Science.gov

Sample records for inductive plasma source

  1. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  2. Inductively coupled plasma source for VASIMR engine

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Smolyakov, A. I.; Sydorenko, D. Y.; Sagdeev, R. Z.; Krasheninnikov, S. I.; Shevchenko, V. I.

    2004-11-01

    Various devices for plasma production differ in the way of plasma coupling to the electrical energy source. Power losses in the chain from the AC power line to the power deposited into the electrons are the most important for the overall efficiency of the plasma source while the losses to ionization, radiation and walls are typically very similar and do not depend on a mechanism of the electron interaction with the electromagnetic field. Inductively coupled plasma (ICP) discharges with ferromagnetic cores, seems to be the most suitable candidate for a primary plasma source for VASIMR engine. Such commercial ICPs have coupling efficiency up to 98% (99% in laboratory devices). Combined with compact and efficient (90-95%) rf power converters operating at f < 1 MHz, it will allow to achieve high overall efficiency of plasma production and reduce the energy cost of the ion in the first stage plasma source. An important advantage of such sources is the ability to continuously work in a wide dynamic range (two orders of magnitude) of plasma density contrary to e.g. helicon sources where efficient operation is possible only on certain discrete modes (and plasma density) with discontinuous transitions between them.

  3. Multi-fluid simulation models for inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kundrapu, Madhusudhan; Veitzer, Seth A.; Stoltz, Peter H.; Beckwith, Kristian R. C.; Smith, Jonathan

    2017-08-01

    A numerical simulation model for Inductively Coupled Plasma (ICP) sources and its implementation in the USim fluid-plasma software is presented. The electric field from the external antenna is solved using the vector potential equation with a variable dielectric constant. Plasma generation and species transport are solved using a set of collisional multi-fluid equations in diffusion form. USim results are benchmarked with experiments from the literature. Density and temperature distributions show good agreement both qualitatively and quantitatively with the measurements.

  4. Resonant planar antenna as an inductive plasma source

    SciTech Connect

    Guittienne, Ph.; Lecoultre, S.; Howling, A. A.; Hollenstein, Ch.; Fayet, P.; Larrieu, J.

    2012-04-15

    A resonant planar antenna as an inductive plasma source operating at 13.56 MHz inside a low pressure vacuum vessel is presented for potential plasma processing applications. Its principle consists in interconnecting elementary resonant meshes composed of inductive and capacitive elements. Due to its structure, the antenna shows a set of resonant modes associated with peaks of the real input impedance. Each of these modes is defined by its own current and voltage distribution oscillating at the frequency of the mode. A rectangular antenna of 0.55mx0.20m has been built, and first results obtained with argon plasmas are presented. Plasma generation is shown to be efficient as densities up to 4{center_dot}10{sup 17}m{sup -3} at 2000 W have been measured by microwave interferometry at a distance of 4 cm from the source plane. It is also demonstrated that the plasma couples inductively with the resonating currents flowing in the antenna above a threshold power of about 60 W. A non-uniformity of less than {+-}5% is obtained at 1000 W at a few centimeters above the antenna over 75% of its surface.

  5. Double and multi-pulsed operations of inductive plasma sources

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Bystritskii, V.; Walters, J. K.

    2005-06-01

    This paper describes the study of double and multi-pulsed operations of two inductive plasma sources (IPS) for the generation of intense ion/plasma flows. Due to its simplicity and high efficiency, as compared to conventional coaxial J×B plasma sources, the IPS looks promising for a variety of applications that require a multi-pulse mode of operation, such as: intense plasma and ion beams [15th International Conference on High-Power Particle Beams, St. Petersburg, Russia, July 2004]; high current pulsed Hall accelerators [Plasma Phys. Rep. 29 (2003) 261]; spacecraft propulsion [AIP Conf. Proc. 608 (2002) 627] and the formation of field-reversed configurations by colliding current carrying plasma tori in magnetic fusion devices [Nucl. Fusion 39 (1999) 2001]. Design, projected parameters and initial test results for several modifications of the IPS, including characteristics of the generated plasma flows, are given. The density and temperature ranged between 10 12 and 10 15 cm -3 and 2 and 10 eV, respectively. Plasma transport velocities were measured between (1-5)×10 6 cm/s. The multi-pulse mode produced a train of pulses with frequencies up to 10 kHz for several milliseconds at power levels of (1-2)×10 7 W and several joules of deposited energy per pulse. The potential and limitations of double and multi-pulse modes of the IPS are also discussed.

  6. Inductively coupled plasmas: Optimizing the inductive-coupling efficiency for large-area source design

    SciTech Connect

    Colpo, P.; Meziani, T.; Rossi, F.

    2005-03-01

    An inductively coupled plasma (ICP) source enabling high-density plasma generation was developed for large area processing. Technological difficulties related to the scaling up of the coil antenna, dielectric vacuum window, and gas distribution have been addressed. The proposed solution consists in using a magnetic core to concentrate the magnetic field produced by the antenna. Both are placed within the plasma chamber, and the gas injection is done through the magnetic pole. A 75x72- cm{sup 2} plasma source has been designed based on this solution. First, the electrical operation and coil geometries were optimized. The results show that the use of a low excitation frequency (2 MHz) increases the electrical efficiency of the magnetic core, enabling a higher plasma-density generation than at the classical radio frequency of 13.56 MHz. The antenna configuration providing the better uniformity is composed of three loops connected in parallel. Some tuning inductances in series with each loop were added to balance the rf power, i.e., the plasma density over the reactor area. Deviation from plasma uniformities better than 12% over 60x60 cm{sup 2} were achieved. Preliminary SiO{sub 2} etching experiments with CF{sub 4} gas show that the etching uniformity deviation reaches 7% over 60x60 cm{sup 2} with etching rates larger than 150 nm/min. These results are very promising and open the way to the successful scale-up of ICP sources to large areas.

  7. Anisotropic etching in inductive plasma source with no rf biasing

    SciTech Connect

    Park, Wontaek

    2008-09-15

    An inductive plasma source driven with phase shifted antenna coils at 2 MHz has been developed to accelerate ions for semiconductor etching process. The experiment was carried out in SF{sub 6}/O{sub 2}/Ar gas mixtures in the pressure range between 0.3 and 0.9 mTorr and rf power between 0.6 and 1.5 kW. Measurement of the ion energy spectra behind the wafer has shown high energy ions (up to 70 eV). An anisotropic etching (without rf biasing) of a polysilicon film has been demonstrated in this experiment. The acceleration of the electrons was numerically studied based on the fluid theory. The numerical results show that electrons affected by Lorentz force and thermal pressure gradient make axial electron currents, which contribute to form axial electric fields and ion acceleration.

  8. A Comparison of Spectroscopic Measurements of an Inductive Plasma Source with the INDUCT Model

    SciTech Connect

    Huebschman, M.L.; Bakshi, V.; Bengtson, R.D.; Ekerdt, J.G.; Vitello, P.; Wiley, J.C.; Xiang, N.

    1999-10-03

    Noninvasive spectroscopic measurements of an inductively driven hydrogen plasma source with density and temperature characteristic of plasma processing tools have been made with an ultimate application of cleaning of silicon substrates. These measurements allow full radial and axial profiles of electron density and temperature to be measured from absolutely calibrated multichannel spectroscopic measurements of upper state number densities and a collisional radiative model. Profiles were obtained over a range of powers from 50 to 200 W and pressures from 5 to 50 mTorr in hydrogen in a small cylindrical source. The hydrogen working gas and simple cylindrical geometry was chosen to simplify detailed comparisons with a 2D computational model (INDUCT95) which uses a fluid approximation for tbc plasma and neutral gas. The code calculates the inductive coupling of the 13.56 MHz RF source, the collisional, radiative, and wall losses as well as a chemistry model for electrons, H{sub 2}, H, H{sup +}, H{sub 2}, and H{sub 3}{sup +}. Simulation results were sensitive to the value for the wall coefficient. The simulation and experimental temperature and density profiles in r and z were in rough agreement, but some details were quite different. The simulated axial density profile was located under the coil while the measured density profiles extended well beyond the edges of the coil. The scaling of conditions with pressure and power was in rough agreement between experiment and simulations.

  9. Research on the mechanism of multiple inductively coupled plasma source for large area processing

    NASA Astrophysics Data System (ADS)

    Lee, Jangjae; Kim, Sijun; Kim, Daewoong; Kim, Kwangki; Lee, Youngseok; You, Shinjae

    2016-09-01

    In the plasma processing, inductively coupled plasma having the high-density is often used for high productivity. In large area plasma processing, the plasma can be generated by using the multi-pole connected in parallel. However, in case of this, it is difficult for power to be transferred to plasma uniformly. To solve the problem, we studied the mechanism of inductively coupled plasma connected in parallel. By using the transformer model, the multiple ICP source is treated. We also studied about the change of the plasma parameters over the time through the power balance equation and particle balance equation. Corresponding author.

  10. Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters

    NASA Astrophysics Data System (ADS)

    Jun, Hyun-Su; Chang, Hong-Young

    2008-01-01

    A large-area inductively coupled plasma (ICP) source capable of securing azimuthal plasma uniformity at a 40.00MHz has been developed. The antenna, referred to as a capacitor distributed resonance antenna, minimizes the azimuthally nonuniform antenna capacitive field with eight distributed vertical capacitors. The antenna was designed to maximize the antenna current using L-C series resonance. Based on plasma diagnostics with a 13.56MHz conventional ICP, comparative analyses were performed in terms of the plasma density, electron temperature, and frequency characteristics of the electron energy probability function (EEPF). In addition, the frequency dependency of the EEPF was found in the collisional (νen>ω ), normal skin [vth/δ≪(ω2+νen2)1/2] regime and the physical causes of were examined.

  11. Ionized PVD with an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  12. Characterization of the Inductively Heated Plasma Source IPG6-B

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.

  13. Three-Dimensional Electromagnetic Plasma Modeling of Inductively Coupled Plasma Source and Antenna

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Agarwal, Ankur; Kenney, Jason; Wu, Ming-Feng; Collins, Ken

    2012-10-01

    Inductively coupled plasmas (ICP) are widely used for etching and deposition in the semiconductor industry. As device dimensions shrink with concomitant decreased tolerance for variability, it is critical to improve plasma and process uniformity in all plasma processes. In ICP systems, one of the major sources of non-uniformity is the radio-frequency (RF) antenna used to generate the electromagnetic wave. Discontinuities at current feed and grounding locations as well as electromagnetic field variations along the antenna coils can perturb the azimuthal electric field, resulting in a non-uniform plasma. For plasma modeling of ICP systems, a related problem is how capacitive coupling from the antenna is accounted for. ICP models have generally considered field variation along the antenna and capacitive coupling using simplified circuit models for the antenna structures. Modern ICP antennas are however quite complicated, making circuit approximations of the antenna too crude for system design. A three-dimensional parallel plasma model is described in this paper, where the full set of Maxwell equations are solved in conjunction with plasma transport equations for the plasma and the antenna. Several examples from the use of this model in ICP system design are presented.

  14. Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source

    NASA Astrophysics Data System (ADS)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2017-03-01

    A large area antenna generates a plasma by both inductive and capacitive coupling; it is an electromagnetically coupled plasma source. In this work, experiments on a large area planar RF antenna source are interpreted in terms of a multi-conductor transmission line coupled to the plasma. This electromagnetic treatment includes mutual inductive coupling using the complex image method, and capacitive matrix coupling between all elements of the resonant network and the plasma. The model reproduces antenna input impedance measurements, with and without plasma, on a 1.2× 1.2 m2 antenna used for large area plasma processing. Analytic expressions are given, and results are obtained by computation of the matrix solution. This method could be used to design planar inductive sources in general, by applying the termination impedances appropriate to each antenna type.

  15. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  16. Plasma characteristics in inductively and capacitively coupled hybrid source using single RF power

    NASA Astrophysics Data System (ADS)

    Kim, Kwan-Yong; Lee, Moo-Young; Kim, Tae-Woo; Kim, Ju-Ho; Chung, Chin-Wook

    2016-09-01

    Parallel combined inductively coupled plasma (ICP) and capacitively coupled plasma (CCP) using single RF generator was proposed to linear control of the plasma density with RF power. In the case of ICP, linear control of the plasma density is difficult because there is a density jump up due to E to H transition. Although the plasma density of CCP changes linearly with power, the density is lower than that of ICP due to high ion energy loss at the substrate. In our hybrid source, the single RF power generator was connected to electrode and antenna, and the variable capacitor was installed between the antenna and the power generator to control the current flowing through the antenna and the electrode. By adjusting the current ratio between the antenna and the electrode, linear characteristic of plasma density with RF power is achieved.

  17. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of

  18. W and WC layers deposition by shielded inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Colpo, P.; Meziani, T.; Sauvageot, P.; Ceccone, G.; Gibson, P. N.; Rossi, F.; Monge-Cadet, P.

    2002-09-01

    Tungsten and carbon tungsten films have been deposited by a plasma enhanced chemical vapor deposition (PECVD) technique. The plasma-assisted deposition was performed by inductively coupled plasma source (ICP). A Faraday shield was arranged within the plasma chamber to prevent electrically conductive film deposition on the dielectric chamber wall that would screen the electromagnetic field. External electrical parameters and ion densities of the shielded inductive plasma source are measured and compared to classical ICPs source characteristics. Tungsten deposition has been performed from WF6 diluted in argon and hydrogen. A deposition rate of 5 mum/h was obtained. Hardness measurements show that the tungsten hardness can be increased from 5 to 20 GPA by biasing the substrate. WC films were deposited by adding methane or acetylene to the WF6/H2 mixture. The hardness of the WC films depends strongly on the methane or acetylene flow rate, i.e., on the film carbon content. The WC hardness has been correlated to the crystallographic structure. The first hardness maximum peak corresponds to a solid solution of carbon in the tungsten. Correlation between the deposition parameters, such as the gas composition, dc bias and coating properties has been investigated by means of AES, XRD, and nanoindentation analysis. copyright 2002 American Vacuum Society.

