Science.gov

Sample records for induction motor control

  1. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  2. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  3. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  4. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  5. Field oriented control of induction motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen

    1990-01-01

    Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.

  6. Power factor control system for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power control circuit for an induction motor is disclosed in which a servo loop is used to control power input by controlling the power factor of motor operation. The power factor is measured by summing the voltage and current derived square wave signals.

  7. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  8. Control system for an induction motor with energy recovery

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A control circuit for an induction motor powered system is disclosed in which a power factor controlled servo loop is used to control, via the phase angle of firing of a triac, the power input to the motor, as a function of load placed on the motor by machinery of the powered system. Then, upon application of torque by this machinery to the motor, which tends to overspeed the motor, the firing angle of the triac is automatically set to a fixed, and relatively short, firing angle.

  9. Field-Oriented Control Of Induction Motors

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.

    1993-01-01

    Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.

  10. Implementation of a new fuzzy vector control of induction motor.

    PubMed

    Rafa, Souad; Larabi, Abdelkader; Barazane, Linda; Manceur, Malik; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2014-05-01

    The aim of this paper is to present a new approach to control an induction motor using type-1 fuzzy logic. The induction motor has a nonlinear model, uncertain and strongly coupled. The vector control technique, which is based on the inverse model of the induction motors, solves the coupling problem. Unfortunately, in practice this is not checked because of model uncertainties. Indeed, the presence of the uncertainties led us to use human expertise such as the fuzzy logic techniques. In order to maintain the decoupling and to overcome the problem of the sensitivity to the parametric variations, the field-oriented control is replaced by a new block control. The simulation results show that the both control schemes provide in their basic configuration, comparable performances regarding the decoupling. However, the fuzzy vector control provides the insensitivity to the parametric variations compared to the classical one. The fuzzy vector control scheme is successfully implemented in real-time using a digital signal processor board dSPACE 1104. The efficiency of this technique is verified as well as experimentally at different dynamic operating conditions such as sudden loads change, parameter variations, speed changes, etc. The fuzzy vector control is found to be a best control for application in an induction motor.

  11. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  12. Induction motor control system with voltage controlled oscillator circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J.; Currie, J. R.; Reid, H., Jr. (Inventor)

    1973-01-01

    A voltage controlled oscillator circuit is reported in which there are employed first and second differential amplifiers. The first differential amplifier, being employed as an integrator, develops equal and opposite slopes proportional to an input voltage, and the second differential amplifier functions as a comparator to detect equal amplitude positive and negative selected limits and provides switching signals which gate a transistor switch. The integrating differential amplifier is switched between charging and discharging modes to provide an output of the first differential amplifier which upon the application of wave shaping provides a substantially sinusoidal output signal. A two phased version with a second integrator provides a second 90 deg phase shifted output for induction motor control.

  13. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  14. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  15. Forward and reverse control system for induction motors

    DOEpatents

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  16. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  17. EFFICIENCY OPTIMIZATIN CONTROL OF AC INDUCTION MOTORS: INITIAL LABORATORY RESULTS

    EPA Science Inventory

    The report discusses the development of a fuzzy logic, energy-optimizing controller to improve the efficiency of motor/drive combinations that operate at varying loads and speeds. This energy optimizer is complemented by a sensorless speed controller that maintains motor shaft re...

  18. FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES

    EPA Science Inventory

    This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...

  19. Chaos Suppression in Fractional Order Permanent Magnet Synchronous Motor and PI controlled Induction motor by Extended Back stepping Control

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2016-12-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order model of a permanent magnet synchronous motor (PMSM) and PI controlled fractional order Induction motor via recursive extended back stepping control technique. A robust generalized weighted controllers are derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results.

  20. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  1. Optimal efficiency vector control of induction motor drive system for drum washing machine

    NASA Astrophysics Data System (ADS)

    Lee, Won Cheol; Yu, Jae Sung; Jang, Bong An; Won, Chung Yuen

    2005-12-01

    In home appliances, electric energy is optimally controlled by using power electronics technology, creating a comfortable environment in terms of energy saving, low sound generation, and reduced time consumption. Usually simplicity and robustness make the three phase induction motor attractive for use in domestic appliance, including washing machines. Two main types of domestic washing machine have evolved. We focus on efficiency of the front loading machine favored in Europe, which has a horizontal drum axis. This paper presents the control algorithm for optimal efficiency drives of an induction motor for drum washing machine. This system uses a simple model of the induction motor that include equations of the iron losses. The proposed optimal efficiency control algorithm calculates commands of the reference torque and flux currents for the flux oriented control of the induction motor. The proposed algorithm is verified through digital simulation.

  2. Adaptive speed/position control of induction motor based on SPR approach

    NASA Astrophysics Data System (ADS)

    Lee, Hou-Tsan

    2014-11-01

    A sensorless speed/position tracking control scheme for induction motors is proposed subject to unknown load torque via adaptive strictly positive real (SPR) approach design. A special nonlinear coordinate transform is first provided to reform the dynamical model of the induction motor. The information on rotor fluxes can thus be derived from the dynamical model to decide on the proportion of input voltage in the d-q frame under the constraint of the maximum power transfer property of induction motors. Based on the SPR approach, the speed and position control objectives can be achieved. The proposed control scheme is to provide the speed/position control of induction motors while lacking the knowledge of some mechanical system parameters, such as the motor inertia, motor damping coefficient, and the unknown payload. The adaptive control technique is thus involved in the field oriented control scheme to deal with the unknown parameters. The thorough proof is derived to guarantee the stability of the speed and position of control systems of induction motors. Besides, numerical simulation and experimental results are also provided to validate the effectiveness of the proposed control scheme.

  3. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    NASA Astrophysics Data System (ADS)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  4. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  5. Flux-Based Deadbeat Control of Induction-Motor Torque

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Lorenz, Robert D.

    2003-01-01

    An improved method and prior methods of deadbeat direct torque control involve the use of pulse-width modulation (PWM) of applied voltages. The prior methods are based on the use of stator flux and stator current as state variables, leading to mathematical solutions of control equations in forms that do not lend themselves to clear visualization of solution spaces. In contrast, the use of rotor and stator fluxes as the state variables in the present improved method lends itself to graphical representations that aid in understanding possible solutions under various operating conditions. In addition, the present improved method incorporates the superposition of high-frequency carrier signals for use in a motor-self-sensing technique for estimating the rotor shaft angle at any speed (including low or even zero speed) without need for additional shaft-angle-measuring sensors.

  6. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  7. Neural-network-based speed controller for induction motors using inverse dynamics model

    NASA Astrophysics Data System (ADS)

    Ahmed, Hassanein S.; Mohamed, Kamel

    2016-08-01

    Artificial Neural Networks (ANNs) are excellent tools for controller design. ANNs have many advantages compared to traditional control methods. These advantages include simple architecture, training and generalization and distortion insensitivity to nonlinear approximations and nonexact input data. Induction motors have many excellent features, such as simple and rugged construction, high reliability, high robustness, low cost, minimum maintenance, high efficiency, and good self-starting capabilities. In this paper, we propose a neural-network-based inverse model for speed controllers for induction motors. Simulation results show that the ANNs have a high tracing capability.

  8. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  9. Sensor and sensorless fault tolerant control for induction motors using a wavelet index.

    PubMed

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.

  10. Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index

    PubMed Central

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state. PMID:22666016

  11. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  12. Evaluation of induction motor performance using an electronic power factor controller

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of reducing the losses in an induction motor by electronically controlling the time interval between the zero crossing of the applied voltage and the zero crossing of the armature current was evaluated. The effect on power losses and power factor of reducing the applied sinusoidal voltages below the rated value was investigated experimentally. The reduction in power losses was measured using an electronic controller designed and built at MSFC. Modifications to the MSFC controller are described as well as a manually controlled electronic device which does not require that the motor be wye connected and the neutral available. Possible energy savings are examined.

  13. Stability synthesis of control system in current fed inverter driven induction motor

    SciTech Connect

    Veda, R.; Irisa, T.; Ito, T.; Mochizuki, T.; Sonoda, T.

    1983-01-01

    This paper presents a new method of synthesizing a stabilizing control system in current fed inverter driven induction motor (CFIDIM). The method is focused on rotor dynamics and a concept of ''damping torque coefficient (DTC)'' is introduced concerning the electrical torque. At first the control system is synthesized on the assumption that an induction motor is driven by an ideally controllable current source. Then perturbed linearized technique indicates that the system can be stabilized if the stator current or frequency is controlled so as to make the DTC positive by feeding back a signal composed of rotor speed. Next, based on this fact, an approach of synthesizing the converter output voltage is presented under a fixed stator frequency. This result clarifies that the stable operation can be achieved by controlling the voltage in proportion to the acceleration of rotor speed or the deviation of electrical torque. These analytical results are verified with laboratory field tests.

  14. Dynamic Model Based Vector Control of Linear Induction Motor

    DTIC Science & Technology

    2012-05-01

    reference frame. In Section III, the basic structure of vector control is introduced. Proportional-Integral ( PI ) control is incorporated into vector...The load mass is then released from the slider. The performed simulation is based on selected PI control gains of Kp = 35 and KI = 75. Fig. 12 shows...controlled separately to maintain a desired flux level in the machine. The force current Isq is proportional to the load which is regulated using a PI

  15. Novel Observer Scheme of Fuzzy-MRAS Sensorless Speed Control of Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Chekroun, S.; Zerikat, M.; Mechernene, A.; Benharir, N.

    2017-01-01

    This paper presents a novel approach Fuzzy-MRAS conception for robust accurate tracking of induction motor drive operating in a high-performance drives environment. Of the different methods for sensorless control of induction motor drive the model reference adaptive system (MRAS) finds lot of attention due to its good performance. The analysis of the sensorless vector control system using MRAS is presented and the resistance parameters variations and speed observer using new Fuzzy Self-Tuning adaptive IP Controller is proposed. In fact, fuzzy logic is reminiscent of human thinking processes and natural language enabling decisions to be made based on vague information. The present approach helps to achieve a good dynamic response, disturbance rejection and low to plant parameter variations of the induction motor. In order to verify the performances of the proposed observer and control algorithms and to test behaviour of the controlled system, numerical simulation is achieved. Simulation results are presented and discussed to shown the validity and the performance of the proposed observer.

  16. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  17. Method and apparatus for pulse width modulation control of an AC induction motor

    NASA Technical Reports Server (NTRS)

    Geppert, Steven (Inventor); Slicker, James M. (Inventor)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  18. Method and apparatus for pulse width modulation control of an AC induction motor

    DOEpatents

    Geppert, Steven; Slicker, James M.

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  19. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions.

  20. Inductance and Active Phase Vector Based Torque Control for Switched Reluctance Motor Drives.

    NASA Astrophysics Data System (ADS)

    Kalpathi, Ramani Raman

    The Switched Reluctance Motor (SRM) drive technology has developed significantly over the last few years. The simplicity in both motor design and power converter requirement along with the availability of high frequency, high power semiconductor switches have made SRMs compete with conventional adjustable speed drive technologies. The subject of winding current control in switched reluctance machines has always been associated with the shaft position information. The use of inductance for direct commutation control is the central subject of this dissertation. In contrast to the conventional methods based on position commutation, new methods of control based on inductance commutation are presented. The object of a commutation algorithm is to switch the currents in the phase coils, in order to provide continuous energy conversion with maximum torque output for a given unit of input current. Since torque production in a SRM is based on the concept of variable reluctance, it makes more sense to observe the instantaneous phase inductance or reluctance instead of estimating the rotor position. The inductance sensors observe the machine parameters and provide sufficient information on the electrical characteristics of the coils. This control strategy avoids the inductance to position transformation blocks conventionally used in SRM control systems. In a typical SRM, the phase coils have a nonlinear behavior of inductance due to effects of current saturation. Also the parameters of one phase coil differ from those of the other due to manufacturing tolerances or due to bearing wear. In such cases, the algorithms written during the stage of manufacturing may not be valid after parameter changes. Optimizing torque production in the event of phase asymmetry and saturation is developed in this research. Indirect sensors connected to the active phase coil of the SRM are based on sensing the flux level in the active coil. New commutation algorithms based on flux sensing concepts

  1. Temperature and Light Control of Three phase Induction Motor Speed Drive by PIC

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2010-06-01

    PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "Peripheral Interface Controller". PICs are popular with the developers and the hobbyists due to their low cost, wide availability, large user base, extensive collection of application notes, free development tools, and serial programming (and re-programming with flash memory) capability. In modern days, PIC microcontrollers are used in the industrial world to control many types of equipment, ranging from consumer to specialized devices. They have replaced older types of controllers, including microprocessors. Also, there is a growing need for off-line support of a computer's main processor. The demand is going to grow with more equipment uses more intelligence. In the engineering field for instance, PIC has brought a very positive impact in designing an automation control system and controlling industrial machineries. Accordingly, this paper shows the change in the motor speed by the use of PIC in accordance to the light and level of temperature. The project focuses on programming the PIC by embedded software that detects the temperature and light signals and send it to 3 phase induction motor of 240 volt. A theoretical analysis and the practical approach in achieving this work goal have proved that PIC plays an important role in the field of electronics control.

  2. Online Monitoring of Induction Motors

    SciTech Connect

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  3. Gravitational search algorithm based tuning of a PI speed controller for an induction motor drive

    NASA Astrophysics Data System (ADS)

    Abd Ali, Jamal; Hannan, M. A.; Mohamed, Azah

    2016-03-01

    Proportional-integral (PI)-controller is very useful for controlling speed and mechanical load variables for the three-phase induction motor (TIM) operation. However, the conventional PI-controller has a very exhaustive trial and error procedure for obtaining it is parameters. In this paper, PI speed controller has been improved in it is design technique to suite TIM by utilizing a gravitational search algorithm (GSA) optimization technique. The mean absolute error (MAE) of the speed response has been used as an objective function. An optimal GSA based PI speed controller (GSA-PI) objective function is also employed to tune and minimize the MAE for developing the performance of the TIM in terms of changes speed and mechanical load. This experiment use space vector pulse width modulation (SVPWM) technique to create pulse width modulation for switching devices for three phase bridge inverter. Results obtained from the GSA-PI speed controller are compared with those obtained through particle swarm optimization (PSO) to validate the developed controller. Then it has been proved that the robustness of the GSA-PI speed controller is far better than that of the1 PSO controller in all tested cases in terms of damping capability and transient response under different mechanical loads and speeds.

  4. Fuzzy virtual reference model sensorless tracking control for linear induction motors.

    PubMed

    Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow

    2013-06-01

    This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness.

  5. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    PubMed

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses.

  6. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    PubMed Central

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  7. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  8. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  9. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  10. Direct Torque Control with Full Order Stator Flux Observer for Dual-Three Phase Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Farina, Francesco; Bojoi, Radu; Tenconi, Alberto; Profumo, Francesco

    A Direct Torque Control (DTC) strategy for dual-three phase induction motor drives is discussed in this paper. The induction machine has two sets of stator three-phase windings spatially shifted by 30 electrical degrees with isolated neutral points. The proposed control strategy is based on Proportional Integral (PI) regulators implemented in the stator flux synchronous reference frame. To improve the flux estimation, an Adaptive Stator Flux Observer (ASFO) has been used. Doing so, besides a better flux estimation in contrast to open-loop flux estimators, it is possible to use the observed currents to compensate the inverter non-linear behavior (such as dead-time effects), improving the drive performance at low speed. This is particularly important for low voltage/high current applications, as the drive considered in this paper. The advantages of the discussed control strategy are: constant inverter switching frequency, good transient and steady-state performance and less distorted machine currents in contrast to DTC schemes with variable switching frequency. Experimental results are presented for a 10kW dual three-phase induction motor drive prototype.

  11. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed.

  12. Harmonic reduction of Direct Torque Control of six-phase induction motor.

    PubMed

    Taheri, A

    2016-07-01

    In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method.

  13. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  14. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control.

    PubMed

    Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid

    2017-03-01

    This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104.

  15. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  16. Nonlinear Control of the Doubly Fed Induction Motor with Copper Losses Minimization for Electrical Vehicle

    NASA Astrophysics Data System (ADS)

    Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.

    2008-06-01

    There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.

  17. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  18. Induction generator-induction motor wind-powered pumping system

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  19. Experimental implementation of a robust damped-oscillation control algorithm on a full-sized, two-degree-of-freedom, AC induction motor-driven crane

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Noakes, M.W.

    1994-05-01

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller.

  20. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  1. Transistorized PWM inverter-induction motor drive system

    NASA Technical Reports Server (NTRS)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  2. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    SciTech Connect

    Vuckovic, V.; Vukosavic, S. )

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  3. Comparison of capabilities of reluctance synchronous motor and induction motor

    NASA Astrophysics Data System (ADS)

    Štumberger, Gorazd; Hadžiselimović, Miralem; Štumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradišnik, Ivan

    2006-09-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements.

  4. FORTRAN program for induction motor analysis

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1976-01-01

    A FORTRAN program for induction motor analysis is described. The analysis includes calculations of torque-speed characteristics, efficiency, losses, magnetic flux densities, weights, and various electrical parameters. The program is limited to three-phase Y-connected, squirrel-cage motors. Detailed instructions for using the program are given. The analysis equations are documented, and the sources of the equations are referenced. The appendixes include a FORTRAN symbol list, a complete explanation of input requirements, and a list of error messages.

  5. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation.

  6. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  7. Vibration Analysis of AN Induction Motor

    NASA Astrophysics Data System (ADS)

    WANG, C.; LAI, J. C. S.

    1999-07-01

    With the advent of power electronics, variable speed induction motors are finding increasing use in industries because of their low cost and potential savings in energy consumption. However, the acoustic noise emitted by the motor increases due to switching harmonics introduced by the electronic inverters. Consequently, the vibro-acoustic behaviour of the motor structure has attracted more attention. In this paper, considerations given to modelling the vibration behaviour of a 2·2 kW induction motor are discussed. By comparing the calculated natural frequencies and the mode shapes with the results obtained from experimental modal testing, the effects of the teeth of the stator, windings, outer casing, slots, end-shields and support on the overall vibration behaviour are analyzed. The results show that when modelling the vibration behaviour of a motor structure, the laminated stator should be treated as an orthotropic structure, and the teeth of the stator could be neglected. As the outer casing, end-shields and the support all affect the vibration properties of the whole structure, these substructures should be incorporated in the model to improve the accuracy.

  8. Analytical calculation of the RFOC method in single-phase induction motor

    NASA Astrophysics Data System (ADS)

    Jannati, M.; Monadi, A.; Idris, N. R. N.; Faudzi, A. A. M.

    2016-05-01

    This study discusses the different techniques for speed control of single-phase induction motor with two asymmetrical main and auxiliary windings based on Rotor Field-Oriented Control (RFOC) method. In the presented methods, transformation matrices are introduced and applied to the equations of single-phase induction motor. It is shown by applying these rotational transformations to the unbalanced equations of single-phase induction motor, equations of single-phase induction motor are transformed into symmetrical equations. These rotational transformations are achieved based from the steady-state equivalent circuit of single-phase induction motor. Finally, a method for RFOC of single-phase induction motor is proposed. Results show the good performance of the proposed method.

  9. Advanced motor-controller development

    NASA Astrophysics Data System (ADS)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  10. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  11. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  12. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  13. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  14. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  15. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  16. Induction machine condition monitoring using notch-filtered motor current

    NASA Astrophysics Data System (ADS)

    Günal, Serkan; Gökhan Ece, Dog˜an; Nezih Gerek, Ömer

    2009-11-01

    This paper presents a new approach to induction motor condition monitoring using notch-filtered motor current signature analysis (NFMCSA). Unlike most of the previous work utilizing motor current signature analysis (MCSA) using spectral methods to extract required features for detecting motor fault conditions, here NFMCSA is performed in time-domain to extract features of energy, sample extrema, and third and fourth cumulants evaluated from data within sliding time window. Six identical three-phase induction motors were used for the experimental verification of the proposed method. One healthy machine was used as a reference, while other five with different synthetic faults were used for condition detection and classification. Extracted features obtained from NFMCSA of all motors were employed in three different and popular classifiers. The proposed motor current analysis and the performance of the features used for fault detection and classification are examined at various motor load levels and it is shown that a successful induction motor condition monitoring system is developed. Developed system is also able to indicate the load level and the type of a fault in multi-dimensional feature space representation. In order to test the generality and applicability of the developed method to other induction motors, data acquired from another healthy induction motor with different number of poles and rated power is also incorporated into the system. In spite of the above difference, the proposed feature set successfully locates the healthy motor within the classification cluster of "healthy motors" on the feature space.

  17. Lyapunov exponent for aging process in induction motor

    NASA Astrophysics Data System (ADS)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.

  18. Improvement of the efficiency of induction motors

    NASA Astrophysics Data System (ADS)

    Falk, K.; Schoerner, J.

    1982-07-01

    The electric motor as energy converter was studied for four groups of parameters: process, network, foundations, and environment. The feasibility of reducing the losses of asynchronous three phase motors with squirrel cage or with slip rings in the power output range from 100 to 1500kW, was investigated. Mechanical losses from the bearings, from air friction, and from fan electromagnetic losses in the iron and in the copper, and the most efficient way of heat elimination due to this losses effect of a nonsinusoidal energy source on losses use of electronic controlled energy sources where variable load and speed are necessary, were studied. It is proved that for the studied motor range a better conception of ventilation is very useful and that the most efficient losses reduction are achieved by optimizing the electromagnetic design and the insulation techniques. Thyristor-based voltage regulators can achieve remarkable energy savings especially in the field of elevator technique in the speed range up to 2m/sec and in hoisting equipment.

  19. An Inverter-Driven Induction Motor System with a Deadlock Breaking Capability

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takuto; Yoshida, Toshiya; Miyashita, Osamu

    Induction motors are very widely used in various industrial applications. In semiconductor manufacturing processes, deadlock failure of pumps may occur by the adhering of glass material contained in the gas to the rotor. This can lead to the shutdown of the manufacturing plant. Therefore, a countermeasure to prevent deadlocking of a motor is required. This paper proposes a method for generating an impulse torque in an induction motor fed by an inverter. The proposed inverter circuit is composed of a conventional inverter and a few additional relays. The on-and-off control of the relays supplies an appropriate magnetizing current and a large torque current from the dc-link capacitor. In experiment, a 1.5-kW cage-type induction motor generated a torque that was approximately seven times larger than the rated torque of the motor. This large impulse torque is useful for breaking the motor deadlock.

  20. Modelling and Analysis of Dual-Stator Induction Motors

    NASA Astrophysics Data System (ADS)

    Razik, Hubert; Rezzoug, Abderrezak; Hadiouche, Djafar

    In this paper, the analysis and the modelling of a Dual-Stator Induction Motor (DSIM) are presented. In particular, the effects of the shift angle between its three-phase windings are studied. A complex steady state model is first established in order to analyse its harmonic behavior when it is supplied by a non-sinusoidal voltage source. Then, a new transformation matrix is proposed to develop a suitable dynamic model. In both cases, the study is made using an arbitrary shift angle. Simulation results of its PWM control are also presented and compared in order to confirm our theoretical observations.

  1. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  2. Integrated Cooling System for Induction Motor Traction Drives, CARAT Program Phase Two Final Report

    SciTech Connect

    Konrad, Charles E.

    2002-12-03

    This Program is directed toward improvements in electric vehicle/hybrid electric vehicle traction systems, and in particular, the development of a low cost, highly efficient, compact traction motor-controller system targeted for high volume automotive use. Because of the complex inter-relationships between the motor and the controller, the combination of motor and controller must be considered as a system in the design and evaluation of overall cost and performance. The induction motor is ideally suited for use as a traction motor because of its basic ruggedness, low cost, and high efficiency. As one can see in Figure 1.1, the induction motor traction drive has been continually evolving through a succession of programs spanning the past fifteen years. VPT marketed an induction motor-based traction drive system, the EV2000, which proved to be a reliable, high performance system that was used in a wide range of vehicles. The EV2000 drives evolved from the Modular Electric Vehicle Program (MEVP) and has been used in vehicles ranging in size from 3,000 lb. autos and utility vans, to 32,000 lb. city transit buses. Vehicles powered by the EV2000 induction motor powertrain have accumulated over 2 million miles of service. The EV2000 induction motor system represents 1993 state-of-the-art technology, and evolved from earlier induction motor programs that drove induction motor speeds up to 15,000 rpm to reduce the motor size and cost. It was recognized that the improvements in power density and motor cost sought in the PNGV program could only be achieved through increases in motor speed. Esson’s Rule for motor power clearly states that the power obtainable from a given motor design is the product of motor speed and volume. In order to meet the CARAT Program objectives, the maximum speed goal of the induction motor designed in this Program was increased from 15,000 rpm to 20,000 rpm while maintaining the efficiency and durability demonstrated by lower speed designs done in

  3. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  4. An Induction Motor Based Wind Turbine Emulator

    NASA Astrophysics Data System (ADS)

    Sokolovs, A.; Grigans, L.; Kamolins, E.; Voitkans, J.

