The ability of the planner to utilize task information is based on an attempt to mimic human grasping behavior. Several task attributes and a set of heuristics derived from observation of human motor skills are included in the system. The paper gives several examples of the reasoning of the system in selecting the appropriate grasp mode for spherical and cylindrical objects for different tasks.

  3. Improved linear ultrasonic motor performance with square-wave based driving-tip trajectory

    NASA Astrophysics Data System (ADS)

    Le, Adam Y.; Mills, James K.; Benhabib, Beno

    2015-03-01

    This paper proposes the application of a non-sinusoidal periodic excitation voltage to induce a near-square-wave driving tip trajectory in linear ultrasonic motors (LUSMs). A square-wave-based trajectory can deliver superior frictional force to the moving stage in the forward stroke of the driving tip motion and reduced frictional force during the return stroke. This would reduce lost power in the periodic driving tip motion, thereby, increasing the output force and power of the LUSM. An implementation procedure is suggested to achieve the near-square-wave driving tip trajectory. The proposed approach is illustrated through realistic finite-element-based simulations using a bimodal LUSM configuration.

  4. A digital control system of brushless DC motor based on programmable logic device

    NASA Astrophysics Data System (ADS)

    Li, Jianke; Liu, Gang; Fang, Jiancheng

    2006-11-01

    A digital control system of brushless DC motor based on programmable Logic Device GAL16V8 and DSP is researched, and the principle and every element of the control system such as DSP2407,Logic handling segment, power driving circuit are analyzed. Compared with the software communication of BLDCM based on DSP, the control system has fast dynamic response, high reliability. The experimental result shows that the system has satisfied the spacecraft's demands on the BLDCM driving flywheel. In the end, the problem exited in the control system is analyzed on theory.

  5. Reactor coolant pump testing using motor current signatures analysis

    SciTech Connect

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  6. Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces.

    PubMed

    Nicolas-Alonso, Luis F; Corralejo, Rebeca; Gomez-Pilar, Javier; Álvarez, Daniel; Hornero, Roberto

    2015-07-01

    Practical motor imagery-based brain computer interface (MI-BCI) applications are limited by the difficult to decode brain signals in a reliable way. In this paper, we propose a processing framework to address non-stationarity, as well as handle spectral, temporal, and spatial characteristics associated with execution of motor tasks. Stacked generalization is used to exploit the power of classifier ensembles for combining information coming from multiple sources and reducing the existing uncertainty in EEG signals. The outputs of several regularized linear discriminant analysis (RLDA) models are combined to account for temporal, spatial, and spectral information. The resultant algorithm is called stacked RLDA (SRLDA). Additionally, an adaptive processing stage is introduced before classification to reduce the harmful effect of intersession non-stationarity. The benefits of the proposed method are evaluated on the BCI Competition IV dataset 2a. We demonstrate its effectiveness in binary and multiclass settings with four different motor imagery tasks: left-hand, right-hand, both feet, and tongue movements. The results show that adaptive SRLDA outperforms the winner of the competition and other approaches tested on this multiclass dataset.

  7. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao

    2014-12-01

    The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.

  8. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system. PMID:27631789

  9. Improving vision-based motor rehabilitation interactive systems for users with disabilities using mirror feedback.

    PubMed

    Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T(s)) and time-to-complete (T(c))). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T(s) = 7.09 (P < 0.001) and T(c) = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems.

  10. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface

    PubMed Central

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The “high quality” training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system. PMID:27631789

  11. Improving Vision-Based Motor Rehabilitation Interactive Systems for Users with Disabilities Using Mirror Feedback

    PubMed Central

    Martínez-Bueso, Pau; Moyà-Alcover, Biel

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (Ts) and time-to-complete (Tc)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (Ts = 7.09 (P < 0.001) and Tc = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310

  12. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills.

    PubMed

    Pace-Schott, Edward F; Spencer, Rebecca M C

    2013-01-01

    Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based vs. muscle-based learning in older adults (OA) has not been disentangled. We trained young (n = 62) and older (n = 50) adults on a motor sequence learning task and re-tested learning following 12 h intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based vs. muscle-based learning) by interval (sleep vs. wake) interaction, F(1,58) = 6.58, p = 0.013: goal-based learning tended to be greater following sleep compared to wake, t(29) = 1.47, p = 0.072. Conversely, muscle-based learning was greater following wake than sleep, t(29) = 2.11, p = 0.021. Unlike young adults, this interaction was not significant in OA, F(1,46) = 0.04, p = 0.84, nor was there a main effect of interval, F(1,46) = 1.14, p = 0.29. Thus, OA do not preferentially consolidate sequence learning over wake or sleep.

  13. Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression.

    PubMed

    Li, Yinyun; Kulvicius, Tomas; Tetzlaff, Christian

    2016-01-01

    The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers). PMID:27560350

  14. Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression

    PubMed Central

    Li, Yinyun; Kulvicius, Tomas; Tetzlaff, Christian

    2016-01-01

    The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers). PMID:27560350

  15. A transcutaneous power transfer interface based on a multicoil inductive link.

    PubMed

    Mirbozorgi, S A; Gosselin, B; Sawan, M

    2012-01-01

    This paper presents a transcutaneous power transfer link based on a multicoil structure. Multicoil inductive links using 4-coil or 3-coil topologies have shown significant improvement over conventional 2-coil structures for transferring power transcutaneously across larger distances and with higher efficiency. However, such performance comes at the cost of additional inductors and capacitor in the system, which is not convenient in implantable applications. This paper presents a transcutaneous power transfer interface that takes advantage on a 3-coils inductive topology to achieve wide separation distances and high power transfer efficiency without increasing the size of the implanted device compared to a conventional 2-coil structure. In the proposed link, a middle coil is placed outside the body to act as a repeater between an external transmitting coil and an implanted receiving coil. The proposed structure allows optimizing the link parameters after implantation by changing the characteristics of the repeater coil. Simulation with a multilayer model of the biological tissues and measured results are presented for the proposed link.

  16. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  17. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  18. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex.

    PubMed

    Ziemann, Ulf; Ilić, Tihomir V; Iliać, Tihomir V; Pauli, Christian; Meintzschel, Frank; Ruge, Diane

    2004-02-18

    Learning may alter rapidly the output organization of adult motor cortex. It is a long-held hypothesis that modification of synaptic strength along cortical horizontal connections through long-term potentiation (LTP) and long-term depression (LTD) forms one important mechanism for learning-induced cortical plasticity. Strong evidence in favor of this hypothesis was provided for rat primary motor cortex (M1) by showing that motor learning reduced subsequent LTP but increased LTD. Whether a similar relationship exists in humans is unknown. Here, we induced LTP-like and LTD-like plasticity in the intact human M1 by an established paired associative stimulation (PAS) protocol. PAS consisted of 200 pairs of electrical stimulation of the right median nerve, followed by focal transcranial magnetic stimulation of the hand area of the left M1 at an interval equaling the individual N20 latency of the median nerve somatosensory-evoked cortical potential (PAS(N20)) or N20-5 msec (PAS(N20-5)). PAS(N20) induced reproducibly a LTP-like long-lasting (>30 min) increase in motor-evoked potentials from the left M1 to a thumb abductor muscle of the right hand, whereas PAS(N20-5) induced a LTD-like decrease. Repeated fastest possible thumb abduction movements resulted in learning, defined by an increase in maximum peak acceleration of the practiced movements, and prevented subsequent PAS(N20)-induced LTP-like plasticity but enhanced subsequent PAS(N20-5)-induced LTD-like plasticity. The same number of repeated slow thumb abduction movements did not result in learning and had no effects on PAS-induced plasticity. Findings support the view that learning in human M1 occurs through LTP-like mechanisms.

  19. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.

    PubMed

    Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei

    2015-10-01

    Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills.

  20. Task-irrelevant alpha component analysis in motor imagery based brain computer interface.

    PubMed

    Lou, Bin; Hong, Bo; Gao, Shangkai

    2008-01-01

    In motor imagery based BCI, the alpha rhythm shares the same frequency band with sensorimotor rhythm (SMR), and does not correlate with mental task, which contaminates the SMR recording. Independent component analysis (ICA) was applied to decompose original EEG signal into source components, and a comprehensive method was proposed to discriminate those source components by combining temporal, frequency, spatial, and class label information. Task-irrelevant alpha components were sorted out and their projections were reduced by proper bipolar electrode placement for improving the BCI performance.

  1. Structural design optimization of racing motor boat based on nonlinear finite element analysis

    NASA Astrophysics Data System (ADS)

    Song, Ha Cheol; Kim, Tae-Jun; Jang, Chang Doo

    2010-12-01

    Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

  2. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  3. Copula-based regression modeling of bivariate severity of temporary disability and permanent motor injuries.

    PubMed

    Ayuso, Mercedes; Bermúdez, Lluís; Santolino, Miguel

    2016-04-01

    The analysis of factors influencing the severity of the personal injuries suffered by victims of motor accidents is an issue of major interest. Yet, most of the extant literature has tended to address this question by focusing on either the severity of temporary disability or the severity of permanent injury. In this paper, a bivariate copula-based regression model for temporary disability and permanent injury severities is introduced for the joint analysis of the relationship with the set of factors that might influence both categories of injury. Using a motor insurance database with 21,361 observations, the copula-based regression model is shown to give a better performance than that of a model based on the assumption of independence. The inclusion of the dependence structure in the analysis has a higher impact on the variance estimates of the injury severities than it does on the point estimates. By taking into account the dependence between temporary and permanent severities a more extensive factor analysis can be conducted. We illustrate that the conditional distribution functions of injury severities may be estimated, thus, providing decision makers with valuable information.

  4. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  5. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  6. Hybrid-secondary uncluttered induction machine

    DOEpatents

    Hsu, John S.

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  7. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  8. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  9. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+).

  10. Compressive sensing based spinning mode detections by in-duct microphone arrays

    NASA Astrophysics Data System (ADS)

    Yu, Wenjun; Huang, Xun

    2016-05-01

    This paper presents a compressive sensing based experimental method for detecting spinning modes of sound waves propagating inside a cylindrical duct system. This method requires fewer dynamic pressure sensors than the number required by the Shannon-Nyquist sampling theorem so long as the incident waves are sparse in spinning modes. In this work, the proposed new method is firstly validated by preparing some of the numerical simulations with representative set-ups. Then, a duct acoustic testing rig with a spinning mode synthesiser and an in-duct microphone array is built to experimentally demonstrate the new approach. Both the numerical simulations and the experiment results are satisfactory, even when the practical issue of the background noise pollution is taken into account. The approach is beneficial for sensory array tests of silent aeroengines in particular and some other engineering systems with duct acoustics in general.

  11. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  12. Compressive sensing based spinning mode detections by in-duct microphone arrays

    NASA Astrophysics Data System (ADS)

    Yu, Wenjun; Huang, Xun

    2016-05-01

    This paper presents a compressive sensing based experimental method for detecting spinning modes of sound waves propagating inside a cylindrical duct system. This method requires fewer dynamic pressure sensors than the number required by the Shannon–Nyquist sampling theorem so long as the incident waves are sparse in spinning modes. In this work, the proposed new method is firstly validated by preparing some of the numerical simulations with representative set-ups. Then, a duct acoustic testing rig with a spinning mode synthesiser and an in-duct microphone array is built to experimentally demonstrate the new approach. Both the numerical simulations and the experiment results are satisfactory, even when the practical issue of the background noise pollution is taken into account. The approach is beneficial for sensory array tests of silent aeroengines in particular and some other engineering systems with duct acoustics in general.