  19. Inductive plasma source for the ion treatment of AISI-304 SS

    NASA Astrophysics Data System (ADS)

    de la Piedad-Beneitez, A.; Valencia-Alvarado, R.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Granda-Gutiérrez, E. E.; Rodríguez-Méndez, B. G.; Pérez-Martínez, J. A.; Flores-Fuentes, A. A.

    2008-10-01

    The design and construction of a simple inductive plasma source is described as constituted by an evacuated Pyrex glass cylinder reactor with 190 mm inner diameter and 500 mm length. This discharge vessel is coaxially surrounded by a cylindrically wound antenna, 240 mm in diameter, made of 3.2 mm wide copper wire. The antenna is supplied by a 13.56 MHz RF generator whose resulting electric field is able to create the plasma. When nitrogen is admitted to the vessel, the plasma generation takes place within the 0.1-50 Pa work pressure and 300-600 W RF power. The plasma density has been established by double Langmuir probes between 3.2 × 1015 and 2.4 × 1018 m-3. This inductive plasma set up is meant to modify the surface of AISI-304 stainless steel by means of ion deposition, thanks to the sample bias provided by an external - 400 V dc supply, in order to improve the steel hardness without compromising its corrosion resistance. Once accelerated by the negative bias, the plasma ions impinge on the sample nitriding it by diffusion. The treated samples were characterized by x-ray diffraction (XRD) indicating the formation of the expanded gamma phase, by scanning electron microscopy (SEM) providing the atomic percentages of nitrogen, and by microhardness (HV) measurement.

  20. Effect of capacitive coupling in a miniature inductively coupled plasma source

    SciTech Connect

    Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2012-11-01

    Two-dimensional axisymmetric particle-in-cell simulations with a Monte Carlo collision algorithm (PIC-MCC) have been conducted to investigate the effect of capacitive coupling in a miniature inductively coupled plasma source (mICP) by using two models: an inductive model and a hybrid model. The mICP is 3 mm in radius and 6 mm in height with a three-turn planar coil, where argon plasma is sustained. In the inductive model, the coil is assumed to be electrostatically shielded, and thus the discharge is purely inductive coupling. In the hybrid model, we assume that the different turns of the coil act like electrodes in capacitive discharge to include the effect of capacitive coupling. The voltage applied to these electrodes decreases linearly from the powered end of the coil towards the grounded end. The numerical analysis has been performed for rf frequencies in the range of 100-1000 MHz, and the power absorbed by the plasma in the range of 5-50 mW at a fixed pressure of 500 mTorr. The PIC-MCC results show that potential oscillations at the plasma-dielectric interface are not negligible, and thus the major component of the absorbed power is caused by the axial motion of electrons in the hybrid model, although almost all of the power absorption is due to the azimuthal motion of electrons in the inductive model. The effect of capacitive coupling is more significant at lower rf frequencies and at higher absorbed powers under the calculation conditions examined. Moreover, much less coil currents are required in the hybrid model.

  1. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    SciTech Connect

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  2. Neutralization efficiency estimation in a neutral beam source based on inductively coupled plasma

    SciTech Connect

    Vozniy, O. V.; Yeom, G. Y.

    2009-01-01

    This study examined the optimal conditions of neutral beam generation to maintain a high degree of neutralization and focusing during beam energy variation for a neutral beam source based on inductively coupled plasma with a three-grid ion beam acceleration system. The neutral beam energy distribution was estimated by measuring the energy profiles of ions that 'survived' the neutralization after reflection. The energy measurements of the primary and reflected ions showed narrow distribution functions, each with only one peak. At higher beam energies, both the ratio of the ion energy loss to the primary energy and the degree of energy divergence decreased, confirming the precise alignment of the neutral beam. The neutralization efficiency of the neutral beam source with a three-grid acceleration system was found to be affected mainly by the beam angle divergence rather than by the particle translation energy.

  3. Spatial and temporal evolution of negative ions in a pulsed inductively coupled hydrogen plasma source across a magnetic filter

    NASA Astrophysics Data System (ADS)

    Nulty, Stuart; Corr, Cormac

    2015-09-01

    Low-temperature electronegative plasmas have important applications in high-energy sources for fusion energy, plasma thrusters and materials processing. Neutral beam injection systems and space thruster technology such as the PEGASUS propulsion system rely on efficiently producing extractable negative ions. In this work we investigate the production of hydrogen negative ions in a pulsed inductively coupled plasma across a magnetic filter. The electron energy distribution function, plasma density and electron temperature are determined using an RF compensated Langmuir probe, and time-resolved laser photo-detachment is used to measure the negative ion fraction. The spatial and temporal evolution of these plasma parameters within the plasma source will be presented. Using a pulsed plasma and a magnetic filter, the electron temperature can be efficiently controlled and a higher density of negative ions compared to electrons can be obtained at certain locations within the source.

  4. 200-mm-diameter neutral beam source based on inductively coupled plasma etcher and silicon etching

    SciTech Connect

    Kubota, Tomohiro; Nukaga, Osamu; Ueki, Shinji; Sugiyama, Masakazu; Inamoto, Yoshimasa; Ohtake, Hiroto; Samukawa, Seiji

    2010-09-15

    The authors developed a neutral beam source consisting of a 200-mm-diameter inductively coupled plasma etcher and a graphite neutralization aperture plate based on the design of a neutral beam source that Samukawa et al. [Jpn. J. Appl. Phys., Part 2 40, L779 (2001)] developed. They measured flux and energy of neutral particles, ions, and photons using a silicon wafer with a thermocouple and a Faraday cup and calculated the neutralization efficiency. An Ar neutral beam flux of more than 1 mA/cm{sup 2} in equivalent current density and a neutralization efficiency of more than 99% were obtained. The spatial uniformity of the neutral beam flux was within {+-}6% within a 100 mm diameter. Silicon etching using a F{sub 2}-based neutral beam was done at an etch rate of about 47 nm/min, while Cl{sub 2}-based neutral beam realized completely no undercut. The uniformity of etch rate was less than {+-}5% within the area. The etch rate increased by applying bias power to the neutralization aperture plate, which shows that accelerated neutral beam was successfully obtained. These results indicate that the neutral beam source is scalable, making it possible to obtain a large-diameter and uniform neutral beam, which is inevitable for application to mass production.

  5. Evolution of plasma parameters in an Ar-N2/He inductive plasma source with magnetic pole enhancement

    NASA Astrophysics Data System (ADS)

    Maria, Younus; N, U. Rehman; M, Shafiq; M, Naeem; M, Zaka-Ul-Islam; M, Zakaullah

    2017-02-01

    Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-N2/He mixture plasma. Electron density ({n}{{e}}) and temperature ({T}{{e}}), excitation temperature ({T}{{exc}}), plasma potential ({V}{{p}}), skin depth (δ ) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that {n}{{e}} increases while {T}{{e}} decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail’ of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian’ distribution at low RF powers and higher pressure in a pure {{{N}}}2 discharge. However, it evolves into a ‘Maxwellian’ distribution at RF powers greater than 70 W for pure {{{N}}}2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian’ EEPF is examined. The temperature of the low-energy electron group {T}{{L}} shows a decreasing trend with argon addition until the ‘thermalization’ of the two temperatures occurs, while the temperature of high-energy electrons {T}{{H}} decreases continuously.

  6. Evolution of plasma parameters in an Ar-N2/He inductive plasma source with magnetic pole enhancement

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-Ul-Islam, M.; Zakaullah, M.

    2017-02-01

    Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-N2/He mixture plasma. Electron density ({n}{{e}}) and temperature ({T}{{e}}), excitation temperature ({T}{{exc}}), plasma potential ({V}{{p}}), skin depth (δ ) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that {n}{{e}} increases while {T}{{e}} decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail’ of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian’ distribution at low RF powers and higher pressure in a pure {{{N}}}2 discharge. However, it evolves into a ‘Maxwellian’ distribution at RF powers greater than 70 W for pure {{{N}}}2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian’ EEPF is examined. The temperature of the low-energy electron group {T}{{L}} shows a decreasing trend with argon addition until the ‘thermalization’ of the two temperatures occurs, while the temperature of high-energy electrons {T}{{H}} decreases continuously.

  7. Inductively-Coupled RF Powered O2 Plasma as a Sterilization Source

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Mogul, R.; Khare, B.; Chan, S. L.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Low-temperature or cold plasmas have been shown to be effective for the sterilization of sensitive medical devices and electronic equipment. Low-temperature plasma sterilization procedures possess certain advantages over other protocols such as ethylene oxide, gamma radiation, and heat due to the use of inexpensive reagents, the insignificant environmental impacts and the low energy requirements. In addition, plasmas may also be more efficacious in the removal of robust microorganisms due to their higher chemical reactivity. Together, these attributes render cold plasma sterilization as ideal for the surface decontamination requirements for NASA Planetary Protection. Hence, the work described in this study involves the construction, characterization, and application of an inductively-coupled, RF powered oxygen (O2) plasma.

  8. Reduction of the electrostatic coupling in a large-area internal inductively coupled plasma source using a multicusp magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Kim, K. N.; Yeom, G. Y.; Lieberman, M. A.

    2004-09-01

    A large area (1020mm×830mm) inductively coupled plasma (ICP) source has been developed using an internal-type linear antenna with permanent magnets forming a multicusp magnetic field. The large rf antenna voltages, which cause the electrostatic coupling between the antenna and the plasma in a large area internal-type linear-antenna ICP source, were decreased significantly by applying the magnetic field near and parallel to the antenna. Through the application of the magnetic field, an approximately 20% higher plasma density, with a value of close to 1.0×1011cm-3 at a rf power of 2000W, and about three times higher photoresist etch rates were observed, while maintaining the plasma nonuniformity at less than 9%.

  9. Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Nakano, Yudai; Ando, Akira

    2017-07-01

    A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.

  10. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    SciTech Connect

    Halliday, A.N.; Lee, Der-Chuen; Christensen, J.C.; Jones, C.E.; Hall, C.M.; Yi, Wen; Teagle, D.; Walder, A.J.; Freedman, P.A.

    1994-11-01

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument`s capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  11. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  12. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  13. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  14. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  15. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  16. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    SciTech Connect

    Logue, Michael D. Kushner, Mark J.

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  17. A hybrid model in inductively coupled plasma discharges with bias source: Description of model and experimental validation in Ar discharge

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Liu, Yong-Xin; Gao, Fei; Wang, You-Nian

    2015-09-01

    Traditional fluid simulation and Particle-in-Cell/Monte-Carlo collision (PIC/MCC) are very time consuming in inductively coupled plasma. In this work, a hybrid model, i.e. global model coupled bidirectional with parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate inductively coupled plasma discharge with bias source. The global model is applied to calculate plasma density in bulk plasma. The sheath model is performed to consistently calculate the electric field, ion kinetic and the sheath thickness above the bias electrode. Moreover, specific numbers of ions are tracked and ultimately ion energy distribution functions (IEDFs) incident into bias electrode are obtained from MCC module. It is found that as the bias amplitude increases, the energy width of both IEDFs becomes wider, and the total outlines of IEDFs move towards higher energy. The results from the model are validated by experimental measurement and a qualitative agreement is obtained. The advantage of this model is that plasma density, ion flux and IEDF, which are widely concerned in the actual process, could be obtained within an hour. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11205025 and 11335004) and (Grant No.11405018), the Important National Science and Technology Specific Project (Grant No. 2011ZX02403-001).

  18. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  19. High-power, low-pressure, inductively coupled RF plasma source using a FET-based inverter power supply

    NASA Astrophysics Data System (ADS)

    Komizunai, Shota; Oikawa, Kohei; Saito, Yuta; Takahashi, Kazunori; Ando, Akira

    2015-01-01

    A high-density plasma of density greater than 1019 m-3 is successfully produced in 1.5 Pa argon by an inductively coupled RF discharge with a 70-mm-diameter source cavity, where a 10-turn water-cooled RF loop antenna is wound onto the source tube and an axial magnetic field of ˜70 G is applied by two solenoids to reduce plasma loss onto the source cavity. The RF antenna is powered from a frequency-tunable field-effect-transistor-based inverter power supply, which does not require variable capacitors to match the impedance, at a frequency of ˜350 kHz and the RF power can be increased up to ˜8 kW. It is also demonstrated that the source is operational with an axial magnetic field provided by permanent magnet (PM) arrays; then the density in the case of the PM arrays is higher than that in the case of the solenoids. The role of the magnetic filter downstream of the source tube is demonstrated; a radially uniform plasma density exceeding 1018 m-3 and an electron temperature of ˜1-2 eV are obtained at ˜100 mm downstream of the open exit of the source tube.

  20. Inductively driven surface-plasma negative ion source for N-NBI use (invited)

    SciTech Connect

    Belchenko, Yu. Abdrashitov, G.; Deichuli, P.; Ivanov, A.; Gorbovsky, A.; Kondakov, A.; Sanin, A.; Sotnikov, O.; Shikhovtsev, I.