    2014-04-01

    The authors present a small-scale wind turbine emulator based on the AC drive system and discuss the methods for power coefficient calculation. In the work, the experimental set-up consisting of an AC induction motor, a frequency converter, a synchronous permanent magnet generator, a DC-DC boost converter and DC load was simulated and tested using real-life equipment. The experimentally obtained wind turbine power and torque diagrams using the emulator are in a good agreement with the theoretical ones. Šajā rakstā parādīta mazas jaudas vēja turbīnas emulatora izveide ar maiņstrāvas piedziņas sistēmu, kā arī analizētas vairākas turbīnas jaudas koeficienta analītiskās aprēķina metodes. Vēja turbīnas emulatora eksperimentālais stends, kas sastāv no asinhronā elektromotora, frekvenču pārveidotāja, sinhronā pastāvīgo magnētu ģeneratora, līdzstrāvas paaugstinošā pārveidotāja un slodzes, tika pārbaudīts gan simulēšanas vidē, gan uz reālām iekārtām. Eksperimentāli iegūtās vēja turbīnas emulatora jaudas un momenta diagrammas ir salīdzinātas ar teorētiskajām.

  5. Performance Analysis of Saturated Induction Motors by Virtual Tests

    ERIC Educational Resources Information Center

    Ojaghi, M.; Faiz, J.; Kazemi, M.; Rezaei, M.

    2012-01-01

    Many undergraduate-level electrical machines textbooks give detailed treatments of the performance of induction motors. Students can deepen this understanding of motor performance by performing the appropriate practical work in laboratories or in simulation using proper software packages. This paper considers various common and less-common tests…

  6. Axial-Gap Induction Motor For Levitated Specimens

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind; Rhim, Won-Kyu; Barber, Dan; Chung, Sang

    1992-01-01

    Motor does not obscure view of specimen. Axial-gap induction motor applies torque to rotate electrostatically or electromagnetically levitated specimen of metal. Possible applications include turning specimens for uniform heating under focused laser beams and obtaining indirect measurements of resistivities or of surface tensions in molten specimens.

  7. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    PubMed

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS).

  8. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  9. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  10. Variable speed induction motor operation from a 20-kHz power bus

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  11. Variable speed induction motor operation from a 20-kHz power bus

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1989-01-01

    Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.

  12. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  13. Advanced Motor and Motor Control Development

    DTIC Science & Technology

    1988-08-01

    dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for

  14. Controlled wind motor

    SciTech Connect

    Boswell, F.A.

    1983-12-27

    A mechanical sail including a rotatable mast, the mast including a top vane mount and a bottom vane mount, the mounts being spaced from each other on the mast and rotatable therewith, a series of rotatable vanes spaced from and surrounding the mast and supported by and between the mounts, cam operaters extending between the mounts and connected to the vanes for controlling the rotation of the vanes, a first controller associated with the mast below the bottom vane mount for controlling the cam operators, the first controller being movable vertically with respect to the mast, a second controller for moving the first controller vertically with respect to the mast, the vanes being flexible and bowed outwardly, the bottom vane mount being movable with respect to the mast and connected to the second controller whereby when the second controller is operated, the bottom vane mount will move toward the top vane mount causing the vanes to bow outwardly at a desired arc and whereby when the first controller is moved, the vanes are caused to rotate to the desired angle of attack with respect to wind velocity and direction. When the sail is connected to a motor drive, the vessel may be driven forward or rearward depending on the angle of attack of the vanes through 180/sup 0/.

  15. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  16. An electrical gearbox by means of pole variation for induction and superconducting disc motor

    NASA Astrophysics Data System (ADS)

    Inácio, S.; Inácio, D.; Pina, J. M.; Valtchev, S.; Neves, M. V.; Rodrigues, A. L.

    2008-02-01

    In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque/speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque/speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed.

  17. Bearing Fault Detection in Induction Motor-Gearbox Drivetrain

    NASA Astrophysics Data System (ADS)

    Cibulka, Jaroslav; Ebbesen, Morten K.; Robbersmyr, Kjell G.

    2012-05-01

    The main contribution in the hereby presented paper is to investigate the fault detection capability of a motor current signature analysis by expanding its scope to include the gearbox, and not only the induction motor. Detecting bearing faults outside the induction motor through the stator current analysis represents an interesting alternative to traditional vibration analysis. Bearing faults cause changes in the stator current spectrum that can be used for fault diagnosis purposes. A time-domain simulation of the drivetrain model is developed. The drivetrain system consists of a loaded single stage gearbox driven by a line-fed induction motor. Three typical bearing faults in the gearbox are addressed, i.e. defects in the outer raceway, the inner raceway, and the rolling element. The interaction with the fault is modelled by means of kinematical and mechanical relations. The fault region is modelled in order to achieve gradual loss and gain of contact. A bearing fault generates an additional torque component that varies at the specific bearing defect frequency. The presented dynamic electromagnetic dq-model of an induction motor is adjusted for diagnostic purpose and considers such torque variations. The bearing fault is detected as a phase modulation of the stator current sine wave at the expected bearing defect frequency.

  18. Multisensor fusion for induction motor aging analysis and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Erbay, Ali Seyfettin

    Induction motors are the most commonly used electrical drives, ranging in power from fractional horsepower to several thousand horsepowers. Several studies have been conducted to identify the cause of failure of induction motors in industrial applications. Recent activities indicate a focus towards building intelligence into the motors, so that a continuous on-line fault diagnosis and prognosis may be performed. The purpose of this research and development was to perform aging studies of three-phase, squirrel-cage induction motors; establish a database of mechanical, electrical and thermal measurements from load testing of the motors; develop a sensor-fusion method for on-line motor diagnosis; and use the accelerated aging models to extrapolate to the normal aging regimes. A new laboratory was established at The University of Tennessee to meet the goals of the project. The accelerated aging and motor performance tests constitute a unique database, containing information about the trend characteristics of measured signatures as a function of motor faults. The various measurements facilitate enhanced fault diagnosis of motors and may be effectively utilized to increase the reliability of decision making and for the development of life prediction techniques. One of these signatures is the use of Multi-Resolution Analysis (MRA) using wavelets. Using MRA in trending different frequency bands has revealed that higher frequencies show a characteristic increase when the condition of a bearing is in question. This study effectively showed that the use of MRA in vibration signatures can identify a thermal degradation or degradation via electrical charge of the bearing, whereas other failure mechanisms, such as winding insulation failure, do not exhibit such characteristics. A motor diagnostic system, called the Intelligent Motor Monitoring System (IMMS) was developed in this research. The IMMS integrated the various mechanical, electrical and thermal signatures, and

  19. Induction motor inter turn fault detection using infrared thermographic analysis

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.

    2016-07-01

    Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.

  20. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  1. Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju

    2016-10-01

    This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.

  2. Demonstration of Lenz's Law with an Induction Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2005-01-01

    The interaction of a conductor with a time-dependent magnetic field is an important topic of electromagnetic theory. A computerized classroom demonstration shows how the eddy currents induced in the rotor of an induction motor cause its rotation or braking. Both phenomena are directly related to Lenz's law.

  3. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  4. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  5. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  6. Match explosionproof motors with variable-frequency controllers

    SciTech Connect

    Petro, D.; Basso, D.

    1995-10-01

    The correct application of variable-frequency drive controllers to AC induction motors can be difficult, even for relatively simple applications. When using a variable-frequency controller (inverter), the non-pure sine-wave power output cases additional motor heating, primarily because of harmonics and below-base-speed operation. Add to that a hazardous environment requiring an explosion proof (XP) motor and the selection of a suitable, as well as efficient, motor and variable-frequency controller combination, and selection becomes even more complicated. Hazardous locations are found in a wide range of chemical process industries (CPI) plants, including chemical, petrochemical textile, rubber-making,, agriculture, food-processing, and metalworking facilities. Because standard constant-speed XP motors are not designed of use with variable-frequency controllers in these potentially explosive applications, it is necessary to understand how drive controllers affect motor performance. The multitude of motors and controllers--which can be purchased separately--and the numerous hazardous-application restrictions make it difficult to select the right XP motor/controller combination. The paper discusses how variable frequency affects motors, hazardous environments as found in UL 674 and UL 1836, matching XP motors with variable-frequency controllers, preventing motor overheating, motor and controller packaging, and non-thermostat applications in the CPI.

  7. Computational approaches to motor control.

    PubMed

    Flash, T; Sejnowski, T J

    2001-12-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors.

  8. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  9. Broken-Rotor-Bar Diagnosis for Induction Motors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Gao, Robert X.; Yan, Ruqiang

    2011-07-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  10. Performance characteristics of three-phase induction motors

    NASA Technical Reports Server (NTRS)

    Wood, M. E.

    1977-01-01

    An investigation into the characteristics of three phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft is summarized. Results of laboratory tests are presented and compared with results from a computer program. Representative motors were both tested and simulated under nominal conditions as well as off nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the shuttle orbiter.

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  13. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  14. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  15. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  16. High Speed Linear Induction Motor Efficiency Optimization

    DTIC Science & Technology

    2005-06-01

    58 4.2.2 Volts/H ertz D rives Sensorless Flux-V ector D rives...56 Figure 40 Fixed Volts/Hertz Controller [16] ............................................................................................ 58 Figure...9 Figure 57 DSLIM Operating Parameters vs. Speed ................................................................................ 84 Figure 58

  17. Modeling and Simulating of Single Side Short Stator Linear Induction Motor with the End Effect

    NASA Astrophysics Data System (ADS)

    Hamzehbahmani, Hamed

    2011-09-01

    Linear induction motors are under development for a variety of demanding applications including high speed ground transportation and specific industrial applications. These applications require machines that can produce large forces, operate at high speeds, and can be controlled precisely to meet performance requirements. The design and implementation of these systems require fast and accurate techniques for performing system simulation and control system design. In this paper, a mathematical model for a single side short stator linear induction motor with a consideration of the end effects is presented; and to study the dynamic performance of this linear motor, MATLAB/SIMULINK based simulations are carried out, and finally, the experimental results are compared to simulation results.

  18. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor.

    PubMed

    Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar

    2016-01-01

    This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions.

  19. Advanced Motor-Controller Development.

    DTIC Science & Technology

    1983-06-22

    which document the three stages of develop- _ - fment. "U Volume Summary A. Phase I Report Flux Synthesis and PWM Synthesis Techniques Theory and...Three Phase Power Bridge and Evaluation of Motor Controller Volume Summary The three reports assembled in this votume represent work performed...1963-A * I ADVANCED MOTOR-CONTROLLER * DEVELOPMENT Final Report for Period October 1979 - June 1983 June 22, 1983 Report DTNSRDC-PASD-CR-1-83

  20. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  1. Fuzzy Logic Based Rotor Health Index of Induction Motor

    NASA Astrophysics Data System (ADS)

    Misra, Rajul; Pahuja, G. L.

    2015-10-01

    This paper presents an experimental study on detection and diagnosis of broken rotor bars in Squirrel Cage Induction Motor (SQIM). The proposed scheme is based on Motor Current Signature Analysis (MCSA) which uses amplitude difference of supply frequency to upper and lower side bands. Initially traditional MCSA has been used for rotor fault detection. It provides rotor health index on full load conditions. However in real practice if a fault occurs motor can not run at full load. To overcome the issue of reduced load condition a Fuzzy Logic based MCSA has been designed, implemented, tested and compared with traditional MCSA. A simulation result shows that proposed scheme is not only capable of detecting the severity of rotor fault but also provides remarkable performance at reduced load conditions.

  2. Electromechanical interaction in rotordynamics of cage induction motors

    NASA Astrophysics Data System (ADS)

    Holopainen, Timo P.; Tenhunen, Asmo; Arkkio, Antero

    2005-06-01

    Eccentric rotor motion induces an unbalanced magnetic pull between the rotor and stator of cage induction motors. Recently, a linear parametric model of this eccentricity force due to the arbitrary rotor motion was presented. The purpose of this study is to combine this electromagnetic force model with a simple mechanical rotor model, and further, to demonstrate the rotordynamic response induced by this electromechanical interaction. An electromechanical rotor model is derived on the basis of the Jeffcott rotor with two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The electromechanical parameters of these motors were estimated from the numerical simulations carried out separately. The results obtained show that the electromechanical interaction may decrease the natural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at or near the first bending critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction reduces effectively the unbalance response close to the first bending critical speed.

  3. Space Digital Controller for Improved Motor Control

    NASA Astrophysics Data System (ADS)

    Alves-Nunes, Samuel; Daras, Gaetan; Dehez, Bruno; Maillard, Christophe; Bekemans, Marc; Michel, Raymond

    2014-08-01

    Performing digital motor control into space equipment is a new challenge. The new DPC (Digital Programmable Controller) is the first chip that we can use as a micro-controller, allowing us to drive motors with digital control schemes. In this paper, the digital control of hybrid stepper motors is considered. This kind of motor is used for solar array rotation and antenna actuation. New digital control technology brings a lot of advantages, allowing an important reduction of thermal losses inside the motor, and a reduction of thermal constraints on power drive electronic components. The opportunity to drive motors with a digital controller also brings many new functionalities like post-failure torque analysis, micro- vibrations and cogging torque reduction, or electro- mechanical damping of solar array oscillations. To evaluate the performance of the system, Field-Oriented Control (FOC) is implemented on a hybrid stepper motor. A test-bench, made of an active load, has been made to emulate the mechanical behaviour of the solar array, by the use of a torsionally-compliant model. The experimental results show that we can drastically reduce electrical power consumption, compared with the currently used open-loop control scheme.

  4. Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1997-01-01

    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.

  5. Diagnosis of the three-phase induction motor using thermal imaging

    NASA Astrophysics Data System (ADS)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  6. Universal adaptive torque control for PM motors for field-weakening region operation

    SciTech Connect

    Royak, Semyon; Harbaugh, Mark M.; Breitzmann, Robert J.; Nondahl, Thomas A.; Schmidt, Peter B.; Liu, Jingbo

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  7. Evaluation of quasi-square wave inverter as a power source for induction motors

    NASA Technical Reports Server (NTRS)

    Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.

    1977-01-01

    The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.

  8. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  9. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  10. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  11. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  12. NASTRAN buckling study of a linear induction motor reaction rail

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  13. Improving Control of Two Motor Controllers

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    A computer program controls motors that drive translation stages in a metrology system that consists of a pair of two-axis cathetometers. This program is specific to Compumotor Gemini (or equivalent) motors and the Compumotor 6K-series (or equivalent) motor controller. Relative to the software supplied with the controller, this program affords more capabilities and is easier to use. Written as a Virtual Instrument in the LabVIEW software system, the program presents an imitation control panel that the user can manipulate by use of a keyboard and mouse. There are three modes of operation: command, movement, and joystick. In command mode, single commands are sent to the controller for troubleshooting. In movement mode, distance, speed, and/or acceleration commands are sent to the controller. Position readouts from the motors and from position encoders on the translation stages are displayed in marked fields. At any time, the position readouts can be recorded in a file named by the user. In joystick mode, the program yields control of the motors to a joystick. The program sends commands to, and receives data from, the controller via a serial cable connection, using the serial-communication portion of the software supplied with the controller.

  14. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  15. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  16. A New High Speed Induction Motor Drive based on Field Orientation and Hysteresis Current Comparison

    NASA Astrophysics Data System (ADS)

    Ogbuka, Cosmas; Nwosu, Cajethan; Agu, Marcel

    2016-09-01

    This paper presents a new high speed induction motor drive based on the core advantage of field orientation control (FOC) and hysteresis current comparison (HCC). A complete closed loop speed-controlled induction motor drive system is developed consisting of an outer speed and an inner HCC algorithm which are optimised to obtain fast and stable speed response with effective current and torque tracking, both during transient and steady states. The developed model, being speed-controlled, was examined with step and ramp speed references and excellent performances obtained under full load stress. A speed response comparison of the model with the standard AC3 (Field-Oriented Control Induction Motor Drive) of MATLAB Simpower systems shows that the model achieved a rise time of 0.0762 seconds compared to 0.2930 seconds achieved by the AC3. Also, a settle time of 0.0775 seconds was obtained with the developed model while that of the AC3 model is 0.2986 seconds confirming, therefore, the superiority of the developed model over the AC3 model which, hitherto, served as a reference standard.

  17. Temperature analysis of induction motors using a hybrid thermal model with distributed heat sources

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S. C.; Pal, S. K.

    1998-06-01

    The article presents a hybrid thermal model for the accurate estimation of temperature distribution of induction motors. The developed model is a combination of lumped and distributed thermal parameters which are obtained from motor dimensions and other constants such as material density, specific heats, thermal conductivity, etc. The model is especially suited for the derating of induction motors operating under distorted and unbalanced supply condition. The model have been applied to a small (2hp, 415 V, 3-phase) cage rotor induction motor. The performance of the model is confirmed by experimental temperature data from the body and the conductor inside the slots of the motor.

  18. A Novel Method for Improving Overload Capability of Stand-alone Power System Based on a Flywheel Induction Motor

    NASA Astrophysics Data System (ADS)

    Cheng, Miao-Miao; Kato, Shuhei; Sumitani, Hideo; Shimada, Ryuichi

    Stand-alone power systems are widely used in islands and remote areas. With the rapid advances in the new energy technology, stand-alone power systems have got a rapid development. However, their overload capability is very poor. In this paper, a novel method to improve the overload performance of the stand-alone power system is proposed by using a flywheel induction motor. The flywheel induction motor is composed of a flywheel disk connected to a squirrel cage induction motor. It is controlled to supply the overload power of the stand-alone power supply by charging and discharging. The proposed system is characterized by the following three points: 1) Simple configuration; The flywheel induction motor is directly connected to the inverter-controlled load without any converters. 2) Simple frequency control; The expected active power flow is realized by a small change of the stand-alone power side inverter's output frequency. 3) Low cost system; A decreased power capacity demand for the stand-alone power supply is realized by adding a low cost flywheel induction motor. Experimental results are provided to verify the proposed system.

  19. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  20. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  1. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor.

  2. Induction motors with minimum waste of magnetic iron

    NASA Astrophysics Data System (ADS)

    Boyko, Y. P.; Makarov, F. K.; Kremeshnyy, Y. A.; Stepanyants, E. A.

    1984-11-01

    An induction motor with minimum waste of magnetic iron has been developed. The stator core is made of silicon-iron steel strip, its width equal to the core height, and wound on edge to form a stack. Stator slots closed on the bore side and open on the outside for winding are formed together with teeth separating them by corrugating a silicon-iron steel strip of width equal to the stack length and sliding it, after winding, inside the core with an insulation interlayer between them. The thickness of this interlayer does not exceed 20% of the air gap between stator and rotor, but even this degrades motor starting and running performance. The performance is also degraded by leakage of magnetic flux through the slot bridge on the bore side and by nonuniformity of the air gap width resulting from corrugation of the stator bore surface. These drawbacks are partly compensated by lining the slots with film insulation instead of sleeves or tubes, thus making more slot space available for copper. Prototypes were built with 0.5 mm thick strip of 2212 steel for the teeth and strip of 08KP steel for the core, separated by a 0.03 mm layer of EKD-14 epoxy compound, with the air gap correspondingly narrowed from 0.25 to 0.2 mm. The stator winding is a singlelayer one of enamelled and triple vinyl-covered 0.67/0.73 mm copper wire, the slots insulated with Dacron film.

  3. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  4. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  5. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  6. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, R.W.

    1989-03-14

    This patent describes a motorized control and automatic braking system for adjusting mirror mount apparatus. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  7. Field assessment of induction motor efficiency through air-gap torque

    SciTech Connect

    Hsu, J.S.; Sorenson, P.L.

    1995-11-01

    Induction motors are the most popular motors used in industry. This paper further suggests the use of air-gap torque method to evaluate their efficiency and load changes. The fundamental difference between Method E and the air-gap torque method is discussed. Efficiency assessments conducted on induction motors under various conditions show the accuracy and potential of the air-gap torque method.

  8. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    NASA Astrophysics Data System (ADS)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  9. Simple Motor Control Concept Results High Efficiency at High Velocities

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  10. Novel indices for broken rotor bars fault diagnosis in induction motors using wavelet transform

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Bashir Mahdi; Faiz, Jawad; Lotfi-fard, S.; Pillay, P.

    2012-07-01

    This paper introduces novel indices for broken rotor bars diagnosis in three-phase induction motors based on wavelet coefficients of stator current in a specific frequency band. These indices enable to diagnose occurrence and determine number of broken bars in different loads precisely. Besides thanks to the suitability of wavelet transform in transient conditions, it is possible to detect the fault during the start-up of the motor. This is important in the case of start-up of large induction motors with long starting time and also motors with frequent start-up. Furthermore, broken rotor bars in induction motor are detected using spectra analysis of the stator current. It is also shown that rise of number of broken bars and load levels increases amplitude of the particular side-band components of the stator currents in the faulty case. An induction motor with 1, 2, 3 and 4 broken bars at the rated load and the motor with 4 broken bars at no-load, 33%, 66%, 100% and 133% rated load are investigated. Time stepping finite element method is used for modeling broken rotor bars faults in induction motors. In this modeling, effects of the stator winding distribution, stator and rotor slots, geometrical and physical characteristics of different parts of the motor and non-linearity of the core materials are taken into account. The simulation results are are verified by the experimental results.

  11. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  12. High Ripples Reduction in DTC of Induction Motor by Using a New Reduced Switching Table

    NASA Astrophysics Data System (ADS)

    Mokhtari, Bachir; Benkhoris, Mohamed F.

    2016-05-01

    The direct torque and flux control (DTC) of electrical motors is characterized by ripples of torque and flux. Among the many solutions proposed to reduce them is to use modified switching tables which is very advantageous; because its implementation is easy and requires no additional cost compared to other solutions. This paper proposes a new reduced switching table (RST) to improve the DTC by reducing harmful ripples of torque and flux. This new switching table is smaller than the conventional one (CST) and depends principally at the flux error. This solution is studied by simulation under Matlab/Simulink and experimentally validated on a testbed with DSPACE1103. The results obtained of a DTC with RST applied to a three-phase induction motor (IM) show a good improvement and an effectiveness of proposed solution, the torque ripple decreases about 47% and 3% for the stator flux compared with a basic DTC.

  13. The pulsed linear induction motor concept for high-speed trains

    SciTech Connect

    Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

    1995-06-01

    The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

  14. Reducing current reversal time in electric motor control

    DOEpatents

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  15. A computational neuroanatomy for motor control.

    PubMed

    Shadmehr, Reza; Krakauer, John W

    2008-03-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

  16. 22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DIABLO POWERHOUSE: COOLING WATER PUMPS (WESTINGHOUSE C.S. INDUCTION MOTORS), 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  17. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    SciTech Connect

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.

  18. Use of fuzzy inference system for condition monitoring of induction motor

    NASA Astrophysics Data System (ADS)

    Janier, Josefina B.; Zaim Zaharia, M. F.; Karim, Samsul Ariffin Abd.

    2012-09-01

    Three phase induction motors are commonly used in industry due to its robustness, simplicity of its construction and high reliability. The tasks performed by these motors grow increasingly complex because of modern industries hence there is a need to determine the faults. Early detection of faults will reduce an unscheduled machine downtime that can upset production deadlines and may cause heavy financial losses. This paper is focused in developing a computer based system using Fuzzy Inference system's membership function. An unusual increase in vibration of the motor could be an indicator of faulty condition hence the vibration of the motor of an induction motor was used as an input, whereas the output is the motor condition. An inference system of the Fuzzy Logic was created to classify the vibration characteristics of the motor which is called vibration analysis. The system classified the motor of the gas distribution pump condition as from 'acceptable' to 'monitor closely'. The early detection of unusual increase in vibration of the induction motor is an important part of a predictive maintenance for motor driven machinery.

  19. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  20. 29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21INCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21-INCH AND 18-INCH BILLET MILLS. MOTOR WAS MANUFACTURED BY THE GENERAL ELECTRIC COMPANY, SCHENECTADY, NEW YORK. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  1. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  2. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  3. Electric motor as the controlled mechanical transmission

    NASA Astrophysics Data System (ADS)

    Kukielka, Krzysztof

    2006-03-01

    The paper shows the possibility of using a brushless torque motor as controlled mechanical transmission. A development system for testing the torque motors was described and role of each component was discussed. Measured and observed phenomena of the research has shown the possibility of control the output rotations, preserving torque with simultaneous power consumption or its recovery, dependent on demanded transmission parameters.

  4. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  5. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  6. Use of an AC induction motor system for producing finger movements in human subjects.

    PubMed

    Proudlock, F A; Scott, J J

    1998-12-01

    This report describes the set-up and evaluation of a novel system for producing precise finger movements, for tests of movement perception. The specifications were to construct a system using commercially available components that were easy to use but which offered both flexibility and also high precision control. The system was constructed around an industrial AC induction motor with an optical encoder, controlled by an AC servo digital control module that could be programmed using a simple, high-level language. This set-up fulfilled the requirements regarding position and velocity control for a range of movements and also the facility for the subject to move the joint voluntarily while still attached to the motor. However a number of problems were encountered, the most serious being the level of vibration and the inability to vary the torque during movements. The vibration was reduced to the point where it did not affect the subject, by the introduction of mechanical dampening using an anti-vibration coupling and a pneumatic splint. The torque control could not be modified during rotation and so the system could only be operated using constant torque for any given movement.

  7. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  8. Efficiency testing of medium induction motors: A comment on IEEE Std 112-1991

    SciTech Connect

    Gray, G.G.; Martiny, W.J.