  13. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  14. [Photosynthetic Parameters Inversion Algorithm Study Based on Chlorophyll Fluorescence Induction Kinetics Curve].

    PubMed

    Qiu, Xiao-han; Zhang, Yu-jun; Yin, Gao-fang; Shi, Chao-yi; Yu, Xiao-ya; Zhao, Nan-jing; Liu, Wen-qing

    2015-08-01

    The fast chlorophyll fluorescence induction curve contains rich information of photosynthesis. It can reflect various information of vegetation, such as, the survival status, the pathological condition and the physiology trends under the stress state. Through the acquisition of algae fluorescence and induced optical signal, the fast phase of chlorophyll fluorescence kinetics curve was fitted. Based on least square fitting method, we introduced adaptive minimum error approaching method for fast multivariate nonlinear regression fitting toward chlorophyll fluorescence kinetics curve. We realized Fo (fixedfluorescent), Fm (maximum fluorescence yield), σPSII (PSII functional absorption cross section) details parameters inversion and the photosynthetic parameters inversion of Chlorella pyrenoidosa. And we also studied physiological variation of Chlorella pyrenoidosa under the stress of Cu(2+). PMID:26672292

  15. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    ERIC Educational Resources Information Center

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  16. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  17. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  18. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  19. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  20. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  1. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool

    PubMed Central

    Jöhr, Jane; Gilart de Keranflec'h, Charlotte; Van De Ville, Dimitri; Preti, Maria Giulia; Meskaldji, Djalel E.; Hömberg, Volker; Laureys, Steven; Draganski, Bogdan; Frackowiak, Richard; Diserens, Karin

    2016-01-01

    Introduction Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. Methods From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. Results Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation

  2. [Intraoperative monitoring of motor cranial nerves in operations of the neck and cranial base].

    PubMed

    Maurer, J; Pelster, H; Mann, W

    1994-11-01

    Intraoperative monitoring of cranial nerves is performed to minimize postoperative cranial nerve dysfunction. We performed electrophysiological monitoring of motor cranial nerves with a NIM 2 unit from Xomed Treace and a patient multiplexer developed in our clinic. This multiplexer allows simultaneous monitoring of 4 cranial nerves and is additionally equipped with a bipolar stimulation mode. This intraoperative monitoring was employed during 102 skull base operations. Of these 102 operations, 44 were acoustic neuroma removals by translabyrinthine approach and 36 by a middle fossa approach. Various operations including removal of tumours of the jugular foramen and the infratemporal fossa were performed in the remaining 22 patients. The facial nerve, being the most frequently monitored nerve, was evaluated both pre- and intraoperatively. Electrophysiologic data were evaluated with respect to their predictive value for postoperative facial nerve function. The relative per cent decrease in amplitude of the EMG after resection compared to that observed before resection seems to be of some predictive value for postoperative facial nerve function. A 50-60% decrease or more is associated with an increase in the House classification. Intraoperative monitoring is a useful tool in skull base surgery allowing for safer and faster identification of motor nerves in pathologic anatomic conditions. It allows the surgeon a degree of comfort by providing immediate information regarding the status of the nerve. It may also improve post-operative nerve function and shorten operating time. Additionally, neuromonitoring provides some information about expected postoperative facial nerve function.

  3. Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule.

    PubMed

    Kraeutner, Sarah N; Keeler, Laura T; Boe, Shaun G

    2016-02-01

    Motor imagery (MI), the mental rehearsal of motor tasks, has promise as a therapy in post-stroke rehabilitation. The potential effectiveness of MI is attributed to the facilitation of plasticity in numerous brain regions akin to those recruited for physical practice. It is suggested, however, that MI relies more heavily on regions commonly affected post-stroke, including left hemisphere parietal regions involved in visuospatial processes. However, the impact of parietal damage on MI-based skill acquisition that underlies rehabilitation remains unclear. Here, we examine the contribution of the left inferior parietal lobule (IPL) to MI using inhibitory transcranial magnetic stimulation (TMS) and an MI-based implicit sequence learning (ISL) paradigm. Participants (N = 27) completed the MI-based ISL paradigm after receiving continuous theta burst stimulation to the left IPL (TMS), or with the coil angled away from the scalp (sham). Reaction time differences (dRT) and effect sizes between implicit and random sequences assessed success of MI-based learning. Mean dRT for the sham group was 36.1 ± 28.2 ms (d = 0.71). Mean dRT in the TMS group was 7.7 ± 38.5 ms (d = 0.11). These results indicate that inhibition of the left IPL impaired MI-based learning. We conclude that the IPL and likely the visuospatial processes it mediates are critical for MI performance and thus MI-based skill acquisition or learning. Ultimately, these findings have implications for the use of MI in post-stroke rehabilitation.

  4. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    SciTech Connect

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.; Fleming, Paul A.; Wingerden, Jan-Willem van

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  5. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  6. Transfer function-based modelling for voltage oscillation phenomena in PWM motor drives with long feeding cables

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Choel; Park, Ju H.

    2010-04-01

    In this article, a transfer function-based modelling is proposed to investigate voltage oscillation phenomena, i.e. over-voltage at the motor terminal, associated with pulse-width modulation (PWM) inverter-fed motor drives with long feeding cables. As such, the long feeding cable is assumed to be a distortionless transmission line; then, a bounce diagram and time-harmonic method are utilised to derive a simple model with a minimum computational burden that is easy to realise using the Matlab/Simulink software package. Furthermore, the model takes account of the inverter output and the motor terminal filters, which are commonly used to suppress the motor terminal over-voltage. The model accuracy is verified by a comparison with the circuit-oriented software, OrCAD/PSpice, simulation results.

  7. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  8. Bortezomib-based induction for transplant ineligible AL amyloidosis and feasibility of later transplantation.

    PubMed

    Cornell, R F; Zhong, X; Arce-Lara, C; Atallah, E; Blust, L; Drobyski, W R; Fenske, T S; Pasquini, M C; Rizzo, J D; Saber, W; Hari, P N

    2015-07-01

    Recent studies support the use of bortezomib-based therapies in light chain amyloidosis (AL). We performed a retrospective analysis of the safety, efficacy and long-term survival (median follow-up 3 years) after bortezomib-based treatment in 28 consecutive patients with de novo AL deemed ineligible at initial presentation. The first 14 patients received bortezomib and dexamethasone (VD), and the second 14 patients received cyclophosphamide, bortezomib and dexamethasone (CVD; CyBorD). Both regimens were well tolerated with no treatment-related mortality. The overall hematological response (HR) rate was 93% in both the groups. Median time to response was shorter in the CVD group (39 days vs 96 days in the VD group; P=0.002). Hematological and organ responses induced with bortezomib-based therapy enabled 8 (33%) of initially transplant ineligible patients to undergo autologous hematopoietic stem cell transplantation (AHCT), including 4 patients with cardiac stage III or IV. Seven of the eight patients (88%) who underwent subsequent AHCT achieved sustained HR at a median of 33 months posttransplant. These data suggest that bortezomib-based induction followed by AHCT is a viable therapeutic strategy for transplant-ineligible AL. Larger, multicenter prospective trials are necessary to confirm our findings.

  9. Towards artificial molecular motor-based electroactive/photoactive biomimetic muscles

    NASA Astrophysics Data System (ADS)

    Huang, Tony Jun

    2007-04-01

    Artificial molecular motors have recently attracted considerable interest from the nanoscience and nanoengineering community. These molecular-scale systems utilize a 'bottom-up' technology centered around the design and manipulation of molecular assemblies, and are potentially capable of delivering efficient actuations at dramatically reduced length scales when compared to traditional microscale actuators. When stimulated by light, electricity, or chemical reagents, a group of artificial molecular motors called bistable rotaxanes - which are composed of mutually recognizable and intercommunicating ring and dumbbell-shaped components - experience relative internal motions of their components just like the moving parts of macroscopic machines. Bistable rotaxanes' ability to precisely and cooperatively control mechanical motions at the molecular level reveals the potential of engineering systems that operate with the same elegance, efficiency, and complexity as biological motors function within the human body. We are in a process of developing a new class of bistable rotaxane-based electroactive/photoactive biomimetic muscles with unprecedented performance (strain: 40-60%, operating frequency: up to 1 MHz, energy density: ~50 J/cm 3, multi-stimuli: chemical, electricity, light). As a substantial step towards this longterm objective, we have proven, for the first time, that rotaxanes are mechanically switchable in condensed phases on solid substrates. We have further developed a rotaxane-powered microcantilever actuator utilizing an integrated approach that combines "bottom-up" assembly of molecular functionality with "top-down" micro/nano fabrication. By harnessing the nanoscale mechanical motion from artificial molecular machines and eliciting a nanomechanical response in a microscale device, this system mimics natural skeletal muscle and provides a key component for the development of nanoelectromechanical system (NEMS).

  10. A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification

    PubMed Central

    Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.

    2015-01-01

    In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898

  11. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  12. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models. PMID:23136918

  13. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  14. Experimental testing of axial induction based control strategies for wake control and wind farm optimization

    NASA Astrophysics Data System (ADS)

    Bartl, J.; Sætran, L.

    2016-09-01

    In state-of-the-art wind farms each turbine is controlled individually aiming for optimum turbine power not considering wake effects on downstream turbines. Wind farm control concepts aim for optimizing the overall power output of the farm taking wake interactions between the individual turbines into account. This experimental wind tunnel study investigates axial induction based control concepts. It is examined how the total array efficiency of two in-line model turbines is affected when the upstream turbine's tip speed ratio (λcontrol) or blade pitch angle (β-control) is modified. The focus is particularly directed on how the wake flow behind the upstream rotor is affected when its axial induction is reduced in order to leave more kinetic energy in the wake to be recovered by a downstream turbine. It is shown that the radial distribution of kinetic energy in the wake area can be controlled by modifying the upstream turbine's tip speed ratio. By pitching out the upstream turbine's blades, however, the available kinetic energy in the wake is increased at an equal rate over the entire blade span. Furthermore, the total array efficiency of the two turbine setup is mapped depending on the upstream turbines tip speed ratio and pitch angle. For a small turbine separation distance of x/D=3 the downstream turbine is able to recover the major part of the power lost on the upstream turbine. However, no significant increase in the two-turbine array efficiency is achieved by altering the upstream turbine's operation point away from its optimum.

  15. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  16. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    NASA Astrophysics Data System (ADS)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  17. Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance.

    PubMed

    Lakey, Chad E; Berry, Daniel R; Sellers, Eric W

    2011-04-01

    In this study, we examined the effects of a short mindfulness meditation induction (MMI) on the performance of a P300-based brain-computer interface (BCI) task. We expected that MMI would harness present-moment attentional resources, resulting in two positive consequences for P300-based BCI use. Specifically, we believed that MMI would facilitate increases in task accuracy and promote the production of robust P300 amplitudes. Sixteen-channel electroencephalographic data were recorded from 18 subjects using a row/column speller task paradigm. Nine subjects participated in a 6 min MMI and an additional nine subjects served as a control group. Subjects were presented with a 6 × 6 matrix of alphanumeric characters on a computer monitor. Stimuli were flashed at a stimulus onset asynchrony (SOA) of 125 ms. Calibration data were collected on 21 items without providing feedback. These data were used to derive a stepwise linear discriminate analysis classifier that was applied to an additional 14 items to evaluate accuracy. Offline performance analyses revealed that MMI subjects were significantly more accurate than control subjects. Likewise, MMI subjects produced significantly larger P300 amplitudes than control subjects at Cz and PO7. The discussion focuses on the potential attentional benefits of MMI for P300-based BCI performance.