    2016-02-15

    The long-pulse surface-plasma source prototype is developed at Budker Institute of Nuclear Physics for negative-ion based neutral beam injector use. The essential source features are (1) an active temperature control of the ion-optical system electrodes by circulation of hot thermal fluid through the channels, drilled in the electrode bodies, (2) the concaved transverse magnetic field in the extraction and acceleration gaps, preventing the electrons trapping and avalanching, and (3) the directed cesium deposition via distribution tubes adjacent to the plasma grid periphery. The long term effect of cesium was obtained just with the single cesium deposition. The high voltage strength of ion-optical system electrodes was improved with actively heated electrodes. A stable H{sup −} beam with a current ∼1 A and energy 90 keV was routinely extracted and accelerated.

  1. Three-coil inductively coupled plasma (ICP) source with individually controlled coil currents supplied from a single power generator

    NASA Astrophysics Data System (ADS)

    Dorf, Leonid; Rauf, Shahid; Liu, Jonathan; Kenney, Jason; Lane, Steven; Nguyen, Andrew; Ramaswamy, Kartik; Collins, Ken

    2013-09-01

    As requirements on plasma uniformity get more stringent in the semiconductor industry, an ICP source with 3 coils becomes warranted. Designing a power distribution/50 Ω-tuning network (PDN) that delivers the power from a single generator to 3 coils is complicated, due to inductive coupling between the coils, and between coils and plasma. Our PDN comprises several capacitors, including 2 variable ones, C1,2, connected in parallel to 2 coils. A set of equations for coils/plasma currents was solved over a wide parameter space to determine practical values/ranges for all capacitors. It was shown that by moving along a pre-determined programming path in C1,2 space, one can attain various coil current ratios (CCR) without crossing resonance curves. The latter causes coil current reversal, which may result in plasma instabilities and affect uniformity. Based on modeling results, the PDN was built and tested using a specially made 3-coil source. A wide range of CCR was achieved by varying C1,2, including maxima or minima in any 2 coils. With slight adjustments (to account for parasitics and actual plasma coupling), the model correctly predicted experimentally observed CCR for each tested C1,2 pair. Likewise, the theoretical resonance structure was reproduced experimentally with good agreement.

  2. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  3. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P.; Jaselskis, Edward J.

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  4. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 1019 m-3 in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  5. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    PubMed

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  6. Characterization of a Sealed Americium-Beryllium (AmBe) Source by Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    James Sommers; Marcos Jimenez; Mary Adamic; Jeffrey Giglio; Kevin Carney

    2009-12-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic errors in the “age” determination were ± 4 % 2s. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n=8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n=3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52 % (1s). Source 2 had an Am-Be ratio of 9.81 ± 3.5 % (1s). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Source 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.

  7. Use of Sensors and RF System Models to Control Inductively Coupled Plasma Sources

    NASA Astrophysics Data System (ADS)

    Berry, Lee A.

    1997-10-01

    Research for the development of plasma sources and processes for new generations of feature and wafer sizes must meet requirements in many dimensions including performance, cost, schedule, and yield. This last requirement is becoming increasingly difficult to meet because the process for submicron features frequently have narrow windows and it is difficult to have the needed tool to tool and wafer to wafer repeatability to consistently hit the window. Data from sensors, in particular post-match rf sensors, can be used to measure and control some of the critical process parameters. This work, in many respects, parallels previous work by Paul Miller on capacitively coupled tools. Three examples utilizing post-match rf sensor data will be presented. First, a common approach to auto-matching is to (separately) use the phase and magnitude of the reflected rf power signal to control two capacitors in the match box. At a minimum, presets must be changed for new processes and auto-matches sometimes fail. By utilizing error signals derived from both pre-and post-match rf sensors, we have developed and tested a new matching algorithm that accommodates a wide range of power and plasma conditions without the need for presets. Second, the same rf data can be used to infer power input to the plasma. Losses in match boxes range from 10-50%, depending on the both the rf system and desired plasma conditions. In addition, because of small, but significant differences in particular tool installation or rf components, there can be differences between the efficiencies of nominally the same tool under identical conditions. Thus machine control based on net power is needed for optimum control. Post-match sensors provide the data needed to separate the loses in the matchbox from power coupled to the plasma. The third use of rf system data is the measurement parameters that can be used to both characterize the tool and to indicate and help diagnose or even predict equipment failures. The

  8. Extracted beam and electrode currents in the inductively driven surface-plasma negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Ivanov, A.; Sanin, A.; Sotnikov, O.

    2017-08-01

    The data on long-pulsed operation of RF surface-plasma source is presented. The source regularly produces the H- ion beam with current >1A, energy ≥90 keV and pulse duration ≥2 s. The total H- beam curent, transported to the distant Faraday cup and the currents in the circuits of ion-optical system elements were measured. The composition of accelerated and extracted grid currents was clarified. The relatively high level of acceleration grid current 0.4 A was observed. It consists mainly of secondary electrons, emitted from extraction grid apertures and stripped from H- ions and could be decreased by optimization of positive PG bias applied. The test stand experiments on beam transport through the LEBT were carried out. About 90% of the H- ion beam was transported from the source to the distant calorimeter plane. The full size of 93 keV beam, transported to the calorimeter plane, was larger, than the size of the calorimeter inlet window. As a result, ˜ 60% of the initial beam power was registered by the calorimeter with window 24×24 cm2.

  9. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  10. Modulations of the plasma uniformity by low frequency sources in a large-area dual frequency inductively coupled plasma based on fluid simulations

    SciTech Connect

    Sun, Xiao-Yan; Zhang, Yu-Ru; Li, Xue-Chun; Wang, You-Nian

    2015-05-15

    As the wafer size increases, dual frequency (DF) inductively coupled plasma (ICP) sources have been proposed as an effective method to achieve large-area uniform plasma processing. A two-dimensional (2D) self-consistent fluid model, combined with an electromagnetic module, has been employed to investigate the influence of the low frequency (LF) source on the plasma radial uniformity in an argon DF discharge. When the DF antenna current is fixed at 10 A, the bulk plasma density decreases significantly with the LF due to the less efficient heating, and the best radial uniformity is obtained at 3.39 MHz. As the LF decreases to 2.26 MHz, the plasma density is characterized by an edge-high profile, and meanwhile the maximum of the electron temperature appears below the outer two-turn coil. Moreover, the axial ion flux at 3.39 MHz is rather uniform in the center region except at the radial edge of the substrate, where a higher ion flux is observed. When the inner five-turn coil frequency is fixed at 2.26 MHz, the plasma density profiles shift from edge-high over uniform to center-high as the LF coil current increases from 6 A to 18 A, and the best plasma uniformity is obtained at 14 A. In addition, the maximum of the electron temperature becomes lower with a second peak appears at the radial position of r = 9 cm at 18 A.

  11. Inductively coupled helium plasma torch

    DOEpatents

    Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  12. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  13. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  14. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Gundlach-Graham, Alexander W.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector—the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.

  15. Plasma-heating by induction

    NASA Technical Reports Server (NTRS)

    Harrington, K.; Thorpe, M. L.

    1969-01-01

    Induction-heated plasma torch operates with an input of 1 Mw of direct current of which 71 percent is transferred to the plasma and the remainder is consumed by electrical losses in the system. Continuous operation of the torch should be possible for as long as 5,000 hours.

  16. Inductive source induced polarization

    NASA Astrophysics Data System (ADS)

    Marchant, David; Haber, Eldad; Oldenburg, Douglas W.

    2013-02-01

    Induced polarization (IP) surveys are commonly performed to map the distribution of electrical chargeability that is a diagnostic physical property in mineral exploration and in many environmental problems. Although these surveys have been successful in the past, the galvanic sources required for traditional IP and magnetic IP (MIP) surveys prevent them from being applied in some geological settings. We develop a new methodology for processing frequency domain EM data to identify the presence of IP effects in observations of the magnetic fields arising from an inductive source. The method makes use of the asymptotic behaviour of the secondary magnetic fields at low frequency. A new quantity, referred to as the ISIP datum, is defined so that it equals zero at low frequencies for any frequency-independent (non-chargeable) conductivity distribution. Thus, any non-zero response in the ISIP data indicates the presence of chargeable material. Numerical simulations demonstrate that the method can be applied even in complicated geological situations. A 3-D inversion algorithm is developed to recover the chargeability from the ISIP data and the inversion is demonstrated on synthetic examples.

  17. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    SciTech Connect

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.; Firman, Taylor; Prager, James R.; Ziemba, Timothy; Wrobel, Jonathan S.

    2013-10-15

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  18. Conceptual Study on New Isotope Analysis Technique with Resonance Ionization Mass Spectrometry Using Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Watanabe, K.; Uritani, A.; Higuchi, Y.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed the novel isotope analysis technique with Resonance Ionization Mass Spectrometry using Inductively Coupled Plasma as an atomic source (ICP-RIMS). Each component of ICP-RIMS is conceptually designed. We conclude that the orthogonal acceleration time-of-flight mass spectrometer (oa-TOF-MS) driven by a high-repetition-rate pulsed laser would be suitable system for ICP-RIMS. We, additionally, suggest that the first vacuum stage of the vacuum interface, which is between the sampling and skimmer cones, is desired to maintain as low pressure as possible in order to suppress the Doppler broadening and to skim the supersonic jet effectively.

  19. Investigation of the antimicrobial activity at safe levels for eukaryotic cells of a low power atmospheric pressure inductively coupled plasma source.

    PubMed

    Barbieri, Daniela; Boselli, Marco; Cavrini, Francesca; Colombo, Vittorio; Gherardi, Matteo; Landini, Maria Paola; Laurita, Romolo; Liguori, Anna; Stancampiano, Augusto

    2015-06-08

    Low power atmospheric pressure inductively coupled thermal plasma sources integrated with a quenching device (cold ICP) for the efficient production of biologically active agents have been recently developed for potential biomedical applications. In the present work, in vitro experiments aimed at assessing the decontamination potential of a cold ICP source were carried out on bacteria typically associated with chronic wounds and designed to represent a realistic wound environment; further in vitro experiments were performed to investigate the effects of plasma-irradiated physiological saline solution on eukaryotic cells viability. A thorough characterization of the plasma source and process, for what concerns ultraviolet (UV) radiation and nitric oxide production as well as the variation of pH and the generation of nitrates and nitrites in the treated liquid media, was carried out to garner fundamental insights that could help the interpretation of biological experiments. Direct plasma treatment of bacterial cells, performed at safe level of UV radiation, induces a relevant decontamination, both on agar plate and in physiological saline solution, after just 2 min of treatment. Furthermore, the indirect treatment of eukaryotic cells, carried out by covering them with physiological saline solution irradiated by plasma, in the same conditions selected for the direct treatment of bacterial cells does not show any noticeable adverse effect to their viability. Some considerations regarding the role of the UV radiation on the decontamination potential of bacterial cells and the viability of the eukaryotic ones will be presented. Moreover, the effects of pH variation, nitrate and nitrite concentrations of the plasma-irradiated physiological saline solution on the decontamination of bacterial suspension and on the viability of eukaryotic cells subjected to the indirect treatment will be discussed. The obtained results will be used to optimize the design of the ICP source

  20. Pulsed plasma electron sources

    SciTech Connect

    Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.

    2009-05-15

    There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E{<=}10{sup 5} V/cm and duration {<=}10{sup -5} s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.

  1. Study on Mass Discrimination Effect of Resonance Ionization Mass Spectrometry Using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS)

    SciTech Connect

    Higuchi, Y.; Watanabe, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have proposed a novel concept of Resonance Ionization Mass Spectrometry using an Inductively Coupled Plasma as an Atomic Source (ICP-RIMS). Isotope ratio analysis using ICP-RIMS is expected to be a convenient and precise technique with high throughput. However, the mass discrimination effect caused from difference in kinetic energy of neutral atoms in ICP-RIMS is crucial for precise isotope analysis. We, therefore, investigated the atom kinetic energy distribution introduced into the laser ionization region. The mass-dependent kinetic energy was confirmed in the initial kinetic energy distributions. We preliminary estimated a mass discrimination effect caused by mass-dependent kinetic energy in ICP-RIMS for various detector sizes. We proposed that this effect can be suppressed by selecting the appropriate detector size and adopting the scanning mode of the deflecting voltage.

  2. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source.

    PubMed

    Hund, Markus; Herold, Hans

    2007-06-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film.

  3. Titanium oxidation by rf inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Valencia-Alvarado, R.; de la Piedad-Beneitez, A.; López-Callejas, R.; Barocio, S. R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Muñoz-Castro, A. E.; Rodríguez-Méndez, B. G.; de la Rosa-Vázquez, J. M.

    2014-05-01

    The development of titanium dioxide (TiO2) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10-2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ~5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy.

  4. Coaxial microwave plasma source

    SciTech Connect

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Kossyi, I. A.; Kotelev, M. S.

    2011-11-15

    Physical principles underlying the operation of a pulsed coaxial microwave plasma source (micro-wave plasmatron) are considered. The design and parameters of the device are described, and results of experimental studies of the characteristics of the generated plasma are presented. The possibility of application of this type of plasmatron in gas-discharge physics is discussed.