    1996-09-01

    The energy crisis of 1973 focused attention on the efficiency of polyphase induction motors, and the need to have a test procedure that was repeatable and accurate. Medium induction motors, especially those in the size range 1 through 125 horsepower, were important because of the large number in service and the fact that a significant efficiency improvement through redesign was economically feasible. In response to this the ANSI/IEEE Std. 112, ``IEEE Standard Test Procedure for Polyphase Induction Motors and Generators`` Method B was chosen for testing medium ac motors for efficiency. The current version IEEE std. 112-1991 Method B contains several requirements for accuracy improvement which have been found to be effective. Even though the Method B procedure with the additional accuracy requirement has been in use since 1984 no rational has been published to support these extra requirements. The paper discusses the purpose of these improvements, and also point out some weakness in procedure.

  9. Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan

    2012-01-01

    In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

  10. Comparison of induction motor field efficiency evaluation methods

    SciTech Connect

    Hsu, J.S.; Kueck, J.D.; Olszewski, M.; Casada, D.A.; Otaduy, P.J.; Tolbert, L.M.

    1996-10-01

    Unlike testing motor efficiency in a laboratory, certain methods given in the IEEE-Std 112 cannot be used for motor efficiency in the field. For example, it is difficult to load a motor in the field with a dynamometer when the motor is already coupled to driven equipment. The motor efficiency field evaluation faces a different environment from that for which the IEEE-Std 112 is chiefly written. A field evaluation method consists of one or several basic methods according to their physical natures. Their intrusivenesses and accuracies are also discussed. This study is useful for field engineers to select or to establish a proper efficiency evaluation method by understanding the theories and error sources of the methods.

  11. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  12. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  13. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  14. Immediate Effects of Kinesiology Taping of Quadriceps on Motor Performance after Muscle Fatigued Induction

    PubMed Central

    Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min

    2015-01-01

    Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles. PMID:26246835

  15. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    PubMed Central

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to built internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands. PMID:18251019

  16. Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang

    2017-03-01

    In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.

  17. Instantaneous stator power as a medium for the signature analysis of induction motors

    SciTech Connect

    Legowski, S.F.; Ula, A.H.M.S.; Trzynadlowski, A.M.

    1995-12-31

    Preventive maintenance of electric drive systems with induction motors involves continuous monitoring of operation, to detect electrical and mechanical conditions that may lead to a failure. Intensive research effort has been for some time focused on the motor current signature analysis (MCSA). The MCSA techniques utilize results of spectral analysis of the stator current of an induction motor to diagnose abnormal conditions both in the motor and driven system. Reliable interpretation of the current spectra is difficult, as distortions of the current waveform caused by abnormalities in the drive system are usually minute. In this paper, an alternate medium for the motor signature analysis, namely the instantaneous stator power, is proposed. It is shown, both by computer simulations and laboratory experiments, that the instantaneous power carries more information than the current itself, since not only the current magnitude but also the phase shift between the current and voltage waveforms are affected by the irregularities in the motor or other parts of the drive system. Utilization of the instantaneous stator power as a medium for the signature analysis opens new possibilities in the automated diagnostics of induction motor drives.

  18. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  19. A thermal network model for induction motors of hermetic reciprocating compressors

    NASA Astrophysics Data System (ADS)

    Dutra, T.; Deschamps, C. J.

    2015-08-01

    This paper describes a simulation model for small reciprocating compressors with emphasis on the electrical motor modelling. Heat transfer is solved through algebraic equations derived from lumped thermal energy balances applied to the compressor components. Thermal conductances between the motor components are characterized via a thermal network model. The single-phase induction motor is modelled via an equivalent circuit, allowing predictions for the motor performance and distributed losses. The predicted temperature distribution is used to evaluate the stator and rotor windings resistances. The thermal and electric models are solved in a coupled manner with a model for the compression cycle. Predictions of temperature distribution, motor efficiency, as well as isentropic and volumetric efficiencies, are compared with experimental data at different operating conditions. The model is then applied to analyse the motor temperature as a function of input voltage and stator wire diameter.

  20. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  1. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  2. Cylindrical Induction Melter Modicon Control System

    SciTech Connect

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R{ampersand}D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM).

  3. Chaos control by using Motor Maps.

    PubMed

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  4. Chaos control by using Motor Maps

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia

    2002-09-01

    In this paper a new method for chaos control is proposed, consisting of an unsupervised neural network, namely a Motor Map. In particular a feedback entrainment scheme is adopted: a chaotic system with a given parameter set generates the reference trajectory for another chaotic system with different parameters to be controlled: the Motor Map is required to provide the appropriate time-varying gain value for the feedback signal. The state of the controlled system is considered as input to the Motor Map. Particular efforts have been paid to the feasibility of the implementation. Indeed, the simulations performed have been oriented to design a Motor Map suitable for an hardware realization, thus some restrictive hypotheses, such as for example a low number of neurons, have been assumed. A huge number of simulations has been carried out by considering as system to be controlled a Double Scroll Chua Attractor as well as other chaotic attractors. Several reference trajectories have also been considered: a limit cycle generated by a Chua's circuit with different parameters values, a double scroll Chua attractor, a chaotic attractor of the family of the Chua's circuit attractors. In all the simulations instead of controlling the whole state space, only two state variables have been fed back. Good results in terms of settling time (namely, the period in which the map learns the control task) and steady state errors have been obtained with a few neurons. The Motor Map based adaptive controller offers high performances, specially in the case when the reference trajectory is switched into another one. In this case, a specialization of the neurons constituting the Motor Map is observed: while a group of neurons learns the appropriate control law for a reference trajectory, another group specializes itself to control the system when the other trajectory is used as a reference. A discrete components electronic realization of the Motor Map is presented and experimental results

  5. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  6. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R.; Nelson, Ronald O.

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  7. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  8. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  9. Dual-circuit segmented rail phased induction motor

    DOEpatents

    Marder, Barry M.; Cowan, Jr., Maynard

    2002-01-01

    An improved linear motor utilizes two circuits, rather that one circuit and an opposed plate, to gain efficiency. The powered circuit is a flat conductive coil. The opposed segmented rail circuit is either a plurality of similar conductive coils that are shorted, or a plurality of ladders formed of opposed conductive bars connected by a plurality of spaced conductors. In each embodiment, the conductors are preferably cables formed from a plurality of intertwined insulated wires to carry current evenly.

  10. Development of a cryogenic induction motor for use with a superconducting magnetic bearing

    NASA Astrophysics Data System (ADS)

    Matsumura, Tomotake; Hanany, Shaul; Hull, John R.; Johnson, Bradley; Jones, Terry; Oxley, Paul K.

    2005-10-01

    We have constructed a cryogenic induction motor to turn the rotor of a superconducting magnetic bearing (SMB). Both the motor and the SMB are operated at liquid He temperatures. We give a model for the motor and present measurements of its operation. The rotation speed is very stable. Over 8 h it shows an RMS variation of only 0.005 Hz from a mean of 2 Hz. The speed variation within one period of rotation is 3% ± 1% implying that the angular position of the rotor can be determined to an accuracy of 1° for all angles of rotation even if angular position is encoded only once every period. Friction and heat dissipation in this motor is dominated by eddy currents. We discuss the application of the motor to astrophysical polarimetry.

  11. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  12. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  13. Spinal metaplasticity in respiratory motor control

    PubMed Central

    Fields, Daryl P.; Mitchell, Gordon S.

    2015-01-01

    A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (i.e., “plastic plasticity”). Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing) investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury. PMID:25717292

  14. Computational motor control in humans and robots.

    PubMed

    Schaal, Stefan; Schweighofer, Nicolas

    2005-12-01

    Computational models can provide useful guidance in the design of behavioral and neurophysiological experiments and in the interpretation of complex, high dimensional biological data. Because many problems faced by the primate brain in the control of movement have parallels in robotic motor control, models and algorithms from robotics research provide useful inspiration, baseline performance, and sometimes direct analogs for neuroscience.

  15. Detail of motor control cabinet and field breakers. Control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of motor control cabinet and field breakers. Control cabinet and breaker panel built by Cutler-Hammer - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  16. 18. Station Service Control and Motor Control Center #2, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Station Service Control and Motor Control Center #2, view to the northeast. Note the circuit breaker switch on cart in left corner of photograph. This switch is part of the motor control center which has been temporarily removed from the slot marked with a tag that is visible at lower left end of control center. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  17. About the Power Generation Confirmation of the Induction Motor and the Influence on the Islanding Detection Device

    NASA Astrophysics Data System (ADS)

    Igarashi, Hironobu; Sato, Takashi; Miyamoto, Kazunori; Kurokawa, Kousuke

    The photovoltaic generation system must have protection device and islanding detection devices to connect with utility line of the electric power company. It is regulated in the technological requirement guideline and the electric equipment technology standard that the country provides. The islanding detection device detected purpose install for blackout due to the accident occurrence of the earth fault and the short-circuit in the utility line. When the islanding detection device detects the power blackout, it is necessary to stop the photovoltaic generation system immediately. If the photovoltaic generation system is not stopped immediately, electricity comes to charge the utility power line very at risk. We had already known that the islanding detection device can't detect the islanding phenomenon, if is there the induction motor in the loads. Authors decided to investigate the influence that the induction motors gave to the islanding detection device. The result was the load condition that the induction motors changed generator the voltage is restraining. Moreover, it was clarified that the time of the islanding was long compared with the load condition of not changing into the state of the generator. The value changes into the reactance of the induction motors according to the frequency change after the supply of electric power line stops. The frequency after the supply of electric power line stops changes for the unbalance the reactive power by the effect of the power rate constancy control with PLL of the power conditioner. However, the induction motors is also to the changing frequency, makes amends for the amount of reactive power, and the change in the frequency after the supply of electric power line stops as a result is controlled. When the frequency changed after the supply of electric power line stopped, it was clarified of the action on the direction where it made amends from the change of the constant for the amount of an invalid electric power, and

  18. A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Alwodai, A.; Gu, F.; Ball, A. D.

    2012-05-01

    The problem of failures in induction motors is a large concern due to its significant influence over industrial production. Therefore a large number of detection techniques were presented to avoid this problem. This paper presents the comparison results of induction motor rotor fault detection using three methods: motor current signature analysis (MCSA), surface vibration (SV), and instantaneous angular speed (IAS). These three measurements were performed under different loads with three rotor conditions: baseline, one rotor bar broken and two rotor bar broken. The faults can be detected and diagnosed based on the amplitude difference of the characteristic frequency components of power spectrum. However IAS may be the best technique because it gives the clearest spectrum representation in which the largest amplitude change is observed due to the faults.

  19. The design and control of linear bidirectional stepping motors - Application to machine tools

    NASA Astrophysics Data System (ADS)

    Petrizza, N.

    Theoretical modeling and the results of operation of a model linear stepping motor for producing rapid in-plane translation in machining operations are presented. The theory of linear induction motors and their current implementation in the stepping mode are reviewed. A finite element method is developed for optimizing the contact stud shape through calculation of the magnetic fields and forces the motor experiences in static condition. An investigation into the characteristics of the air cushion which inhibits the motor from contacting the base is reported. Direct control with a microprocessor is described, including programming with an acceleration period at the beginning and deceleration at the end of each motion using circular and linear interpolations to obtain linear and circular motor displacements in the plane. Comparisons between linear step motors with variable reluctance and hybrid motors are made.

  20. Summary of electric vehicle dc motor-controller tests

    NASA Technical Reports Server (NTRS)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  1. Nature of Motor Control: Perspectives and Issues

    PubMed Central

    Turvey, M. T.; Fonseca, Sergio

    2013-01-01

    Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical? PMID:19227497

  2. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  3. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  4. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  5. Induction machine Direct Torque Control system based on fuzzy adaptive control

    NASA Astrophysics Data System (ADS)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  6. Evaluation of Motor Control Using Haptic Device

    NASA Astrophysics Data System (ADS)

    Nuruki, Atsuo; Kawabata, Takuro; Shimozono, Tomoyuki; Yamada, Masafumi; Yunokuchi, Kazutomo

    When the kinesthesia and the touch act at the same time, such perception is called haptic perception. This sense has the key role in motor information on the force and position control. The haptic perception is important in the field where the evaluation of the motor control is needed. The purpose of this paper is to evaluate the motor control, perception of heaviness and distance in normal and fatigue conditions using psychophysical experiment. We used a haptic device in order to generate precise force and distance, but the precedent of the evaluation system with the haptic device has been few. Therefore, it is another purpose to examine whether the haptic device is useful as evaluation system for the motor control. The psychophysical quantity of force and distance was measured by two kinds of experiments. Eight healthy subjects participated in this study. The stimulation was presented by haptic device [PHANTOM Omni: SensAble Company]. The subjects compared between standard and test stimulation, and answered it had felt which stimulation was strong. In the result of the psychophysical quantity of force, just noticeable difference (JND) had a significant difference, and point of subjective equality (PSE) was not different between normal and muscle fatigue. On the other hand, in the result of the psychophysical quantity of distance, JND and PSE were not difference between normal and muscle fatigue. These results show that control of force was influenced, but control of distance was not influenced in muscle fatigue. Moreover, these results suggested that the haptic device is useful as the evaluation system for the motor control.

  7. Microcomputer controlled soft start of motor

    NASA Astrophysics Data System (ADS)

    Gao, Miao; Wang, Yanpeng; Li, Shian

    2005-12-01

    Improving the starting characteristics of a motor is an important part of the motor control. An intelligent soft starting technique was adopted in the starter and used in the present study because of its many advantages compared with conventional starting processes. The core of the soft starter was a single chip (Atmel 8098), its soul was the software and its control object was a Silicon Controlled Rectifier (SCR). The starter achieved not only current-limit starting, but also closed-loop control with a stator current detection circuit. In conclusion, as a result of digital control, starting characteristic can be conveniently chosen according to the load. In addition the starter is of small size, and starting is smooth and reliable due to current feedback.

  8. Fault analysis for condition monitoring of induction motors

    NASA Astrophysics Data System (ADS)

    Nandi, Subhasis

    Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. Like adjustable speed drives, fault prognosis has become almost indispensable. The manufacturers of these drives are now keen to include diagnostic features in the software to decrease machine down time and improve salability. Prodigious improvement in signal processing hardware and software has made this possible. Primarily, these techniques depend upon locating specific harmonic components in the line current, also known as motor current signature analysis (MCSA). These harmonic components are usually different for different types of faults. However, with multiple faults or different varieties of drive schemes, MCSA can become an onerous task as different types of faults and time harmonics may end up generating similar signatures. Thus, other signals such as speed, torque, noise, vibration, etc., are also explored for their frequency contents. Sometimes, altogether different techniques such as thermal measurements, chemical analysis, etc., are also employed to find out the nature and the degree of the fault. It is indeed evident that this area is vast in scope. Going by the present trend, human involvement in the actual fault detection decision making is slowly being replaced by automated tools such as expert systems, neural networks, fuzzy logic based systems; to name a few. However, this cannot be achieved without detailed fault analysis and subsequent recognition of the fault pattern. Keeping this in mind, simulation studies of the broken bar and eccentricity related faults using MCSA have been taken up. Also, a common theoretical basis for the different types (static, dynamic and mixed) of eccentricity related faults which give different signatures for different pole and rotor bar combinations has been developed. This will be of great importance both from fault diagnosis as well as sensorless drive applications' viewpoint. Finally, the insight gained from

  9. Motor control theories and their applications.

    PubMed

    Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor

    2010-01-01

    We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.

  10. A universal computer control system for motors

    NASA Astrophysics Data System (ADS)

    Szakaly, Zoltan F.

    1991-09-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  11. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  12. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  13. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors

    PubMed Central

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  14. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    PubMed

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  15. A New Modulation Strategy for Unbalanced Two Phase Induction Motor Drives Using a Three-Leg Voltage Source Inverter

    NASA Astrophysics Data System (ADS)

    Sinthusonthishat, S.; Kinnares, V.

    This paper proposes a new modulation scheme providing unbalanced output terminal voltages of a standard three-leg voltage source inverter (VSI) for unsymmetrical type two-phase induction motors. This strategy allows a control method of the output voltages with typically constant V/Hz for a main winding and with voltage boost to compensate magnitude of current for an auxiliary winding. Harmonic voltage characteristics and the motor performance are investigated under a wide range of operating conditions. Practical verification is presented to confirm correctness and capabilities of the proposed technique. All results are compared to those of a conventional two-leg half bridge topology. The results show that the simulation results well agree with the experimental ones, and also the proposed scheme is superior to the conventional drive.

  16. A combined lift and propulsion system of a steel plate by transverse flux linear induction motors

    SciTech Connect

    Hayashiya, H.; Ohsaki, H.; Masada, E.

    1999-09-01

    To realize a non-contacting conveyance of a steel plate, a combined lift and propulsion system of a steel plate by transverse flux linear induction motors (LIMs) is proposed. By introducing the DC biased AC feeding to the LIM< a steel plate is supported stably and efficiently. In this paper, after showing the advantages of the system, the magnetic levitation experiments are carried out to investigate the feasibility of the system.

  17. Extended Constant Power Speed Range of the Brushless DC Motor Through Dual Mode Inverter Control

    SciTech Connect

    Lawler, J.S.

    2000-06-23

    The trapezoidal back electromotive force (emf) brushless direct current (dc) motor (BDCM) with surface-mounted magnets has high-power density and efficiency especially when rare-earth magnet materials are used. Traction applications, such as electric vehicles, could benefit significantly from the use of such motors. Unfortunately, a practical means for driving the motor over a constant power speed ratio (CPSR) of 5:1 or more has not yet been developed. A key feature of these motors is that they have low internal inductance. The phase advance method is effective in controlling the motor power over such a speed range, but the current at high speed may be several times greater than that required at the base speed. The increase in current during high-speed operation is due to the low motor inductance and the action of the bypass diodes of the inverter. The use of such a control would require increased current rating of the inverter semiconductors and additional cooling for the inverter, where the conduction losses increase proportionally with current, and especially for the motor, where the losses increase with the square of the current. The high current problems of phase advance can be mitigated by adding series inductance; however, this reduces power density, requires significant increase in supply voltage, and leaves the CPSR performance of the system highly sensitive to variations in the available voltage. A new inverter topology and control scheme has been developed that can drive low-inductance BDCMs over the CPSR that would be required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC). It is shown that the BDCM has an infinite CPSR when it is driven by the DMIC.

  18. Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA

    NASA Astrophysics Data System (ADS)

    Verucchi, Carlos; Bossio, José; Bossio, Guillermo; Acosta, Gerardo

    2016-12-01

    In recent years, progress has been made in developing techniques to detect mechanical faults in actuators driven by induction motors. The latest developments show their capability to detect faults from the analysis of the motor electrical variables. The techniques are based on the analysis of the Motor Current Signature Analysis (MCSA) and the Load Torque Signature Analysis (LTSA), among others. Thus, failures such as misalignment between the motor and load, progressive gear teeth wear, and mass imbalances have been successfully detected. In case of misalignment between the motor and load, both angular and radial misalignment, the results presented in literature do not consider the characteristics of the coupling device. In this work, it is studied a mechanism in which the power transmission between the motor and load is performed by means of different types of couplings, mainly those most frequently used in industry. Results show that the conclusions drawn for a particular coupling are not necessarily applicable to others. Finally, this paper presents data of interest for the development of algorithms or expert systems for fault detection and diagnosis.

  19. Integrated Control of Axonemal Dynein AAA+ Motors

    PubMed Central

    King, Stephen M.

    2012-01-01

    Axonemal dyneins are AAA+ enzymes that convert ATP hydrolysis to mechanical work. This leads to the sliding of doublet microtubules with respect to each other and ultimately the generation of ciliary/flagellar beating. However, in order for useful work to be generated, the action of individual dynein motors must be precisely controlled. In addition, cells modulate the motility of these organelles through a variety of second messenger systems and these signals too must be integrated by the dynein motors to yield an appropriate output. This review describes the current status of efforts to understand dynein control mechanisms and their connectivity focusing mainly on studies of the outer dynein arm from axonemes of the unicellular biflagellate green alga Chlamydomonas. PMID:22406539

  20. Motor control by precisely timed spike patterns.

    PubMed

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel; Pack, Andrea R; Elemans, Coen P H; Nemenman, Ilya; Sober, Samuel J

    2017-01-31

    A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.

  1. The Development of Oral Motor Control and Language

    ERIC Educational Resources Information Center

    Alcock, Katie

    2006-01-01

    Motor control has long been associated with language skill, in deficits, both acquired and developmental, and in typical development. Most evidence comes from limb praxis however; the link between oral motor control and speech and language has been neglected, despite the fact that most language users talk with their mouths. Oral motor control is…

  2. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  3. Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT

    NASA Astrophysics Data System (ADS)

    Liu, Yukun; Guo, Liwei; Wang, Qixiang; An, Guoqing; Guo, Ming; Lian, Hao

    2010-11-01

    This paper presents a signal processing method - amplitude recovery method (abbreviated to ARM) - that can be used as the signal pre-processing for fast Fourier transform (FFT) in order to analyze the spectrum of the other-order harmonics rather than the fundamental frequency in stator currents and diagnose subtle faults in induction motors. In this situation, the ARM functions as a filter that can filter out the component of the fundamental frequency from three phases of stator currents of the induction motor. The filtering result of the ARM can be provided to FFT to do further spectrum analysis. In this way, the amplitudes of other-order frequencies can be extracted and analyzed independently. If the FFT is used without the ARM pre-processing and the components of other-order frequencies, compared to the fundamental frequency, are fainter, the amplitudes of other-order frequencies are not able easily to extract out from stator currents. The reason is when the FFT is used direct to analyze the original signal, all the frequencies in the spectrum analysis of original stator current signal have the same weight. The ARM is capable of separating the other-order part in stator currents from the fundamental-order part. Compared to the existent digital filters, the ARM has the benefits, including its stop-band narrow enough just to stop the fundamental frequency, its simple operations of algebra and trigonometry without any integration, and its deduction direct from mathematics equations without any artificial adjustment. The ARM can be also used by itself as a coarse-grained diagnosis of faults in induction motors when they are working. These features can be applied to monitor and diagnose the subtle faults in induction motors to guard them from some damages when they are in operation. The diagnosis application of ARM combined with FFT is also displayed in this paper with the experimented induction motor. The test results verify the rationality and feasibility of the

  4. A New Approach to Laboratory Motor Control MMCS: The Modular Motor Control System

    DTIC Science & Technology

    1989-02-01

    encB2 encl2 h/beat2 J2 . h/ beatl encll encBl encAl 0 = LED indicator connectors to motor/enc Figure 5.2: Motor interface board layout something is...signal for joint 1. h/ beatl Green Heartbeat signal for joint 1. h/beat2 Green Heartbeat signal for joint 2. gpl Red General purpose (software controllable

  5. Control of Cascaded Induction Generator Systems.

    DTIC Science & Technology

    1984-12-13

    itC itt N ’. . .3Z’ - - Zt it If - IA. 3 s - ~ J -~~~~ % 2. s 7a7. X- 0 -- -r u z A U. u 0 . * * c ~ ~ 4 -1 j L* _j *c AZOU + A , 4 .11* XX *- -1# X01X...34- . . . . . . . . SECURITY CLASSIFICATION OF THIS PAGE (, bateEntered). , REPORT DOCUMENTATION PAGE g~oREAD UIsDRucoI BEFORE COMPLETING FORM s -i’r 12 9 12 GVT ACCESSION...NO0 3. RECIPIENT’S CATALOG NME 4. TITLE (and Subtitle) S . TYPE OF REPORT & PERIOD COVERED 9/1/83 - 8/30/84 --. / Control of Cascaded Induction

  6. Balanced-Bridge Feedback Control Of Motor

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1990-01-01

    Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.

  7. A Position Sensorless Control Method for SRM Based on Variation of Phase Inductance

    NASA Astrophysics Data System (ADS)

    Komatsuzaki, Akitomo; Miki, Ichiro

    Switched reluctance motor (SRM) drives are suitable for variable speed industrial applications because of the simple structure and high-speed capability. However, it is necessary to detect the rotor position with a position sensor attached to the motor shaft. The use of the sensor increases the cost of the drive system and machine size, and furthermore the reliability of the system is reduced. Therefore, several approaches to eliminate the position sensor have already been reported. In this paper, a position sensorless control method based on the variation of the phase inductance is described. The phase inductance regularly varies with the rotor position. The SRM is controlled without the position sensor using the de-fluxing period and the phase inductance. The turn-off timing is determined by computing the difference of angle between the sampling point and the aligned point and the variation of angle during the de-fluxing period. In the magnetic saturation region, the phase inductance at the current when the effect of the saturation starts is computed and the sensorless control can be carried out using this inductance. Experimental results show that the SRM is well controlled without the position sensor using the proposed method.

  8. Brushless DC Motors, Velocity and Position Control of the Brushless DC Motor.

    DTIC Science & Technology

    1986-06-01

    DC motor was designed using the Hall effect sensors. In addition, the position control of the brushless DC motor was developed using an optical encoder to sense angular position changes and a microprocessor to provide the desired position control. A Pittman 5111 wdg 1 brushless DC motor was used for this study. The design of the digital tachometer and pulse width modulator for velocity control and the design of the Z-80 based microprocessor controller and software design are described in

  9. Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.

    This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…

  10. Spatial constancy mechanisms in motor control

    PubMed Central

    Medendorp, W. Pieter

    2011-01-01

    The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137

  11. One hand clapping: lateralization of motor control

    PubMed Central

    Welniarz, Quentin; Dusart, Isabelle; Gallea, Cécile; Roze, Emmanuel

    2015-01-01

    Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output. PMID:26082690

  12. Losses in chopper-controlled DC series motors

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.