  18. Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Lakey, Chad E.; Berry, Daniel R.; Sellers, Eric W.

    2011-04-01

    In this study, we examined the effects of a short mindfulness meditation induction (MMI) on the performance of a P300-based brain-computer interface (BCI) task. We expected that MMI would harness present-moment attentional resources, resulting in two positive consequences for P300-based BCI use. Specifically, we believed that MMI would facilitate increases in task accuracy and promote the production of robust P300 amplitudes. Sixteen-channel electroencephalographic data were recorded from 18 subjects using a row/column speller task paradigm. Nine subjects participated in a 6 min MMI and an additional nine subjects served as a control group. Subjects were presented with a 6 × 6 matrix of alphanumeric characters on a computer monitor. Stimuli were flashed at a stimulus onset asynchrony (SOA) of 125 ms. Calibration data were collected on 21 items without providing feedback. These data were used to derive a stepwise linear discriminate analysis classifier that was applied to an additional 14 items to evaluate accuracy. Offline performance analyses revealed that MMI subjects were significantly more accurate than control subjects. Likewise, MMI subjects produced significantly larger P300 amplitudes than control subjects at Cz and PO7. The discussion focuses on the potential attentional benefits of MMI for P300-based BCI performance.

  19. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    SciTech Connect

    Kubota, Tomohiro; Nukaga, Osamu; Ueki, Shinji; Sugiyama, Masakazu; Inamoto, Yoshimasa; Ohtake, Hiroto; Samukawa, Seiji

    2010-09-15

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm{sup 2} in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within {+-}6% within a 100 mm diameter. Silicon etching using a F{sub 2}-based neutral beam was done at an etch rate of about 47 nm/min, while Cl{sub 2}-based neutral beam realized completely no undercut. The uniformity of etch rate was less than {+-}5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  20. Helping School Leaders Help New Teachers: A Tool for Transforming School-Based Induction

    ERIC Educational Resources Information Center

    Birkeland, Sarah; Feiman-Nemser, Sharon

    2012-01-01

    Ample research demonstrates the power of comprehensive induction to develop and retain new teachers. Education scholars generally agree on what powerful systems of induction include, yet few tools exist for guiding schools in creating such systems. Drawing on theory and practice, we have created such a tool. This article introduces the "Continuum…

  1. Optimization and testing of a continuous rotary motor based on shape memory wires and overrunning clutches

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, Giovanni; Dragoni, Eugenio

    2015-04-01

    A relatively unexplored but extremely attractive field for the application of the shape memory technology is the area of rotary actuators, especially for generating continuous rotations. This paper deals with a novel design of a rotary motor based on SMA wires and overrunning clutches which features high output torque and boundless angular stroke in a compact package. The concept uses a long SMA wire wound round a low-friction cylindrical drum upon which the wire can contract and extend with minimum effort and limited space demand. Fitted to the output shaft by means of an overrunning clutch the output shaft rotates unidirectionally despite the sequence of contractions-elongation cycles of the wire. Following a design procedure developed in a former paper, a six-stage miniature prototype is built and tested showing excellent performance in terms of torque, speed and power density. Characteristic performances of the motor are as follows: size envelope = 48×22×30 mm3; maximum torque = 20 Nmm; specific torque = 6.31×10-4 Nmm/mm3; rotation per module = 15 deg; continuous speed (unloaded) = 4 rpm.

  2. Model for a flexible motor memory based on a self-active recurrent neural network.

    PubMed

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement.

  3. Model for a flexible motor memory based on a self-active recurrent neural network.

    PubMed

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. PMID:24120277

  4. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  5. Recession in a linear stepper motor based on piezoelectric actuator and electrorheological clampers

    NASA Astrophysics Data System (ADS)

    Li, Cuihong; Meng, Yonggang; Tian, Yu

    2012-12-01

    A linear inchworm-type stepper motor based on piezoelectric actuator and comb shape electrorheological (ER) clampers was developed and tested. A recession phenomenon in the movement of the motor was found and was significantly affected by the driving voltage of the piezoelectric actuator and ER fluids. A dynamic model to analyze the mechanism of the recession was established. The force ratio of the viscoelastic clamping force (applied high electric field) to the viscous damping force (zero field) of ER fluids is the critical factor which determines the recession. The ratio is also affected by the extension or contraction rate of the actuator during movement, which is affected by the charging and discharging processes. With a relatively large distance between the clamper electrodes and a small displacement activated by the extension of the piezoelectric actuator, the instantaneous shear rate might not be sufficiently high, preventing ER fluids from attaining a shear-thickened and high-strength state. The ratio of yield strength to the viscous strength of ER fluids during movement should be as large as possible to reduce the recession displacement.

  6. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces.

    PubMed

    Hermes, D; Vansteensel, M J; Albers, A M; Bleichner, M G; Benedictus, M R; Mendez Orellana, C; Aarnoutse, E J; Ramsey, N F

    2011-04-01

    For the development of minimally invasive brain-computer interfaces (BCIs), it is important to accurately localize the area of implantation. Using fMRI, we investigated which brain areas are involved in motor imagery. Twelve healthy subjects performed a motor execution and imagery task during separate fMRI and EEG measurements. fMRI results showed that during imagery, premotor and parietal areas were most robustly activated in individual subjects, but surprisingly, no activation was found in the primary motor cortex. EEG results showed that spectral power decreases in contralateral sensorimotor rhythms (8-24 Hz) during both movement and imagery. To further verify the involvement of the motor imagery areas found with fMRI, one epilepsy patient performed the same task during both fMRI and ECoG recordings. Significant ECoG low (8-24 Hz) and high (65-95 Hz) frequency power changes were observed selectively on premotor cortex and these co-localized with fMRI. During a subsequent BCI task, excellent performance (91%) was obtained based on ECoG power changes from the localized premotor area. These results indicate that other areas than the primary motor area may be more reliably activated during motor imagery. Specifically, the premotor cortex may be a better area to implant an invasive BCI.

  7. Functional MRI-based identification of brain areas involved in motor imagery for implantable brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Hermes, D.; Vansteensel, M. J.; Albers, A. M.; Bleichner, M. G.; Benedictus, M. R.; Mendez Orellana, C.; Aarnoutse, E. J.; Ramsey, N. F.

    2011-04-01

    For the development of minimally invasive brain-computer interfaces (BCIs), it is important to accurately localize the area of implantation. Using fMRI, we investigated which brain areas are involved in motor imagery. Twelve healthy subjects performed a motor execution and imagery task during separate fMRI and EEG measurements. fMRI results showed that during imagery, premotor and parietal areas were most robustly activated in individual subjects, but surprisingly, no activation was found in the primary motor cortex. EEG results showed that spectral power decreases in contralateral sensorimotor rhythms (8-24 Hz) during both movement and imagery. To further verify the involvement of the motor imagery areas found with fMRI, one epilepsy patient performed the same task during both fMRI and ECoG recordings. Significant ECoG low (8-24 Hz) and high (65-95 Hz) frequency power changes were observed selectively on premotor cortex and these co-localized with fMRI. During a subsequent BCI task, excellent performance (91%) was obtained based on ECoG power changes from the localized premotor area. These results indicate that other areas than the primary motor area may be more reliably activated during motor imagery. Specifically, the premotor cortex may be a better area to implant an invasive BCI.

  8. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback.

    PubMed

    Kober, S E; Wood, G; Kurzmann, J; Friedrich, E V C; Stangl, M; Wippel, T; Väljamäe, A; Neuper, C

    2014-01-01

    In the present study we implemented a real-time feedback system based on multichannel near-infrared spectroscopy (NIRS). Prior studies indicated that NIRS-based neurofeedback can enhance motor imagery related cortical activation. To specify these prior results and to confirm the efficacy of NIRS-based neurofeedback, we examined changes in blood oxygenation level collected in eight training sessions. One group got real feedback about their own brain activity (N=9) and one group saw a playback of another person's feedback recording (N=8). All participants performed motor imagery of a right hand movement. Real neurofeedback induced specific and focused brain activation over left motor areas. This focal brain activation became even more specific over the eight training sessions. In contrast, sham feedback led to diffuse brain activation patterns over the whole cortex. These findings can be useful when training patients with focal brain lesions to increase activity of specific brain areas for rehabilitation purpose.

  9. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor symptoms of Parkinson's disease.

    PubMed

    Fox, Susan H; Katzenschlager, Regina; Lim, Shen-Yang; Ravina, Bernard; Seppi, Klaus; Coelho, Miguel; Poewe, Werner; Rascol, Olivier; Goetz, Christopher G; Sampaio, Cristina

    2011-10-01

    The objective was to update previous evidence-based medicine reviews of treatments for motor symptoms of Parkinson's disease published between 2002 and 2005. Level I (randomized, controlled trial) reports of pharmacological, surgical, and nonpharmacological interventions for the motor symptoms of Parkinson's disease between January 2004 (2001 for nonpharmacological) and December 2010 were reviewed. Criteria for inclusion, clinical indications, ranking, efficacy conclusions, safety, and implications for clinical practice followed the original program outline and adhered to evidence-based medicine methodology. Sixty-eight new studies qualified for review. Piribedil, pramipexole, pramipexole extended release, ropinirole, rotigotine, cabergoline, and pergolide were all efficacious as symptomatic monotherapy; ropinirole prolonged release was likely efficacious. All were efficacious as a symptomatic adjunct except pramipexole extended release, for which there is insufficient evidence. For prevention/delay of motor fluctuations, pramipexole and cabergoline were efficacious, and for prevention/delay of dyskinesia, pramipexole, ropinirole, ropinirole prolonged release, and cabergoline were all efficacious, whereas pergolide was likely efficacious. Duodenal infusion of levodopa was likely efficacious in the treatment of motor complications, but the practice implication is investigational. Entacapone was nonefficacious as a symptomatic adjunct to levodopa in nonfluctuating patients and nonefficacious in the prevention/delay of motor complications. Rasagiline conclusions were revised to efficacious as a symptomatic adjunct, and as treatment for motor fluctuations. Clozapine was efficacious in dyskinesia, but because of safety issues, the practice implication is possibly useful. Bilateral subthalamic nucleus deep brain stimulation, bilateral globus pallidus stimulation, and unilateral pallidotomy were updated to efficacious for motor complications. Physical therapy was revised

  10. Molecular motors: nature's nanomachines.

    PubMed

    Tyreman, M J A; Molloy, J E

    2003-12-01

    Molecular motors are protein-based machines that convert chemical potential energy into mechanical work. This paper aims to introduce the non-specialist reader to molecular motors, in particular, acto-myosin, the prototype system for motor protein studies. These motors produce their driving force from changes in chemical potential arising directly from chemical reactions and are responsible for muscle contraction and a variety of other cell motilities.

  11. Eddy current loss and coil inductance evaluation in DC machines by a PG-based F. E. Code

    SciTech Connect

    Arturi, C.M.; Ubaldini, M. )

    1991-09-01

    The present paper deals with the evaluation of both the eddy current loss and the self and mutual inductances of the commutating coils of a dc machine armature-winding for railway traction by a two-dimension PC-based finite element commercial code. The comparison among several distribution of the conductors occupying a given slot and among slots with different ratio of depth to width is made in this paper in order to determine, for a given dc machine, the best design solution with references to both the loss and the self and mutual inductances of the commutating coils.

  12. Chiral induction in phenanthroline-derived oligoamide foldamers: an acid- and base-controllable switch in helical molecular strands.