  5. DURIP - Acquisition of an Inductively-Coupled Plasma Mass Spectrometer with Laser Ablation Source for Surface Characterization

    DTIC Science & Technology

    2010-12-24

    allows low interference which reduces common polyatomic interferences on As, Se, Cr, V and Fe, thus achieving lower detection limits in the plasma...Formerly Varian) 820 ICP-MS Ion Optics Soft Landed Hf on Si SEM Image of ablation track 178Hf LA-ICP-MS transient signals showing spatially resolved Hf on surface (left) and in defects (right)

  6. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  7. Analysis of GaAs using a combined r.f. glow discharge and inductively coupled plasma source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Becker, J. S.; Saprykin, A. I.; Dietze, H.-J.

    1997-06-01

    A radiofrequency (r.f.) glow discharge ion source was coupled to a double-focusing sector field mass spectrometer with reverse Nier-Johnson geometry. The glow discharge cell powered by a 13.56 MHz generator was connected directly to the interface of the mass spectrometer. The r.f. glow discharge ion source operates optimally at an argon pressure of 2.5 hPa and radiofrequency powers of 30 W. With increasing argon pressure more complex mass spectra were observed due to the higher molecular ion formation rate. The analytical performance of r.f. glow discharge mass spectrometry was investigated for the trace elemental analysis of semi-insulating gallium arsenide crystals. Using ICP-MS after matrix separation for a better quantification of multielement determination of trace impurities, detection limits comparable to r.f. GDMS in the low ng/g concentration range are obtained.

  8. The study of helicon plasma source

    SciTech Connect

    Miao Tingting; Shang Yong; Zhao Hongwei; Liu Zhanwen; Sun Liangting; Zhang Xuezhen; Zhao Huanyu

    2010-02-15

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10{sup 13} cm{sup -3} have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10{sup -3} Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  9. The study of helicon plasma source.

    PubMed

    Miao, Ting-Ting; Zhao, Hong-Wei; Liu, Zhan-Wen; Shang, Yong; Sun, Liang-Ting; Zhang, Xue-Zhen; Zhao, Huan-Yu

    2010-02-01

    Helicon plasma source is known as efficient generator of uniform and high density plasma. A helicon plasma source was developed for investigation of plasma neutralization and plasma lens in the Institute of Modern Physics in China. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high argon plasma density up to 3.9x10(13) cm(-3) have been achieved with the Nagoya type III antenna at the conditions of the magnetic intensity of 200 G, working gas pressure of 2.8x10(-3) Pa, and rf power of 1200 W with a frequency of 27.12 MHz. In the experiment, the important phenomena have been found: for a given magnetic induction intensity, the plasma density became greater with the increase in rf power and tended to saturation, and the helicon mode appeared at the rf power between 200 and 400 W.

  10. Advances in induction-heated plasma torch technology

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1972-01-01

    Continuing research has resulted in significant advances in induction-heated plasma torch technology which extend and enhance its potential for broad range of uses in chemical processing, materials development and testing, and development of large illumination sources. Summaries of these advances are briefly described.

  11. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  12. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Luan, Shen

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  13. Inductive currents in an rf driven plasma

    SciTech Connect

    Kinsey, J.; Ehst, D.A.

    1991-08-01

    Inductive effects are included in a self-consistent current drive model for axisymmetric tokamak plasmas used in the two-dimensional current drive/MHD equilibrium code, RIP. Previous simulations of current driven equilibria allowed for the steady-state calculation of bootstrap and RF currents. The addition of an inductive current is applied to enhance accurate design and interpretation of tokamak experiments. A convenient expression for the ohmic resistance in a tokamak plasma is derived to aid in the design of reactor grade MHD equilibria. 7 refs., 3 figs., 1 tab.

  14. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    NASA Astrophysics Data System (ADS)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  15. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  16. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  17. Circuit Model for Capacitive Coupling in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.; Sugai, H.

    1998-10-01

    A crude circuit model has been developed to illustrate and account for capacitive coupling between the rf coil and the bulk plasma in a stove top inductively coupled plasma source. The circuit model is composed of three levels of capacitance: the dielectric window capacitance, sheath capacitance contiguous to the dielectric window, and the chamber to ground sheath capacitance. The model is verified by quantitative comparison with the measured rf plasma potential in the bulk plasma body, plasma feedstock gas (argon) pressures below 2 mTorr. At higher pressures above 5 mTorr, the measured results diverge from the circuit model due to the transition from a spatially uniform electron density throughout the bulk plasma at pressures less than 2 mTorr to a less spatially uniform electron density at pressures above 5 mTorr.

  18. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  19. Langmuir probe differential measurement technique in inductively coupled RF plasmas

    NASA Astrophysics Data System (ADS)

    Djermanov, I.; Djermanova, N.; Kiss'ovski, Zh; Tsankov, Ts

    2007-04-01

    A differential measurement technique has been proposed in order to reduce noise level and stray capacitance leakage usually affecting Langmuir probe data. The technique employs two identically designed and biased Langmuir probes, connected to an instrumentation amplifier. Both probes are immersed in plasma of approximately the same space potential, one of them being plasma current collecting probe, and the second one being isolated from plasma and serving as a pick-up probe, detecting leakage currents from parasitic capacitive coupling and noise. Avoiding averaging of probe current data is the main advantage of the proposed differential technique. Experiments in the plasma expansion region of inductively driven RF source are shown to achieve lower electron temperature and higher electron density as measured by conventional single Langmuir probe. Obtaining more sharpness of the "knee" on the characteristic, thus lowering the uncertainty in plasma potential is another true merit of the differential Langmuir probe technique.

  20. Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.

  1. H-mode inductive coupling plasma for PVC surface treatment

    NASA Astrophysics Data System (ADS)

    Croccolo, F.; Quintini, A.; Barni, R.; Ripamonti, M.; Malgaroli, A.; Riccardi, C.

    2009-08-01

    An inductively coupled plasma machine has been modified to be able to apply working powers in the order of 1 kW, thus switching to the real inductive H-mode. The plasma is generated by applying a 13.56 MHz radio-frequency to a λ/4 antenna outside the plasma chamber in low pressure conditions. The working gas is argon at pressure in the range from 10 to 100 Pa. With this high power source we have been able to perform plasma etching on a poly(vinyl-chloride) (PVC) film. In particular the effect of the plasma is the selective removal of hydrogen and chlorine from the sample surface. The action of the high power plasma on the sample has been proved to be much more effective than that of the low power one. Results similar to those obtained with the low power machine at about 300 W for 120 min, have been obtained with the high power source at about 600 W for 30 min. The superficial generation of a conductive layer of double C=C bonds was obtained. The samples have been investigated by means of ATR spectroscopy, FIB/SEM microscopy and micro-electrical measurements, which revealed the change in charge conductivity.

  2. Thyristor stack for pulsed inductive plasma generation

    SciTech Connect

    Teske, C.; Jacoby, J.; Schweizer, W.; Wiechula, J.

    2009-03-15

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 {mu}s and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/{mu}s.

  3. Thyristor stack for pulsed inductive plasma generation.

    PubMed

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  4. Considerations for Inductively Driven Plasma Implosions

    DTIC Science & Technology

    1979-06-01

    W.L. Baker, M.G. Clark, J.H. Degnan, G.F. Kiuttu C.R. McClenahan, and R.E. Reinovsky, "Electro- magnetic-Implosion Generation of Pulsed High - Energy - Density Plasma ," J... energy density plasma suitable for use as an intense X-ray Source1 • Under the SHIVA program experiments have been conducted in which a plasma...implosion. introduction The Air Force Weapons Laboratory is investigating plasma implosion techniques as a desirable method for generating a very high

  5. Slotted antenna waveguide plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor)

    2007-01-01

    A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.

  6. Inductive Measurement of Plasma Jet Electrical Conductivity

    NASA Technical Reports Server (NTRS)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  7. Ion plating with an induction heating source

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  8. Electrical Coupling Efficiency of Inductive Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.

    2005-01-01

    A single-stage pulsed inductive plasma accelerator is modeled as an inductive mass-driver. The plasma is treated as a rigid slug, which acts as the armature. The system is a transformer, with the drive coil serving as the primary and the slug as the secondary. We derive a set of coupled dynamic-circuit equations, which depend on five dimensionless coefficients, and on the functional form of the mutual inductance profile, M (z). For a given coil geometry, M (z) was determined experimentally and compared to the results of calculations carried out with QuickField. The equations are solved with various coefficient values, in order to determine the conditions that yield high efficiencies. It was found that the coupling efficiency can be quite high and likely scales with power, although this does not preclude operation at lower power with acceptable efficiency. The effect of an imbedded magnetic bias flux, as for the case of a plasmoid thruster, was also included in the calculations.

  9. Electrical Coupling Efficiency of Inductive Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.

    2005-01-01

    A single-stage pulsed inductive plasma accelerator is modeled as an inductive mass-driver. The plasma is treated as a rigid slug, which acts as the armature. The system is a transformer, with the drive coil serving as the primary and the slug as the secondary. We derive a set of coupled dynamic-circuit equations, which depend on five dimensionless coefficients, and on the functional form of the mutual inductance profile, M (z). For a given coil geometry, M (z) was determined experimentally and compared to the results of calculations carried out with QuickField. The equations are solved with various coefficient values, in order to determine the conditions that yield high efficiencies. It was found that the coupling efficiency can be quite high and likely scales with power, although this does not preclude operation at lower power with acceptable efficiency. The effect of an imbedded magnetic bias flux, as for the case of a plasmoid thruster, was also included in the calculations.

  10. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  11. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  12. Plasma sources for spacecraft neutralization

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.

    1990-01-01

    The principles of the operation of plasma sources for the neutralization of the surface of a spacecraft traveling in the presence of hot plasma are discussed with special attention given to the hollow-cathode-based plasma contactors. Techiques are developed that allow the calculation of the potentials and particle densities in the near environment of a hollow cathode plasma contactor in both the test tank and the LEO environment. The techniques and codes were validated by comparison of calculated and measured results.

  13. Inductively coupled plasmas at low driving frequencies

    NASA Astrophysics Data System (ADS)

    Kolobov, Vladimir I.; Godyak, Valery A.

    2017-07-01

    We discuss the peculiarities of inductively coupled plasma (ICP) at low driving frequencies. The ratio of electric to magnetic field, | E/(cB)| , decreases with decreasing frequency according to Faraday’s law—higher magnetic fields are required to induce the same electric field at lower frequencies. We point out that the ratio of | E/(cB)| can be non-uniform in space depending on primary coil configuration and the presence of ferromagnetic materials. In this paper, we consider examples of low-frequency ICPs with negligibly small magnetic fields in plasma. The disparity of time scales for ion transport and the electron energy relaxation results in nonlinear plasma dynamics at low frequencies. Numerical simulations demonstrate that at low frequencies, the presence of plasma has very little effect on spatial distributions of the electric and magnetic fields, which are determined solely by the coil geometry and by the presence of ferromagnetic cores. Simulations of plasma dynamics in ICP over a wide range of driving frequencies and gas pressures illustrate high-frequency, quasi-static and dynamic regimes of discharge operation and explain some trends observed in experiments.

  14. Plasma instabilities in electronegative inductive discharges

    NASA Astrophysics Data System (ADS)

    Marakhtanov, Alexei Mikhail

    Plasma instabilities have been observed in low-pressure inductive discharges, in the transition between low density capacitive mode and high density inductive mode of the discharge when attaching gases such as SF6 and Ar/SF 6 mixtures are used. Oscillations of charged particles, plasma potential and light emitted from the plasma with the frequencies from a few hertz to tens of kilohertz are seen for gas pressures between 1 and 100 mTorr and the discharge power in the range of 75--1200 W. The region of instability increases as the plasma becomes more electronegative and the frequency of plasma oscillations increases as the power, pressure, and gas flow rate increase. The instability frequencies may also depend on the settings of a matching network. A volume-averaged (global) model of the instability has been developed, for a discharge containing time varying densities of electrons, positive ions, and negative ions, and time invariant excited states and neutral densities. The particle and energy balance equations are integrated to produce the dynamical behavior. As pressure or power is varied to cross a threshold, the instability goes through a series of oscillatory states to large scale relaxation oscillations between higher and lower density states. The model qualitatively agrees with experimental observations, and also shows a significant influence of the matching network. A stability analysis of an electronegative discharge has been performed, using a Hurwitz criterion, for a system of linearized particle and power balance differential equations. Capacitive coupling plays a crucial role in the instability process. A variable electrostatic (Faraday) shield has been used to control the capacitive coupling from the excitation coil to the plasma. The plasma instability disappears when the shielded area exceeds 65% of the total area of the coil. The global model of instability gives a slightly higher value of 85% for instability suppression with the same discharge

  15. AETHER: A simulation platform for inductively coupled plasma

    SciTech Connect

    Turkoz, Emre Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  16. Negative-ion plasma sources

    NASA Astrophysics Data System (ADS)

    Sheehan, D. P.; Rynn, N.

    1988-08-01

    Three designs for negative-ion plasma sources are described. Two sources utilize metal hexafluorides such as SF6 and WF6 to scavenge electrons from electron-ion plasmas and the third relies upon surface ionization of alkali halide salts on heated alumina and zirconia. SF6 introduced into electron-ion plasmas yielded negative-ion plasma densities of 10 to the 10th/cu cm with low residual electron densities. On alumina, plasma densities of 10 to the 9th/cu cm were obtained for CsCl, CsI, and KI and 10 to the 9th/cu cm for KCl. On zirconia 10 to the 10th/cu cm densities were obtained for CsCl. For alkali halide sources, electron densities of less than about 10 to the -4th have been achieved.