    1982-01-01

    Motors for electric vehicle (EV) applications must have different features than dc motors designed for industrial applications. The EV motor application is characterized by the following requirements: (1) the need for highest possible efficiency from light load to overload, for maximum EV range, (2) large short time overload capability (The ratio of peak to average power varies from 5/1 in heavy city traffic to 3/1 in suburban driving situations) and (3) operation from power supply voltage levels of 84 to 144 volts (probably 120 volts maximum). A test facility utilizing a dc generator as a substitute for a battery pack was designed and utilized. Criteria for the design of such a facility are presented. Two motors, differing in design detail, commercially available for EV use were tested. Losses measured are discussed, as are waves forms and their harmonic content, the measurements of resistance and inductance, EV motor/chopper application criteria, and motor design considerations.

  13. A high temperature superconducting induction/synchronous motor with a ten-fold improvement in torque density

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Matsumura, K.; Nishimura, T.; Nagao, K.; Yamada, Y.; Amemiya, N.; Itoh, Y.; Terazawa, T.; Osamura, K.

    2011-01-01

    In this paper, the enhancement of the torque density in a high temperature superconductor (HTS) induction/synchronous machine is experimentally and theoretically investigated by the use of Bi-2223 windings. The basic structure of this machine is the same as that of a conventional squirrel-cage induction motor, and the secondary windings are replaced by the superconducting tapes. Firstly, quantitative values of the enhanced torque are measured in an experiment using a fabricated motor at 77 K. Then, such a torque result is theoretically confirmed based upon the analytical expression, which is derived from the nonlinear electrical equivalent circuit. It is shown that the theoretical and experimental results agree well with each other, and the torque value drastically increases by more than ten times compared to the conventional induction motor. These results indicate that it is possible to realize a compact sized high efficiency HTS motor in a simple structure.

  14. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  15. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  16. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high

  17. Integrated-Circuit Controller For Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  18. Methodology for fault detection in induction motors via sound and vibration signals

    NASA Astrophysics Data System (ADS)

    Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus

    2017-01-01

    Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.

  19. Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.

    PubMed

    Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil

    2014-08-01

    For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work.

  20. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  1. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  2. Real Time Flux Control in PM Motors

    SciTech Connect

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of

  3. Feedback linearisation control of an induction machine augmented by single-hidden layer neural networks

    NASA Astrophysics Data System (ADS)

    Ait Abbas, Hamou; Belkheiri, Mohammed; Zegnini, Boubakeur

    2016-01-01

    We consider adaptive output feedback control methodology of highly uncertain nonlinear systems with both parametric uncertainties and unmodelled dynamics. The approach is also applicable to systems of unknown, but bounded dimension. However, the relative degree of the regulated output is assumed to be known. This new control strategy is proposed to address the tracking problem of an induction motor based on a modified field-oriented control method. The obtained controller is then augmented by an online neural network that serves as an approximator for the neglected dynamics and modelling errors. The network weight adaptation rule is derived from the Lyapunov stability analysis, that guarantees boundedness of all the error signals of the closed-loop system. Computer simulations of an output feedback controlled induction machine, augmented via single-hidden-layer neural networks, demonstrate the practical potential of the proposed control algorithm.

  4. Roles of the orexin system in central motor control.

    PubMed

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.

  5. Variable Rail Voltage Control of a Brushless DC (BLDC) Motor

    DTIC Science & Technology

    2013-01-01

    Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor by Yuan Chen, Joseph Conroy, and William Nothwang ARL-TR-6308 January 2013...TR-6308 January 2013 Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor Yuan Chen, Joseph Conroy, and William Nothwang Sensors...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Variable Rail Voltage Control of a Brushless DC ( BLDC ) Motor 5a. CONTRACT NUMBER 5b. GRANT

  6. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    including the neural control of respiration and vestibular organization. In addition, computer simulations of small neuronal networks have added an understanding of circuits involved in motor performance. (Author)

  7. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  8. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  9. Temporary Short Circuit Detection in Induction Motor Winding Using Second Level Haar-Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Asfani, Dimas Anton; Syafaruddin, Dimas Anton; Purnomo, Mauridhi Heri; Hiyama, Takashi

    Faults in induction motor winding can be successfully detected using different motor current signature analysis. However, there still remain some parts where the performance of conventional methods can be improved. In case of the fast Fourier transform (FFT) method, it can only identify the permanent fault, but not the temporary one because the method gives frequency content similar to the normal condition. Moreover, the FFT technique is unable to provide the exact timing information of the fault occurrence. On the other hand, the method based on the first level wavelet transform sometimes gives misleading information, especially in case of starting and ending points of temporary short circuit. For these reasons, this paper comes up with a new method for winding fault detection, which analyzes motor current spectrogram based on extension wavelet analysis, called the second level Haar wavelet transform. The proposed method is able to detect temporary fault with very short duration and low current level with more clear information than that of the first level. Several testing scenarios are presented to confirm the robustness of the proposed method including the provision of time of occurrence information for each case.

  10. Directed Induction of Functional Motor Neuron-Like Cells from Genetically Engineered Human Mesenchymal Stem Cells

    PubMed Central

    Park, Hwan-Woo; Cho, Jung-Sun; Park, Chul-Kyu; Jung, Sung Jun; Park, Chang-Hwan; Lee, Shin-Jae; Oh, Seog Bae; Park, Young-Seok; Chang, Mi-Sook

    2012-01-01

    Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN) disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs) are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM). This method of induction led to higher expression (>30% of total cells) of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders. PMID:22496912

  11. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  12. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  13. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  14. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  15. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  16. An AC motor drive with power factor control for low cost applications

    NASA Astrophysics Data System (ADS)

    Bellar, Maria Dias

    2000-10-01

    The front-end rectifier followed by a pulse-width modulated voltage source inverter (PWM-VSI) has been a well-established power converter configuration for many industrial drives. The increasing costs on the utility usage, due to power quality regulations, and the need to improve the VA capacity of systems, e.g. off-shore drilling rigs, have increased the interest in the development of power electronic equipment with power factor control capability. Electrical motors consume a large amount of the available electrical energy, and this energy tends to increase due to the massive emerging applications of electrical motor drives in appliances and in industrial processes. Therefore, the improvement of the power factor of these low power drive systems, usually in the range from fractional horse-power (hp) to 1 hp, is of particular interest. For these power ratings, the system configuration usually comprises a single-phase to three-phase type of converter with additional circuitry for power factor control (PFC). However, this approach has an impact on the system cost and packaging. In this work, a new concept of integrating motor and power factor controls by using a single-phase to three-phase DSP based six-switch converter topology is presented. Unlike other configurations using extra switch(es) and/or extra boost inductor, in this circuit the boost action, for input current shaping, is done by the motor leakage inductances. The power factor control and inverter operation are performed by applying two modulating signals to the SPWM control logic of the converter. In this dissertation, the converter operation and a proposed control strategy will be explained. Simulation and experimental results for a DSP based induction motor drive will be provided as proof of concept. The feasibility and potential of this configuration for ac motor drive applications will be established. The impact of this scheme on the machine operation will also be discussed.

  17. Time Processing and Motor Control in Movement Disorders.

    PubMed

    Avanzino, Laura; Pelosin, Elisa; Vicario, Carmelo M; Lagravinese, Giovanna; Abbruzzese, Giovanni; Martino, Davide

    2016-01-01

    The subjective representation of "time" is critical for cognitive tasks but also for several motor activities. The neural network supporting motor timing comprises: lateral cerebellum, basal ganglia, sensorimotor and prefrontal cortical areas. Basal ganglia and associated cortical areas act as a hypothetical "internal clock" that beats the rhythm when the movement is internally generated. When timing information is processed to make predictions on the outcome of a subjective or externally perceived motor act, cerebellar processing and outflow pathways appear to be primarily involved. Clinical and experimental evidence on time processing and motor control points to a dysfunction of the neural networks involving basal ganglia and cerebellum in movement disorders. In some cases, temporal processing deficits could directly contribute to core motor features of the movement disorder, as in the case of bradykinesia in Parkinson's disease. For other movement disorders, the relationship between abnormal time processing and motor performance is less obvious and requires further investigation, as in the reduced accuracy in predicting the temporal outcome of a motor act in dystonia. We aim to review the literature on time processing and motor control in Parkinson's disease, dystonia, Huntington's disease, and Tourette syndrome, integrating the available findings with current pathophysiological models; we will highlight the areas in which future explorations are warranted, as well as the aspects of time processing in motor control that present translational aspects in future rehabilitation strategies. The subjective representation of "time" is critical for cognitive tasks but also for motor activities. Recently, greater attention has been devoted to improve our understanding of how temporal information becomes integrated within the mechanisms of motor control. Experimental evidence recognizes time processing in motor control as a complex neural function supported by diffuse

  18. Time Processing and Motor Control in Movement Disorders

    PubMed Central

    Avanzino, Laura; Pelosin, Elisa; Vicario, Carmelo M.; Lagravinese, Giovanna; Abbruzzese, Giovanni; Martino, Davide

    2016-01-01

    The subjective representation of “time” is critical for cognitive tasks but also for several motor activities. The neural network supporting motor timing comprises: lateral cerebellum, basal ganglia, sensorimotor and prefrontal cortical areas. Basal ganglia and associated cortical areas act as a hypothetical “internal clock” that beats the rhythm when the movement is internally generated. When timing information is processed to make predictions on the outcome of a subjective or externally perceived motor act, cerebellar processing and outflow pathways appear to be primarily involved. Clinical and experimental evidence on time processing and motor control points to a dysfunction of the neural networks involving basal ganglia and cerebellum in movement disorders. In some cases, temporal processing deficits could directly contribute to core motor features of the movement disorder, as in the case of bradykinesia in Parkinson's disease. For other movement disorders, the relationship between abnormal time processing and motor performance is less obvious and requires further investigation, as in the reduced accuracy in predicting the temporal outcome of a motor act in dystonia. We aim to review the literature on time processing and motor control in Parkinson's disease, dystonia, Huntington's disease, and Tourette syndrome, integrating the available findings with current pathophysiological models; we will highlight the areas in which future explorations are warranted, as well as the aspects of time processing in motor control that present translational aspects in future rehabilitation strategies. The subjective representation of “time” is critical for cognitive tasks but also for motor activities. Recently, greater attention has been devoted to improve our understanding of how temporal information becomes integrated within the mechanisms of motor control. Experimental evidence recognizes time processing in motor control as a complex neural function supported by

  19. Controlling An Inverter-Driven Three-Phase Motor

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  20. 26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR BASIC OXYGEN FURNACE No. 2 IN THE BOP SHOP'S MOTOR CONTROL CENTER No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. Direct Torque Control of a Three-Phase Voltage Source Inverter-Fed Induction Machine

    DTIC Science & Technology

    2013-12-01

    of three-phase induction motor using microcontroller,” S.R.M Engineering College, Tamil Nadu, India, June/July 2006. [5] Texas Instruments Europe...induction motor using microcontroller,” S.R.M Engineering College, Tamil Nadu, India, June/July 2006. [8] C. R. Nave, “Faraday’s law,” Georgia State

  2. End effect analysis of linear induction motor based on the wavelet transform technique

    SciTech Connect

    Mori, Yoshihiko; Torii, Susumu; Ebihara, Daiki

    1999-09-01

    HSST (High Speed Surface Transport) is currently being developed for the railway systems of urban transportation in Japan. It is used in the electromagnetic suspension and short-stator Linear Induction Motor (LIM) for the HSST. The performance of LIM is degraded due to the influence of the end effects. LIM is analyzed using the Fourier series expansion to throw light on this problem. However, to obtain the high-accuracy in this technique, the number of times for calculating is increased. In case of the Wavelet transform technique, as the Wavelet coefficients converge rapidly to zero, this technique has been applied to analyze the end effects of LIM. In this paper, the authors investigated the method for determining of mother wavelet.

  3. Detection of broken rotor bar faults in induction motor at low load using neural network.

    PubMed

    Bessam, B; Menacer, A; Boumehraz, M; Cherif, H

    2016-09-01

    The knowledge of the broken rotor bars characteristic frequencies and amplitudes has a great importance for all related diagnostic methods. The monitoring of motor faults requires a high resolution spectrum to separate different frequency components. The Discrete Fourier Transform (DFT) has been widely used to achieve these requirements. However, at low slip this technique cannot give good results. As a solution for these problems, this paper proposes an efficient technique based on a neural network approach and Hilbert transform (HT) for broken rotor bar diagnosis in induction machines at low load. The Hilbert transform is used to extract the stator current envelope (SCE). Two features are selected from the (SCE) spectrum (the amplitude and frequency of the harmonic). These features will be used as input for neural network. The results obtained are astonishing and it is capable to detect the correct number of broken rotor bars under different load conditions.

  4. Design of a microprocessor based novel braking of three phase induction motor

    SciTech Connect

    Sinha, N.; Laskar, S.H.; Goyal, K.; Nair, P.B.; Sharma, M.K.

    1995-12-31

    This paper describes the development of an efficient braking system suitable for three phase induction motor drives specially driving loads of non-overhauling type. The method incorporates a combination of three braking methods in four states according to the speed range at which the respective methods are most effective, with the result of a smooth and efficient braking. First capacitor self-excitation is applied in stages followed by magnetic braking by double short circuiting and dc injection. Theoretical and experimental results for determining different parameters useful for designing the braking scheme are provided. Lastly microprocessor has been used for proper incorporation of different braking schemes. Dual switching scheme has improved the reliability of the scheme.

  5. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  6. Detection of stator winding faults in induction motors using three-phase current monitoring.

    PubMed

    Sharifi, Rasool; Ebrahimi, Mohammad

    2011-01-01

    The objective of this paper is to propose a new method for the detection of inter-turn short circuits in the stator windings of induction motors. In the previous reported methods, the supply voltage unbalance was the major difficulty, and this was solved mostly based on the sequence component impedance or current which are difficult to implement. Some other methods essentially are included in the offline methods. The proposed method is based on the motor current signature analysis and utilizes three phase current spectra to overcome the mentioned problem. Simulation results indicate that under healthy conditions, the rotor slot harmonics have the same magnitude in three phase currents, while under even 1 turn (0.3%) short circuit condition they differ from each other. Although the magnitude of these harmonics depends on the level of unbalanced voltage, they have the same magnitude in three phases in these conditions. Experiments performed under various load, fault, and supply voltage conditions validate the simulation results and demonstrate the effectiveness of the proposed technique. It is shown that the detection of resistive slight short circuits, without sensitivity to supply voltage unbalance is possible.

  7. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  8. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  9. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  10. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  11. Motor control of Drosophila feeding behavior

    PubMed Central

    Schwarz, Olivia; Bohra, Ali Asgar; Liu, Xinyu; Reichert, Heinrich; VijayRaghavan, Krishnaswamy; Pielage, Jan

    2017-01-01

    The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences. DOI: http://dx.doi.org/10.7554/eLife.19892.001 PMID:28211791

  12. Motor neurons controlling fluid ingestion in Drosophila.

    PubMed

    Manzo, Andrea; Silies, Marion; Gohl, Daryl M; Scott, Kristin

    2012-04-17

    Rhythmic motor behaviors such as feeding are driven by neural networks that can be modulated by external stimuli and internal states. In Drosophila, ingestion is accomplished by a pump that draws fluid into the esophagus. Here we examine how pumping is regulated and characterize motor neurons innervating the pump. Frequency of pumping is not affected by sucrose concentration or hunger but is altered by fluid viscosity. Inactivating motor neurons disrupts pumping and ingestion, whereas activating them elicits arrhythmic pumping. These motor neurons respond to taste stimuli and show prolonged activity to palatable substances. This work describes an important component of the neural circuit for feeding in Drosophila and is a step toward understanding the rhythmic activity producing ingestion.

  13. Position Sensorless Vector Control for Permanent Magnet Synchronous Motors Based on Maximum Torque Control Frame

    NASA Astrophysics Data System (ADS)

    Hida, Hajime; Tomigashi, Yoshio; Kishimoto, Keiji

    High efficiency drive can be achieved by the maximum torque-per-ampere (MTPA) control which used reluctance torque effectively. However, the calculations for estimating rotor position and for controlling the d-axis current are required. The motor parameters of inductance etc. that are easily affected by magnetic saturation are included in those calculations. This paper proposes a new MTPA control method, which is robust against changes of motor parameters caused by magnetic saturation. In addition, complex calculation for d-axis current or reference to the table is not necessary. In this method, we define a novel coordinate frame, which has one axis aligned with the current vector of the MTPA control, and estimate the frame directly. Because the parameter Lqm for estimating the frame is less affected by the magnetic saturation than the conventional Lq, the effect of magnetic saturation on the position estimation can be greatly suppressed. First, an extended electromotive force model based on the proposed frame and a parameter Lqm for an estimation of the frame are derived. Next, the effectiveness of this proposed method is confirmed by simulations and experiments.

  14. A novel robust speed controller scheme for PMBLDC motor.

    PubMed

    Thirusakthimurugan, P; Dananjayan, P

    2007-10-01

    The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.

  15. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    ERIC Educational Resources Information Center

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  16. Aging and Concurrent Task Performance: Cognitive Demand and Motor Control

    ERIC Educational Resources Information Center

    Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn

    2006-01-01

    A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…

  17. A brushless dc spin motor for momentum exchange altitude control

    NASA Technical Reports Server (NTRS)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  18. Gestalt Principles in the Control of Motor Action

    ERIC Educational Resources Information Center

    Klapp, Stuart T.; Jagacinski, Richard J.

    2011-01-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…

  19. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Concentrated Windings

    SciTech Connect

    Lawler, J.S.

    2005-12-21

    It is well known that the ability of the permanent magnet synchronous machine (PMSM) to operate over a wide constant power speed range (CPSR) is dependent upon the machine inductance [1,2,3,4,5]. Early approaches for extending CPSR operation included adding supplementary inductance in series with the motor [1] and the use of anti-parallel thyristor pairs in series with the motor-phase windings [5]. The increased inductance method is compatible with a voltage-source inverter (VSI) controlled by pulse-width modulation (PWM) which is called the conventional phase advance (CPA) method. The thyristor method has been called the dual mode inverter control (DMIC). Neither of these techniques has met with wide acceptance since they both add cost to the drive system and have not been shown to have an attractive cost/benefit ratio. Recently a method has been developed to use fractional-slot concentrated windings to significantly increase the machine inductance [6]. This latest approach has the potential to make the PMSM compatible with CPA without supplemental external inductance. If the performance of such drive is acceptable, then the method may make the PMSM an attractive option for traction applications requiring a wide CPSR. A 30 pole, 6 kW, 6000 maximum revolutions per minute (rpm) prototype of the fractional-slot PMSM design has been developed [7]. This machine has significantly more inductance than is typical of regular PMSMs. The prototype is to be delivered in late 2005 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study the steady-state performance of high-inductance PMSM machines with a view towards control issues. The detailed steady-state model developed includes all motor and inverter-loss mechanisms and will be useful in assessing the performance of the dynamic controller to be

  20. Speech motor control and acute mountain sickness

    NASA Technical Reports Server (NTRS)

    Cymerman, Allen; Lieberman, Philip; Hochstadt, Jesse; Rock, Paul B.; Butterfield, Gail E.; Moore, Lorna G.

    2002-01-01

    BACKGROUND: An objective method that accurately quantifies the severity of Acute Mountain Sickness (AMS) symptoms is needed to enable more reliable evaluation of altitude acclimatization and testing of potentially beneficial interventions. HYPOTHESIS: Changes in human articulation, as quantified by timed variations in acoustic waveforms of specific spoken words (voice onset time; VOT), are correlated with the severity of AMS. METHODS: Fifteen volunteers were exposed to a simulated altitude of 4300 m (446 mm Hg) in a hypobaric chamber for 48 h. Speech motor control was determined from digitally recorded and analyzed timing patterns of 30 different monosyllabic words characterized as voiced and unvoiced, and as labial, alveolar, or velar. The Environmental Symptoms Questionnaire (ESQ) was used to assess AMS. RESULTS: Significant AMS symptoms occurred after 4 h, peaked at 16 h, and returned toward baseline after 48 h. Labial VOTs were shorter after 4 and 39 h of exposure; velar VOTs were altered only after 4 h; and there were no changes in alveolar VOTs. The duration of vowel sounds was increased after 4 h of exposure and returned to normal thereafter. Only 1 of 15 subjects did not increase vowel time after 4 h of exposure. The 39-h labial (p = 0.009) and velar (p = 0.037) voiced-unvoiced timed separations consonants and the symptoms of AMS were significantly correlated. CONCLUSIONS: Two objective measures of speech production were affected by exposure to 4300 m altitude and correlated with AMS severity. Alterations in speech production may represent an objective measure of AMS and central vulnerability to hypoxia.

  1. New Technique of High-Performance Torque Control Developed for Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a

  2. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  3. Efficient foot motor control by Neymar’s brain

    PubMed Central

    Naito, Eiichi; Hirose, Satoshi

    2014-01-01

    How very long-term (over many years) motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer) recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI) while he rotated his right ankle at 1 Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control. PMID:25136312

  4. Hybrid Pwm Switching Strategy for a Three-Level Inverter Fed Induction Motor Drive with Open-End Windings

    NASA Astrophysics Data System (ADS)

    Srinivas, S.; Ramachandrasekhar, K.

    2010-06-01

    A dual two-level inverter fed induction motor with open-end windings is capable of generating a three-level output voltage. Several, sine-triangle and space vector pulse width modulation (PWM) switching strategies are presented for the dual-inverter scheme either using space-vector or carrier-based implementation. In this paper, a hybrid PWM switching strategy for the dual-inverter scheme is proposed employing sine-triangle PWM (SPWM) and space vector PWM (SVPWM) for the individual inverters. SPWM is theoretically analyzed and space vector based implementation of SPWM is presented using a simple offset-time concept. This is exploited to implement the hybrid PWM switching strategy for the dual two-level inverter. The implementation of the hybrid PWM switching strategy proposed in this paper do not require any look-up tables, the switching is totally automatic obviating the time-consuming task of sector identification. The implementation of the hybrid PWM scheme requires only the three instantaneous phase reference voltages corresponding to the reference space vector. The third harmonic component in the voltage appearing across the motor phase windings in the induction motor is significantly reduced (by 50%) with the use of the proposed hybrid PWM scheme as compared to the use of the PWM scheme presented earlier. Also, the percentage weighted total harmonic distortion (%WTHD) of the output voltage is significantly reduced in the entire range of speed of the induction motor driven by the dual-inverter scheme.

  5. 6. VIEW, LOOKING SOUTH OF OPERATOR DECK, SHOWING MOTOR CONTROLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW, LOOKING SOUTH OF OPERATOR DECK, SHOWING MOTOR CONTROLS AND LEVERS AND HOIST FOR TRASH RAKE - Cabot Station Electric Generating Plant, Gantry Crane, Montague City Road, Turners Falls vicinity, Montague, Franklin County, MA

  6. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  7. 76. VIEW OF THE MOTOR CONTROL PANEL IN THE NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. VIEW OF THE MOTOR CONTROL PANEL IN THE NORTH SIDE OF THE EAST SERVICE BUILDING FOR DOROTHY SIX BLAST FURNACE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Reward improves long-term retention of a motor memory through induction of offline memory gains

    PubMed Central

    Abe, Mitsunari; Schambra, Heidi; Wassermann, Eric M; Luckenbaugh, Dave; Schweighofer, Nicolas; Cohen, Leonardo G

    2011-01-01

    Summary In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements [1–3]. Their relative effects on consolidation and long-term retention, critical behavioral stages for successful learning [4, 5], are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before, and immediately, 6 hs, 24 hs and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hs, the rewarded group maintained performance gains while the other two groups experienced significant forgetting. At 24 hs, the reward group showed significant offline (posttraining) improvements while the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hs, while the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time. PMID:21419628

  9. Soft-Starting Power-Factor Motor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  10. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    This viewgraph presentation provides information on the design of analog speed controllers for DC motors on aerospace systems. The presentation includes an overview of controller evolution, evolvable controller configuration, an emphasis on proportion integral (PI) controllers, schematic diagrams, and experimental results.

  11. The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper.

    PubMed

    Lang, Eric J; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L; De Zeeuw, Chris I; Ebner, Timothy J; Heck, Detlef H; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S; Ozyildirim, Ozgecan; Popa, Laurentiu S; Reeves, Alexander M B; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2017-02-01

    For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.

  12. Self-controlled practice benefits motor learning in older adults.

    PubMed

    Lessa, Helena Thofehrn; Chiviacowsky, Suzete

    2015-04-01

    Providing learners with the chance to choose over certain aspects of practice has been consistently shown to facilitate the acquisition of motor skills in several populations. However, studies investigating the effects of providing autonomy support during the learning process of older adults remain scarce. The objective of the present study was to investigate the effects of self-controlled amount of practice on the learning of a sequential motor task in older adults. Participants in the self-control group were able to choose when to stop practicing a speed cup stacking task, while the number of practice trials for a yoked group was pre-determined, mirroring the self-control group. The opportunity to choose when stop practicing facilitated motor performance and learning compared to the yoked condition. The findings suggest that letting older adult learners choose the amount of practice, supporting their autonomy needs, has a positive influence on motor learning.