    PubMed

    Hu, Hai-Yu; Xiang, Jun-Feng; Yang, Yong; Chen, Chuan-Feng

    2008-03-20

    A series of phenanthroline-derived oligoamides bearing a chiral (R)-phenethylamino end group were synthesized that displayed chiral helical induction and subsequently formed one-hand helical foldamers in solution. Moreover, an acid- and base-controllable switch in the helical molecular strands was observed, which has been demonstrated by NMR, UV-vis, and circular dichroism spectroscopy.

  13. Marine induction studies based on sea surface scalar magnetic field measurements. A concept and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Poedjono, B.; Matzka, J.; Olsen, N.; Pai, S.; Samrock, F.

    2013-12-01

    Most marine EM studies are based on sea-bottom measurements which are expensive and logistically demanding. We propose a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface measurements. It is assumed that the exciting source can be described by a plane wave. The concept is based on responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a base site. It can be shown that these scalar responses are a mixture of standard tipper responses and elements of the horizontal magnetic tensor and thus can be used to probe the electrical conductivity of the subsoil. This opens an avenue for sea-surface induction studies which so far was believed very difficult to conduct if conventional approaches based on vector measurements are invoked. We perform 3-D realistic model studies where the target region was Oahu Island and its surroundings, and USGS operated Honolulu geomagnetic observatory was chosen as the base site. We compare the predicted responses with the responses estimated from the scalar data collected at a few locations around Oahu Island by the unmanned, autonomous, wave and solar powered 'Wave Glider' developed and operated by Liquid Robotics Oil and Gas/Schlumberger. The marine robots observation platform is equipped with a tow Overhauser magnetometer (validated by USGS). The studies show an encouraging agreement between predictions and experiment in both components of the scalar response at all locations and we consider this as a proof of the suggested concept.

  14. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-07-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  15. Biofuel Cell Based on Microscale Nanostructured Electrodes with Inductive Coupling to Rat Brain Neurons

    NASA Astrophysics Data System (ADS)

    Andoralov, Viktor; Falk, Magnus; Suyatin, Dmitry B.; Granmo, Marcus; Sotres, Javier; Ludwig, Roland; Popov, Vladimir O.; Schouenborg, Jens; Blum, Zoltan; Shleev, Sergey

    2013-11-01

    Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm-2 in vitro and 2 μW cm-2 in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons.

  16. Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons.

    PubMed

    Andoralov, Viktor; Falk, Magnus; Suyatin, Dmitry B; Granmo, Marcus; Sotres, Javier; Ludwig, Roland; Popov, Vladimir O; Schouenborg, Jens; Blum, Zoltan; Shleev, Sergey

    2013-11-20

    Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm(-2) in vitro and 2 μW cm(-2) in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons.

  17. Biofuel Cell Based on Microscale Nanostructured Electrodes with Inductive Coupling to Rat Brain Neurons

    PubMed Central

    Andoralov, Viktor; Falk, Magnus; Suyatin, Dmitry B.; Granmo, Marcus; Sotres, Javier; Ludwig, Roland; Popov, Vladimir O.; Schouenborg, Jens; Blum, Zoltan; Shleev, Sergey

    2013-01-01

    Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm−2 in vitro and 2 μW cm−2 in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons. PMID:24253492

  18. Microstructure and elevated temperature wear behavior of induction melted Fe-based composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Meng, Huimin; Liu, Junyou

    2014-10-01

    Fe-based composite coating prepared onto the component of guide wheel using ultrasonic frequency inductive cladding (UFIC) technique has been investigated in terms of microstructure, phase constitutions, microhardness and elevated temperature wear behavior by scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Vickers microhardness tester and ball-on-disc wear tester. The results indicated that the primary phase in the coating contained austenite γ-Fe, eutectic γ-Fe/(Cr,Fe)2B, boride (Cr,Fe)2B and precipitation enriched in Mo. The average microhardness of the coating was 760 ± 10 HV0.2, which was three times higher than that of the substrate. With increasing temperature, the friction coefficients of the coating and high-chromium cast iron decreased gradually while the wear rates increased during dry sliding wear condition. The relative wear resistance of the coating was 1.63 times higher than that of the high-chromium cast iron at 500 °C, which was ascribed to the hard borides with high thermal stability uniformly embedded in the coating and the formation of dense transfer layer formed onto the worn surface. The high temperature wear mechanism of the coating was dominated by mild abrasive wear. The study revealed that Fe-based composite coating had excellent high temperature wear resistance under dry sliding wear condition.

  19. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb.

    PubMed

    Cincotti, F; Pichiorri, F; Aricò, P; Aloise, F; Leotta, F; de Vico Fallani, F; Millán, J del R; Molinari, M; Mattia, D

    2012-01-01

    Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one-month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI-mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device. PMID:23366832

  20. Reducing current reversal time in electric motor control

    SciTech Connect

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  1. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  2. Development of Ulta-Efficient Electric Motors

    SciTech Connect

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

  3. Flexible touchpads based on inductive sensors using embedded conductive composite polymer

    NASA Astrophysics Data System (ADS)

    Rahbar, A.; Rahbar, M.; Gray, B. L.

    2014-04-01

    We present the design, fabrication, and preliminary testing of a flexible array of sensor switches intended for applications in wearable electronics and sensor systems. The touch pad sensor arrays feature flexible printed circuit board (flexible PCB) substrates and/or flexible conductive composite polymer (CCP) structures, resulting in highly flexible switch arrays. Each switch consists of 4 elements: fascia, target, spacer and a sensor coil. The user presses the fascia, bringing the target in contact with the sensor coil. Any change in the position of the target changes the coil inductance due to the generation of eddy currents, which are detected by an electronic circuit and custom software. Contact between the target and coil also measurably changes the inductance of the coils. Different sizes and geometries (square, circular, hexagonal and octagonal) of coils in both flexible PCB metal (copper) and CCP were investigated to determine which couple best with the CCP that forms the target for the inductive coils. We describe techniques for patterning two-layer inductive coils on flexible PCBs. Using this process, we demonstrate coil trace thicknesses of 200 micrometers. We also present a new low cost microfabrication technique to create inductive flexible coils using embedded CCP in polydimethylsiloxane (PDMS) as an alternative to flexible PCB metal coils. We further describe an electronic circuit that accurately measures inductances as low as 500 nH that is used to detect the change in the inductance of a sensor's coil when the user presses the target element of the sensor. The inductance for a sensor composed of CCP square coils and CCP target was measured to be approximately 35 μH before being pressed. When pressed, the inductance dropped to 3.8 μH, a change which was easily detected.

  4. Agricultural Electricity. Electric Motors. Student Manual.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  5. Improving the Performance of an EEG-Based Motor Imagery Brain Computer Interface Using Task Evoked Changes in Pupil Diameter

    PubMed Central

    Rozado, David; Duenser, Andreas; Howell, Ben

    2015-01-01

    For individuals with high degrees of motor disability or locked-in syndrome, it is impractical or impossible to use mechanical switches to interact with electronic devices. Brain computer interfaces (BCIs) can use motor imagery to detect interaction intention from users but lack the accuracy of mechanical switches. Hence, there exists a strong need to improve the accuracy of EEG-based motor imagery BCIs attempting to implement an on/off switch. Here, we investigate how monitoring the pupil diameter of a person as a psycho-physiological parameter in addition to traditional EEG channels can improve the classification accuracy of a switch-like BCI. We have recently noticed in our lab (work not yet published) how motor imagery is associated with increases in pupil diameter when compared to a control rest condition. The pupil diameter parameter is easily accessible through video oculography since most gaze tracking systems report pupil diameter invariant to head position. We performed a user study with 30 participants using a typical EEG based motor imagery BCI. We used common spatial patterns to separate motor imagery, signaling movement intention, from a rest control condition. By monitoring the pupil diameter of the user and using this parameter as an additional feature, we show that the performance of the classifier trying to discriminate motor imagery from a control condition improves over the traditional approach using just EEG derived features. Given the limitations of EEG to construct highly robust and reliable BCIs, we postulate that multi-modal approaches, such as the one presented here that monitor several psycho-physiological parameters, can be a successful strategy in making BCIs more accurate and less vulnerable to constraints such as requirements for long training sessions or high signal to noise ratio of electrode channels. PMID:25816285

  6. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  7. Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

    PubMed Central

    Higashi, Hiroshi; Tanaka, Toshihisa

    2013-01-01

    For efficient decoding of brain activities in analyzing brain function with an application to brain machine interfacing (BMI), we address a problem of how to determine spatial weights (spatial patterns), bandpass filters (frequency patterns), and time windows (time patterns) by utilizing electroencephalogram (EEG) recordings. To find these parameters, we develop a data-driven criterion that is a natural extension of the so-called common spatial patterns (CSP) that are known to be effective features in BMI. We show that the proposed criterion can be optimized by an alternating procedure to achieve fast convergence. Experiments demonstrate that the proposed method can effectively extract discriminative features for a motor imagery-based BMI. PMID:24302929

  8. Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique

    PubMed Central

    Djemal, Ridha; Bazyed, Ayad G.; Belwafi, Kais; Gannouni, Sofien; Kaaniche, Walid

    2016-01-01

    Over the last few decades, brain signals have been significantly exploited for brain-computer interface (BCI) applications. In this paper, we study the extraction of features using event-related desynchronization/synchronization techniques to improve the classification accuracy for three-class motor imagery (MI) BCI. The classification approach is based on combining the features of the phase and amplitude of the brain signals using fast Fourier transform (FFT) and autoregressive (AR) modeling of the reconstructed phase space as well as the modification of the BCI parameters (trial length, trial frequency band, classification method). We report interesting results compared with those present in the literature by utilizing sequential forward floating selection (SFFS) and a multi-class linear discriminant analysis (LDA), our findings showed superior classification results, a classification accuracy of 86.06% and 93% for two BCI competition datasets, with respect to results from previous studies. PMID:27563927

  9. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  10. Evaluation of a 2-Channel NIRS-Based Optical Brain Switch for Motor Disabilities' Communication Tools

    NASA Astrophysics Data System (ADS)

    Sagara, Kazuhiko; Kido, Kunihiko

    We have developed a portable NIRS-based optical BCI system that features a non-invasive, facile probe attachment and does not require muscle movement to control the target devices. The system consists of a 2-channel probe, a signal-processing unit, and an infrared-emission device, which measures the blood volume change in the participant's prefrontal cortex in a real time. We use the threshold logic as a switching technology, which transmits a control signal to a target device when the electrical waveforms exceed the pre-defined threshold. Eight healthy volunteers participated in the experiments and they could change the television channel or control the movement of a toy robot with average switching times of 11.5±5.3s and the hit rate was 83.3%. These trials suggest that this system provides a novel communication aid for people with motor disabilities.

  11. Investigating brief motor imagery for an ERD/ERS based BCI.

    PubMed

    Thomas, Eoin; Fruitet, Joan; Clerc, Maureen

    2012-01-01

    This study establishes the effectiveness of event related synchronisation (ERS) features for a system paced brain computer interface (BCI). In particular, the relationship between the duration of motor imagery (MI) and the quality of the features extracted from the ERS is investigated. To this end, two groups of users performed brief (2s) or sustained (4s) MI, and offline single trial BCIs were validated on each group based on features extracted from the EEG before, during and after MI. The BCIs were designed to recognise two intentional control tasks and a no-control state. Cross-validated results indicate that brief MI leads to more informative ERS features than sustained MI. PMID:23366538

  12. Impact of a Community-Based Programme for Motor Development on Gross Motor Skills and Cognitive Function in Preschool Children from Disadvantaged Settings

    ERIC Educational Resources Information Center

    Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.