  17. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  18. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  19. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  20. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  1. Thrust Stand Measurements of a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters can su er from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA)[4], shown in Fig. 1 is a pulsed inductive plasma thruster that is able to operate at lower pulse energies by partially ionizing propellant with an electron cyclotron resonance (ECR) discharge inside a conical inductive coil whose geometry serves to potentially increase propellant and plasma plume containment relative to at coil geometries. The ECR plasma is created with the use of permanent mag- nets arranged to produce a thin resonance region along the inner surface of the coil, restricting plasma formation and, in turn, current sheet formation to areas of high magnetic coupling to the driving coil.

  2. Resonance microwave volume plasma source

    SciTech Connect

    Berezhetskaya, N. K.; Kop'ev, V. A.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, M. I.; Temchin, S. M.; Lee, Young Dong

    2007-07-15

    A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.

  3. RF inductive probe to measure plasma complex conductivity

    NASA Astrophysics Data System (ADS)

    Howling, Alan

    2016-09-01

    A method for measuring plasma complex electrical conductivity is described by which plasma parameters such as the electron density and the electron-neutral collision frequency can be estimated. The method relies on the measurement of the impedance of an inductive element coupled to the plasma by mutual induction. The mutual inductance due to the plasma coupling is interpreted by applying the complex image method to the plasma medium; it is determined by the plasma skin depth and the distance to the plasma. For high frequency measurements, capacitive coupling must also be accounted for as a first order correction for standing wave (transmission line) effects. It is shown that a hybrid resonant network configuration can be designed to maximize the inductive coupling and minimize the capacitive coupling.

  4. Hollow electrode plasma excitation source

    DOEpatents

    Ballou, Nathan E.

    1992-01-01

    A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

  5. Multicharged iron ions produced by using induction heating vapor source.

    PubMed

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  6. Ion sources for induction linac driven heavy ion fusion

    SciTech Connect

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented.

  7. Effects of antenna coil turns on plasma density and antenna voltage in solenoidal inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Moon, Jun-Hyeon; Kim, Kyung-Hyun; Lin, Ming-Chieh; Chung, Chin-Wook

    2016-11-01

    The number of antenna coil turns, N , that affects the plasma density is a significant factor to design an inductively coupled plasma source. The equivalent resistance and inductance of a transformer circuit seen at the antenna coil are known to increase with N . This can enhance the power transfer efficiency. However, there is an undesired capacitive coupling between the antenna coil and the plasma. The antenna voltage related to the capacitive coupling is known to be proportional to N . In this work, to investigate the effects of N , the plasma density and the antenna coil voltage are measured by a floating probe and high-voltage probes, respectively. A terminal capacitor is used to suppress the capacitive coupling. As a result, the effects of N are clearly observed on the plasma densities and the voltages of the antenna coil. The plasma density was found to dramatically increase with N while the capacitive coupling is suppressed. The antenna voltage was not increased with N , and it was investigated by the ratio of the antenna voltage to the total voltage.

  8. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Source Plasma. 640.60 Section 640.60 Food and Drugs... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood collected by...

  9. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human...

  10. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  11. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  12. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood...

  13. Plasma emission sources in analytical spectroscopy-I.

    PubMed

    Greenfield, S; McGeachin, H M; Smith, P B

    1975-01-01

    A critical survey of plasma emission sources used in analytical spectroscopy, excluding conventional arc and spark sources, has been made. In Part I the concept of temperature applied to high-temperature excitation sources is considered, as are arc plasma jets. Part II will be concerned with microwave and capacitively coupled sources and in Part III inductively coupled sources will be dealt with. In the last part a comparison will also be made of all the sources reviewed, from the point of view of sensitivity, precision and freedom from matrix effects.

  14. Parametric investigations of plasma characteristics in a remote inductively coupled plasma system

    NASA Astrophysics Data System (ADS)

    Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth

    2016-09-01

    Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.

  15. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  16. Computational analysis of a pulsed inductive plasma accelerator

    NASA Astrophysics Data System (ADS)

    Corpening, Jeremy H.

    The pulsed inductive plasma accelerator allows for ionization of a cold gas propellant to plasma and acceleration of plasma with the same current pulse and without plasma contact with any part. This is beneficial since erosion is never a problem and lifetimes are limited only by the amount of carried propellant. To date, work involving the pulsed inductive plasma accelerator concept has been largely experimental with minimal computational analysis. The goal of the present research was to develop a computational tool using Maxwell's equations coupled with the Navier-Stokes fluid equations to fully analyze a pulsed inductive plasma accelerator. A plasma model was developed using the Saha equation and partition functions to calculate all required thermodynamic properties. The solution to Maxwell's equations was verified accurate and then coupled computations with propellant plasma were conducted. These coupled computations showed good order of magnitude accuracy with a simple onedimensional model however failed when the plasma began to accelerate due to the Lorentz force. The electric field, magnetic field, current density, and Lorentz force were all aligned in the proper vector directions. The computational failure occurred due to rapid, fictitious increases in the induced electric field in the vacuum created between the accelerating plasma and drive coil. Possible solutions to this problem are to decrease the time step and refine the grid density. Although complete acceleration of propellant plasma has yet to be computationally computed, this study has shown successful coupled computations with Maxwell and Navier-Stokes equations for a pulsed inductive plasma accelerator.

  17. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  18. Plasma source mass spectrometry in experimental nutrition.

    PubMed

    Barnes, R M

    1998-01-01

    The development and commercial availability of plasma ion source, specifically inductively coupled plasma, mass spectrometers (ICP-MS) have significantly extended the potential application of stable isotopes for nutritional modeling. The status of research and commercial ICP-MS instruments, and their applications and limitations for stable isotopic studies are reviewed. The consequences of mass spectroscopic resolution and measurement sensitivity obtainable with quadrupole, sector, time-of-flight, and trap instruments on stable isotope analysis are examined. Requirements for reliable isotope measurements with practical biological samples including tissues and fluids are considered. The possibility for stable isotope analysis in chemically separated compounds (speciation) also is explored. On-line compound separations by chromatography or electrophoresis, for example, have been combined instrumentally with ICP-MS. Som possibilities and requirements are described for stable isotope speciation analysis.

  19. Mode operation of inductively-coupled argon plasmas studied by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Iordanova, S.; Koleva, I.

    2007-04-01

    Mode operation of inductively driven plasmas in argon gas at low pressures is studied by optical emission spectroscopy. The plasma source is a tandem type source with a driver and an expansion plasma region. The driver region of the discharge is in the classical form of a cylindrically shaped inductive discharge, with a coil positioned over a gas discharge tube. The inductively coupled plasma discharge is maintained at high frequency f = 27 MHz, applied power varied in the limits P = (20-700) W and gas pressure in the range p = (8-260) mTorr. The Ar line intensity dependencies on the applied power injected into the discharge is analysed. With the power increase a mode transition of the discharge regime is not observed. The investigations on the discharge mode operation are supported by theoretical calculations based on kinetic modelling of main processes contributing to the line intensity behaviour.

  20. Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2013-01-01

    Inductive Pulsed Plasma Thrusters (iPPT) spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current Propellant is accelerated and expelled at a high exhaust velocity (O(10 -- 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may offer higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.

  1. Neuronal Source of Plasma Dopamine

    PubMed Central

    Goldstein, David S.; Holmes, Courtney

    2008-01-01

    BACKGROUND Determinants of plasma norepinephrine (NE) and epinephrine concentrations are well known; those of the third endogenous catecholamine, dopamine (DA), remain poorly understood. We tested in humans whether DA enters the plasma after corelease with NE during exocytosis from sympathetic noradrenergic nerves. METHODS We reviewed plasma catecholamine data from patients referred for autonomic testing and control subjects under the following experimental conditions: during supine rest and in response to orthostasis; intravenous yohimbine (YOH), isoproterenol (ISO), or glucagon (GLU), which augment exocytotic release of NE from sympathetic nerves; intravenous tri-methaphan (TRI) or pentolinium (PEN), which decrease exocytotic NE release; or intravenous tyramine (TYR), which releases NE by nonexocytotic means. We included groups of patients with pure autonomic failure (PAF), bilateral thoracic sympathectomies (SNS-x), or multiple system atrophy (MSA), since PAF and SNS-x are associated with noradrenergic denervation and MSA is not. RESULTS Orthostasis, YOH, ISO, and TYR increased and TRI/PEN decreased plasma DA concentrations. Individual values for changes in plasma DA concentrations correlated positively with changes in NE in response to orthostasis (r =0.72, P <0.0001), YOH (r = 0.75, P < 0.0001), ISO (r = 0.71, P < 0.0001), GLU (r = 0.47, P = 0.01), and TYR (r = 0.67, P < 0.0001). PAF and SNS-x patients had low plasma DA concentrations. We estimated that DA constitutes 2%– 4% of the catecholamine released by exocytosis from sympathetic nerves and that 50%–90% of plasma DA has a sympathoneural source. CONCLUSIONS Plasma DA is derived substantially from sympathetic noradrenergic nerves. PMID:18801936

  2. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  3. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    SciTech Connect

    Mishra, Anurag; Yeom, Geun Young

    2016-09-15

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P{sub 2MHz}) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P{sub 13.56MHz}) has been used in continuous mode. The substrate has been biased with a separate bias power at (P{sub 12.56MHz}) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as ‘initial overshoot’, pulse ‘on-phase’ and pulse ‘off-phase’. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse ‘on-phase’ and ‘off-phase’. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  4. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  5. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  6. Ion-wave stabilization of an inductively coupled plasma

    SciTech Connect

    Camparo, J.C.; Mackay, R.

    2006-04-24

    Stabilization of the rf power driving an inductively coupled plasma (ICP) has implications for fields ranging from atomic clocks to analytical chemistry to illumination technology. Here, we demonstrate a technique in which the plasma itself acts as a probe of radio wave power, and provides a correction signal for active rf-power control. Our technique takes advantage of the resonant nature of forced ion waves in the plasma, and their observation in the ICP's optical emission.

  7. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  8. Modeling of low pressure plasma sources for microelectronics fabrication

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr–10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  9. Thrust Stand Measurements of a Conical Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2012-01-01

    Inductive Pulsed Plasma Thrusters (iPPT) are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10 .. 100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, inductive pulsed plasma thrusters can suffer from both high pulse energy requirements imposed by the voltage demands of inductive propellant ionization, and low propellant utilization efficiencies. A conical coil geometry may o er higher propellant utilization efficiency over that of a at inductive coil, however an increase in propellant utilization may be met with a decrease in axial electromagnetic acceleration, and in turn, a decrease in the total axially-directed kinetic energy imparted to the propellant.

  10. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  11. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  12. Flow dynamics and magnetic induction in the von-Kármán plasma experiment

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Bousselin, G.; Palermo, F.; Morales, J.; Bos, W. J. T.; Godeferd, F.; Bourgoin, M.; Pinton, J.-F.; Moulin, M.; Aanesland, A.

    2015-01-01

    The von-Kármán plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (1016-1019 particles. m-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through J × B azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the J × B azimuthal torque.

  13. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    SciTech Connect

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  14. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  15. Atlas of atomic spectral lines of neptunium emitted by an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Dekalb, E. L.; Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230 to 700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data.

  16. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  17. Control and analysis of ion species in inductively coupled nitration plasma using a grid system

    SciTech Connect

    Bai, K.H.; Chang, H.Y.

    2005-09-19

    We control the ion density ratio of [N{sup +}]/[N{sub 2}{sup +}] with the voltage-biased grid system in inductively coupled nitration plasma. The ion density ratio is controlled from 0.39 to 0.04 with decreasing grid-biased voltage. We try to analyze the variation of the ion density ratio using the measured plasma parameters and particle balance equation. The important factor determining the ion ratio is the plasma potential difference between the source region--where plasma is generated--and the diffusion region--where the electron temperature is controlled. When the plasma potential is higher in the source region than in diffusion region, the ion density ratio is determined by the electron temperature in Region I. Inversely, the ion density ratio is determined by the electron temperature in Region II, when the plasma potential is higher in Region II than in Region I.

  18. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  19. Dynamics of a pulsed inductively coupled oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zaka-ul-Islam, Mujahid

    2016-11-01

    Inductively coupled plasma system (ICPs) is extensively used for a wide range of nanofabrication applications. The ICPs operated in a pulsed or power modulated mode has shown several advantages compared to the continuous discharge. In this work, the plasma dynamics in a planar coil pulsed inductively coupled plasma system (ICPs) operated in oxygen has been investigated, using phase and space resolved optical emission spectroscopy. It is well-known that the ICPs operates in two distinct operational modes as a function of power known as E and H modes, generated dominantly by capacitive and inductive couplings, respectively. The measurements show that the discharge ignites due a capacitive coupling (in the E-mode) and later transits to the H-mode as a function of time. The inductive coupling, however, starts during the E-mode along with capacitive coupling. The relative contribution of inductive coupling increases until the discharge reaches the E-H transition where the growth rate of inductive coupling becomes much faster. It is found that the time to reach E-H transition decreases with the pressure. At the E-H transition, the total emission has a spike-like feature (i.e., it first achieves a peak emission which later decreases and finally settles to a lower value). The 2D images of the discharge show that at the time of peak total-emission, the discharge structure is sharp and bright, which later decreases in brightness and becomes diffusive.

  20. Induced magnetic-field effects in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cohen, Ronald H.; Rognlien, Thomas D.

    1996-05-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. It was previously shown that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here the electron density calculation is extended to include both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. The potential required to establish a constant electron density is calculated and compared with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest.

  1. Induced magnetic-field effects in inductively coupled plasmas

    SciTech Connect

    Cohen, R.H.; Rognlien, T.D.

    1995-11-04

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday`s law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest.