  13. Gestalt principles in the control of motor action.

    PubMed

    Klapp, Stuart T; Jagacinski, Richard J

    2011-05-01

    We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to initiation of any part of the movement. Additional reaction time results related to initiation of longer responses are consistent with processing in terms of a sequence of indivisible motor gestalts. Some actions (e.g., many involving coordination of the hands) can be carried out effectively only if represented as a unitary gestalt. Second, a perceptual gestalt is independent of specific sensory receptors, as evidenced by perceptual constancy. In a similar manner a motor gestalt can be represented independently of specific muscular effectors, thereby allowing motor constancy. Third, just as a perceptual pattern (e.g., a Necker cube) is exclusively structured into only 1 of its possible configurations at any moment in time, processing prior to action is limited to 1 motor gestalt. Fourth, grouping in apparent motion leads to stream segregation in visual and auditory perception; this segregation is present in motor action and is dependent on the temporal rate. We discuss congruence of gestalt phenomena across perception and motor action (a) in relation to a unitary perceptual-motor code, (b) with respect to differences in the role of awareness, and (c) in conjunction with separate neural pathways for conscious perception and motor control.

  14. Memory processes and motor control in extreme environments.

    PubMed

    Newman, D J; Lathan, C E

    1999-08-01

    Cognitive-performance and motor-performance activities in multi-task, high-workload environments were assessed during astronaut performance in space flight and in isolation. Data was collected in microgravity on the International Micro-gravity Laboratory (IML) space shuttle mission (STS-42), and the Canadian Astronaut Program Space Unit Life Simulation (CAPSULS) mission offered an ideal opportunity to collect data for individuals in extreme isolation to complement the space flight data using similar hardware, software, and experimental protocols. The mental workload and performance experiment (MWPE) was performed during the IML-1 space flight mission, and the memory processes and motor control (MEMO) experiment was performed during the CAPSULS isolation mission. In both experiments, short-term exhaustive memory and fine motor control associated with human-computer interaction was studied. Memory processes were assessed using a Sternberg-like exhaustive memory search containing 1, 2, 4, or 7 letters. Fine motor control was assessed using velocity-controlled (joystick) and position-controlled (trackball) computer input devices to acquire targets as displayed on a computer screen. Subjects repeated the tasks under two conditions that tested perceptual motor adaptation strategies: 1) During adaptation to the microgravity environment; and 2) While wearing left-right reversing prism goggles during the CAPSULS mission. Both conditions significantly degraded motor performance but not cognitive performance. The data collected during both the MEMO experiment and the MWPE experiments enhance the knowledge base of human interface technology for human performance in extreme environments.

  15. Control of a wind-driven self-excited induction generator water-pumping system for maximum utilization efficiency

    SciTech Connect

    Alghuwainem, S.M.

    1998-07-01

    This paper analyzes a stand-alone water-pumping system consisting of a motor-pump set supplied by a wind-driven self-excited induction generator. In order to achieve maximum utilization efficiency, the system designer is interested in optimally matching the system components together so that maximum energy available from the wind is absorbed and utilized all the time. Unfortunately, this optimal matching is speed-dependent and hence no single matching is valid for all wind speeds. Therefore the operating point of the system must vary with wind speed. In this paper, a control strategy is formulated which properly adjust the operating point of the system to coincide with the maximum power operating condition. The self-excited induction generator (SEIG) is basically an induction machine which is driven by a prime mover such as a wind turbine while a capacitor is connected across its stator terminals. The SEIG supplies an induction motor which is coupled to a water pump. The system need not operate continuously and water can be used directly for drinking and irrigation or it can be collected in a storage tank for later use. Due to the high cost of the wind turbine and equipment, the system designer is interested in maximizing the amount of pumped water per day. This can be achieved by proper selection and matching of the system components. However, proper matching of the system components together is not sufficient to guarantee maximum utilization since matching is dependent on wind speed. Therefore, certain system components must be controlled according to wind speed, such that matching is achieved all the time. This paper presents a control strategy to control the excitation capacitance of the induction generator such that its generated terminal voltage, which is applied to the induction motor, is kept constant as the rotor speed varies with wind speed.

  16. Control of cascaded induction generator systems

    NASA Astrophysics Data System (ADS)

    Ortmeyer, T. H.

    1984-12-01

    This report documents an investigation of the stability and control of cascaded doubly fed machines (CDFM). These machines are brushless variable speed constant frequency electric power generators with potential for application in aircraft. A previous analytical study indicated the CDFM system would be controllable in the subsynchronous operating mode with a passive RL load. The present study contains two steps. First is an investigation of the machine operation in the supersynchronous mode. The second step is an investigation of machine operation with output capacitors providing excitation VARs for the machine and load. Step 1 results show that the machines exhibit stability characteristics in the supersynchronous mode similar to those observed in the subsynchronous mode. Step 2 results show that output capacitors degrade the system performance, particularly at light loads. The results show that output current feedback can be employed to improve the system performance.

  17. Implementation of motor speed control using PID control in programmable logic controller

    NASA Astrophysics Data System (ADS)

    Samin, R. E.; Azmi, N. A.; Ahmad, M. A.; Ghazali, M. R.; Zawawi, M. A.

    2012-11-01

    This paper presents the implementation of motor speed control using Proportional Integral Derrivative (PID) controller using Programmable Logic Controller (PLC). Proportional Integral Derrivative (PID) controller is the technique used to actively control the speed of the motor. An AC motor is used in the research together with the PLC, encoder and Proface touch screen. The model of the PLC that has been used in this project is OMRON CJIG-CPU42P where this PLC has a build in loop control that can be made the ladder diagram quite simple using function block in CX-process tools. A complete experimental analysis of the technique in terms of system response is presented. Comparative assessment of the impact of Proportional, Integral and Derivative in the controller on the system performance is presented and discussed.

  18. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    PubMed

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  19. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  20. Motor Learning and Control Foundations of Kinesiology: Defining the Academic Core

    ERIC Educational Resources Information Center

    Fischman, Mark G.

    2007-01-01

    This paper outlines the kinesiological foundations of the motor behavior subdisciplines of motor learning and motor control. After defining the components of motor behavior, the paper addresses the undergraduate major and core knowledge by examining several classic textbooks in motor learning and control, as well as a number of contemporary…

  1. Pupil Diameter May Reflect Motor Control and Learning.

    PubMed

    White, Olivier; French, Robert M

    2017-01-01

    Non-luminance-mediated changes in pupil diameter have been used since the first studies by Darwin in 1872 as indicators of clinical, cognitive, and arousal states. However, the relation between processes involved in motor control and changes in pupil diameter remains largely unknown. Twenty participants attempted to compensate random walks of a cursor with a computer mouse to restrain its trajectory within a target circle while the authors recorded their pupil diameters. Two conditions allowed the authors to experimentally manipulate the motor and cognitive components of the task. First, the step size of the cursor's random walk was either large or small leading to 2 task difficulties (difficult or easy). Second, they instructed participants to imagine controlling the cursor by moving the mouse, but without actually moving it (task modality: imagined movement or real movement condition). Task difficulty and modality allowed the authors to show that pupil diameters reflect processes involved in motor control and in the processing of feedback, respectively. Furthermore, the authors also demonstrate that motor learning can be quantified by pupil size. This noninvasive approach provides a promising method for investigating not only motor control, but also motor imagery, a research field of growing importance in sports and rehabilitation.

  2. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    NASA Technical Reports Server (NTRS)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  3. Redundant speed control for brushless Hall effect motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  4. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  5. Auxiliary coil controls temperature of RF induction heater

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.

  6. Modeling of power control schemes in induction cooking devices

    NASA Astrophysics Data System (ADS)

    Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone

    2005-06-01

    In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.

  7. Inductively heated particulate matter filter regeneration control system

    SciTech Connect

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  8. Personal Computer Based Controller For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Mang, X.; Krishnan, R.; Adkar, S.; Chandramouli, G.

    1987-10-01

    Th9, switched reluctance motor (SRM) has recently gained considerable attention in the variable speed drive market. Two important factors that have contributed to this are, the simplicity of construction and the possibility of developing low cost con-trollers with minimum number of switching devices in the drive circuits. This is mainly due to the state-of-art of the present digital circuits technology and the low cost of switching devices. The control of this motor drive is under research. Optimized performance of the SRM motor drive is very dependent on the integration of the controller, converter and the motor. This research on system integration involves considerable changes in the control algorithms and their implementation. A Personal computer (PC) based controller is very appropriate for this purpose. Accordingly, the present paper is concerned with the design of a PC based controller for a SRM. The PC allows for real-time microprocessor control with the possibility of on-line system parameter modifications. Software reconfiguration of this controller is easier than a hardware based controller. User friendliness is a natural consequence of such a system. Considering the low cost of PCs, this controller will offer an excellent cost-effective means of studying the control strategies for the SRM drive intop greater detail than in the past.

  9. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  10. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system.

    PubMed

    Kobesova, Alena; Kolar, Pavel

    2014-01-01

    Three levels of sensorimotor control within the central nervous system (CNS) can be distinguished. During the neonatal stage, general movements and primitive reflexes are controlled at the spinal and brain stem levels. Analysis of the newborn's spontaneous general movements and the assessment of primitive reflexes is crucial in the screening and early recognition of a risk for abnormal development. Following the newborn period, the subcortical level of the CNS motor control emerges and matures mainly during the first year of life. This allows for basic trunk stabilization, a prerequisite for any phasic movement and for the locomotor function of the extremities. At the subcortical level, orofacial muscles and afferent information are automatically integrated within postural-locomotor patterns. Finally, the cortical (the highest) level of motor control increasingly becomes activated. Cortical control is important for the individual qualities and characteristics of movement. It also allows for isolated segmental movement and relaxation. A child with impaired cortical motor control may be diagnosed with developmental dyspraxia or developmental coordination disorder. Human ontogenetic models, i.e., developmental motor patterns, can be used in both the diagnosis and treatment of locomotor system dysfunction.

  11. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    ERIC Educational Resources Information Center

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  12. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  13. Insulation Deterioration Detection by Zero-Sequence Current Analysis for Induction Motors

    NASA Astrophysics Data System (ADS)

    Iwanaga, Hideki; Inujima, Hiroshi

    Insulation tests for the stator coil, which decides the motor life, are carried out once several years in power and industrial plant. In the case of high voltage (HV) motors, insulation failure may adversely affect plant operation. Hence, maintenance activities, including insulation tests, research on insulation deterioration, and online Partial Discharge (PD) monitoring, are actively pursued for HV motors. On the other hand, the maintenance of low voltage (LV) motors is restricted to breakdown maintenance (BDM) because (1) a large number of LV motors are in operation in plants and (2) maintenance activities are relatively more expensive than those for HV motors. In this paper, the results of a study on insulation deterioration detection for LV motors are presented. For the deterioration detection, the deference in Zero-Sequence current waveforms between normal conditions and fault conditions is analyzed. This method helps in decreasing the maintenance cost and in online insulation diagnosis for LV motors.

  14. Infrared sensor-based temperature control for domestic induction cooktops.

    PubMed

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-03-14

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented.

  15. Infrared Sensor-Based Temperature Control for Domestic Induction Cooktops

    PubMed Central

    Lasobras, Javier; Alonso, Rafael; Carretero, Claudio; Carretero, Enrique; Imaz, Eduardo

    2014-01-01

    In this paper, a precise real-time temperature control system based on infrared (IR) thermometry for domestic induction cooking is presented. The temperature in the vessel constitutes the control variable of the closed-loop power control system implemented in a commercial induction cooker. A proportional-integral controller is applied to establish the output power level in order to reach the target temperature. An optical system and a signal conditioning circuit have been implemented. For the signal processing a microprocessor with 12-bit ADC and a sampling rate of 1 Ksps has been used. The analysis of the contributions to the infrared radiation permits the definition of a procedure to estimate the temperature of the vessel with a maximum temperature error of 5 °C in the range between 60 and 250 °C for a known cookware emissivity. A simple and necessary calibration procedure with a black-body sample is presented. PMID:24638125

  16. Hardware Evolution of Analog Speed Controllers for a DC Motor

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a Field Programmable Transistor Array (FPTA). The performance of these evolved controllers is compared to that of a conventional proportional-integral (PI) controller.

  17. AC motor controller with 180 degree conductive switches

    NASA Technical Reports Server (NTRS)

    Oximberg, Carol A. (Inventor)

    1995-01-01

    An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.

  18. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  19. Effect of motor dynamics on nonlinear feedback robot arm control

    NASA Technical Reports Server (NTRS)

    Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping

    1991-01-01

    A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.

  20. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1983-01-01

    A power factor type motor controller in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. The present invention adds to the three-phase system of pending application Ser. No. 199,765, filed Oct. 23, 1980, means for modifying the operation of the system for a motor start-up interval of 5 to 30 seconds. The modification is that of providing via ramp generator 174 an initial ramp-like signal which replaces a constant power factor signal supplied by potentiometer 70. The ramp-like signal is applied to terminal 40 where it is summed with an operating power factor signal from phase detectors 32, 34, and 36 to thereby obtain a control signal for ultimately controlling SCR devices 12, 14, and 16 to effect a gradual turn-on of motor 10. The significant difference of the present invention over prior art is that the SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone. The added signal, the operating power factor signal, enables the production of a control signal which effectively eliminates a prior problem with many motor starting circuits, which is that of accompanying motor instabilities.

  1. A human motor control perspective to multiple manipulator modelling.

    PubMed

    Kambhampati, C; Rajasekharan, S

    2003-10-01

    This paper describes the aspects involved in modelling a multi-robot system from a human motor control perspective. The human motor control system has a hierarchical and decentralised structure, and building a control system for a multi-robot system that attains human features would require a decomposable model. Decomposition of a complex robotic system is difficult due to the interactions between the subsystems, so these have to be first separated before the system is modelled. The proposed method of separating the interconnections is applied with the aid of fuzzy modelling to derive a fully decomposable model of two manipulator robots handling a common object.

  2. Novel intelligent PID control of traveling wave ultrasonic motor.

    PubMed

    Jingzhuo, Shi; Yu, Liu; Jingtao, Huang; Meiyu, Xu; Juwei, Zhang; Lei, Zhang

    2014-09-01

    A simple control strategy with acceptable control performance can be a good choice for the mass production of ultrasonic motor control system. In this paper, through the theoretic and experimental analyses of typical control process, a simpler intelligent PID speed control strategy of TWUM is proposed, involving only two expert rules to adjust the PID control parameters based on the current status. Compared with the traditional PID controller, this design requires less calculation and more cheap chips which can be easily involved in online performance. Experiments with different load torques and voltage amplitudes show that the proposed controller can deal with the nonlinearity and load disturbance to maintain good control performance of TWUM.

  3. The minimum transition hypothesis for intermittent hierarchical motor control.

    PubMed

    Karniel, Amir

    2013-01-01

    In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis (MTH) and its predictions with regards to the structure of muscle synergies. The MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  4. The minimum transition hypothesis for intermittent hierarchical motor control

    PubMed Central

    Karniel, Amir

    2013-01-01

    In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis (MTH) and its predictions with regards to the structure of muscle synergies. The MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction. PMID:23450266

  5. Engineering controllable bidirectional molecular motors based on myosin.

    PubMed

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D; Parker, David; Bryant, Zev

    2012-02-19

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  6. Detail of field breakers in the motor control cabinet for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of field breakers in the motor control cabinet for unit 3. Control cabinet and breaker panel built by Cutler-Hammer - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  7. Sensory-motor networks involved in speech production and motor control: an fMRI study.

    PubMed

    Behroozmand, Roozbeh; Shebek, Rachel; Hansen, Daniel R; Oya, Hiroyuki; Robin, Donald A; Howard, Matthew A; Greenlee, Jeremy D W

    2015-04-01

    Speaking is one of the most complex motor behaviors developed to facilitate human communication. The underlying neural mechanisms of speech involve sensory-motor interactions that incorporate feedback information for online monitoring and control of produced speech sounds. In the present study, we adopted an auditory feedback pitch perturbation paradigm and combined it with functional magnetic resonance imaging (fMRI) recordings in order to identify brain areas involved in speech production and motor control. Subjects underwent fMRI scanning while they produced a steady vowel sound /a/ (speaking) or listened to the playback of their own vowel production (playback). During each condition, the auditory feedback from vowel production was either normal (no perturbation) or perturbed by an upward (+600 cents) pitch-shift stimulus randomly. Analysis of BOLD responses during speaking (with and without shift) vs. rest revealed activation of a complex network including bilateral superior temporal gyrus (STG), Heschl's gyrus, precentral gyrus, supplementary motor area (SMA), Rolandic operculum, postcentral gyrus and right inferior frontal gyrus (IFG). Performance correlation analysis showed that the subjects produced compensatory vocal responses that significantly correlated with BOLD response increases in bilateral STG and left precentral gyrus. However, during playback, the activation network was limited to cortical auditory areas including bilateral STG and Heschl's gyrus. Moreover, the contrast between speaking vs. playback highlighted a distinct functional network that included bilateral precentral gyrus, SMA, IFG, postcentral gyrus and insula. These findings suggest that speech motor control involves feedback error detection in sensory (e.g. auditory) cortices that subsequently activate motor-related areas for the adjustment of speech parameters during speaking.

  8. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  9. Automatic motor activation in the executive control of action

    PubMed Central

    McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc

    2012-01-01

    Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177

  10. Lateralised motor control: hemispheric damage and the loss of deftness

    PubMed Central

    Hanna-Pladdy, B; Mendoza, J; Apostolos, G; Heilman, K

    2002-01-01

    Objective: To learn if the left compared with the right hemisphere of right handed subjects exerts bilateral compared with contralateral motor control when performing precise and coordinated finger movements. Methods: The study investigated intertask differences of manual motor asymmetries such as speed, precision, and independent finger movements, in patients with unilateral lesions of the left (LHD) or right hemisphere (RHD) and normal controls (C). Results: Normal subjects showed the greatest right hand preference on a task that required rapid coordinated and precise independent finger movements (coin rotation). Both hemisphere damaged groups revealed contralateral motor deficits, but the magnitudes of asymmetries were found to be significantly different (RHD>C>LHD) with contralateral and ipsilateral deficits for LHD subjects. The greatest ipsilateral deficits for the LHD subjects were on those tasks that require precision (grooved pegboard and coin rotation). Conclusions: The degree of hemispheric specialisation is, in part, dependent upon the nature of the motor task, with left hemisphere motor control necessary for tasks that require precision and coordinated independent finger movements. PMID:12397154

  11. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    NASA Astrophysics Data System (ADS)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  12. Motor skill learning, retention, and control deficits in Parkinson's disease.

    PubMed

    Pendt, Lisa Katharina; Reuter, Iris; Müller, Hermann

    2011-01-01

    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  13. Noninvasive Reactivation of Motor Descending Control after Paralysis.

    PubMed

    Gerasimenko, Yury P; Lu, Daniel C; Modaber, Morteza; Zdunowski, Sharon; Gad, Parag; Sayenko, Dimitry G; Morikawa, Erika; Haakana, Piia; Ferguson, Adam R; Roy, Roland R; Edgerton, V Reggie

    2015-12-15

    The present prognosis for the recovery of voluntary control of movement in patients diagnosed as motor complete is generally poor. Herein we introduce a novel and noninvasive stimulation strategy of painless transcutaneous electrical enabling motor control and a pharmacological enabling motor control strategy to neuromodulate the physiological state of the spinal cord. This neuromodulation enabled the spinal locomotor networks of individuals with motor complete paralysis for 2-6 years American Spinal Cord Injury Association Impairment Scale (AIS) to be re-engaged and trained. We showed that locomotor-like stepping could be induced without voluntary effort within a single test session using electrical stimulation and training. We also observed significant facilitation of voluntary influence on the stepping movements in the presence of stimulation over a 4-week period in each subject. Using these strategies we transformed brain-spinal neuronal networks from a dormant to a functional state sufficiently to enable recovery of voluntary movement in five out of five subjects. Pharmacological intervention combined with stimulation and training resulted in further improvement in voluntary motor control of stepping-like movements in all subjects. We also observed on-command selective activation of the gastrocnemius and soleus muscles when attempting to plantarflex. At the end of 18 weeks of weekly interventions the mean changes in the amplitude of voluntarily controlled movement without stimulation was as high as occurred when combined with electrical stimulation. Additionally, spinally evoked motor potentials were readily modulated in the presence of voluntary effort, providing electrophysiological evidence of the re-establishment of functional connectivity among neural networks between the brain and the spinal cord.

  14. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform

    NASA Astrophysics Data System (ADS)

    He, Wangpeng; Zi, Yanyang; Chen, Binqiang; Wu, Feng; He, Zhengjia

    2015-03-01

    Mechanical anomaly is a major failure type of induction motor. It is of great value to detect the resulting fault feature automatically. In this paper, an ensemble super-wavelet transform (ESW) is proposed for investigating vibration features of motor bearing faults. The ESW is put forward based on the combination of tunable Q-factor wavelet transform (TQWT) and Hilbert transform such that fault feature adaptability is enabled. Within ESW, a parametric optimization is performed on the measured signal to obtain a quality TQWT basis that best demonstrate the hidden fault feature. TQWT is introduced as it provides a vast wavelet dictionary with time-frequency localization ability. The parametric optimization is guided according to the maximization of fault feature ratio, which is a new quantitative measure of periodic fault signatures. The fault feature ratio is derived from the digital Hilbert demodulation analysis with an insightful quantitative interpretation. The output of ESW on the measured signal is a selected wavelet scale with indicated fault features. It is verified via numerical simulations that ESW can match the oscillatory behavior of signals without artificially specified. The proposed method is applied to two engineering cases, signals of which were collected from wind turbine and steel temper mill, to verify its effectiveness. The processed results demonstrate that the proposed method is more effective in extracting weak fault features of induction motor bearings compared with Fourier transform, direct Hilbert envelope spectrum, different wavelet transforms and spectral kurtosis.

  15. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  16. Chaotic operation and chaos control of travelling wave ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie

    2013-08-01

    The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled.

  17. The Design and its Verification of the Double Rotor Double Cage Induction Motor

    NASA Astrophysics Data System (ADS)

    Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.

    2017-02-01

    The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.

  18. Attentional control theory: anxiety, emotion, and motor planning.

    PubMed

    Coombes, Stephen A; Higgins, Torrie; Gamble, Kelly M; Cauraugh, James H; Janelle, Christopher M

    2009-12-01

    The present study investigated how trait anxiety alters the balance between attentional control systems to impact performance of a discrete preplanned goal-directed motor task. Participants executed targeted force contractions (engaging the goal-directed attentional system) at the offset of emotional and non-emotional distractors (engaging the stimulus-driven attentional system). High and low anxious participants completed the protocol at two target force levels (10% and 35% of maximum voluntary contraction). Reaction time (RT), performance accuracy, and rate of change of force were calculated. Expectations were confirmed at the 10% but not the 35% target force level: (1) high anxiety was associated with slower RTs, and (2) threat cues lead to faster RTs independently of trait anxiety. These new findings suggest that motor efficiency, but not motor effectiveness is compromised in high relative to low anxious individuals. We conclude that increased stimulus-driven attentional control interferes with movements that require greater attentional resources.

  19. How finger tapping practice enhances efficiency of motor control.

    PubMed

    Koeneke, Susan; Lutz, Kai; Esslen, Michaela; Jäncke, Lutz

    2006-10-23

    Maximum-speed movements have been suggested to put maximum neural control demands on the primary motor cortex; hence, we are asking how primary motor cortex function changes to enable enhanced maximum movement rates induced by long-lasting practice. Cortical function was assessed by recording task-related spectral electroencephalogram alpha-power. Low-resolution brain electromagnetic tomography was used to localize intracortical neuronal sources. The main result is a decrease in neural activity in the left hemisphere (ipsilateral to trained hand) from pretraining to posttraining, whereas right hemispheric activity remained constant across training. This likely reflects the initially limited capacity of the right hemisphere to control demanding left-hand movements, but also highlights its ability to become more efficient with training, indicated by reduced involvement of the left primary motor cortex after training.

  20. Augmented motor activity and reduced striatal preprodynorphin mRNA induction in response to acute amphetamine administration in metabotropic glutamate receptor 1 knockout mice.

    PubMed

    Mao, L; Conquet, F; Wang, J Q

    2001-01-01

    Metabotropic glutamate receptor 1 (mGluR1) is a G-protein-coupled receptor and is expressed in the medium spiny projection neurons of mouse striatum. To define the role of mGluR1 in actions of psychostimulant, we compared both motor behavior and striatal neuropeptide mRNA expression between mGluR1 mutant and wild-type control mice after a single injection of amphetamine. We found that acute amphetamine injection increased motor activity in both mutant and control mice in a dose-dependent manner (1, 4, and 12 mg/kg, i.p.). However, the overall motor responses of mGluR1 -/- mice to all three doses of amphetamine were significantly greater than those of wild-type +/+ mice. Amphetamine also induced a dose-dependent elevation of preprodynorphin mRNA in the dorsal and ventral striatum of mutant and wild-type mice as revealed by quantitative in situ hybridization. In contrast to behavioral responses, the induction of dynorphin mRNA in both the dorsal and ventral striatum of mutant mice was significantly less than that of wild-type mice in response to the two higher doses of amphetamine. In addition, amphetamine elevated basal levels of substance P mRNA in the dorsal and ventral striatum of mGluR1 mutant mice to a similar level as that of wild-type mice. There were no differences in basal levels and distribution patterns of the two mRNAs between the two genotypes of mice treated with saline. These results demonstrate a clear augmented behavioral response of mGluR1 knockout mice to acute amphetamine exposure that is closely correlated with reduced dynorphin mRNA induction in the same mice. It appears that an intact mGluR1 is specifically critical for full dynorphin induction, and impaired mobilization of inhibitory dynorphin system as a result of lacking mGluR1 may contribute to an augmentation of motor stimulation in response to acute administration of psychostimulant.