    2012-01-01

    The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…

  13. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  14. Usefulness of voxel-based lesion mapping for predicting motor recovery in subjects with basal ganglia hemorrhage

    PubMed Central

    Kim, Dae Hyun; Kyeong, Sunghyon; Cho, Yoona; Jung, Tae-min; Ahn, Sung Jun; Park, Yoon Ghil

    2016-01-01

    Abstract It is important to estimate motor recovery in the early phase after stroke. Many studies have demonstrated that both diffusion tensor tractography (DTT) and motor-evoked potentials (MEP) are valuable predictors of motor recovery, but these modalities do not directly reflect the status of the injured gray matter. We report on 2 subjects with basal ganglia hemorrhage who showed similar DTT and MEP findings, but had markedly different clinical outcomes. Specifically, Subject 1 showed no improvement in motor function, whereas Subject 2 exhibited substantial improvement 7 weeks after onset. To determine if differences in gray matter might lend insight into these different outcomes, we analyzed gray matter lesions of the 2 subjects using a novel voxel-based lesion mapping method. The lesion of Subject 1 mainly included the putamen, thalamus, and Heschl's gyri, indicating extension of the hemorrhage in the posterior direction. In contrast, the lesion of Subject 2 mainly included the putamen, insula, and pallidum, indicating that the hemorrhage extended anterior laterally. These differential findings suggest that voxel-based gray matter lesion mapping may help to predict differential motor recovery in subjects with basal ganglia hemorrhage with similar DTT and MEP findings. PMID:27281090

  15. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia

    PubMed Central

    Donoghue, John P; Nurmikko, Arto; Black, Michael; Hochberg, Leigh R

    2007-01-01

    This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allow persons with paralysis to operate assistive technologies or to reanimate muscles based upon a command signal that is obtained directly from the brain. Such systems require the development of sensors to detect brain signals, decoders to transform neural activity signals into a useful command, and an interface for the user. We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex. We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication. We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function. PMID:17272345

  16. A Trial to Detect for Human Locomotion Based on Measurement of Current Generated by Electrostatic Induction

    NASA Astrophysics Data System (ADS)

    Kurita, Koichi; Imai, Kazumasa; Ike, Tatsumi; Nonaka, Toru

    In this study, an effective noncontact technique for the detection of free-living human locomotion is proposed. The technique involves the measurement of the electrostatic induction current flowing through a measurement electrode. Further, an occurrence model for the electrostatic induction current generated due to a change in the electric potential of the human body is proposed. This model effectively explains the behavior of the waveform of the electrostatic induction current flowing through the measurement electrode. The obtained results show that the presence of a gait cycle is directly reflected in the electrostatic induction current generated due to walking motion. This suggests that subtle differences in the walking condition can be detected using the proposed technique.

  17. MotorMaster database of three-phase electric motors

    SciTech Connect

    Stickney, B.L.

    1993-12-31

    Selecting the right motor for a new or replacement application used to be a daunting task. Making an intelligent choice involved a search through a stack of motor catalogs for information on efficiency, voltage, speed, horsepower, torque, service factor, power factor, frame type, and cost. The MotorMaster software package, available from the Washington State Energy Office, takes the drudgery out of motor selection by enabling rapid analysis of the most efficient and cost-effective single-speed three-phase induction motors. It has a built-in motor database, easy to use comparison and analysis features, and can calculate utility rebates and simple paybacks. By speeding the selection process and providing comprehensive economic justification for the final equipment choice, software tools like MotorMaster can become an important component of utility DSM programs. And as a bonus, wide use of such software may lead to more systematic and consistent use of energy efficient equipment.

  18. Numerical study of magnetoacoustic signal generation with magnetic induction based on inhomogeneous conductivity anisotropy.

    PubMed

    Li, Xun; Hu, Sanqing; Li, Lihua; Zhu, Shanan

    2013-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal. The proposed models and approaches provide a more realistic simulation environment for MAT-MI.

  19. Determination of trace amounts of thiocyanate by a new kinetic procedure based on an induction period

    NASA Astrophysics Data System (ADS)

    Chamjangali, M. Arab; Bagherian, G.; Salek-Gilani, N.

    2007-08-01

    A new, simple and sensitive kinetic spectrophotometric method with no need for removing of interfering substances is proposed for the determination of thiocyanate ion in biological and water samples. The procedure is based on the inhibiting effect of thiocyanate on the sodium periodate-potassium bromide-meta cresol purple (MCP) system in acidic media. The induction period of the reaction is proportional to the SCN - concentration. The decolorization of meta cresol purple by the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. Under optimum conditions, thiocyanate can be determined in the range of 0.02-0.8 μg ml -1 with a 3 σ detection limit of 5 ng ml -1. The relative standard deviations for 10 replicate determinations of 0.060, 0.10 and 0.50 μg ml -1 thiocyanate are 3.7, 2.4 and 1.0%, respectively. This method has been successfully used to the determination of thiocyanate content in smokers and non-smokers saliva and spiked water sample.

  20. Growth of graphene-based films using afterglow of inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Mineo; Tomatsu, Masakazu; Kondo, Hiroki; Hori, Masaru

    2014-10-01

    Plasma-enhanced CVD (PECVD) employing methane/hydrogen gases has been used to grow diamond and carbon nanostructures. In the case of graphene growth using PECVD, excessive supply of carbon precursors and ion bombardment on the growing surface would cause secondary nuclei, resulting in small size of graphene grain and degradation in crystallinity. To overcome this issue, in this work, afterglow of inductively coupled plasma (ICP) was used for the growth of graphene. The CVD system is simple and consists of a reaction chamber and a remote radical source that uses an ICP in cylindrical geometry. Methane/hydrogen gases were fed through a quartz tube of 26 mm inner diameter and 20 cm in length. A five-turn rf (13.56 MHz) coil was mounted on the quartz tube. Substrates (Ni-coated Si and Cu foil) were located in the afterglow region of ICP. Growth experiments were carried out for 1-10 min at temperature of 700 C, rf power of 400 W, and total pressure of 100 mTorr. We have successfully fabricated graphene-based films, which was confirmed by the Raman spectrum and SEM image of deposit. We will discuss the planar graphene growth mechanism in terms of precursors and their surface reaction, in conjunction with the growth experiments using microwave plasma and ICP in planar geometry.

  1. Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans.

    PubMed

    Cheng, Jijun; Park, Tae-Sik; Chio, Li-Chun; Fischl, Anthony S; Ye, Xiang S

    2003-01-01

    Sphingolipid metabolism is implicated to play an important role in apoptosis. Here we show that dihydrosphingosine (DHS) and phytosphingosine (PHS), two major sphingoid bases of fungi, have potent fungicidal activity with remarkably high structural and stereochemical specificity against Aspergillus nidulans. In fact, only naturally occurring DHS and PHS are active. Further analysis revealed that DHS and PHS induce rapid DNA condensation independent of mitosis, large-scale DNA fragmentation, and exposure of phosphatidylserine, all common morphological features characteristic of apoptosis, suggesting that DHS and PHS induce apoptosis in A. nidulans. The finding that DNA fragmentation requires protein synthesis, which implies that an active process is involved, further supports this proposition. The induction of apoptosis by DHS and PHS is associated with the rapid accumulation of reactive oxygen species (ROS). However, ROS are not required for apoptosis induced by DHS and PHS, as scavenging of ROS by a free radical spin trap has no effect. We further demonstrate that apoptosis induced by DHS and PHS is independent of metacaspase function but requires mitochondrial function. Together, the results suggest that DHS and PHS induce a type of apoptosis in A. nidulans most similar to the caspase-independent apoptosis observed in mammalian systems. As A. nidulans is genetically tractable, this organism should be an ideal model system for dissecting sphingolipid signaling in apoptosis and, importantly, for further elucidating the molecular basis of caspase-independent apoptosis. PMID:12482970

  2. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  3. Induction and Tunability of Self-Healing Property of Dendron Based Hydrogel Using Clay Nanocomposite.

    PubMed

    Vivek, Balachandran; Kumar, Prashant; Prasad, Edamana

    2016-06-16

    Low molecular weight gels have relatively poor self-healing capacity compared to that of polymeric gels. Induction and tuning of the healing capacity of low molecular weight gels to achieve desired applications are thus challenging tasks. The present work describes the achievement of remarkable tunability of self-healing property for a low molecular weight hybrid gel, based on poly(aryl ether) dendron derivative (PAD). The hybrid gel has been synthesized using PAD and poly(amido amine) {PAMAM} dendrimer derivative (QPD), which are intercalated in the montmorillonite clay (MMT) layers. The self-healing of the hybrid gel (QPD-MMT-PAD) was demonstrated through experiments where the distorted gel regained the initial value of storage modulus (G') within a few minutes. Further, the propensity of self-healing of the gel has been tuned as a function of QPD concentration. The mechanically stable QPD-MMT-PAD hybrid gel has been utilized for the adsorption of ppm level concentration of polycyclic aromatic hydrocarbons (PAHs) such as β-naphthol, pyrene, and phenenathrene from water with excellent efficiency (80-98%). PMID:27193239

  4. Modeling of induction-linac based free-electron laser amplifiers

    SciTech Connect

    Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.

  5. Modeling Of Induction-Linac Based Free-Electron Laser Amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, Raynard A.; Fawley, William M.; Scharlemann, Ernst T.

    1989-05-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multi-megawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  6. Modeling of induction-linac based free-electron laser amplifiers

    NASA Astrophysics Data System (ADS)

    Jong, R. A.; Fawley, W. M.; Scharlemann, E. T.

    1988-12-01

    We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for Free-Electron Laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal at the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices.

  7. The application of a priori structural information based regularization in image reconstruction in magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Dekdouk, B.; Ktistis, C.; Yin, W.; Armitage, D. W.; Peyton, A. J.

    2010-04-01

    Magnetic induction tomography (MIT) is a non-invasive contactless modality that could be capable of imaging the conductivity distribution of biological tissues. In this paper we consider the possibility of using absolute MIT voltage measurements for monitoring the progress of a peripheral hemorrhagic stroke in a human brain. The pathology is modelled as a local blood accumulation in the white matter. The solution of the MIT inverse problem is nonlinear and ill-posed and hence requires the use of a regularisation method. In this paper, we describe the construction and present the performance of a regularisation matrix based on a priori structural information of the head tissues obtained from a very recent MRI scan. The method takes the MRI scan as an initial state of the stroke and constructs a learning set containing the possible conductivity distributions of the current state of the stroke. This data is used to calculate an approximation of the covariance matrix and then a subspace is constructed using principal component analysis (PCA). It is shown by simulations the method is capable of producing a representative reconstruction of a stroke compared to smoothing Tikhonov regularization in a simplified model of the head.

  8. Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots.

    PubMed

    Mendoza, Marco; Bonilla, Isela; González-Galván, Emilio; Reyes, Fernando

    2016-01-01

    This paper presents an improved wave-based bilateral teleoperation scheme for rehabilitation therapies assisted by robot manipulators. The main feature of this bilateral teleoperator is that both robot manipulators, master and slave, are controlled by impedance. Thus, a pair of motion-based adaptive impedance controllers are integrated into a wave-based configuration, in order to guarantee a stable human-robot interaction and to compensate the position drift, characteristic of the available schemes of bilateral teleoperation. Moreover, the teleoperator stability, in the presence of time delays in the communication channel, is guaranteed because the wave-variable approach is included to encode the force and velocity signals. It should be noted that the proposed structure enables the implementation of several teleoperator schemes, from passive therapies, without the intervention of a human operator on the master side, to fully active therapies where both manipulators interact with humans in a stable manner. The suitable performance of the proposed teleoperator is verified through some results obtained from the simulation of the passive and active-constrained modes, by considering typical tasks in motor-therapy rehabilitation, where an improved behavior is observed when compared to implementations of the classical wave-based approach.