  2. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  3. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  4. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  5. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  6. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    SciTech Connect

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-03-15

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10{sup 11} cm{sup -3} were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect.

  7. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators.

    PubMed

    Liu, Long; Tang, Wei; Wang, Zhong Lin

    2017-01-20

    Polyethylene terephthalate (PET) films' electret property was significantly enhanced after being treated with inductively coupled plasma (ICP). Based on this modified material, the triboelectric nanogenerators' (TENGs) transferred charges remained at 68.6% of the initial value after 400 000 cycles of contact-separation process, which was about three times that of the untreated samples.

  8. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Liu, Long; Tang, Wei; Wang, Zhong Lin

    2017-01-01

    Polyethylene terephthalate (PET) films’ electret property was significantly enhanced after being treated with inductively coupled plasma (ICP). Based on this modified material, the triboelectric nanogenerators’ (TENGs) transferred charges remained at 68.6% of the initial value after 400 000 cycles of contact-separation process, which was about three times that of the untreated samples.

  9. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  10. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  11. Kinetic simulations and photometry measurements of the E-H transition in cylindrical inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Nishida, K.; Mochizuki, S.; Grudiev, A.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2016-12-01

    Inductively coupled plasmas (ICP) are well known to exhibit two modes of operation: a low density capacitive E-mode and a high density inductive H-mode. In this study we investigate the E-H transition in a cylindrical ICP, and show the effect of an external magnetic cusp field on the transition dynamics. The plasma is simulated by an electro-magnetic particle-in-cell Monte Carlo collision code in order to take into account spatio-temporal variations of the plasma dynamics as well as kinetic effects. Simulations are compared to photometry measurements on the Linac4 H-ion source plasma chamber. We show that the E-H transition is characterized by strong spatial variations of the plasma parameters, with an axial plasma oscillation in E-mode followed by a centring in the coil region in H-mode. The external magnetic cusp field prevents electrons close to the wall to be accelerated and reduces the inductive power deposition in the plasma. This resulted in a  ≈50% higher current to achieve E-H transition compared to the configuration without cusp field. The results indicate possible improvements to the magnetic cusp field configuration in order to achieve optimal power transfer.

  12. Negative ion boundary layers in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Vitello, Peter

    1999-10-01

    Partially ionized plasmas at low neutral pressure and high plasma density may exhibit strong ion-ion coupling through space charge and Coulomb scattering effects. For electronegative plasmas this can lead to large scale irregularities in the ion density, temperature, and flux. In this regime, the force on ions due to ion-ion Coulomb scattering may dominate that from ion scattering with neutrals. This can lead to the formation of a negative ion boundary layer containing the bulk of the negative ions. Commercial Inductively Coupled Plasma reactors used in the semiconductor industry typically operate at low pressure and high plasma density. Simulations, including a detailed treatment of ion temperatures, are presented for a Chlorine discharge in the GEC reactor modified for Inductively Coupled operation. Results show that ion-ion coupling can induce large variations in the plasma, and that accurate modeling of spatial plasma structure should include these effects. This work was performed under the auspices of the U. S. Department of Energy at the Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

  13. Transient electromagnetic behaviour in inductive oxygen and argon-oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Chadwick, A. R.; Herdrich, G.; Kim, M.; Dally, B.

    2016-12-01

    In order to develop inductive electric propulsion as a flexible, throttleable technology for future space operations, a greater understanding of discharge transitions within the inductive plasma generator discharge chamber is required. This paper presents a non-intrusive method to determine the conditions under which transitions between the capacitive, low inductive, and high inductive regimes occur with greater accuracy, as well as determining the proportion of a single discharge cycle the plasma spends in either capacitive or inductive regime. Such a method allows a more robust method of classification of inductive discharges than previously available and can be applied to numerous gases. This approach presents an advantage over previous methods which relied on strongly radiating or thermally reactive gases to exhibit certain behaviour (due to the restriction of classical diagnostics on such high power sources) before a transition could be confirmed. This paper presents results from the proposed method applied to a pure oxygen plasma as well as two combinations of argon and oxygen (at 1:1 and 3:2 Ar:O2 volumetric ratios) in order to assess the tunability of electromagnetic regime transitions through modifications of gas composition rather than mechanical alterations. Transitions to the higher inductive mode were observed for much lower input powers for the argon-oxygen blends, as was expected, allowing final discharge conditions to occupy the inductive regime for 94% and 85% of a single discharge cycle for the 3:2 and 1:1 Ar:O2 mixtures, respectively. Pure oxygen achieved a maximum inductive proportion of 71% by comparison.

  14. Impact of Gas Heating in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.

  15. Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    SciTech Connect

    Ng, Johnny S.T.; Noble, Robert J.; /SLAC

    2005-07-13

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

  16. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry.

    PubMed

    Dennis, Elise A; Ray, Steven J; Enke, Christie G; Hieftje, Gary M

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time-compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  17. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  18. Plasma generation by inductive coupling with a planar resonant RF network antenna

    NASA Astrophysics Data System (ADS)

    Lecoultre, S.; Guittienne, Ph; Howling, A. A.; Fayet, P.; Hollenstein, Ch

    2012-02-01

    A planar antenna operating at 13.56 MHz is presented for potential applications in plasma processing. It consists of interconnected elementary resonant meshes composed of inductive and capacitive elements. Due to its structure, the antenna exhibits a set of resonant modes associated with peaks of the real input impedance. Each mode is defined by its particular distribution of current and voltage oscillating at the frequency of the mode. A rectangular antenna of 0.55 m×0.20 m has been built and first results obtained with argon plasmas are presented. Efficient plasma generation is shown by plasma densities above 3 × 1017 m-3 at 2000 W with reasonable uniformity over the antenna area. The plasma couples inductively with the resonating currents flowing in the antenna above a threshold power of about 60 W. The real input impedance at antenna resonance avoids the problem of strong reactive currents and voltages in the matching box and RF power connections associated with conventional large-area plasma sources. Resonant RF networks have a strong potential interest for various designs of plasma sources.

  19. Plasma Interaction and Induction Signatures at Callisto: Preparations for JUICE

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lucas; Feyerabend, Moritz; Simon, Sven; Motschmann, Uwe

    2016-04-01

    The interaction of the Jovian magnetospheric environment with an atmosphere and induced dipole at Callisto is investigated by applying a hybrid (kinetic ions, fluid electrons) simulation code. Callisto is unique among the Galilean satellites in its interaction with the ambient magnetospheric plasma as the gyroradii of the impinging plasma and pickup ions are large compared to the size of the moon. A kinetic representation of the ions is therefore mandatory to adequately describe the resulting asymmetries in the electromagnetic fields and the deflection of the plasma flow near Callisto. When Callisto is embedded in the magnetodisk lobes of Jupiter, a dipolar magnetic field is generated via induction in a subsurface ocean. This field creates an obstacle to the impinging magnetospheric plasma flow at the moon. However, when Callisto is located near the center of the Jovian current sheet, local magnetic perturbations due to the magnetosphere-ionosphere interaction are more than twice the strength of the background field and may therefore obscure any magnetic signal generated via induction in a subsurface ocean. Our simulations demonstrate that the deflection of the magnetospheric plasma into Callisto's wake cannot alone explain the plasma density enhancement of two orders of magnitude measured in the wake of the interaction region during Galileo flybys of the moon. However, through inclusion of an ionosphere around Callisto, modeled densities in the wake are consistent with in situ measurements.

  20. Power Transfer Efficiency of Plasma Sources

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2004-09-01

    There are many devices to produce gas discharge plasmas. They differ by the method of plasma coupling to the electrical energy source. In order to create self-sustained gas-discharge plasma with given gas pressure and plasma density, a certain amount of power Pp has to be delivered to plasma electrons to compensate for electron energy losses. As shown in this presentation, this power does not depend on the specifics of electron interaction with electromagnetic field and is basically the same for all types of discharges. Some additional power loss Pc associated with power dissipation in the plasma supporting means (like thermionic cathode, cathode fall, rf antenna and matching network) is unavoidable to maintain self-sustained plasma. That is accounted for by the power transfer efficiency η =Pp /(Pp +Pc ). Efficiency analysis of different plasma sources is given in this presentation. It is shown that the largest values of efficiency are found in the plasma sources for lighting and the lowest in the plasma for processing of materials. The presentation explains this disparity and challenges some wide spread mythology about unique efficiency of some plasma sources.

  1. Improvement of uniformity in a weakly magnetized inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.

    2015-12-01

    Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).

  2. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  3. Reactive deposition of tungsten and titanium carbides by induction plasma

    NASA Astrophysics Data System (ADS)

    Jiang, X. L.; Gitzhofer, F.; Boulos, M. I.; Tiwari, R.

    1995-05-01

    A study is reported on the use of induction plasma technology for the preparation of dense free-standing deposits of tungsten carbide and titanium carbide from metallic powders and methane. Phase analysis by X-ray diffraction indicates that primary carburization of the particles takes place in-flight giving rise to the formation of W2C and TiC(1 - x). Secondary carburization occurs in the deposits resulting in the formation of tungsten and titanium carbides. Microstructures revealed by optical and scanning electron microscopy show uniform small grains of the carbides. The reactive plasma spray-formed tungsten carbide shows transgranular fracture, while pure tungsten deposits show intergranular fracture.

  4. A progress report - Induction plasma simulation of the GCNR.

    NASA Technical Reports Server (NTRS)

    Vogel, C. E.

    1971-01-01

    Significant progress has been made in the design, construction and operation of induction coupled devices which simulate the open cycle Gas Core Nuclear Rocket. These devices incorporate solid feed of the plasma forming material (uranium and uranium simulating materials), permeable walls, seeding of the propellant, and transpiration cooled, choked flow nozzles. Operating parameters and performance data of devices employing these design features are discussed. A uranium plasma experiment is included. In addition, operating data of several devices which compare theoretical and actual performance at a variety of powers, pressures, frequencies, and sizes are discussed.

  5. A progress report - Induction plasma simulation of the GCNR.

    NASA Technical Reports Server (NTRS)

    Vogel, C. E.

    1971-01-01

    Significant progress has been made in the design, construction and operation of induction coupled devices which simulate the open cycle Gas Core Nuclear Rocket. These devices incorporate solid feed of the plasma forming material (uranium and uranium simulating materials), permeable walls, seeding of the propellant, and transpiration cooled, choked flow nozzles. Operating parameters and performance data of devices employing these design features are discussed. A uranium plasma experiment is included. In addition, operating data of several devices which compare theoretical and actual performance at a variety of powers, pressures, frequencies, and sizes are discussed.

  6. Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-ul-Islam, M.; Zakaullah, M.

    2017-03-01

    This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.

  7. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  8. Bulk molybdenum field emitters by inductively coupled plasma etching.

    PubMed

    Zhu, Ningli; Cole, Matthew T; Milne, William I; Chen, Jing

    2016-12-07

    In this work we report on the fabrication of inductively coupled plasma (ICP) etched, diode-type, bulk molybdenum field emitter arrays. Emitter etching conditions as a function of etch mask geometry and process conditions were systematically investigated. For optimized uniformity, aspect ratios of >10 were achieved, with 25.5 nm-radius tips realised for masks consisting of aperture arrays some 4.45 μm in diameter and whose field electron emission performance has been herein assessed.

  9. Basic requirements for plasma sources in medicine

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; von Woedtke, Th.

    2011-07-01

    Plasma medicine is a new medical field with first very promising practical studies. However, basic research needs to be done to minimize risk and provide a scientific fundament for medical therapies. Therapeutic application of plasmas at or in the human body is a challenge both for medicine and plasma physics. Today, concepts of tailor-made plasma sources which meet the technical requirements of medical instrumentation are still less developed. To achieve selected effects and to avoid potential risks, it is necessary to know how to control composition and densities of reactive plasma components by external operation parameters. Therefore, a profound knowledge on plasma physics and chemistry must be contributed by physical research. Therapeutic applications required cold, non-thermal plasmas operating at atmospheric pressure. These plasmas are a huge challenge for plasma diagnostics, because usually they are small scale, constricted or filamentary, and transient. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest for medical applications. Working in open air atmospheres, complex plasma chemistry must be expected. Considering that, a great deal of effort combining experimental investigation and modelling is necessary to provide the required knowledge on plasma sources for therapeutic applications.

  10. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  11. Surface plasma source with saddle antenna radio frequency plasma generator

    SciTech Connect

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-15

    A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  12. Effects of driving frequency on properties of inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    2016-10-01

    Inductively coupled plasma (ICP) can be maintained over a wide range of driving frequencies from 50 Hz up to GHz. In this paper, we analyze how the properties of ICP depend on driving frequency ω. With respect to the time of ion transport to the walls, τd and the electron energy relaxation time τɛ three operating regimes are distinguished. The quasi-static regime, ωτd << 1 , the high-frequency regime, ωτɛ >> 1 and the intermediate dynamic regime, 1 /τd < ω <1 /τɛ. In the quasi-static regime, plasma density oscillates significantly over the field period. In the high-frequency regime, the plasma density and the electron energy distribution function (EEDF) are constant. In the dynamic regime, the plasma density is constant, while the EEDF varies over the field period. Depending on ICP configuration, the induced by the coil magnetic fields inside ICP, Bc can be zero or not. For example, in ICP maintained by a long helical coil with the plasma current flowing outside the coil, Bc = 0 , while when the plasma current flows inside the coil, Bc ≠ 0 . We show that in the latter case, in the quasi-static regimes, electrons become magnetized over a significant part of the period that may strongly affect the plasma properties. Examples of ICP simulations in different frequency regimes will be demonstrated in this paper.