  1. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  2. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  3. Error correction, sensory prediction, and adaptation in motor control.

    PubMed

    Shadmehr, Reza; Smith, Maurice A; Krakauer, John W

    2010-01-01

    Motor control is the study of how organisms make accurate goal-directed movements. Here we consider two problems that the motor system must solve in order to achieve such control. The first problem is that sensory feedback is noisy and delayed, which can make movements inaccurate and unstable. The second problem is that the relationship between a motor command and the movement it produces is variable, as the body and the environment can both change. A solution is to build adaptive internal models of the body and the world. The predictions of these internal models, called forward models because they transform motor commands into sensory consequences, can be used to both produce a lifetime of calibrated movements, and to improve the ability of the sensory system to estimate the state of the body and the world around it. Forward models are only useful if they produce unbiased predictions. Evidence shows that forward models remain calibrated through motor adaptation: learning driven by sensory prediction errors.

  4. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  5. Control technology for surface treatment of materials using induction hardening

    SciTech Connect

    Kelley, J.B.; Skocypec, R.D.

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  6. A Microprocessor Control Scheme For Switched Reluctance Motor Drives

    NASA Astrophysics Data System (ADS)

    Oza, A. R.; Krishnan, R.; Adkar, S.

    1987-10-01

    A microprocessor control scheme for a switched reluctance motor(SRM) drive is discussed. A SRM is inherently a variable speed machine since it requires a converter even for constant speed running. Starting with a conceptual development, a particular hardware scheme is discussed for controller implementation. Hardware-software tradeoffs incorporated in the design are discussed. Some results of an actual system are evaluated. It is shown that a microprocessor controller has many advantages over conventional controllers. The controller design uses rotor position and speed feedbacks. Self-starting is incorporated into the design. Use of off-the-shelf components makes the controller simple, reliable, and economical.

  7. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.

  8. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  9. Motor Room, overall view to the west. The control cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Motor Room, overall view to the west. The control cabinet and cement pipes along the south wall are being temporarily stored in the Pumping Plant and are not part of the original equipment - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  10. 31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF CONTROLS, ELECTRIC MOTOR, AND LOWER SHEAVES OF OTIS PASSENGER ELEVATOR ADDED IN 1921, BASEMENT. The original equipment, shown here, operated on direct current from the Massachusetts Avenue trolley line, abandoned in 1961. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  11. Motor and Executive Control in Repetitive Timing of Brief Intervals

    ERIC Educational Resources Information Center

    Holm, Linus; Ullen, Fredrik; Madison, Guy

    2013-01-01

    We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…

  12. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  13. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.

    PubMed

    Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  14. A fuzzy-based approach for open-transistor fault diagnosis in voltage-source inverter induction motor drives

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghan; Luo, Hui; Zhao, Jin; Wu, Feng

    2015-02-01

    This paper develops a novel method for the detection and isolation of open-transistor faults in voltage-source inverters feeding induction motors. Based on analyzing the load currents trajectories after Concordia transformation, six diagnostic signals each of which indicates a certain switch are extracted and a fuzzy rule base is designed to perform fuzzy reasoning in order to detect and isolate 21 fault modes including single- and double-transistor faults. In addition, the fuzzy rules are rearranged and each of them is set to a reasonable value representing the fault modes. The simulation and experiment are carried out to demonstrate the effectiveness of the proposed fuzzy approach.

  15. Control and Diagnostic Model of Brushless Dc Motor

    NASA Astrophysics Data System (ADS)

    Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol

    2014-09-01

    A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values

  16. Electromechanical actuator (AMA) rocket motor controller

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    An Internal Research and Design effort of Honeywell Space Systems Group to develop and test electromechanical actuator (EMA) systems for use in first and second stage thrust vector control of rocket engines is presented. An overview of the test program is included.

  17. Motor control of voluntary arm movements. Kinematic and modelling study.

    PubMed

    Corradini, M L; Gentilucci, M; Leo, T; Rizzolatti, G

    1992-01-01

    The motor control of pointing and reaching-to-grasp movements was investigated using two different approaches (kinematic and modelling) in order to establish whether the type of control varies according to modifications of arm kinematics. Kinematic analysis of arm movements was performed on subjects' hand trajectories directed to large and small stimuli located at two different distances. The subjects were required either to grasp and to point to each stimulus. The kinematics of the subsequent movement, during which subject's hand came back to the starting position, were also studied. For both movements, kinematic analysis was performed on hand linear trajectories as well as on joint angular trajectories of shoulder and elbow. The second approach consisted in the parametric identification of the black box (ARMAX) model of the controller driving the arm movement. Such controller is hypothesized to work for the correct execution of the motor act. The order of the controller ARMAX model was analyzed with respect to the different experimental conditions (distal task, stimulus size and distance). Results from kinematic analysis showed that target distance and size influenced kinematic parameters both of angular and linear displacements. Nevertheless, the structure of the motor program was found to remain constant with distance and distal task, while it varied with precision requirements due to stimulus size. The estimated model order of the controller confirmed the invariance of the control law with regard to movement amplitude, whereas it was sensitive to target size.

  18. Controlled clockwise and anticlockwise rotational switching of a molecular motor.

    PubMed

    Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  19. Controlled clockwise and anticlockwise rotational switching of a molecular motor

    NASA Astrophysics Data System (ADS)

    Perera, U. G. E.; Ample, F.; Kersell, H.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2013-01-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

  20. Controlled Rotation and Manipulation of Individual Molecular Motors

    NASA Astrophysics Data System (ADS)

    Kersell, Heath; Perera, U. G. E.; Ample, F.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S.-W.

    2015-03-01

    The design of artificial molecular machines often takes inspiration from macroscopic machines, but the parallels between the two are frequently only superficial because many molecular machines are governed by quantum processes. Previously, chemically and light driven rotary molecular motors have been developed. For electrically driven motors, tunneling electrons from the tip of a scanning tunneling microscope (STM) have been used to drive rotation in a simple rotor into a single direction and to move a wheeled molecule across a surface. Here, we show that a single standalone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or counterclockwise direction [1] by selective inelastic electron tunneling through different sub-units of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotator for controlled rotations, and a Ru atomic ball bearing connecting the static and rotational parts. The directional rotation originates from saw-tooth-like rotational potentials, which are determined by the internal molecular structure and are independent of the surface adsorption site. This project is supported by the US DOE, BES grant: DE-FG02-02ER46012.

  1. Integration simulation method concerning speed control of ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Miyauchi, R.; Yue, B.; Matsunaga, N.; Ishizuka, S.

    2016-09-01

    In this paper, the configuration of control system of the ultrasonic motor (USM) from finite element method (FEM) model by applying the nonlinear model order reduction (MOR) is proposed. First, the USM and the FEM model is introduced. Second, FEM model order reduction method is described. Third, the result of comparing the computing time and accuracy of the FEM model and reduced order model is shown. Finaly, nominal model for control is derived by system identification from reduced order model. Nonlinear model predictive control (NMPC) is applied to the nominal model, and speed is controlled. the controller effect is comfirmed by applying the proposed reduced order model.

  2. Lateralized motor control processes determine asymmetry of interlimb transfer.

    PubMed

    Sainburg, Robert L; Schaefer, Sydney Y; Yadav, Vivek

    2016-10-15

    This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: the amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes.

  3. Control system for a wound-rotor motor

    DOEpatents

    Ellis, James N.

    1983-01-01

    A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.

  4. Microgravity induced changes in the control of motor units

    NASA Astrophysics Data System (ADS)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  5. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  6. Method for controlling a motor vehicle powertrain

    SciTech Connect

    Burba, Joseph C.; Landman, Ronald G.; Patil, Prabhakar B.; Reitz, Graydon A.

    1990-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  7. Method for controlling a motor vehicle powertrain

    DOEpatents

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  8. Induction and control of the autolytic system of Escherichia coli.

    PubMed Central

    Leduc, M; Kasra, R; van Heijenoort, J

    1982-01-01

    Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis. PMID:6181050

  9. Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors

    NASA Astrophysics Data System (ADS)

    Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.

    2015-08-01

    The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.

  10. Signal differentiation in position tracking control of dc motors

    NASA Astrophysics Data System (ADS)

    Beltran-Carbajal, F.; Valderrabano-Gonzalez, A.; Rosas-Caro, J. C.

    2015-01-01

    An asymptotic differentiation approach with respect to time is used for on-line estimation of velocity and acceleration signals in controlled dc motors. The attractive feature of this differentiator of signals is that it does not require any system mathematical model, which allows its use in engineering systems that require the signal differentiation for its control, identification, fault detection, among other applications. Moreover, it is shown that the differentiation approach can be applied for output signals showing a chaotic behavior. In addition a differential flatness control scheme with additional integral compensation of the output error is proposed for tracking tasks of position reference trajectories for direct current electric motors using angular position measurements only.

  11. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  12. Effects of muscle atrophy on motor control

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  13. Arm coordination in octopus crawling involves unique motor control strategies.

    PubMed

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.

  14. Induction plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1971-01-01

    Induction plasma heating techniques were studied for calcining zinc orthotitanate particles for use in thermal control coatings. Previous studies indicated that the optimum calcining temperature is between 1400 and 1750 C. An intermediate temperature (1670 C) was chosen as a reference point for running a temperature series at the reference point and 220 C on both sides. The effect of varying chamber temperature on the reflectance spectra, before and after vacuum UV irradiation, is presented. The correlation between Zn2Ti04 paramagnetic resonance activity and its susceptibility to vacuum UV damage is discussed.

  15. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    NASA Technical Reports Server (NTRS)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  16. Long-Term Fatigue Life Expenditure of Turbine Shafts Owing to Noncharacteristic Harmonics Produced by Slip Energy Recovery Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Tsai, Jong-Ian

    In this paper, the long-term effect of noncharacteristic harmonics resulting from a slip energy recovery induction motor drive (SERIMD) on the fatigue life expenditure of turbine-generator shafts is analyzed. A feed-water pump (FP) in power plants is one of the most essential pieces of auxiliary equipment and consumes considerably large quantities of energy. An SERIMD has many advantages and is an adequate candidate for the purpose of variable speed control. However, it gives rise to sustainable variable frequency subharmonics which induce electromechanical subsynchronous oscillations in turbine shafts through proposed deductions. Accordingly, the author has determined that the long-term effect of these subharmonics is a cause of fatigue damage on turbine shafts even under normal operating conditions through fatigue life estimation.

  17. Control Code for Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2007-01-01

    A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.

  18. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  19. Genetically identified spinal interneurons integrating tactile afferents for motor control

    PubMed Central

    Panek, Izabela; Farah, Carl

    2015-01-01

    Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867

  20. Motor characteristics in the control of a compliant load

    NASA Astrophysics Data System (ADS)

    Harokopos, E. G.; Mayne, R. W.

    1986-02-01

    This paper considers a servomechanism consisting of a DC-motor, a gear train and an inertial mass controlled through a compliant drive. The compliance is modeled as a spring between the gear box and inertia, and the interaction between the actuator and its load is considered. Dimensionless parameters are defined to describe this interaction, and the influence of the parameters on open- and closed-loop performance is discussed. System behavior is relatively sensitive to one particular dimensionless parameter related to damping provided by electromechanical interaction. Results of this effort illustrate the concept of quantitative controllability and indicate the possibility of controlling flexible loads conveniently by an appropriate choice of actuator parameters.

  1. Bispectrum of stator phase current for fault detection of induction motor.

    PubMed

    Treetrong, Juggrapong; Sinha, Jyoti K; Gu, Fengshu; Ball, Andrew

    2009-07-01

    A number of research studies has shown that faults in a stator or rotor generally show sideband frequencies around the mains frequency (50 Hz) and at higher harmonics in the spectrum of the Motor Current Signature Analysis (MCSA). However in the present experimental studies such observations have not been seen, but any fault either in the stator or the rotor may distort the sinusoidal response of the motor RPM and the mains frequency so the MCSA response may contain a number of harmonics of the motor RPM and the mains frequency. Hence the use of a higher order spectrum (HOS), namely the bispectrum of the MCSA has been proposed here because it relates both amplitude and phase of number of the harmonics in a signal. It has been observed that it not only detects early faults but also indicates the severity of the fault to some extent.

  2. The influence of scopolamine on motor control and attentional processes

    PubMed Central

    Bestaven, Emma; Kambrun, Charline; Guehl, Dominique; Cazalets, Jean-René

    2016-01-01

    Background: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. Methods: Seven subjects were evaluated on four different tasks before and after a subcutaneous injection of scopolamine (0.2 mg): a one-minute balance test, a subjective visual vertical test, a pointing task and a galvanic vestibular stimulation with EMG recordings. Results: The results showed that the reaction time and the movement duration were not modified after the injection of scopolamine. However, there was an increase in the center of pressure displacement during the balance test, a decrease in EMG muscle response after galvanic vestibular stimulation and an alteration in the perception of verticality. Discussion: These results confirm that low doses of scopolamine such as those prescribed to avoid motion sickness have no effect on attentional processes, but that it is essential to consider the responsiveness of each subject. However, scopolamine did affect postural control and the perception of verticality. In conclusion, the use of scopolamine to prevent motion sickness must be considered carefully because it could increase imbalances in situations when individuals are already at risk of falling (e.g., sailing, parabolic flight). PMID:27169000

  3. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  4. Dual capacity compressor with reversible motor and controls arrangement therefor

    DOEpatents

    Sisk, Francis J.

    1980-12-02

    A hermetic reciprocating compressor such as may be used in heat pump applications is provided for dual capacity operation by providing the crankpin of the crankshaft with an eccentric ring rotatably mounted thereon, and with the end of the connecting rod opposite the piston encompassing the outer circumference of the eccentric ring, with means limiting the rotation of the eccentric ring upon the crankpin between one end point and an opposite angularly displaced end point to provide different values of eccentricity depending upon which end point the eccentric ring is rotated to upon the crankpin, and a reversible motor in the hermetic shell of the compressor for rotating the crankshaft, the motor operating in one direction effecting the angular displacement of the eccentric ring relative to the crankpin to the one end point, and in the opposite direction effecting the angular displacement of the eccentric ring relative to the crankpin to the opposite end point, this arrangement automatically giving different stroke lengths depending upon the direction of motor rotation. The mechanical structure of the arrangement may take various forms including at least one in which any impact of reversal is reduced by utilizing lubricant passages and chambers at the interface area of the crankpin and eccentric ring to provide a dashpot effect. In the main intended application of the arrangement according to the invention, that is, in a refrigerating or air conditioning system, it is desirable to insure a delay during reversal of the direction of compressor operation. A control arrangement is provided in which the control system controls the direction of motor operation in accordance with temperature conditions, the system including control means for effecting operation in a low capacity direction or alternatively in a high capacity direction in response to one set, and another set, respectively, of temperature conditions and with timer means delaying a restart of the compressor

  5. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Astrophysics Data System (ADS)

    Packard, D. T.

    1985-04-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  6. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, D. T. (Inventor)

    1985-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The motor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor be regulated by applying a separate control signal and each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  7. Voltage Controller Saves Energy, Prolongs Life of Motors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 1985, Power Efficiency Corporation of Las Vegas licensed NASA voltage controller technology from Marshall Space Flight Center. In the following years, Power Efficiency made patented improvements to the technology and marketed the resulting products throughout the world as the Performance Controller and the Power Efficiency energy-saving soft start. Soft start gradually introduces power to an electric motor, thus eliminating the harsh, violent mechanical stresses of having the device go from a dormant state to one of full activity; prevents it from running too hot; and increases the motor's lifetime. The product can pay for itself through the reduction in electricity consumed (according to Power Efficiency, within 3 years), depending on the duty cycle of the motor and the prevailing power rates. In many instances, the purchaser is eligible for special utility rebates for the environmental protection it provides. Common applications of Power Efficiency's soft start include mixers, grinders, granulators, conveyors, crushers, stamping presses, injection molders, elevators with MG sets, and escalators. The device has been retrofitted onto equipment at major department store chains, hotels, airports, universities, and for various manufacturers

  8. Neuromodulation of lower limb motor control in restorative neurology

    PubMed Central

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. PMID:22464657

  9. Reusable solid rocket motor case - Optimum probabilistic fracture control

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1979-01-01

    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed in this paper. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis can be used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects on failure prevention plans such as nondestructive inspection and the material erosion between missions can also be considered in the developed procedure for selection of design variables. The reliability-based procedure that has been discussed in this paper can easily be modified to consider other similar structures of reusable space vehicle systems with different fracture control plans.

  10. How induction generators work

    SciTech Connect

    Nailen, R.L.

    1980-06-01

    The operating principles of the induction generator, which is a standard squirrel cage motor in which the shaft is coupled to and driven by an engine or turbine at a rate above its synchronous speed and which, under these conditions, produces electrical power, are described. The advantages of induction generators, e.g., low cost, simplicity, frequency and voltage controlled by the utility system, no synchronizing controls needed, and the advantages of using small induction generators run by wind turbines, small gas turbines and in low head hydro plants are discussed. (LCL)

  11. Digital signal processing control of induction machine`s torque and stator flux utilizing the direct stator flux field orientation method

    SciTech Connect

    Seiz, Julie Burger

    1997-04-01

    This paper presents a review of the Direct Stator Flux Field Orientation control method. This method can be used to control an induction motor`s torque and flux directly and is the application of interest for this thesis. This control method is implemented without the traditional feedback loops and associated hardware. Predictions are made, by mathematical calculations, of the stator voltage vector. The voltage vector is determined twice a switching period. The switching period is fixed throughout the analysis. The three phase inverter duty cycle necessary to control the torque and flux of the induction machine is determined by the voltage space vector Pulse Width Modulation (PWM) technique. Transient performance of either the flux or torque requires an alternate modulation scheme which is also addressed in this thesis. A block diagram of this closed loop system is provided. 22 figs., 7 tabs.

  12. Identification and robust control of an experimental servo motor.

    PubMed

    Adam, E J; Guestrin, E D

    2002-04-01

    In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.

  13. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  14. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor.

  15. Non-dopaminergic treatments for motor control in Parkinson's disease.

    PubMed

    Fox, Susan H

    2013-09-01

    The pathological processes underlying Parkinson's disease (PD) involve more than dopamine cell loss within the midbrain. These non-dopaminergic neurotransmitters include noradrenergic, serotonergic, glutamatergic, and cholinergic systems within cortical, brainstem and basal ganglia regions. Several non-dopaminergic treatments are now in clinical use to treat motor symptoms of PD, or are being evaluated as potential therapies. Agents for symptomatic monotherapy and as adjunct to dopaminergic therapies for motor symptoms include adenosine A2A antagonists and the mixed monoamine-B inhibitor (MAO-BI) and glutamate release agent safinamide. The largest area of potential use for non-dopaminergic drugs is as add-on therapy for motor fluctuations. Thus adenosine A2A antagonists, safinamide, and the antiepileptic agent zonisamide can extend the duration of action of levodopa. To reduce levodopa-induced dyskinesia, drugs that target overactive glutamatergic neurotransmission can be used, and include the non-selective N-methyl D-aspartate antagonist amantadine. More recently, selective metabotropic glutamate receptor (mGluR₅) antagonists are being evaluated in phase II randomized controlled trials. Serotonergic agents acting as 5-HT2A/2C antagonists, such as the atypical antipsychotic clozapine, may also reduce dyskinesia. 5-HT1A agonists theoretically can reduce dyskinesia, but in practice, may also worsen PD motor symptoms, and so clinical applicability has not yet been shown. Noradrenergic α2A antagonism using fipamezole can potentially reduce dyskinesia. Several non-dopaminergic agents have also been investigated to reduce non-levodopa-responsive motor symptoms such as gait and tremor. Thus the cholinesterase inhibitor donepezil showed mild benefit in gait, while the predominantly noradrenergic re-uptake inhibitor methylphenidate had conflicting results in advanced PD subjects. Tremor in PD may respond to muscarinic M4 cholinergic antagonists (anticholinergics), but

  16. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles.

    PubMed

    Levin, Mindy F; Weiss, Patrice L; Keshner, Emily A

    2015-03-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality-based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback-based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed.

  17. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  18. Variable Gain Type Internal Model Control-PID Speed Control for Ultrasonic Motors

    NASA Astrophysics Data System (ADS)

    Tanaka, Kanya; Yoshimura, Yoshie; Wakasa, Yuji; Akashi, Takuya

    Ultrasonic motors (USM) causes serious characteristic changes during operation. It is difficult for the conventional internal model control (IMC) proportional integral differential (PID) control to compensate such characteristic changes of the plant. To solve these problems, we propose a method of variable gain type IMC-PID control. In the proposed method, plant parameters are identified on line and these estimated parameters are used for adjusting three gains of PID. Then the proposed method makes it possible to compensate characteristic changes of the plant. The effectiveness of the proposed control method have been confirmed by experiments using the existing ultrasonic motors servo system.

  19. Control of UV induction of recA protein.

    PubMed Central

    Salles, B; Paoletti, C

    1983-01-01

    The basal level of recA protein in Escherichia coli K-12 was estimated by an immunoradiometric assay; it is approximately equal to 1,200 molecules per wild-type bacteria in midexponential phase of growth, slightly more in an excision-deficient (uvrA) strain, and markedly more in recF mutants. Kinetics of induction after UV irradiation showed a rapid increase of recA protein content, which reached a peak level after 60-90 min (20- to 55-fold amplification) and then decreased by dilution of the protein in the growing population. In order to obtain an identical extent of induction of recA protein, a 10-fold higher UV dose was necessary in a wild-type strain compared to the uvrA mutant strain. In the uvrA strain, the presence of one or only very few pyrimidine dimers on DNA was accompanied by a measurable increase of the constitutive level of recA protein; however, the unexcised dimers were unable to permanently induce the formation of recA protein. The derepressed promoter of recA gene is one of the strongest in E. coli. Its sequence displays many similarities with that of the strongest early promoters of T5 phage. Mutants (umuC uvrB and recF uvrB) unable to carry out W-reactivation produced high levels of recA protein after UV irradiation. The data suggested that the recF and umuC genes negatively control the regulation of recA protein level. PMID:6337375

  20. Doubly Fed Induction Machine Control For Wind Energy Conversion System

    DTIC Science & Technology

    2009-06-01

    Induction Generator (DFIG), Voltage Source Inverter (VSI), Space Vector Modulation (SVM), Wind Turbine, Field Programmable Gate Array ( FPGA ), Wind...basics of using a doubly-fed induction generator (DFIG) to convert the mechanical energy of the wind into useful electrical power that can be used to...thesis covers the basics of using a doubly-fed induction generator (DFIG) to convert the mechanical energy of the wind into useful electrical power

  1. Brushless DC motor control system responsive to control signals generated by a computer or the like

    NASA Technical Reports Server (NTRS)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  2. Scalar control on speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    This paper aims to investigate the performance of ABB ACS800 variable speed drive operating under Scalar Control mode, and eventually develop a set of experimental procedures for undergraduate laboratory purposes. Scalar Control is the most widespread form of ac drive, for its low cost and simplicity especially implemented in the open loop mode. Scalar control is achieved by controlling the stator voltage and frequency, thus maintaining the motor's air-gap flux at a constant value. To illustrate the control method, the ac drive is configured according to the wiring diagram in the firmware manual that the drive control location can be both local and external. The drive is selected to operate under Factory application macro, whereby either ordinary speed control applications or constant speeds applications may be used. Under ordinary speed control, frequency reference signals are provided to the drive through the analogue input AI1. The drive will operate at the given frequency reference value throughout the operation regardless of any changes in the load. The torque speed curve moves along the speed axis with no changes to the shape as the supply frequencies changes. On the other hand, the drive allows three preset constant speed through digital inputs DI5 and DI6. The drive operate at a constant speed value over a time period, and only switch from one constant speed to another constant speed by triggering the two input switches. Scalar control is most suitable for applications not required high precision, such as blowers, fans and pumps.

  3. A circular model for song motor control in Serinus canaria

    PubMed Central

    Alonso, Rodrigo G.; Trevisan, Marcos A.; Amador, Ana; Goller, Franz; Mindlin, Gabriel B.

    2015-01-01

    Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. PMID:25904860

  4. Gait variability and motor control in people with knee osteoarthritis.

    PubMed

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius

    2015-10-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA.

  5. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  6. Deficient Grip Force Control in Schizophrenia: Behavioral and Modeling Evidence for Altered Motor Inhibition and Motor Noise

    PubMed Central

    Teremetz, Maxime; Amado, Isabelle; Bendjemaa, Narjes; Krebs, Marie-Odile; Lindberg, Pavel G.; Maier, Marc A.