  9. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  10. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  11. The Effects of Oral-Motor Exercises on Swallowing in Children: An Evidence-Based Systematic Review

    ERIC Educational Resources Information Center

    Arvedson, Joan; Clark, Heather; Lazarus, Cathy; Schooling, Tracy; Frymark, Tobi

    2010-01-01

    Aim: The aim of this unregistered evidence-based systematic review was to determine the state and quality of evidence on the effects of oral motor exercises (OME) on swallowing physiology, pulmonary health, functional swallowing outcomes, and drooling management in children with swallowing disorders. Method: A systematic search of 20 electronic…

  12. Evidence-Based Systematic Review: Effects of Oral Motor Interventions on Feeding and Swallowing in Preterm Infants

    ERIC Educational Resources Information Center

    Arvedson, Joan; Clark, Heather; Lazarus, Cathy; Schooling, Tracy; Frymark, Tobi

    2010-01-01

    Purpose: To conduct an evidence-based systematic review and provide an estimate of the effects of oral motor interventions (OMIs) on feeding/swallowing outcomes (both physiological and functional) and pulmonary health in preterm infants. Method: A systematic search of the literature published from 1960 to 2007 was conducted. Articles meeting the…

  13. The Effects of an Assessment-Based Physical Education Program on Motor Skill Development in Preschool Children.

    ERIC Educational Resources Information Center

    Kelly, Luke E.; And Others

    1989-01-01

    The study with 21 preschool children found that children receiving a 12-week assessment-based instructional physical education program made significant gains on 6 fundamental motor skills when compared to a control group who received only supervised recess. (Author/DB)

  14. A Kinect-Based System for Physical Rehabilitation: A Pilot Study for Young Adults with Motor Disabilities

    ERIC Educational Resources Information Center

    Chang, Yao-Jen; Chen, Shu-Fang; Huang, Jun-Da

    2011-01-01

    This study assessed the possibility of rehabilitating two young adults with motor impairments using a Kinect-based system in a public school setting. This study was carried out according to an ABAB sequence in which A represented the baseline and B represented intervention phases. Data showed that the two participants significantly increased their…

  15. A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

    PubMed Central

    Resalat, Seyed Navid; Saba, Valiallah

    2016-01-01

    Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifier to select the best feature sets in the offline mode. The data set was recorded in 3-class tasks of the left hand, the right hand, and the foot motor imagery. Results: The experimental results showed that Auto-Regressive (AR), Mean Absolute Value (MAV), and Band Power (BP) features have higher accuracy values,75% more than those for the other features. Discussion: These features were selected for the designed real-time navigation. The corresponding results revealed the subject-specific nature of the MI-based BCI system; however, the Power Spectral Density (PSD) based α-BP feature had the highest averaged accuracy. PMID:27303595

  16. A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    NASA Astrophysics Data System (ADS)

    Shang, Jiangkun; Tian, Yanling; Li, Zheng; Wang, Fujun; Cai, Kunhai

    2015-09-01

    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking.

  17. A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism.

    PubMed

    Shang, Jiangkun; Tian, Yanling; Li, Zheng; Wang, Fujun; Cai, Kunhai

    2015-09-01

    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking. PMID:26429469

  18. Testing the Self-Similarity Exponent to Feature Extraction in Motor Imagery Based Brain Computer Interface Systems

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bermúdez, Germán; Sánchez-Granero, Miguel Ángel; García-Laencina, Pedro J.; Fernández-Martínez, Manuel; Serna, José; Roca-Dorda, Joaquín

    2015-12-01

    A Brain Computer Interface (BCI) system is a tool not requiring any muscle action to transmit information. Acquisition, preprocessing, feature extraction (FE), and classification of electroencephalograph (EEG) signals constitute the main steps of a motor imagery BCI. Among them, FE becomes crucial for BCI, since the underlying EEG knowledge must be properly extracted into a feature vector. Linear approaches have been widely applied to FE in BCI, whereas nonlinear tools are not so common in literature. Thus, the main goal of this paper is to check whether some Hurst exponent and fractal dimension based estimators become valid indicators to FE in motor imagery BCI. The final results obtained were not optimal as expected, which may be due to the fact that the nature of the analyzed EEG signals in these motor imagery tasks were not self-similar enough.

  19. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  20. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  1. Definitive Radiotherapy Following Induction Chemotherapy for Hypopharyngeal Cancer: Selecting Candidates for Organ-Preserving Treatment Based on the Response to Induction Chemotherapy.

    PubMed

    Yanagi, Takeshi; Shibamoto, Yuta; Ogino, Hiroyuki; Baba, Fumiya; Murai, Taro; Nagai, Aiko; Miyakawa, Akifumi; Sugie, Chikao

    2016-01-01

    The outcomes of induction chemotherapy followed by radiotherapy for hypopharyngeal carcinoma were analyzed to determine whether response to induction chemotherapy could be a useful parameter for selecting candidates for organ-preserving therapy.Forty-three patients with hypopharyngeal carcinoma were treated with definitive radiotherapy with or without concurrent chemotherapy following induction chemotherapy. The predominant induction chemotherapy regimens involved cisplatin and 5-fluorouracil with or without docetaxel. The patients that responded to the induction chemotherapy received definitive organ-preserving treatment. Patients who did not respond to induction chemotherapy were considered for surgery, but only those patients who underwent definitive radiotherapy were analyzed in this study. Conventional radiotherapy was administered in all patients. The associations between clinical parameters including age, sex, performance status (PS), tumor site, T-category, N-category, stage, the regimen of induction chemotherapy, the response to induction chemotherapy, the presence/absence of concurrent chemotherapy, overall survival (OS), and local control (LC) were analyzed.Among the surviving patients, the follow-up period ranged from 10-145 months (median: 46 months). The 3-year OS and LC rates for all 43 patients were 61% and 70%, respectively. The 3-year OS and LC rates of the responders were 73% and 81%, respectively, whereas those of the non-responders were 29% and 40%, respectively. In multivariate analysis, only PS was correlated with overall survival (p=0.03). The complication rates were acceptable in all groups.Responders to induction chemotherapy appear to be good candidates for definitive organ-preserving treatment. Chemoselection appears to aid treatment selection in patients with hypopharyngeal carcinoma.

  2. Identifying and removing micro-drift in ground-based electromagnetic induction data

    NASA Astrophysics Data System (ADS)

    De Smedt, Philippe; Delefortrie, Samuël; Wyffels, Francis

    2016-08-01

    As the application of ground-based frequency domain electromagnetic induction (FDEM) surveys is on the rise, so increases the need for processing strategies that allow exploiting the full potential of these often large survey datasets. While a common issue is the detection of baseline drift affecting FDEM measurements, the impact of residual corrugations present after initial drift removal is less documented. Comparable to the influence of baseline drift, this 'micro-drift' introduces aberrant data fluctuations through time, independent of the true subsurface variability. Here, we present a method to detect micro-drift in drift-corrected FDEM survey data, therefore allowing its removal. The core of the procedure lies in approaching survey datasets as a time series. Hereby, discrete multi-level wavelet decomposition is used to isolate micro-drift in FDEM data. Detected micro-drift is then excluded in subsequent signal reconstruction to produce a more accurate FDEM dataset. While independently executed from ancillary information, tie-line measurements are used to evaluate the reliability and pitfalls of the procedure. This demonstrates how data levelling without evaluation data can increase subjectivity of the procedure, and shows the flexibility and efficiency of the approach in detecting minute drift effects. We corroborated the method through its application on three experimental field datasets, consisting of both quadrature and in-phase measurements gathered with different FDEM instruments. Through a 1D assessment of micro-drift, we show how it impacts FDEM survey data, and how it can be identified and accounted for in straightforward processing steps.

  3. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    SciTech Connect

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-06-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: {ge}12-MeV beam energy; {approximately}60-ns electrical pulse width; {le}40-kA electron beam current; {approximately}1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-{Omega} water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-{Omega} vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each.

  4. Standardized method for solubility and storage of capsaicin-based solutions for cough induction

    PubMed Central

    2014-01-01

    Background Preparation of inhaled capsaicin solutions for cough induction varies greatly from one lab to another, which creates inconsistencies between tussigenic challenge results. The addition of Tween to these capsaicin solutions provides increased solubility and stability; however, the foul taste of Tween makes inhaling the solution for any prolonged period of time unpleasant. We sought to create a standard method for preparing soluble and stable capsaicin-based solutions (in 10% ethanol/water), without the addition of Tween. Methods Capsaicin solutions were created at concentrations ranging from 0 to 500 μM in a variety of solvent systems, with and without Tween. Samples were stored in four different environments (-20°C, 3°C, and room temperature, protected from light; and room temperature, exposed to light) to test stability. Detection of capsaicin was carried out by UV absorption. A Grubb’s test was performed on all data to remove statistical outliers. Results Similar capsaicin concentrations were seen for solutions prepared with or without Tween (Tween provided a slight increase in solubility), with neither solvent system providing complete solubility. Of the four environments tested, storing capsaicin solutions at 3°C while protected from light afforded the greatest stability, for a minimum of 30 weeks. Conclusion We recommend the use of a 10% ethanol/water solvent system without Tween in the preparation of capsaicin solutions for tussigenic challenges. While this solvent system does not provide complete solubility, we have detailed a method for capsaicin solution preparation that will account for this loss of solubility, while maintaining a solution that is Tween-free and safe for human inhalation. PMID:25342957

  5. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  6. Adaptation of motor imagery EEG classification model based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Keng Ang, Kai; Ong, Sim Heng

    2014-10-01

    Objective. Session-to-session nonstationarity is inherent in brain-computer interfaces based on electroencephalography. The objective of this paper is to quantify the mismatch between the training model and test data caused by nonstationarity and to adapt the model towards minimizing the mismatch. Approach. We employ a tensor model to estimate the mismatch in a semi-supervised manner, and the estimate is regularized in the discriminative objective function. Main results. The performance of the proposed adaptation method was evaluated on a dataset recorded from 16 subjects performing motor imagery tasks on different days. The classification results validated the advantage of the proposed method in comparison with other regularization-based or spatial filter adaptation approaches. Experimental results also showed that there is a significant correlation between the quantified mismatch and the classification accuracy. Significance. The proposed method approached the nonstationarity issue from the perspective of data-model mismatch, which is more direct than data variation measurement. The results also demonstrated that the proposed method is effective in enhancing the performance of the feature extraction model.

  7. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance.