  13. Saturn Plasma Sources and Associated Transport Processes

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Andrews, D. J.; Coates, A. J.; Hamilton, D. C.; Jackman, C. M.; Jia, X.; Kotova, A.; Morooka, M.; Smith, H. T.; Westlake, J. H.

    2015-10-01

    This article reviews the different sources of plasma for Saturn's magnetosphere, as they are known essentially from the scientific results of the Cassini-Huygens mission to Saturn and Titan. At low and medium energies, the main plasma source is the H2O cloud produced by the "geyser" activity of the small satellite Enceladus. Impact ionization of this cloud occurs to produce on the order of 100 kg/s of fresh plasma, a source which dominates all the other ones: Titan (which produces much less plasma than anticipated before the Cassini mission), the rings, the solar wind (a poorly known source due to the lack of quantitative knowledge of the degree of coupling between the solar wind and Saturn's magnetosphere), and the ionosphere. At higher energies, energetic particles are produced by energy diffusion and acceleration of lower energy plasma produced by the interchange instabilities induced by the rapid rotation of Saturn, and possibly, for the highest energy range, by contributions from the CRAND process acting inside Saturn's magnetosphere. Discussion of the transport and acceleration processes acting on these plasma sources shows the importance of rotation-induced radial transport and energization of the plasma, and also shows how much the unexpected planetary modulation of essentially all plasma parameters of Saturn's magnetosphere remains an unexplained mystery.

  14. Estimating the inductance at the PF-1000 plasma focus

    NASA Astrophysics Data System (ADS)

    Kortanek, Jiri; Kubes, Pavel; Kravarik, Josef; Rezac, Karel; Klir, Daniel; Paduch, Marian; Scholz, Marek; Zielinska, Eva

    2011-10-01

    The plasma focus PF-1000 in the IPPLM in Warsaw, operating with 2 MA with 10 to the power of 11 neutron gain, was investigated with interferometry. 16 interferometric pictures with millimeter spatial resolution were obtained, representing the layout of plasma density. Their time step is 10-20 ns during a 220 ns period. Laser Nd:YLF with pulse duration below 1ns and a set of mirrors was used, splitting the main ray in 16 mutually delayed beams. Interferograms were processed with developed applications in order to calculate the inductance of plasma column under the assumption that the current flows straight along a thin skin layer at the surface of the current sheath. Known inductance enables estimation of the energy transformations in the plasma. This research has been supported by the research programs No. LA08024, No. ME09087, LC528 of the MEYS of the Czech Republic and the GACR grants No. 202-08-H057, CR IAEA 14817 and CTU SGS 10-2660-OHK3-3T-13.

  15. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  16. Solid sampling electrothermal vaporization for sample introduction in inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moens, L.; Verrept, P.; Boonen, S.; Vanhaecke, F.; Dams, R.

    1995-06-01

    Solid sampling using electrothermal vaporization is an attractive sample introduction method for atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). For AAS, the method is well established. The techniques needed to apply SS-ETV in ICP-based methods are described, with the emphasis on the coupling of different types of ETV-devices to the inductively coupled plasma torch and on the requirements for the spectrometer and the data acquisition and handling system. Though standardization is not straightforward, it is shown that standard addition and external calibration with solid standards yield accurate results. The latter is demonstrated by the analysis of standard reference materials. Figures of merit for SS-ETV-ICP-AES and SS-ETV-ICP-MS are presented. The literature concerning ICP-AES and ICP-MS (methods and applications) is briefly reviewed and new results of SS-ETV-ICP-MS analysis of SRMs are presented.

  17. Diagnostic studies of ion beam formation in inductively coupled plasma

    SciTech Connect

    Jacobs, Jenee L.

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  18. Surface plasma source with anode layer plasma accelerator.

    PubMed

    Dudnikov, Vadim

    2012-02-01

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  19. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  20. ION SOURCE (R.F. INDUCTION TYPE)

    DOEpatents

    Mills, C.B.

    1963-04-01

    A method is given for producing energetic ions by ionizing a gas with an oscillating electric field which is parallel to a confining magnetic field, then reorienting the fields perpendicular to each other to accelerate the ions to higher energies. An ion source is described wherein a secondary coil threads the bottom of a rectangular ionization chamber and induces an oscillating field parallel to a fixed intense magnetic field through the chamber. (AEC)

  1. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    SciTech Connect

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong; Kim, Hyuk; Park, Wanjae

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  2. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  3. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  4. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  5. Characterization of transmission line effects and ion-ion plasma formation in an inductively coupled plasma etch reactor

    NASA Astrophysics Data System (ADS)

    Khater, Marwan H.

    2000-10-01

    The plasma and processing uniformity are greatly affected by the gas flow distribution and the source geometry in inductively coupled plasma (ICP) etch reactors. However, a reasonably uniform source design, along with uniform gas distribution, does not always guarantee uniform plasma, because transmission line (i.e. standing wave) effects also impact its performance. In this work, we demonstrate that the gas flow distribution can have a major impact on both the plasma density profiles and etch rate uniformity at low pressures where one might expect diffusion to make gas flow distribution less important. We also present an ICP source design with a geometry that enables better control over the field profiles azimuthal symmetry despite transmission line effects. B-dot probe measurements of the free space electromagnetic fields for the new source and a comparably dimensioned standard planar coil showed improved azimuthal symmetry for the new source. We have also developed a three-dimensional electromagnetic model for ICP sources that accounts for current variations along the source length due to standing wave effects. The electromagnetic field profiles obtained from the model showed good agreement with the measured field profiles. Langmuir probe measurements showed that the new ICP source generated high density (1011--1012 cm-3) plasmas at low pressures with significantly improved azimuthal symmetry of power deposition and plasma generation. In addition, polysilicon etch rate profiles on 150 mm wafers also showed improved azimuthal symmetry and uniformity with the new ICP source. The new source was then used to investigate chlorine discharge properties and their spatial profiles in continuous wave (CW) and pulsed operation. Time-resolved Langmuir probe measurements showed that electron-free or "ion-ion" chlorine plasma forms during the afterglow (i.e. power-off) due to electron attachment. Such electron-free plasma can provide both positive and negative ion fluxes to a

  6. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  7. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  8. Effect of bias application to plasma density in weakly magnetized inductively coupled plasma

    SciTech Connect

    Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong

    2013-07-15

    Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.

  9. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  10. Characterization of inductively coupled plasma generated by a quadruple antenna

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  11. Discharge produced plasma source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Borisov, V.; Eltzov, A.; Ivanov, A.; Khristoforov, O.; Kirykhin, Yu.; Vinokhodov, A.; Vodchits, V.; Mishhenko, V.; Prokofiev, A.

    2007-04-01

    Extreme ultraviolet (EUV) radiation is seen as the most promising candidate for the next generation of lithography and semiconductor chip manufacturing for the 32 nm node and below. The paper describes experimental results obtained with discharge produced plasma (DPP) sources based on pinch effect in a Xe and Sn vapour as potential tool for the EUV lithography. Problems of DPP source development are discussed.

  12. Induction plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1971-01-01

    Induction plasma heating techniques were studied for calcining zinc orthotitanate particles for use in thermal control coatings. Previous studies indicated that the optimum calcining temperature is between 1400 and 1750 C. An intermediate temperature (1670 C) was chosen as a reference point for running a temperature series at the reference point and 220 C on both sides. The effect of varying chamber temperature on the reflectance spectra, before and after vacuum UV irradiation, is presented. The correlation between Zn2Ti04 paramagnetic resonance activity and its susceptibility to vacuum UV damage is discussed.

  13. A double inductively coupled plasma for sterilization of medical devices

    NASA Astrophysics Data System (ADS)

    Halfmann, H.; Bibinov, N.; Wunderlich, J.; Awakowicz, P.

    2007-07-01

    A double inductively coupled low pressure plasma for sterilization of bio-medical materials is introduced. It is developed for homogeneous treatment of three-dimensional objects. The short treatment times and low temperatures allow the sterilization of heat sensitive materials like ultra-high-molecular-weight-polyethylene or polyvinyl chloride. Using a non-toxic atmosphere reduces the total process time in comparision with common methods. Langmuir probe measurements are presented to show the difference between ICP- and CCP-mode discharges, the spatial homogeneity and the influence on the sterilization efficiency. To know more about the sterilization mechanisms optical emission is measured and correlated with sterilization results.

  14. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2003-10-02

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

  15. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  16. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  17. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application.

    PubMed

    Lee, J H; Yoon, Y S; Kim, M J

    2013-04-01

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (Te) and ion flux (Jion) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring Te and Jion for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  18. Equivalent circuit effects on mode transitions in H{sub 2} inductively coupled plasmas

    SciTech Connect

    Xu, Hui-Jing; Zhao, Shu-Xia Zhang, Yu-Ru; Gao, Fei; Li, Xue-Chun; Wang, You-Nian

    2015-04-15

    It is well known experimentally that the circuit matching network plays an important role in the mode transition behavior of inductively coupled plasmas. To date, however, there have been no reports of numerical models being used to study the role of the matching circuit in the transition process. In this paper, a new two-dimensional self-consistent fluid model that couples the components of an equivalent circuit module is developed to investigate the effects of the equivalent circuit on the mode transition characteristics of an inductively coupled, hydrogen plasma. The equivalent circuit consists of a current source, impedance matching network, reactor impedance, and plasma transferred impedance. The nonlinear coupling of the external circuit with the internal plasma is investigated by adjusting the matching capacitance at a fixed input current. The electron density and temperature as well as the electromagnetic fields all change suddenly, and the E to H mode transition occurs abruptly at a certain matching capacitance as the impedance matching of the external circuit is varied. We also analyze the fields and the plasma characteristics during the transition process, especially for the case of the capacitive E mode.

  19. Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.

    2016-09-01

    The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.

  20. Mode transition in CF4 + Ar inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian

    2013-12-01

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF4 + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and △P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF4 increases, the E to H mode transition happens at higher applied power, and meanwhile, the △P also significantly increases. Besides, the effects of CF4 gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF4 at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF4 gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  1. Plasma-based EUV light source

    DOEpatents

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  2. Air Plasma Source for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.; IPFN-IST, 1049-001 LX, Portugal Team; Lebedev Physical Institute of the Russian Academy of Sciences Team

    2011-10-01

    Plasma interactions with living matter are presently at the frontiers of plasma research and development. Plasmas contain numerous agents that influence biological activity. They provide essentially two types of biocidal species: reactive species, such as oxygen atoms that lead to lethality of micro-organisms through erosion, and UV radiation that can damage the DNA strands. In this work we investigate a surface wave (2.45 GHz) driven discharge plasma in air, with a small admixture of water vapor, as a source of ground state O(3P) oxygen atoms, NO molecules and UV radiation. A theoretical model describing both the wave driven discharge zone and its flowing afterglow is used to analyze the performance of this plasma source. The predicted plasma-generated NO(X) and O(3P) concentrations and NO(γ) radiation intensity along the source are presented and discussed as a function of the microwave power and water vapor percentage in the gas mixture. To validate the theoretical predictions, the relative concentrations of species have been determined by Mass Spectrometry, Fourier Transform Infrared Spectroscopy and Optical Spectroscopy. Acknowledgment: This work was funded by the Portuguese Foundation for Science and Technology, under research contract PTDC/FIS/108411/2008.

  3. Experimental and numerical studies of neutral gas depletion in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi

    The central theme of this dissertation is to explore the impact of neutral depletion and coupling between plasma and neutral gas in weakly ionized unmagnetized plasma. Since there have been few systematic studies of the mechanism which leads to non-uniform neutral distribution in processing plasmas, this work investigated the spatial profiles of neutral temperature and pressure experimentally, and the mechanism of resulting neutral depletion by simulation. The experimental work is comprised of neutral temperature measurements using high resolution atomic spectroscopy and molecular spectroscopy, and neutral pressure measurements considering thermal transpiration. When thermal transpiration effects are used to correct the gas pressure measurements, the total pressure remains constant regardless of the plasma condition. Since the neutral gas follows the ideal gas law, the neutral gas density profile is also obtained from the measured neutral gas temperature and the corrected pressure measurements. The results show that neutral gas temperature rises close to ˜ 900 [K], and the neutral gas density at the center of plasma chamber has a significant (factor of 2-4x) decrease in the presence of a plasma discharge. In numerical work, neutral and ion transport phenomena were simulated by a hybrid-type direct simulation Monte Carlo (DSMC) method of one dimensional (1D) electrostatic plasma to identify the mechanism of the neutral gas density depletion in Ar/N2 mixtures. The simulation reveals that the neutral depletion is the result of the interplay between plasma and neutral gas, and a parametric study indicates that neutral depletion occurs mainly due to gas heating and pressure balance for the typical condition of plasma processing. In high density plasma sources (Te ≈ 2-5 eV, ne ≈ 1011-1012 cm-3) where the plasma pressure becomes comparable to neutral pressure, total pressure (neutral pressure and plasma pressure) is conserved before and after the discharge. Therefore

  4. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  5. ISOTOPE DILUTION ANALYSIS OF BROMATE IN DRINKING WATER MATRIXES BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection byproduct in drinking water which is formed during the ozonation of source water containing bromide. This paper described the analysis of bromate via ion chromatography-inductively coupled plasma mass spectrometry. The separation of bromate from interfer...