    2014-01-01

    Whether upper limb sensorimotor control is affected in schizophrenia and how underlying pathological mechanisms may potentially intervene in these deficits is still being debated. We tested voluntary force control in schizophrenia patients and used a computational model in order to elucidate potential cerebral mechanisms underlying sensorimotor deficits in schizophrenia. A visuomotor grip force-tracking task was performed by 17 medicated and 6 non-medicated patients with schizophrenia (DSM-IV) and by 15 healthy controls. Target forces in the ramp-hold-and-release paradigm were set to 5N and to 10% maximal voluntary grip force. Force trajectory was analyzed by performance measures and Principal Component Analysis (PCA). A computational model incorporating neural control signals was used to replicate the empirically observed motor behavior and to explore underlying neural mechanisms. Grip task performance was significantly lower in medicated and non-medicated schizophrenia patients compared to controls. Three behavioral variables were significantly higher in both patient groups: tracking error (by 50%), coefficient of variation of force (by 57%) and duration of force release (up by 37%). Behavioral performance did not differ between patient groups. Computational simulation successfully replicated these findings and predicted that decreased motor inhibition, together with an increased signal-dependent motor noise, are sufficient to explain the observed motor deficits in patients. PCA also suggested altered motor inhibition as a key factor differentiating patients from control subjects: the principal component representing inhibition correlated with clinical severity. These findings show that schizophrenia affects voluntary sensorimotor control of the hand independent of medication, and suggest that reduced motor inhibition and increased signal-dependent motor noise likely reflect key pathological mechanisms of the sensorimotor deficit. PMID:25369465

  7. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  8. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  9. Altered motor control patterns in whiplash and chronic neck pain

    PubMed Central

    Woodhouse, Astrid; Vasseljen, Ottar

    2008-01-01

    Background Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6) for the WAD group, 17.9° (95% CI; 16.1–19.6) for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor

  10. 40 CFR 80.24 - Controls applicable to motor vehicle manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls applicable to motor vehicle manufacturers. 80.24 Section 80.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... applicable to motor vehicle manufacturers. (a) (b) The manufacturer of any motor vehicle equipped with...

  11. Global models: Robot sensing, control, and sensory-motor skills

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1989-01-01

    Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.

  12. Growth hormone combined with child-specific motor training improves motor development in infants with Prader-Willi syndrome: a randomized controlled trial.

    PubMed

    Reus, Linda; Pelzer, Ben J; Otten, Barto J; Siemensma, Elbrich P C; van Alfen-van der Velden, Janielle A A E M; Festen, Dederieke A M; Hokken-Koelega, Anita C S; Nijhuis-van der Sanden, Maria W G

    2013-10-01

    Although severe motor problems in infants with Prader-Willi syndrome (PWS) are striking, motor development has never been studied longitudinally and the results of growth hormone (GH) treatment on motor development are contradictory. The authors studied whether GH treatment can enhance the effect of physical training on motor development in infants with PWS. Twenty-two infants were followed for two years during a randomized controlled trial. The treatment and control groups began GH after baseline or following a control period, respectively. Both groups followed a child-specific physical training program. Motor performance was measured every three months. Multi-level regression analysis revealed that motor development differed significantly between infants (p<.001), and this could be partially explained by baseline motor developmental level (p<.01). GH treatment enhanced the effects of child-specific physical training on both motor developmental rate and motor developmental potential. Moreover, this effect was more pronounced when GH treatment was initiated at a younger age.

  13. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    PubMed Central

    Nakagawa, Hideki; Nishida, Yuuya

    2012-01-01

    Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389

  14. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana.

    PubMed

    Nakagawa, Hideki; Nishida, Yuuya

    2012-11-15

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r(2) = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r(2) = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r(2) = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r(2) = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r(2) = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  15. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation.

    PubMed

    Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W; Taylor, Denise; Haavik, Heidi; Niazi, Imran K

    2015-01-01

    Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement.

  16. The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives

    PubMed Central

    Todd, Neil P. M.; Lee, Christopher S.

    2015-01-01

    Some 20 years ago Todd and colleagues proposed that rhythm perception is mediated by the conjunction of a sensory representation of the auditory input and a motor representation of the body (Todd, 1994a, 1995), and that a sense of motion from sound is mediated by the vestibular system (Todd, 1992a, 1993b). These ideas were developed into a sensory-motor theory of rhythm and beat induction (Todd et al., 1999). A neurological substrate was proposed which might form the biological basis of the theory (Todd et al., 2002). The theory was implemented as a computational model and a number of experiments conducted to test it. In the following time there have been several key developments. One is the demonstration that the vestibular system is primal to rhythm perception, and in related work several experiments have provided further evidence that rhythm perception is body dependent. Another is independent advances in imaging, which have revealed the brain areas associated with both vestibular processing and rhythm perception. A third is the finding that vestibular receptors contribute to auditory evoked potentials (Todd et al., 2014a,b). These behavioral and neurobiological developments demand a theoretical overview which could provide a new synthesis over the domain of rhythm perception. In this paper we suggest four propositions as the basis for such a synthesis. (1) Rhythm perception is a form of vestibular perception; (2) Rhythm perception evokes both external and internal guidance of somatotopic representations; (3) A link from the limbic system to the internal guidance pathway mediates the “dance habit”; (4) The vestibular reward mechanism is innate. The new synthesis provides an explanation for a number of phenomena not often considered by rhythm researchers. We discuss these along with possible computational implementations and alternative models and propose a number of new directions for future research. PMID:26379522

  17. Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation

    PubMed Central

    Jochumsen, Mads; Signal, Nada; Nedergaard, Rasmus W.; Taylor, Denise; Haavik, Heidi; Niazi, Imran K.

    2015-01-01

    Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. The aim of this study was to investigate whether the excitability of the cortical projections to the tibialis anterior (TA) muscle could be decreased when dorsiflexion of the ankle joint was imagined and paired with peripheral electrical stimulation (ES) of the nerve supplying the antagonist soleus muscle. The effect of stimulus timing was evaluated by comparing paired stimulation timed to reach the cortex before, at and after the onset of imagined movement. Fourteen healthy subjects participated in six experimental sessions held on non-consecutive days. The timing of stimulation delivery was determined offline based on the contingent negative variation (CNV) of electroencephalography brain data obtained during imagined dorsiflexion. Afferent stimulation was provided via a single pulse ES to the peripheral nerve paired, based on the CNV, with motor imagination of ankle dorsiflexion. A significant decrease (P = 0.001) in the excitability of the cortical projection of TA was observed when the afferent volley from the ES of the tibial nerve (TN) reached the cortex at the onset of motor imagination based on the CNV. When TN stimulation was delivered before (P = 0.62), or after (P = 0.23) imagined movement onset there was no significant effect. Nor was a significant effect found when ES of the TN was applied independent of imagined movement (P = 0.45). Therefore, the excitability of the cortical projection to a muscle can be inhibited when ES of the nerve supplying the antagonist muscle is precisely paired with the onset of imagined movement. PMID:26648859

  18. Combining modalities with different latencies for optimal motor control.

    PubMed

    Bissmarck, Fredrik; Nakahara, Hiroyuki; Doya, Kenji; Hikosaka, Okihide

    2008-11-01

    Feedback signals may be of different modality, latency, and accuracy. To learn and control motor tasks, the feedback available may be redundant, and it would not be necessary to rely on every accessible feedback loop. Which feedback loops should then be utilized? In this article, we propose that the latency is a critical factor to determine which signals will be influential at different learning stages. We use a computational framework to study the role of feedback modules with different latencies in optimal motor control. Instead of explicit gating between modules, the reinforcement learning algorithm learns to rely on the more useful module. We tested our paradigm for two different implementations, which confirmed our hypothesis. In the first, we examined how feedback latency affects the competitiveness of two identical modules. In the second, we examined an example of visuomotor sequence learning, where a plastic, faster somatosensory module interacts with a preacquired, slower visual module. We found that the overall performance depended on the latency of the faster module alone, whereas the relative latency determines the independence of the faster from the slower. In the second implementation, the somatosensory module with shorter latency overtook the slower visual module, and realized better overall performance. The visual module played different roles in early and late learning. First, it worked as a guide for the exploration of the somatosensory module. Then, when learning had converged, it contributed to robustness against system noise and external perturbations. Overall, these results demonstrate that our framework successfully learns to utilize the most useful available feedback for optimal control.

  19. Modeling and simulation of control system for 3-phase variable-reluctance stepper motor

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Li, Hong

    2010-12-01

    In this paper, firstly, we establish the mode of the VR stepper motor on open-loop system of the stepper motor. Secondly, we control the exciting model, realize simulation of the circuit of unipolar driver and chop constant current control. Finally, we analyze the simulation results. And the results shows that these control methods can be applied to the actual motion of the system, which can improve the characteristics of the motion system of the stepper motor.

  20. Motor abundance and control structure in the golf swing.

    PubMed

    Morrison, A; McGrath, D; Wallace, E S

    2016-04-01

    Variability and control structure are under-represented areas of golf swing research. This study investigated the use of the abundant degrees of freedom in the golf swing of high and intermediate skilled golfers using uncontrolled manifold (UCM) analysis. The variance parallel to (VUCM) and orthogonal to (VOrth) the UCM with respect to the orientation and location of the clubhead were calculated. The higher skilled golfers had proportionally higher values of VUCM than lower skilled players for all measured outcome variables. Motor synergy was found in the control of the orientation of the clubhead and the combined outcome variables but not for clubhead location. Clubhead location variance zeroed-in on impact as has been previously shown, whereas clubhead orientation variance increased near impact. Both skill levels increased their control over the clubhead location leading up to impact, with more control exerted over the clubhead orientation in the early downswing. The results suggest that to achieve higher skill levels in golf may not lie simply in optimal technique, but may lie more in developing control over the abundant degrees of freedom in the body.

  1. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  2. Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools

    NASA Astrophysics Data System (ADS)

    Climente-Alarcon, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Pons-Llinares, J.; Roger-Folch, J.; Jover-Rodriguez, P.; Arkkio, A.

    2011-02-01

    The present work is focused on the diagnosis of mixed eccentricity faults in induction motors via the study of currents demanded by the machine. Unlike traditional methods, based on the analysis of stationary currents (Motor Current Signature Analysis (MCSA)), this work provides new findings regarding the diagnosis approach proposed by the authors in recent years, which is mainly focused on the fault diagnosis based on the analysis of transient quantities, such as startup or plug stopping currents (Transient Motor Current Signature Analysis (TMCSA)), using suitable time-frequency decomposition (TFD) tools. The main novelty of this work is to prove the usefulness of tracking the transient evolution of high-order eccentricity-related harmonics in order to diagnose the condition of the machine, complementing the information obtained with the low-order components, whose transient evolution was well characterised in previous works. Tracking of high-order eccentricity-related harmonics during the transient, through their associated patterns in the time-frequency plane, may significantly increase the reliability of the diagnosis, since the set of fault-related patterns arising after application of the corresponding TFD tool is very unlikely to be caused by other faults or phenomena. Although there are different TFD tools which could be suitable for the transient extraction of these harmonics, this paper makes use of a Wigner-Ville distribution (WVD)-based algorithm in order to carry out the time-frequency decomposition of the startup current signal, since this is a tool showing an excellent trade-off between frequency resolution at both high and low frequencies. Several simulation results obtained with a finite element-based model and experimental results show the validity of this fault diagnosis approach under several faulty and operating conditions. Also, additional signals corresponding to the coexistence of the eccentricity and other non-fault related phenomena making

  3. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  4. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    PubMed

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  5. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  6. Stepping motor control processor reference manual. Volume I

    SciTech Connect

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-06-06

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained.

  7. Solid state circuit controls direction, speed, and braking of dc motor

    NASA Technical Reports Server (NTRS)

    Hanna, M. F.

    1966-01-01

    Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.

  8. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  9. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR TEACHER USE IN DIRECTING INDIVIDUAL STUDY OF DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 INSTRUCTOR'S SHEETS GIVES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, REFERENCES, AND STEP-BY-STEP SOLUTIONS OF THE…

  10. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  11. Fine Motor Control Is Related to Cognitive Control in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Chen, Chih-Chia; Ringenbach, Shannon D. R.; Albert, Andrew; Semken, Keith

    2014-01-01

    The connection between human cognitive development and motor functioning has been systematically examined in many typical and atypical populations; however, only a few studies focus on people with Down syndrome (DS). Twelve adolescents with DS participated and their cognitive control, measured by the Corsi-Block tapping test (e.g., visual working…

  12. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    PubMed

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2016-06-14

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  13. Anodal tDCS over the primary motor cortex improves motor imagery benefits on postural control: A pilot study.

    PubMed

    Saruco, Elodie; Rienzo, Franck Di; Nunez-Nagy, Susana; Rubio-Gonzalez, Miguel A; Jackson, Philip L; Collet, Christian; Saimpont, Arnaud; Guillot, Aymeric

    2017-03-28

    Performing everyday actions requires fine postural control, which is a major focus of functional rehabilitation programs. Among the various range of training methods likely to improve balance and postural stability, motor imagery practice (MIP) yielded promising results. Transcranial direct current stimulation (tDCS) applied over the primary motor cortex was also found to potentiate the benefits of MIP on upper-limb motor tasks. Yet, combining both techniques has not been tested for tasks requiring fine postural control. To determine the impact of MIP and the additional effects of tDCS, 14 participants performed a postural control task before and after two experimental (MIP + anodal or sham tDCS over the primary motor cortex) and one control (control task + sham tDCS) conditions, in a double blind randomized study. Data revealed a significant decrease of the time required to perform the postural task. Greater performance gains were recorded when MIP was paired with anodal tDCS and when the task involved the most complex postural adjustments. Altogether, findings highlight short-term effects of MIP on postural control and suggest that combining MIP with tDCS might also be effective in rehabilitation programs for regaining postural skills in easily fatigable persons and neurologic populations.

  14. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations.

  15. Orion Launch Abort Vehicle Attitude Control Motor Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  16. Common mode EMI prediction and research in induction motor for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gao, Yinhan; Wang, Juxian; Yang, Kaiyu; Wang, Tianhao; An, Zhanyang

    2015-02-01

    This paper presents an equivalent circuit of high frequency voltage-controlled switch model of IGBT, and a surge voltage absorption circuit as well. This model can not only significantly reduce the surge voltage, decrease EMI noise, but also obviously inhibit common mode voltage towards the DC power mains.

  17. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller.

  18. Space motion sickness: The sensory motor controls and cardiovascular correlation

    NASA Astrophysics Data System (ADS)

    Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.

    Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma

  19. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  20. Study on self-tuning pole assignment speed control of an ultrasonic motor.

    PubMed

    Shi, Jingzhuo; Bo, Liu; Yu, Zhang

    2011-10-01

    Ultrasonic motors have a heavy nonlinearity, which varies with driving conditions. The nonlinearity is a problem as an accurate motion actuator for industrial applications and it is important to eliminate the nonlinearity in order to improve the control performance. In general, complicated control strategies are used to deal with the nonlinearity of ultrasonic motors. This paper proposes a new speed control scheme for ultrasonic motors to overcome the nonlinearity employing a simplified self-tuning control. The speed control model which can reflect the main nonlinear characteristics is obtained using a system identification method based on the step response. Then, a pole assignment speed controller is designed. To avoid the influence of the motor's nonlinearity on the speed control performance, a control parameters' on-line self-tuning strategy utilizing the gain of the model is designed. The proposed control strategy is realized using a DSP circuit, and experiments prove the validity of the proposed speed control scheme.

  1. Are Articulatory Settings Mechanically Advantageous for Speech Motor Control?

    PubMed Central

    Ramanarayanan, Vikram; Lammert, Adam; Goldstein, Louis; Narayanan, Shrikanth

    2014-01-01

    We address the hypothesis that postures adopted during grammatical pauses in speech production are more “mechanically advantageous” than absolute rest positions for facilitating efficient postural motor control of vocal tract articulators. We quantify vocal tract posture corresponding to inter-speech pauses, absolute rest intervals as well as vowel and consonant intervals using automated analysis of video captured with real-time magnetic resonance imaging during production of read and spontaneous speech by 5 healthy speakers of American English. We then use locally-weighted linear regression to estimate the articulatory forward map from low-level articulator variables to high-level task/goal variables for these postures. We quantify the overall magnitude of the first derivative of the forward map as a measure of mechanical advantage. We find that postures assumed during grammatical pauses in speech as well as speech-ready postures are significantly more mechanically advantageous than postures assumed during absolute rest. Further, these postures represent empirical extremes of mechanical advantage, between which lie the postures assumed during various vowels and consonants. Relative mechanical advantage of different postures might be an important physical constraint influencing planning and control of speech production. PMID:25133544

  2. Motor Disorder and Anxious and Depressive Symptomatology: A Monozygotic Co-Twin Control Approach

    ERIC Educational Resources Information Center

    Pearsall-Jones, Jillian G.; Piek, Jan P.; Rigoli, Daniela; Martin, Neilson C.; Levy, Florence

    2011-01-01

    The aim of this study was to investigate the relationship between poor motor ability and anxious and depressive symptomatology in child and adolescent monozygotic twins. The co-twin control design was used to explore these mental health issues in MZ twins concordant and discordant for a motor disorder, and controls. This methodology offers the…

  3. Parameter measurement of synchronous reluctance motor using LC resonance

    NASA Astrophysics Data System (ADS)

    Ahn, Joonseon; Kim, Ki-Chan; Lee, Ju

    2006-04-01

    The motor characterizing parameters are most important factors to drive precisely, effectively, and robustly. Especially, the exact knowledge of synchronous inductance is necessary to control the torque precisely in synchronous reluctance motor (SynRM). Therefore many works have been done for the exact measurement of motor parameters. In this paper, we propose the simple method of measuring the motor parameters, especially measuring the synchronous inductance of SynRM, which can overcome the demerits of conventional methods and measure the exact values. The proposed method uses the resonance phenomenon between the phase inductance and capacitors externally connected.

  4. Controlling a Four-Quadrant Brushless Three-Phase dc Motor

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.

  5. FPGA-based genetic algorithm implementation for AC chopper fed induction motor

    NASA Astrophysics Data System (ADS)

    Mahendran, S.; Gnanambal, I.; Maheswari, A.

    2016-12-01

    Genetic algorithm (GA)-based harmonic elimination technique is proposed for designing AC chopper. GA is used to calculate optimal firing angles to eliminate lower order harmonics in output voltage. Total harmonic distortion of output voltage is taken for the fitness function used in the GA. Thus, the ratings of the load are not mandatory to be known for calculating the switching angles using proposed technique. For the performance assessment of GA, Newton-Raphson (NR) method is applied in this present work. Simulation results show that the proposed technique is better in terms of less computational complexity and quick convergence. Simulation results were verified by field programmable gate array controller-based prototype. Simulation study and experimental investigations show that the proposed GA method is superior to the conventional methods.

  6. Power-Factor Controller With Regenerative Braking

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1982-01-01

    Modified power-factor motor-control circuit operates motor as a phase-controlled generator when load attempts to turn at higher than synchronous speed. An induction motor is required to act at times as a brake. Circuit modification allows power-factor controller to save energy in motoring mode and convert automatically to an induction-generator controller in generating, or braking, mode.

  7. Measure and Control Technology Based on DSP for HighPrecision Scanning Motor

    NASA Astrophysics Data System (ADS)

    Yang, N.; Yang, X. Y.; Wu, B.; Ye, S. H.

    2006-10-01

    A welding seam tracking visual sensor based on laser scanning is designed to solve the problems, such as indistinct image, difficulty in processing image etc., caused by serious arc light interference during welding. This visual sensor is mainly composed of a scanning motor, a linear-array CCD, a scanning rotating mirror and a semiconductor laser. Because the sensor measurement precision relies dramatically on the rotate speed stability of the scanning motor, the crux in the sensor design is to control the rotate speed of the scanning motor. Selecting a brushless direct current motor as the scanning motor and using TMS320F2812 DSP to drive it, we adopted fuzzy algorithm to control the motor rotate speed and made the steadiness error of the rotate speed less than 0.5%, which guarantees the sensor measurement precision and is of great importance for enhancing the welding quality of the industry welding robot.

  8. A controlled stand-alone single-phase induction generator

    SciTech Connect

    Ojo, O.; Gonoh, B.

    1995-12-31

    This paper sets forth the steady-state and dynamic performance characteristics of a novel stand-alone, single-phase induction generator scheme in which the load voltage and frequency are regulated using a full-bridge pulse-width modulation (PWM) DC/AC inverter. A battery feeding the PWM inverter supplies (receives) power to (from) the generator when load demand is greater (lesser) than the power supplied from the prime mover which could be diesel engine, wind or hydro.

  9. 27. Pump Room interiorDrainage pump motor control center with main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Pump Room interior-Drainage pump motor control center with main valve control panel at right. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  10. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    NASA Technical Reports Server (NTRS)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  11. Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control

    PubMed Central

    Kuo, Sheng-Han; Tai, Chun-Hwei; Liou, Jyun-You; Pei, Ju-Chun; Chang, Chia-Yuan; Wang, Yi-Mei; Liu, Wen-Chuan; Wang, Tien-Rei

    2016-01-01

    Neuronal oscillations at beta frequencies (20–50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson’s disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy. PMID:27797341

  12. Spatial and temporal lingual coarticulation and motor control in preadolescents.

    PubMed

    Zharkova, Natalia; Hewlett, Nigel; Hardcastle, William J; Lickley, Robin J

    2014-04-01

    PURPOSE In this study, the authors compared coarticulation and lingual kinematics in preadolescents and adults in order to establish whether preadolescents had a greater degree of random variability in tongue posture and whether their patterns of lingual coarticulation differed from those of adults. METHOD High-speed ultrasound tongue contour data synchronized with the acoustic signal were recorded from 15 children (ages 10-12 years) and 15 adults. Tongue shape contours were analyzed at 9 normalized time points during the fricative phase of schwa-fricative-/a/ and schwa-fricative-/i/ sequences with the consonants /s/ and /ʃ/. RESULTS There was no significant age-related difference in random variability. Where a significant vowel effect occurred, the amount of coarticulation was similar in the 2 groups. However, the onset of the coarticulatory effect on preadolescent /ʃ/ was significantly later than on preadolescent /s/, and also later than on adult /s/ and /ʃ/. CONCLUSIONS Preadolescents have adult-like precision of tongue control and adult-like anticipatory lingual coarticulation with respect to spatial characteristics of tongue posture. However, there remains some immaturity in the motor programming of certain complex tongue movements.

  13. Key parameters controlling the performance of catalytic motors

    NASA Astrophysics Data System (ADS)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  14. Osseoperception: An Implant Mediated Sensory Motor Control- A Review

    PubMed Central

    Karani, Jyoti T.; Khanna, Anshul; Badwaik, Praveen; Pai, Ashutosh

    2015-01-01

    Osseointegration of dental implants has been researched extensively, covering various aspects such as bone apposition, biomechanics and microbiology etc however, physiologic integration of implants and the associated prosthesis in the body has received very little attention. This integration is due to the development of a special sensory ability, which is able to restore peripheral sensory feedback mechanism. The underlying mechanism of this so-called ‘osseoperception’ phenomenon remains a matter of debate. The following article reveals the histological, neurophysiologic and psychophysical aspects of osseoperception. A comprehensive research to provide scientific evidence of osseoperception was carried out using various online resources such as Pubmed, Google scholar etc to retrieve studies published between 1985 to 2014 using the following keywords: “osseoperception”, “mechanoreceptors”, “tactile sensibility”. Published data suggests that a peripheral feedback pathway can be restored with osseointegrated implants. This implant-mediated sensory-motor control may have important clinical implications in the normal functioning of the implant supported prosthesis. PMID:26501033

  15. Relationship between writing skills and visual-motor control in low-vision students.

    PubMed

    Atasavun Uysal, Songül; Aki, Esra

    2012-08-01

    The purpose of this study was to investigate the relationship between handwriting skills and visual motor control among students with low vision and to compare this with the performance of their normal sighted peers. 42 students with low vision and 26 normal sighted peers participated. The Bruininks-Oseretsky Motor Proficiency Test-Short Form (BOTMP-SF), Jebsen Taylor Hand Function Test's writing subtest, and a legibility assessment were administered. Significant differences were found between groups for students' writing speed, legibility, and visual motor control. Visual motor control was correlated both writing speed and legibility. Students with low vision had poorer handwriting performance, with lower legibility and slower writing speed. Writing performance time was related to visual motor control in students with low vision.

  16. Disrupted Saccade Control in Chronic Cerebral Injury: Upper Motor Neuron-Like Disinhibition in the Ocular Motor System

    PubMed Central

    Rizzo, John-Ross; Hudson, Todd E.; Abdou, Andrew; Lui, Yvonne W.; Rucker, Janet C.; Raghavan, Preeti; Landy, Michael S.

    2017-01-01

    Saccades rapidly direct the line of sight to targets of interest to make use of the high acuity foveal region of the retina. These fast eye movements are instrumental for scanning visual scenes, foveating targets, and, ultimately, serve to guide manual motor control, including eye–hand coordination. Cerebral injury has long been known to impair ocular motor control. Recently, it has been suggested that alterations in control may be useful as a marker for recovery. We measured eye movement control in a saccade task in subjects with chronic middle cerebral artery stroke with both cortical and substantial basal ganglia involvement and in healthy controls. Saccade latency distributions were bimodal, with an early peak at 60 ms (anticipatory saccades) and a later peak at 250 ms (regular saccades). Although the latencies corresponding to these peaks were the same in the two groups, there were clear differences in the size of the peaks. Classifying saccade latencies relative to the saccade “go signal” into anticipatory (latencies up to 80 ms), “early” (latencies between 80 and 160 ms), and “regular” types (latencies longer than 160 ms), stroke subjects displayed a disproportionate number of anticipatory saccades, whereas control subjects produced the majority of their saccades in the regular range. We suggest that this increase in the number of anticipatory saccade events may result from a disinhibition phenomenon that manifests as an impairment in the endogenous control of ocular motor events (saccades) and interleaved fixations. These preliminary findings may help shed light on the ocular motor deficits of neurodegenerative conditions, results that may be subclinical to an examiner, but clinically significant secondary to their functional implications. PMID:28184211

  17. Links between motor control and classroom behaviors: Moderation by low birth weight.

    PubMed

    Razza, Rachel A; Martin, Anne; Brooks-Gunn, Jeanne

    2016-08-01

    It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors.