  8. Rotor position sensor switches currents in brushless dc motors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  9. Intra-operative electrooculographic monitoring to prevent post-operative extraocular motor nerve dysfunction during skull base surgeries

    PubMed Central

    Sheshadri, Veena; Bharadwaj, Suparna; Chandramouli, BA

    2016-01-01

    Background and Aims: Intra-operative identification and preservation of extraocular motor nerves is one of the main goals of surgeries for skull base tumours and this is done by monitoring the extraocular movement (EOM). Intra-operative electromyographic monitoring has been reported, but it is a complex and skilful process. Electrooculography (EOG) is a simple and reliable technique for monitoring EOMs. We aimed to assess the utility of EOG monitoring in preventing extraocular motor nerve dysfunction during skull base surgeries. Methods: In this retrospective cohort study, intra-operative EOG recordings were obtained using disposable needle electrodes placed on the periorbital skin and the polarity of the waves noted for interpretation. Triggered as well as continuous EOG responses were recorded after monopolar electrode stimulation of cranial nerve (CN) during tumour removal which helped the surgeon with careful dissection and avoiding potential nerve injuries. Results: Of the 11 cases monitored, oculomotor and abducent nerves were identified in all cases, but the trochlear nerve could not be definitively identified. Six patients had no pre- or post-operative extraocular motor nerve dysfunction. The other five patients had pre-existing deficits before surgery, which recovered completely in two, significantly in one, and did not improve in two patients at 3–6 months follow-up. Conclusions: EOG was found to be a simple and reliable method of monitoring extraocular motor nerves (CNs III and VI) intraoperatively. PMID:27601738

  10. Intra-operative electrooculographic monitoring to prevent post-operative extraocular motor nerve dysfunction during skull base surgeries

    PubMed Central

    Sheshadri, Veena; Bharadwaj, Suparna; Chandramouli, BA

    2016-01-01

    Background and Aims: Intra-operative identification and preservation of extraocular motor nerves is one of the main goals of surgeries for skull base tumours and this is done by monitoring the extraocular movement (EOM). Intra-operative electromyographic monitoring has been reported, but it is a complex and skilful process. Electrooculography (EOG) is a simple and reliable technique for monitoring EOMs. We aimed to assess the utility of EOG monitoring in preventing extraocular motor nerve dysfunction during skull base surgeries. Methods: In this retrospective cohort study, intra-operative EOG recordings were obtained using disposable needle electrodes placed on the periorbital skin and the polarity of the waves noted for interpretation. Triggered as well as continuous EOG responses were recorded after monopolar electrode stimulation of cranial nerve (CN) during tumour removal which helped the surgeon with careful dissection and avoiding potential nerve injuries. Results: Of the 11 cases monitored, oculomotor and abducent nerves were identified in all cases, but the trochlear nerve could not be definitively identified. Six patients had no pre- or post-operative extraocular motor nerve dysfunction. The other five patients had pre-existing deficits before surgery, which recovered completely in two, significantly in one, and did not improve in two patients at 3–6 months follow-up. Conclusions: EOG was found to be a simple and reliable method of monitoring extraocular motor nerves (CNs III and VI) intraoperatively.

  11. When children ignore evidence in category-based induction. Irrational inferences?

    PubMed

    Rhodes, Marjorie

    2012-01-01

    The process of induction--generalizing information obtained from limited samples to inform broader understandings--plays a critical role in learning across the life span. Previous research on the development of induction has found important developmental changes in one critical component of induction--how children and adults evaluate whether a sample of evidence is informative about a broader category. In particular, when acquiring knowledge about biological kinds, adults view samples that provide diverse representation of a category (e.g. an eagle, a penguin, and a robin, for the category birds) as more informative than a less diverse sample (e.g. three robins) for drawing inferences about the kind. In contrast, children younger than 8 years often neglect this feature of sample composition, viewing both types of samples as equivalently informative. Is this a case of children making irrational inferences? This chapter examines how these findings can be reconciled with rational constructivist approaches to cognitive development, focusing on (1) the role of the sampling context in determining how learners incorporate information about sample composition into inductive inferences and (2) how developmental differences in learners' intuitive theories influence how they make sense of new evidence. This chapter highlights how strong tests of rational approaches come from incidences where children's performance appears to be quite nonnormative. PMID:23205413

  12. Motor imagery and EEG-based control of spelling devices and neuroprostheses.

    PubMed

    Neuper, Christa; Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert

    2006-01-01

    A brain-computer interface (BCI) transforms signals originating from the human brain into commands that can control devices or applications. With this, a BCI provides a new non-muscular communication channel, which can be used to assist patients who have highly compromised motor functions. The Graz-BCI uses motor imagery and associated oscillatory EEG signals from the sensorimotor cortex for device control. As a result of research in the past 15 years, the classification of ERD/ERS patterns in single EEG trials during motor execution and motor imagery forms the basis of this sensorimotor-rhythm controlled BCI. The major frequency bands of cortical oscillations considered here are the 8-13 and 15-30 Hz bands. This chapter describes the basic methods used in Graz-BCI research and outlines possible clinical applications.

  13. Motor imagery and EEG-based control of spelling devices and neuroprostheses.

    PubMed

    Neuper, Christa; Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert

    2006-01-01

    A brain-computer interface (BCI) transforms signals originating from the human brain into commands that can control devices or applications. With this, a BCI provides a new non-muscular communication channel, which can be used to assist patients who have highly compromised motor functions. The Graz-BCI uses motor imagery and associated oscillatory EEG signals from the sensorimotor cortex for device control. As a result of research in the past 15 years, the classification of ERD/ERS patterns in single EEG trials during motor execution and motor imagery forms the basis of this sensorimotor-rhythm controlled BCI. The major frequency bands of cortical oscillations considered here are the 8-13 and 15-30 Hz bands. This chapter describes the basic methods used in Graz-BCI research and outlines possible clinical applications. PMID:17071244

  14. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.

    PubMed

    Wei, Qingguo; Wei, Zhonghai

    2015-01-01

    A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal features may lead to different classification performances, which are determined by the discriminative and complementary information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP.

  15. [Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern].

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lu, Zhao; Zhang, Lei; Guo, Xianjing; Zhang, Chao

    2015-06-01

    High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The Dataset III a from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful. PMID:26485971

  16. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.

    PubMed

    Wei, Pengfei; He, Wei; Zhou, Yi; Wang, Liping

    2013-05-01

    Voluntarily modulating neural activity plays a key role in brain-computer interface (BCI). In general, the self-regulated neural activation patterns are used in the current BCI systems involving the repetitive trainings with feedback for an attempt to achieve a high-quality control performance. With the limitation posed by the training procedure in most BCI studies, the present work aims to investigate whether directly modulating the neural activity by using an external method could facilitate the BCI control. We designed an experimental paradigm that combines anodal transcranial direct current stimulation (tDCS) with a motor imagery (MI)-based feedback EEG BCI system. Thirty-two young and healthy human subjects were randomly assigned to the real and sham stimulation groups to evaluate the effect of tDCS-induced EEG pattern changes on BCI classification accuracy. Results showed that the anodal tDCS obviously induces sensorimotor rhythm (SMR)-related event-related desynchronization (ERD) pattern changes in the upper-mu (10-14 Hz) and beta (14-26 Hz) rhythm components. Both the online and offline BCI classification results demonstrate that the enhancing ERD patterns could conditionally improve BCI performance. This pilot study suggests that the tDCS is a promising method to help the users to develop reliable BCI control strategy in a relatively short time.

  17. Induction linacs

    SciTech Connect

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed. (LEW)

  18. Measurement of Self-Inductance.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Tao, P. K.

    1988-01-01

    Discusses four different methods for measuring self-inductance based on the definition of inductance, the alternative definition, phase difference and LC resonance. Provides circuit diagrams and typical oscilloscope traces. (YP)

  19. Pyriform sinus squamous cell carcinoma: oncological outcomes in good responders of induction chemotherapy-based larynx preservation protocols.

    PubMed

    Vourexakis, Zacharias; Le Ridant, Anne-Marie; Dulguerov, Pavel; Janot, François

    2015-07-01

    Induction chemotherapy-based larynx preservation protocols use chemotherapy to select exclusively patients with 'chemosensitive' tumors for a nonsurgical treatment with radiation therapy. This study on pyriform sinus squamous cell carcinoma (SCC) is interested in the oncological outcome of treatment based on radiation therapy when offered to patients with tumors responding to induction chemotherapy. This was a retrospective cohort study. The cohort included good responders to induction chemotherapy, subsequently treated with definite radiation therapy (with or without concomitant chemotherapy) for pyriform sinus SCC, in a tertiary referral cancer center. The primary endpoints were overall, laryngectomy-free and disease-free survival and the secondary endpoints were analysis of treatment failures and possibilities of salvage treatment. Forty-two patients fulfilled the inclusion criteria and were retained for analysis; 7% were stage II (3/42), 48% stage III (20/42) and 45% stage IV (19/42). At 1, 3 and 5 years, the overall survival was 95% (40/42), 74% (31/42), and 60% (SE ≈ 0.08), respectively. For the same intervals, the laryngectomy-free survival was 90% (38/42), 69% (29/42) and 50% (SE ≈ 0.08), respectively. The estimated 5-year disease-free survival was also 50%. Disease-free survival was significantly better for N0 patients. There was a 28% recurrence rate, mainly in the primary tumor site (9/11), with or without simultaneous nodal recurrence. Interestingly, more than one-third of all oncologic failures occurred beyond the first 3 years of follow-up. Salvage treatment was not possible or definitely inefficient in at least 2/3 of all recurrences. In candidates for larynx preservation for a pyriform sinus SCC, good response to induction chemotherapy followed by definite radiation therapy seems to be associated with a more favorable prognosis. Nevertheless, in case of locoregional recurrence the possibilities for efficient salvage treatment are limited.

  20. Improving the discrimination of hand motor imagery via virtual reality based visual guidance.

    PubMed

    Liang, Shuang; Choi, Kup-Sze; Qin, Jing; Pang, Wai-Man; Wang, Qiong; Heng, Pheng-Ann

    2016-08-01

    While research on the brain-computer interface (BCI) has been active in recent years, how to get high-quality electrical brain signals to accurately recognize human intentions for reliable communication and interaction is still a challenging task. The evidence has shown that visually guided motor imagery (MI) can modulate sensorimotor electroencephalographic (EEG) rhythms in humans, but how to design and implement efficient visual guidance during MI in order to produce better event-related desynchronization (ERD) patterns is still unclear. The aim of this paper is to investigate the effect of using object-oriented movements in a virtual environment as visual guidance on the modulation of sensorimotor EEG rhythms generated by hand MI. To improve the classification accuracy on MI, we further propose an algorithm to automatically extract subject-specific optimal frequency and time bands for the discrimination of ERD patterns produced by left and right hand MI. The experimental results show that the average classification accuracy of object-directed scenarios is much better than that of non-object-directed scenarios (76.87% vs. 69.66%). The result of the t-test measuring the difference between them is statistically significant (p = 0.0207). When compared to algorithms based on fixed frequency and time bands, contralateral dominant ERD patterns can be enhanced by using the subject-specific optimal frequency and the time bands obtained by our proposed algorithm. These findings have the potential to improve the efficacy and robustness of MI-based BCI applications. PMID:27282228

  1. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke

    PubMed Central

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S.; Zhou, Shufeng; Huang, Dongfeng

    2013-01-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611

  2. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.

    PubMed

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng

    2013-11-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex.

  3. Kinetic Inductance Photodetectors Based on Nonequilibrium Response in Superconducting Thin-Film Structures

    NASA Technical Reports Server (NTRS)

    Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.

    2001-01-01

    While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.

  4. Graphene-polymer hybrid nanostructure-based bioenergy storage device for real-time control of biological motor activity.

    PubMed

    Byun, Kyung-Eun; Choi, Dong Shin; Kim, Eunji; Seo, David H; Yang, Heejun; Seo, Sunae; Hong, Seunghun

    2011-11-22

    We report a graphene-polymer hybrid nanostructure-based bioenergy storage device to turn on and off biomotor activity in real-time. In this strategy, graphene was functionalized with amine groups and utilized as a transparent electrode supporting the motility of biomotors. Conducting polymer patterns doped with adenosine triphosphate (ATP) were fabricated on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. The controlled release of biomotor fuel, ATP, allowed us to control the actin filament transportation propelled by the biomotor in real-time. This strategy should enable the integrated nanodevices for the real-time control of biological motors, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins.

  5. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  6. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities.