  18. Low-Frequency Oscillations and Control of the Motor Output

    PubMed Central

    Lodha, Neha; Christou, Evangelos A.

    2017-01-01

    A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107

  19. Design of a Mode Conversion Ultrasonic Motor for Position Control

    NASA Technical Reports Server (NTRS)

    LeLetty, Ronan; Bouchilloux, Philippe; Claeyssen, Frank; Lhermet, Nicolas

    1996-01-01

    The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.

  20. Experimental testing of axial induction based control strategies for wake control and wind farm optimization

    NASA Astrophysics Data System (ADS)

    Bartl, J.; Sætran, L.

    2016-09-01

    In state-of-the-art wind farms each turbine is controlled individually aiming for optimum turbine power not considering wake effects on downstream turbines. Wind farm control concepts aim for optimizing the overall power output of the farm taking wake interactions between the individual turbines into account. This experimental wind tunnel study investigates axial induction based control concepts. It is examined how the total array efficiency of two in-line model turbines is affected when the upstream turbine's tip speed ratio (λcontrol) or blade pitch angle (β-control) is modified. The focus is particularly directed on how the wake flow behind the upstream rotor is affected when its axial induction is reduced in order to leave more kinetic energy in the wake to be recovered by a downstream turbine. It is shown that the radial distribution of kinetic energy in the wake area can be controlled by modifying the upstream turbine's tip speed ratio. By pitching out the upstream turbine's blades, however, the available kinetic energy in the wake is increased at an equal rate over the entire blade span. Furthermore, the total array efficiency of the two turbine setup is mapped depending on the upstream turbines tip speed ratio and pitch angle. For a small turbine separation distance of x/D=3 the downstream turbine is able to recover the major part of the power lost on the upstream turbine. However, no significant increase in the two-turbine array efficiency is achieved by altering the upstream turbine's operation point away from its optimum.

  1. Grasp Force Feedback Control of Robot Hand Using Stepping Motors, Gears and Plate Springs

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroyuki; Han, Ping

    In this paper, a grasp force feedback control method of a robot hand attached to a single-link robot arm is proposed, and the usefulness of the grasp force feedback control method is confirmed theoretically and experimentally. The robot hand consists of two permanent-magnet-type stepping motors, reduction gears and plate springs. In the design of the grasp force feedback control system, the start-stop performance without missing steps concerning stepping motors is effectively utilized. For the shock reduction of the robot hand mechanism using stepping motors, the stepping motors should be stopped at a lower pulse rate. Therefore, the grasp force feedback control system is designed to finish the grasp force feedback control at a lower pulse rate of the stepping motors. For this purpose, the control method of the stepping motors using the angular velocity pattern of trapezoidal shape with a constant-velocity time and an estimated finish-time determined by the grasp force feedback control is devised. Then, numerical simulations using the equations of motion of the robot and the grasp force feedback control law have been carried out, and it is ascertained theoretically that the grasping force can be precisely controlled by the present grasp force feedback control method. Furthermore, experiments have been carried out, and the excellent performance of the grasp force feedback control is confirmed experimentally.

  2. PC based speed control of dc motor using fuzzy logic controller

    SciTech Connect

    Mandal, S.K.; Kanphade, R.D.; Lavekar, K.P.

    1998-07-01

    The dc motor is extensively used as constant speed drive in textile mills, paper mills, printing press, etc.. If the load and supply voltage are time varying, the speed will be changed. Since last few decades the conventional PID controllers are used to maintain the constant speed by controlling the duty ratio of Chopper. Generally, four quadrant chopper is used for regenerative braking and reverse motoring operation. Fuzzy Logic is newly introduced in control system. Fuzzy Control is based on Fuzzy Logic, a logical system which is too much closer in spirit to human thinking and natural language. The Fuzzy Logic Controller (FLC) provides a linguistic control strategy based on knowledge base of the system. Firstly, the machine is started very smoothly from zero to reference speed in the proposed scheme by increasing the duty ratio. Then change and rate of change of speed (dN, dN/dt), change and rate of change input voltage (dV, dV/dt) and load current are input to FLC. The new value of duty ratio is determined from the Fuzzy rule base and defuzzification method. The chopper will be 'ON' according to new duty ratio to maintain the constant speed. The dynamic and steady state performance of the proposed system is better than conventional control system. In this paper mathematical simulation and experimental implementation are carried out to investigate the drive performance.

  3. The relationship between executive function and fine motor control in young and older adults.

    PubMed

    Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M

    2017-01-01

    The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults.

  4. Prototype Motor Controllers Demonstrated for the James Webb Space Telescope Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    2004-01-01

    NASA is in the process of designing the James Webb Space Telescope. This telescope will investigate images of objects in deep space (stars, galaxies, etc.) by using light in the infrared region of the light spectrum. To make such observations, the telescope must have light sensors that operate at very cold temperatures, near absolute zero. To achieve this low-temperature tolerance, designers must place the light sensors behind a Sun shield that will prevent sunlight, and its heat, from reaching the sensors. In this cold region inside the telescope, electric motors and some motor controls must operate at temperatures near 40 K (40 degrees above absolute zero). These motors will be used to position light filters needed by the telescope. There are motors that operate at the low temperatures, but there is little technology for low-temperature motor-control electronics. The drawing shows how the motors and their controls are positioned behind the Sun shield. Simplified version of the layout of the motor and control electronics that are located, as dictated by mission requirements, in the cold zone of the James Webb Space Telescope. A Sun shield provides protection and isolation of these electronics from the heat of the rays of the sun. Room temperature compoenets (control computer, motor select command, motor phase drive, power supply, parallel to serial, and sun shield) as well as 40-kelvin components (motor select, serial to parallel, and motors) are shown. The Low Temperature Electronics Group at the NASA Glenn Research Center has been working to develop motor control electronics that will operate at a temperature of 40 K. The group conducted tests to determine which electronic components will operate at such very low temperatures. Then, components that were determined to operate successfully at the low temperatures were used to design low-temperature motor-controller circuits. A prototype motor controller circuit was built, evaluated, and demonstrated to operate at

  5. A new method for speed control of a DC motor using magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc Hung; Choi, Seung-Bok

    2014-03-01

    In this research, a new method to control speed of DC motor using magnetorheological (MR) clutch is proposed and realized. Firstly, the strategy of a DC motor speed control using MR clutch is proposed. The MR clutch configuration is then proposed and analyzed based on Bingham-plastic rheological model of MR fluid. An optimal designed of the MR clutch is then studied to find out the optimal geometric dimensions of the clutch that can transform a required torque with minimum mass. A prototype of the optimized MR clutch is then manufactured and its performance characteristics are experimentally investigated. A DC motor speed control system featuring the optimized MR clutch is designed and manufactured. A PID controller is then designed to control the output speed of the system. In order to evaluate the effectiveness of the proposed DC motor speed control system, experimental results of the system such as speed tracking performance are obtained and presented with discussions.

  6. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.

    PubMed

    Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing

    2007-11-01

    A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.

  7. Motor Control Test Responses to Balance Perturbations in Adults with an Intellectual Disability

    ERIC Educational Resources Information Center

    Hale, Leigh; Miller, Rebekah; Barach, Alice; Skinner, Margot; Gray, Andrew

    2009-01-01

    Background: The aims of this small exploratory study were to determine (1) whether adults with intellectual disability who had a recent history of falling had slower motor responses to postural perturbations than a sample of adults without disability when measured with the Motor Control Test (MCT) and (2) to identify any learning effects…

  8. Self-Controlled Practice Enhances Motor Learning in Introverts and Extroverts

    ERIC Educational Resources Information Center

    Kaefer, Angélica; Chiviacowsky, Suzete; Meira, Cassio de Miranda, Jr.; Tani, Go

    2014-01-01

    Purpose: The purpose of the present study was to investigate the effects of self-controlled feedback on the learning of a sequential-timing motor task in introverts and extroverts. Method: Fifty-six university students were selected by the Eysenck Personality Questionnaire. They practiced a motor task consisting of pressing computer keyboard keys…

  9. Effects of Dispositional Mindfulness on the Self-Controlled Learning of a Novel Motor Task

    ERIC Educational Resources Information Center

    Kee, Ying Hwa; Liu, Yeou-Teh

    2011-01-01

    Current literature suggests that mindful learning is beneficial to learning but its links with motor learning is seldom examined. In the present study, we examine the effects of learners' mindfulness disposition on the self-controlled learning of a novel motor task. Thirty-two participants undertook five practice sessions, in addition to a pre-,…

  10. Motor Signs Distinguish Children with High Functioning Autism and Asperger's Syndrome from Controls

    ERIC Educational Resources Information Center

    Jansiewicz, Eva M.; Goldberg, Melissa C.; Newschaffer, Craig J.; Denckla, Martha B.; Landa, Rebecca; Mostofsky, Stewart H.

    2006-01-01

    While many studies of motor control in autism have focused on specific motor signs, there has been a lack of research examining the complete range of subtle neuromotor signs. This study compared performance on a neurologic examination standardized for children (PANESS, Physical and Neurological Exam for Subtle Signs, Denckla ["1974 Developmental…

  11. Motor Planning and Control in Autism. A Kinematic Analysis of Preschool Children

    ERIC Educational Resources Information Center

    Forti, Sara; Valli, Angela; Perego, Paolo; Nobile, Maria; Crippa, Alessandro; Molteni, Massimo

    2011-01-01

    Kinematic recordings in a reach and drop task were compared between 12 preschool children with autism without mental retardation and 12 gender and age-matched normally developing children. Our aim was to investigate whether motor anomalies in autism may depend more on a planning ability dysfunction or on a motor control deficit. Planning and…

  12. Spectral Variability in the Aged Brain during Fine Motor Control

    PubMed Central

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231

  13. Spectral Variability in the Aged Brain during Fine Motor Control.

    PubMed

    Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C

    2016-01-01

    Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role.

  14. Fault tolerance control of phase current in permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Chen, Kele; Chen, Ke; Chen, Xinglong; Li, Jinying

    2014-08-01

    As the Photoelectric tracking system develops from earth based platform to all kinds of moving platform such as plane based, ship based, car based, satellite based and missile based, the fault tolerance control system of phase current sensor is studied in order to detect and control of failure of phase current sensor on a moving platform. By using a DC-link current sensor and the switching state of the corresponding SVPWM inverter, the failure detection and fault control of three phase current sensor is achieved. Under such conditions as one failure, two failures and three failures, fault tolerance is able to be controlled. The reason why under the method, there exists error between fault tolerance control and actual phase current, is analyzed, and solution to weaken the error is provided. The experiment based on permanent magnet synchronous motor system is conducted, and the method is proven to be capable of detecting the failure of phase current sensor effectively and precisely, and controlling the fault tolerance simultaneously. With this method, even though all the three phase current sensors malfunction, the moving platform can still work by reconstructing the phase current of the motor.

  15. Motor cortical control of movement speed with implications for brain-machine interface control

    PubMed Central

    Golub, Matthew D.; Yu, Byron M.; Schwartz, Andrew B.

    2014-01-01

    Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications. PMID:24717350

  16. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance.

    PubMed

    Conde, Patricia; Rodriguez, Mercedes; van der Touw, William; Jimenez, Ana; Burns, Matthew; Miller, Jennifer; Brahmachary, Manisha; Chen, Hui-ming; Boros, Peter; Rausell-Palamos, Francisco; Yun, Tae Jin; Riquelme, Paloma; Rastrojo, Alberto; Aguado, Begoña; Stein-Streilein, Joan; Tanaka, Masato; Zhou, Lan; Zhang, Junfeng; Lowary, Todd L; Ginhoux, Florent; Park, Chae Gyu; Cheong, Cheolho; Brody, Joshua; Turley, Shannon J; Lira, Sergio A; Bronte, Vincenzo; Gordon, Siamon; Heeger, Peter S; Merad, Miriam; Hutchinson, James; Chen, Shu-Hsia; Ochando, Jordi

    2015-06-16

    Tissue effector cells of the monocyte lineage can differentiate into different cell types with specific cell function depending on their environment. The phenotype, developmental requirements, and functional mechanisms of immune protective macrophages that mediate the induction of transplantation tolerance remain elusive. Here, we demonstrate that costimulatory blockade favored accumulation of DC-SIGN-expressing macrophages that inhibited CD8(+) T cell immunity and promoted CD4(+)Foxp3(+) Treg cell expansion in numbers. Mechanistically, that simultaneous DC-SIGN engagement by fucosylated ligands and TLR4 signaling was required for production of immunoregulatory IL-10 associated with prolonged allograft survival. Deletion of DC-SIGN-expressing macrophages in vivo, interfering with their CSF1-dependent development, or preventing the DC-SIGN signaling pathway abrogated tolerance. Together, the results provide new insights into the tolerogenic effects of costimulatory blockade and identify DC-SIGN(+) suppressive macrophages as crucial mediators of immunological tolerance with the concomitant therapeutic implications in the clinic.

  17. Remote control of myosin and kinesin motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Nakamura, Muneaki; Chen, Lu; Howes, Stuart C.; Schindler, Tony D.; Nogales, Eva; Bryant, Zev

    2014-09-01

    Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells. Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears—speed up, slow down or switch directions—when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.

  18. Wind Turbine Power Generation Emulation Via Doubly Fed Induction Generator Control

    DTIC Science & Technology

    2009-12-01

    AND ACRONYMS BNC Bayonette Neil-Concelamn connector DFIG Doubly Fed Induction Generator FPGA Field Programmable Gate Array IGBT Insulated Gate...Width Modulation ( PWM ) in which an algorithm involving space vectors are used to control the on and off times of pulsed signals. The generated signals...Clare, and G. M. Asher, “Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy

  19. SDRE control strategy applied to a nonlinear robotic including drive motor

    SciTech Connect

    Lima, Jeferson J. de E-mail: tusset@utfpr.edu.br E-mail: piccirillo@utfpr.edu.br Tusset, Angelo M. E-mail: tusset@utfpr.edu.br E-mail: piccirillo@utfpr.edu.br Janzen, Frederic C. E-mail: tusset@utfpr.edu.br E-mail: piccirillo@utfpr.edu.br Piccirillo, Vinicius E-mail: tusset@utfpr.edu.br E-mail: piccirillo@utfpr.edu.br Nascimento, Claudinor B. E-mail: tusset@utfpr.edu.br E-mail: piccirillo@utfpr.edu.br; Balthazar, José M.; Brasil, Reyolando M. L. R. da Fonseca

    2014-12-10

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.

  20. Straight and chopped DC performance data for a reliance EV-250AT motor with a General Electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.

  1. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  2. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control.

    PubMed

    Tipping, Murray J; Steel, Bradley C; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P

    2013-01-01

    The bacterial flagellar motor, one of the few rotary motors in nature, produces torque to drive the flagellar filament by ion translocation through membrane-bound stator complexes. We used the light-driven proton pump proteorhodopsin (pR) to control the proton-motive force (PMF) in vivo by illumination. pR excitation was shown to be sufficient to replace native PMF generation, and when excited in cells with intact native PMF generation systems increased motor speed beyond the physiological norm. We characterized the effects of rapid in vivo PMF changes on the flagellar motor. Transient PMF disruption events from loss of illumination caused motors to stop, with rapid recovery of their previous rotation rate after return of illumination. However, extended periods of PMF loss led to stepwise increases in rotation rate upon PMF return as stators returned to the motor. The rate constant for stator binding to a putative single binding site on the motor was calculated to be 0.06 s(-1). Using GFP-tagged MotB stator proteins, we found that transient PMF disruption leads to reversible stator diffusion away from the flagellar motor, showing that PMF presence is necessary for continued motor integrity, and calculated a stator dissociation rate of 0.038 s(-1).

  3. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  4. Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson's disease.

    PubMed

    Tereshchenko, Julia; Maddalena, Andrea; Bähr, Mathias; Kügler, Sebastian

    2014-05-01

    Neurotrophic factors have raised hopes to be able to cure symptoms and to prevent progressive neurodegeneration in devastating neurological diseases. Gene therapy by means of viral vectors can overcome the hurdle of targeted delivery, but its current configuration is irreversible and thus much less controllable than that of classical pharmacotherapies. We thus aimed at developing a strategy allowing for both curative and controllable neurotrophic factor expression. Therefore, the short-term, intermittent and reversible expression of a neutrophic factor was evaluated for therapeutic efficacy in a slowly progressive animal model of Parkinson's disease (PD). We demonstrate that short-term induced expression of glial cell line derived neurotrophic factor (GDNF) is sufficient to provide i) substantial protection of nigral dopaminergic neurons from degeneration and ii) restoration of dopamine supply and motor behaviour in the partial striatal 6-OHDA model PD. These neurorestorative effects of GDNF lasted several weeks beyond the time of its expression. Later on, therapeutic efficacy ceased, but was restored by a second short induction of GDNF expression, demonstrating that monthly application of the inducing drug mifepristone was sufficient to maintain neuroprotective and neurorestorative GDNF levels. These findings suggest that forthcoming gene therapies for PD or other neurodegenerative disorders can be designed in a way that low frequency application of an approved drug can provide controllable and therapeutically efficient levels of GDNF or other neurotrophic factors. Neurotrophic factor expression can be withdrawn in case of off-target effects or sufficient clinical benefit, a feature that may eventually increase the acceptance of gene therapy for less advanced patients, which may profit better from such approaches.

  5. Construction of AC Motor Controllers for NOvA Experiment Upgrades

    SciTech Connect

    Cooley, Patrick; /Fermilab

    2011-08-04

    I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {nu}{sub e} Appearance (NOvA) Experiment further down the beam pipe. In total, I built and tested ten ac motor controllers for new beam operations in the NOvA experiment. These units will prove to be durable and provide extremely accurate beam placement for NOvA Experiment far into the future.

  6. 78 FR 719 - California State Motor Vehicle Pollution Control Standards; Urban Buses; Request for Waiver of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... public transit agencies that operate urban buses and other transit vehicles; additionally, the... requirements for California's public transit agencies that operate urban buses and other transit vehicles... AGENCY California State Motor Vehicle Pollution Control Standards; Urban Buses; Request for Waiver...

  7. Four quadrant control circuit for a brushless three-phase dc motor

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    A control circuit is provided for a brushless three-phase dc motor which affords four quadrant control from a single command. The control circuit probes acceleration of the motor in both clockwise and counterclockwise directions and braking and generation in both clockwise and counterclockwise directions. In addition to turning on individual transistors of the transistor pairs connected to the phase windings of the motor for 120 deg periods while the other transistor of that pair is off, the control circuit also provides, in a future mode of operation, turning the two transistors of each pair on and off alternately at a phase modulation frequency during such a 120 deg period. A feedback signal is derived which is proportional to the motor current and which has a polarity consistent with the command signal, such that negative feedback results.

  8. Stability and Speed Control of a Series-Wound DC Motor

    NASA Astrophysics Data System (ADS)

    Khoroshun, A. S.

    2016-07-01

    A speed control for a series-wound DC motor is proposed. It is shown that steady-state rotation is stabile and robust. Stability is analyzed using a quadratic Lyapunov function. Its explicit expression is derived

  9. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  10. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    PubMed

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  11. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM.

  12. Applying principles of motor learning and control to upper extremity rehabilitation.

    PubMed

    Muratori, Lisa M; Lamberg, Eric M; Quinn, Lori; Duff, Susan V

    2013-01-01

    The purpose of this article is to provide a brief review of the principles of motor control and learning. Different models of motor control from historical to contemporary are presented with emphasis on the Systems model. Concepts of motor learning including skill acquisition, measurement of learning, and methods to promote skill acquisition by examining the many facets of practice scheduling and use of feedback are provided. A fictional client case is introduced and threaded throughout the article to facilitate understanding of these concepts and how they can be applied to clinical practice.

  13. [Characteristics of pilot motor activity when different control systems are used during landing approaches].

    PubMed

    Brusnichkina, R I

    1980-01-01

    Complex motor acts of pilots during their professional work were investigated with control information presented in a different manner. Two experimental series were run: in a real flight and in a simulator. Parameters of muscle bioelectric activity, control movements and performance efficiency were used. Differences in the formation of motor acts were shown to depend on the scope and quality of the information presented. During required transfer from one mode to another the structure of working movements and performance efficiency obeyed at large changes in the information necessary for piloting. This was accompanied by an alteration in the developed stereotype of actions, including motor acts.

  14. Field oriented control of an induction machine in a high frequency link power system

    NASA Technical Reports Server (NTRS)

    Sul, Seung K.; Lipo, Thomas A.

    1988-01-01

    A field-oriented controlled induction machine drive operating with a high-frequency single-phase sinusoidal voltage link is presented. System performance is investigated by computer simulation and is verified by a test on a prototype system. A novel control loop to minimize the link voltage fluctuation is proposed. The capability of rapid demagnetization of the induction machine by current regulation is investigated. A current-modulation technique termed mode control is proposed, and its performance is compared with that of the conventional delta-modulation technique.

  15. 40 CFR 80.24 - Controls applicable to motor vehicle manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Controls applicable to motor vehicle... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Controls and Prohibitions § 80.24 Controls... emission control device which the Administrator has determined will be significantly impaired by the use...

  16. Prematurely delivered rats show improved motor coordination during sensory-evoked motor responses compared to age-matched controls.

    PubMed

    Roberto, Megan E; Brumley, Michele R

    2014-05-10

    The amount of postnatal experience for perinatal rats was manipulated by delivering pups one day early (postconception day 21; PC21) by cesarean delivery and comparing their motor behavior to age-matched controls on PC22 (the typical day of birth). On PC22, pups were tested on multiple measures of motor coordination: leg extension response (LER), facial wiping, contact righting, and fore- and hindlimb stepping. The LER and facial wiping provided measures of synchronous hind- and forelimb coordination, respectively, and were sensory-evoked. Contact righting also was sensory-evoked and provided a measure of axial coordination. Stepping provided a measure of alternated forelimb and hindlimb coordination and was induced with the serotonin receptor agonist quipazine. Pups that were delivered prematurely and spent an additional day in the postnatal environment showed more bilateral limb coordination during expression of the LER and facial wiping, as well as a more mature righting strategy, compared to controls. These findings suggest that experience around the time of birth shapes motor coordination and the expression of species-typical behavior in the developing rat.

  17. Measurement Structure of the Wolf Motor Function Test: Implications for Motor Control Theory

    PubMed Central

    Woodbury, Michelle; Velozo, Craig A.; Thompson, Paul A.; Light, Kathye; Uswatte, Gitendra; Taub, Edward; Winstein, Carolee J.; Morris, David; Blanton, Sarah; Nichols-Larsen, Deborah S.; Wolf, Steven L.

    2013-01-01

    Background Tools chosen to measure poststroke upper-extremity rehabilitation outcomes must match contemporary theoretical expectations of motor deficit and recovery because an assessment’s theoretical underpinning forms the conceptual basis for interpreting its score. Objective The purpose of this study was to investigate the theoretical framework of the Wolf Motor Function Test (WMFT) by (1) determining whether all items measured a single underlying trait and (2) examining the congruency between the hypothesized and the empirically determined item difficulty orders. Methods Confirmatory factor analysis (CFA) and Rasch analysis were applied to existing WMFT Functional Ability Rating Scale data from 189 participants in the EXCITE (Extremity Constraint-Induced Therapy Evaluation) trial. Fit of a 1-factor CFA model (all items) was compared with the fit of a 2-factor CFA model (factors defined according to item object-grasp requirements) with fit indices, model comparison test, and interfactor correlations. Results One item was missing sufficient data and therefore removed from analysis. CFA fit indices and the model-comparison test suggested that both models fit equally well. The 2-factor model yielded a strong interfactor correlation, and 13 of 14 items fit the Rasch model. The Rasch item difficulty order was consistent with the hypothesized item difficulty order. Conclusion The results suggest that WMFT items measure a single construct. Furthermore, the results depict an item difficulty hierarchy that may advance the theoretical discussion of the person ability versus task difficulty interaction during stroke recovery. PMID:20616302

  18. Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior.

    PubMed

    Sakaguchi, Yutaka; Tanaka, Masato; Inoue, Yasuyuki

    2015-07-01

    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy.

  19. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  20. Preschoolers' motor and verbal self-control strategies during a resistance-to-temptation task.

    PubMed

    Manfra, Louis; Davis, Kelly D; Ducenne, Lesley; Winsler, Adam

    2014-01-01

    Although prior research has shown that young children exhibit enhanced self-control when they use verbal strategies provided through adult instructions, little work has examined the role of children's spontaneous verbalizations or motor behavior as strategies for enhancing self-control. The present study examined the usefulness of spontaneous verbal and motor strategies for 39 3- and 4-year-old children's ability to exercise self-control during a resistance-to-temptation task. After a 2-min play period, participants were asked by an experimenter not to touch an attractive train set while he was out of the room. Children were videotaped during the 3-min waiting period and videos were coded for frequency and duration of touches, motor movements, and verbalizations. Results indicated that self-control was improved by using both motor and verbal strategies. Children who were unable to resist touching the forbidden toy used limited motor or verbal strategies. These findings add to the growing literature demonstrating the positive role of verbalizations on cognitive control and draw attention to motor behaviors as additional strategies used by young children to exercise self-control.