    PubMed

    Chang, Yao-Jen; Chen, Shu-Fang; Huang, Jun-Da

    2011-01-01

    This study assessed the possibility of rehabilitating two young adults with motor impairments using a Kinect-based system in a public school setting. This study was carried out according to an ABAB sequence in which A represented the baseline and B represented intervention phases. Data showed that the two participants significantly increased their motivation for physical rehabilitation, thus improving exercise performance during the intervention phases. Practical and developmental implications of the findings are discussed. PMID:21784612

  7. First Steps Toward a Motor Imagery Based Stroke BCI: New Strategy to Set up a Classifier.

    PubMed

    Kaiser, Vera; Kreilinger, Alex; Müller-Putz, Gernot R; Neuper, Christa

    2011-01-01

    A new approach in motor rehabilitation after stroke is to use motor imagery (MI). To give feedback on MI performance brain-computer interface (BCIs) can be used. This requires a fast and easy acquisition of a reliable classifier. Usually, for training a classifier, electroencephalogram (EEG) data of MI without feedback is used, but it would be advantageous if we could give feedback right from the beginning. The sensorimotor EEG changes of the motor cortex during active and passive movement (PM) and MI are similar. The aim of this study is to explore, whether it is possible to use EEG data from active or PM to set up a classifier for the detection of MI in a group of elderly persons. In addition, the activation patterns of the motor cortical areas of elderly persons were analyzed during different motor tasks. EEG was recorded from three Laplacian channels over the sensorimotor cortex in a sample of 19 healthy elderly volunteers. Participants performed three different tasks in consecutive order, passive, active hand movement, and hand MI. Classifiers were calculated with data of every task. These classifiers were then used to detect event-related desynchronization (ERD) in the MI data. ERD values, related to the different tasks, were calculated and analyzed statistically. The performance of classifiers calculated from passive and active hand movement data did not differ significantly regarding the classification accuracy for detecting MI. The EEG patterns of the motor cortical areas during the different tasks was similar to the patterns normally found in younger persons but more widespread regarding localization and frequency range of the ERD. In this study, we have shown that it is possible to use classifiers calculated with data from passive and active hand movement to detect MI. Hence, for working with stroke patients, a physiotherapy session could be used to obtain data for classifier set up and the BCI-rehabilitation training could start immediately.

  8. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    SciTech Connect

    Zhu, Z.Q.; Hor, P.J.; Howe, D.; Rees-Jones, J.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various force components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.

  9. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies.

    PubMed

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-12-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  10. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies

    PubMed Central

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-01-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  11. Reducing Motor Vehicle-Related Injuries at an Arizona Indian Reservation: Ten Years of Application of Evidence-Based Strategies.

    PubMed

    Piontkowski, Stephen R; Peabody, Jon S; Reede, Christine; Velascosoltero, José; Tsatoke, Gordon; Shelhamer, Timothy; Hicks, Kenny R

    2015-12-01

    Unintentional injury is a significant public health burden for American Indians and Alaska Natives and was the leading cause of death among those aged 1 to 44 years between 1999 and 2004. Of those deaths, motor vehicle-related deaths cause the most mortality, justifying the need for intervention at an American Indian Reservation in Arizona (United States). We describe motor vehicle injury prevention program operations from 2004 through 2013. This community-based approach led by a multidisciplinary team primarily comprised of environmental public health and law enforcement personnel implemented evidence-based strategies to reduce the impact of motor vehicle-related injuries and deaths, focusing on reducing impaired driving and increasing occupant restraint use. Strategies included: mass media campaigns to enhance awareness and outreach; high-visibility sobriety checkpoints; passing and enforcing 0.08% blood alcohol concentration limits for drivers and primary occupant restraint laws; and child car seat distribution and education. Routine monitoring and evaluation data showed a significant 5% to 7% annual reduction of motor vehicle crashes (MVCs), nighttime MVCs, MVCs with injuries/fatalities, and nighttime MVCs with injuries/fatalities between 2004 and 2013, but the annual percent change in arrests for driving under the influence (DUI) was not significant. There was also a 144% increase in driver/front seat passenger seat belt use, from 19% in 2011 before the primary occupant restraint law was enacted to 47% during the first full year of enforcement (2013). Car seat checkpoint data also suggested a 160% increase in car seat use, from less than 20% to 52% in 2013. Implementation of evidence-based strategies in injury prevention, along with employment of key program approaches such as strong partnership building, community engagement, and consistent staffing and funding, can narrow the public health disparity gap experienced among American Indian and Alaska Native

  12. Rigorous design of matched wireless power transfer links based on inductive coupling

    NASA Astrophysics Data System (ADS)

    Monti, G.; Costanzo, A.; Mastri, F.; Mongiardo, M.; Tarricone, L.

    2016-06-01

    This paper focuses on a near-field wireless power transmission link consisting of two magnetically coupled inductances. The case of a resonant coupling realized by adding appropriate compensating capacitances is solved. By using a network formalism, the link is modeled as a two-port network and rigorously analyzed in the case where both the input impedance and the load are specified. In particular, it is demonstrated that there is just one optimum design of the network that allows maximizing both the efficiency and the active power on the load. Closed-form design formulas for the optimum design are presented and validated by circuital simulations.

  13. System Design for Ocean Sensor Data Transmission Based on Inductive Coupling

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liu, Fei; Zong, Yuan; Hong, Feng

    Ocean observation is the precondition to explore and utilize ocean. How to acquire ocean data in a precise, efficient and real-time way is the key question of ocean surveillance. Traditionally, there are three types of methods for ocean data transmission: underwater acoustic, GPRS via mobile network and satellite communication. However, none of them can meet the requirements of efficiency, accuracy, real-time and low cost at the same time. In this paper, we propose a new wireless transmission system for underwater sensors, which established on FGR wireless modules, combined with inductive coupling lab and offshore experiments confirmed the feasibility and effectiveness of the proposed wireless transmission system.

  14. Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation.

    PubMed

    Lee, Si-Huei; Yeh, Shih-Ching; Chan, Rai-Chi; Chen, Shuya; Yang, Geng; Zheng, Li-Rong

    2016-01-01

    Objective. This study aims to extract motor ingredients through data mining from wearable sensors in a virtual reality goal-directed shoulder rehabilitation (GDSR) system and to examine their effects toward clinical assessment. Design. A single-group before/after comparison. Setting. Outpatient research hospital. Subjects. 16 patients with frozen shoulder. Interventions. The rehabilitation treatment involved GDSR exercises, hot pack, and interferential therapy. All patients first received hot pack and interferential therapy on the shoulder joints before engaging in the exercises. The GDSR exercise sessions were 40 minutes twice a week for 4 weeks. Main Measures. Clinical assessments included Constant and Murley score, range of motion of the shoulder, and muscle strength of upper arm as main measures. Motor indices from sensor data and task performance were measured as secondary measures. Results. The pre- and posttest results for task performance, motor indices, and the clinical assessments indicated significant improvement for the majority of the assessed items. Correlation analysis between the task performance and clinical assessments revealed significant correlations among a number of items. Stepwise regression analysis showed that task performance effectively predicted the results of several clinical assessment items. Conclusions. The motor ingredients derived from the wearable sensor and task performance are applicable and adequate to examine and predict clinical improvement after GDSR training. PMID:27642600

  15. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair.

    PubMed

    Perussi Biscola, Natalia; Politti Cartarozzi, Luciana; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Leite Rodrigues de Oliveira, Alexandre

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617

  16. Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation

    PubMed Central

    Lee, Si-Huei; Zheng, Li-Rong

    2016-01-01

    Objective. This study aims to extract motor ingredients through data mining from wearable sensors in a virtual reality goal-directed shoulder rehabilitation (GDSR) system and to examine their effects toward clinical assessment. Design. A single-group before/after comparison. Setting. Outpatient research hospital. Subjects. 16 patients with frozen shoulder. Interventions. The rehabilitation treatment involved GDSR exercises, hot pack, and interferential therapy. All patients first received hot pack and interferential therapy on the shoulder joints before engaging in the exercises. The GDSR exercise sessions were 40 minutes twice a week for 4 weeks. Main Measures. Clinical assessments included Constant and Murley score, range of motion of the shoulder, and muscle strength of upper arm as main measures. Motor indices from sensor data and task performance were measured as secondary measures. Results. The pre- and posttest results for task performance, motor indices, and the clinical assessments indicated significant improvement for the majority of the assessed items. Correlation analysis between the task performance and clinical assessments revealed significant correlations among a number of items. Stepwise regression analysis showed that task performance effectively predicted the results of several clinical assessment items. Conclusions. The motor ingredients derived from the wearable sensor and task performance are applicable and adequate to examine and predict clinical improvement after GDSR training.

  17. Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation.

    PubMed

    Lee, Si-Huei; Yeh, Shih-Ching; Chan, Rai-Chi; Chen, Shuya; Yang, Geng; Zheng, Li-Rong

    2016-01-01

    Objective. This study aims to extract motor ingredients through data mining from wearable sensors in a virtual reality goal-directed shoulder rehabilitation (GDSR) system and to examine their effects toward clinical assessment. Design. A single-group before/after comparison. Setting. Outpatient research hospital. Subjects. 16 patients with frozen shoulder. Interventions. The rehabilitation treatment involved GDSR exercises, hot pack, and interferential therapy. All patients first received hot pack and interferential therapy on the shoulder joints before engaging in the exercises. The GDSR exercise sessions were 40 minutes twice a week for 4 weeks. Main Measures. Clinical assessments included Constant and Murley score, range of motion of the shoulder, and muscle strength of upper arm as main measures. Motor indices from sensor data and task performance were measured as secondary measures. Results. The pre- and posttest results for task performance, motor indices, and the clinical assessments indicated significant improvement for the majority of the assessed items. Correlation analysis between the task performance and clinical assessments revealed significant correlations among a number of items. Stepwise regression analysis showed that task performance effectively predicted the results of several clinical assessment items. Conclusions. The motor ingredients derived from the wearable sensor and task performance are applicable and adequate to examine and predict clinical improvement after GDSR training.

  18. A Nationwide Survey of Nonspeech Oral Motor Exercise Use: Implications for Evidence-Based Practice

    ERIC Educational Resources Information Center

    Lof, Gregory L.; Watson, Maggie M.

    2008-01-01

    Purpose: A nationwide survey was conducted to determine if speech-language pathologists (SLPs) use nonspeech oral motor exercises (NSOMEs) to address children's speech sound problems. For those SLPs who used NSOMEs, the survey also identified (a) the types of NSOMEs used by the SLPs, (b) the SLPs' underlying beliefs about why they use NSOMEs, (c)…

  19. Performances estimation of a rotary traveling wave ultrasonic motor based on two-dimension analytical model.

    PubMed

    Ming, Y; Peiwen, Q

    2001-03-01

    The understanding of ultrasonic motor performances as a function of input parameters, such as the voltage amplitude, driving frequency, the preload on the rotor, is a key to many applications and control of ultrasonic motor. This paper presents performances estimation of the piezoelectric rotary traveling wave ultrasonic motor as a function of input voltage amplitude and driving frequency and preload. The Love equation is used to derive the traveling wave amplitude on the stator surface. With the contact model of the distributed spring-rigid body between the stator and rotor, a two-dimension analytical model of the rotary traveling wave ultrasonic motor is constructed. Then the performances of stead rotation speed and stall torque are deduced. With MATLAB computational language and iteration algorithm, we estimate the performances of rotation speed and stall torque versus input parameters respectively. The same experiments are completed with the optoelectronic tachometer and stand weight. Both estimation and experiment results reveal the pattern of performance variation as a function of its input parameters.

  20. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    PubMed Central

    Ferreira Junior, Rui Seabra

    2016-01-01

    Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons. PMID:27446617