  6. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  7. A dc Penning Surface-Plasma Source

    DTIC Science & Technology

    2007-11-02

    LA-UR-93-2990 Title: A dc Penning Surface-Plasma Source Author(s): Submitted to: H. Vernon Smith, Jr., Paul Allison, Carl Geisik, David R...Type: HC Number of Copies In Library: 000001 Record ID: 28620 A de Penning Surface-Plasma Source* H. Vernon Smith, Jr., Paul Allison, Carl Geisik...Schechter, J. H. Whealton, and J. J. Donaghy, ATP Conf. Proc. No. 158, 366 (1987). 8) H. V. Smith, Jr., N. M. Schnurr, D. H. Whitaker , and K. E. Kalash

  8. Effect of metastables on a sustaining mechanism in inductively coupled plasma in Ar

    NASA Astrophysics Data System (ADS)

    Sato, Toshikazu; Makabe, Toshiaki

    2005-12-01

    We numerically predicted the spatial distribution of Ar metastables in an inductively coupled plasma (ICP) source; this distribution may be an indicator of the behavior of long-lived neutral radicals in a reactive plasma. We investigated the effect of metastables on the sustaining mechanism in ICP in Ar. The predicted two-dimensional profile of Ar metastables agreed reasonably well with experimental results. The transition of the sustaining mechanism from direct ionization to stepwise ionization is found as a function of input power at 50 mTorr. In addition, a strong hysteresis of plasma density is predicted between the increasing and decreasing phases of the input power based on the stepwise ionization of Ar metastables in the ICP.

  9. Characterization of radical production mechanism in CHF3 and CF4 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Zhao, Shuxia; PSEG Team

    2015-09-01

    Inductively coupled fluorocarbon (fc) plasmas are widely used in Si /SiO2 etching industry as they provide active radicals which are reactive to the Si or SiO2 materials. It is well known that CHF3 plasma has relatively low density ratio of F vs. CFx radicals and hence high etching selectivity, as compared with the CF4 , due to the fact that one F is replaced by H in CHF3 molecules and H can abstract F from fluorocarbon radicals to form HF. However, for now, much elaborate details are still missed in the literature. Therefore in this work, a fluid model is used to characterize the radical production components in these two different fc plasmas. The fluid model includes continuity and energy equations for electrons, continuity and momentum equations for ions and continuity equations for radicals. An electromagnetic model is used to calculate the electric field which is generate by coupling coil current and Poisson equation is used to calculate the static field within the plasma. The model predicts the electron density, ion density and radical density of CHF3 plasma. For now the simulations of CF4 plasma are still under construction. We expect to compare the different radical production mechanisms in the CHF3 and CF4 plasma sources in new future.

  10. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  11. Plasma source for spacecraft potential control

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.

  12. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma.

    PubMed

    Hasse, S; Duong Tran, T; Hahn, O; Kindler, S; Metelmann, H-R; von Woedtke, T; Masur, K

    2016-03-01

    Over the past few decades, new cold plasma sources have been developed that have the great advantage of operating at atmospheric pressure and at temperatures tolerable by biological material. New applications for these have emerged, especially in the field of dermatology. Recently it was demonstrated that cold atmospheric-pressure plasma positively influences healing of chronic wounds. The potential of cold plasma lies in its capacity to reduce bacterial load in the wound while at the same time stimulating skin cells and therefore promoting wound closure. In recent years, there have been great advances in the understanding of the molecular mechanisms triggered by cold plasma involving signalling pathways and gene regulation in cell culture. To investigate cold plasma-induced effects in ex vivo treated human skin biopsies. Human skin tissue was exposed to cold plasma for different lengths of time, and analysed by immunofluorescence with respect to DNA damage, apoptosis, proliferation and differentiation markers. After cold plasma treatment, the epidermal integrity and keratin expression pattern remained unchanged. As expected, the results revealed an increase in apoptotic cells after 3 and 5 min of treatment. Strikingly, an induction of proliferating basal keratinocytes was detected after cold plasma exposure for 1 and 3 min. As these are the cells that regenerate the epidermis, this could indeed be beneficial for wound closure. We investigated the effect of cold plasma on human skin by detecting molecules for growth and apoptosis, and found that both processes are dependent on treatment time. Therefore, this approach offers promising results for further applications of cold plasma in clinical dermatology. © 2015 British Association of Dermatologists.

  13. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  14. Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study

    SciTech Connect

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-28

    A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  15. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  16. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  17. Quantitative aspects of inductively coupled plasma mass spectrometry.

    PubMed

    Bulska, Ewa; Wagner, Barbara

    2016-10-28

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  18. External control of electron energy distributions in a dual tandem inductively coupled plasma

    SciTech Connect

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M. Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-28

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  19. External control of electron energy distributions in a dual tandem inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.

    2015-08-01

    The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.

  20. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    SciTech Connect

    Shin, Dong-Wook Kim, Tae Sung; Yoo, Ji-Beom

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  1. Electron density characterization of inductively-coupled argon plasmas by the terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Dogeun; Uhm, Han Sup; Jang, Donggyu; Hur, Min Sup; Suk, Hyyong

    2016-12-01

    Inductively-coupled plasmas (ICP) in the high electron density regime of the order of 1013 cm-3 are generated and their electron density characteristics are investigated by the terahertz time-domain spectroscopy (THz-TDS) method. In this experiment, the plasma was produced by RF (13.56 MHz) with an applied RF power of 300-550 W and the argon gas pressure was in the range of 0.3-1.1 Torr. We generated the THz wave by focusing a femtosecond laser pulse in air with a DC electric field. As a plasma diagnostic tool, the THz-TDS method is found to successfully provide the plasma density information in the high-density regime, where other available plasma diagnostic tools are very limited. In addition, the analytical model based on the ambipolar diffusion equation is compared with experimental observations to explain the behavior of the electron density in the ICP source, where the plasma density is shown to be related to the applied RF power and gas pressure. The analytical result from the model is found to be in good agreement with the THz-TDS result.

  2. Initial Operation of the Miniaturized Inductively Heated Plasma Generator IPG6

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Herdrich, Georg; Laufer, Rene; Koch, Helmut; Gomringer, Chris; Cook, Mike; Schmoke, Jimmy; Matthews, Lorin; Hyde, Truell

    2012-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma wind tunnel facilities of similar type have been established using the inductively heated plasma source IPG6 which is based on proven IRS designs. The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160m^3/h in combination with a butterfly valve allows pressure control in a wide range. First experiments have been conducted with Air, O2 and N2 as working gases and volumetric flow rates of up to 14 L/min at pressures of a few 100 Pa, although pressures below 1 Pa are achievable at lower flow rates. The maximum tested electric power so far was 8 kW. Plasma powers and total pressures in the plasma jet have been obtained. In the near future the set up of additional diagnostics, the use of other gases (i.e. H2, He), and the integration of a dust particle accelerator are planned. The intended fields of research are basic investigation in thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. in fusion devices or during atmospheric entry of spacecraft.

  3. A study on plasma parameters in Ar/SF6 inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2017-01-01

    Sulfur hexafluoride (SF6) gas or Ar/SF6 mixing gas is widely used in plasma processes. However, there are a little experimental studies with various external parameters such as gas pressure and mixing ratio. In this work, a study of the plasma parameters by changing the gas mixing ratio was done in an Ar/SF6 inductively coupled plasma from the measurement of the electron energy distribution function. At a low gas pressure, as the mixing ratio of SF6 gas increased at a fixed inductively coupled plasma (ICP) power, the electron density decreased and the electron temperature increased, while they were not changed drastically. At a high gas pressure, a remarkable increase in the electron temperature was observed with the decrease in the electron density. These variations are due to the electron loss reactions such as the electron attachment. It was also found that at a fixed ICP power, the negative ion creation with the diluted SF6 gas can change the discharge mode transition from an inductive mode to a capacitive mode at the high gas pressure. The electron attachment reactions remove the low energy electrons and change the mean electron energy towards higher energies with diluting SF6 gas at high pressure. The measured results were compared with the simplified global model, and the global model is in relatively good agreement with the measured plasma parameters except for the result in the case of the large portion of SF6 gas at the high pressure and the capacitive mode, which causes strong negative ion formation by the electron attachment reactions.

  4. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  5. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  6. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  7. Synthesis of Lithium Metal Oxide Nanoparticles by Induction Thermal Plasmas

    PubMed Central

    Tanaka, Manabu; Kageyama, Takuya; Sone, Hirotaka; Yoshida, Shuhei; Okamoto, Daisuke; Watanabe, Takayuki

    2016-01-01

    Lithium metal oxide nanoparticles were synthesized by induction thermal plasma. Four different systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand formation mechanism of Li–Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry and electron microscopy showed that Li–Me oxide nanoparticles were successfully synthesized in Li–Mn, Li–Cr, and Li–Co systems. Spinel structured LiMn2O4 with truncated octahedral shape was formed. Layer structured LiCrO2 or LiCoO2 nanoparticles with polyhedral shapes were also synthesized in Li–Cr or Li–Co systems. By contrast, Li–Ni oxide nanoparticles were not synthesized in the Li–Ni system. Nucleation temperatures of each metal in the considered system were evaluated. The relationship between the nucleation temperature and melting and boiling points suggests that the melting points of metal oxides have a strong influence on the formation of lithium metal oxide nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

  8. Analysis of trimethylgallium with inductively coupled plasma spectrometry

    SciTech Connect

    Bertenyi, I.; Barnes, R.M.

    1986-07-01

    Two methods for the analysis of trimethylgallium (TMG) are described. Since TMG is pyrophoric and volatile and the nature of its impurity species is not known, separate methods were employed for volatile and nonvolatile impurities. The nonvolatile impurities (Al, Cu, Fe, Mg) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in an aqueous solution of decomposed TMG with conventional nebulization. The volatile impurity silicon in TMG also was determined by ICP-AES but with exponential dilution. A known quantity of TMG was placed in an exponential dilution flask, and argon swept the vapor out of the flask into the plasma. Limits of detection in 1 g of TMG were 2 ..mu..g of Al, 0.6 ..mu..g of Fe, 0.6 ..mu..g of Cu, and 0.08 ..mu..g of Mg. The Si detection limit was 0.6 ..mu..g. The analysis precision for practical samples was 10-20%.

  9. Terahertz sources based on plasma instabilities

    NASA Astrophysics Data System (ADS)

    Kempa, K.

    2000-03-01

    Excess free energy in a non-equilibrium plasma can be efficiently transferred into growing plasma oscillations (plasma instability). These oscillating charges produce coherent electromagnetic radiation. This phenomenon, well known in gaseous plasmas, has not yet been observed in solid-state systems. Plasma oscillations of typical low dimensional semiconductor systems are in the THz range, making them attractive candidates for compact coherent sources in this frequency range. Bakshi and Kempa have established theoretically the feasibility of achieving plasma instabilities in a variety of low dimensional solid state systems [1-6]. The most promising quantum well system employs strongly inhomogeneous carrier plasmas in a non-equilibrium steady state, through appropriate injection and extraction of carriers. In this case, the plasma instability arises from an attractive interaction between inter-subband plasmon modes [7]. The collective nature of the phenomenon ensures its survival even for high temperatures. This talk gives an overview of the theoretical work and recent efforts for experimental verification [8]. *Supported by US Army Research Office. [1] P. Bakshi, J. Cen and K. Kempa J. Appl. Phys. 64, 2243 (1988). [2] K. Kempa, J. Cen, P. Bakshi, Phys. Rev. B39, 2852 (1989). [3] P. Bakshi and K. Kempa, Phys. Rev. B 40, 3433 (1989). [4] K. Kempa, P.Bakshi, and H. Xie, Phys. Rev. B 48, 9158, (1993). [5] P. Bakshi and K. Kempa, Superlattices and Microstructures, 17, 363, (1995), and earlier references therein. [6] K. Kempa, P. Bakshi and E. Gornik, Phys. Rev. B 54, 8231, (1996). [7] P. Bakshi and K. Kempa, Cond. Matter. Theories., Eds. J.W.Clark and P.V. Panat, Nova Science, vol. 12, pp 399-412, 1997. [8] P. Bakshi, K. Kempa, A. Scorupsky, C. G. Du, G. Feng, R. Zobl, G. Strasser, C. Rauch, Ch. Pacher, K. Unterrainer, and E. Gornik, Appl. Phys. Letters, 75,1685 (1999).

  10. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  11. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  12. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Ferguson, Jill Wisnewski

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  13. Helicon Plasma Source Optimization Studies for VASIMR

    NASA Technical Reports Server (NTRS)

    Goulding, R. H.; Baity, F. W.; Barber, G. C.; Carter, M. D.; ChangDiaz, F. R.; Pavarin, D.; Sparks, D. O.; Squire J. P.

    1999-01-01

    A helicon plasma source at Oak Ridge National Laboratory is being used to investigate operating scenarios relevant to the VASIMR (VAriable Specific Impulse Magnetoplasma Rocket). These include operation at high magnetic field (> = 0.4 T), high frequency (<= 30 MHz), high power (< = 3 kW), and with light ions (He+, H+). To date, He plasmas have been produced with n(sub e0) = 1.7 x 10(exp 19)/cu m (measured with an axially movable 4mm microwave interferometer), with Pin = I kW at f = 13.56 MHz and absolute value of B(sub 0) = 0.16 T. In the near future, diagnostics including a mass flow meter and a gridded energy analyzer array will be added to investigate fueling efficiency and the source power balance. The latest results, together with modeling results using the EMIR rf code, will be presented.

  14. Helicon Plasma Source Optimization Studies for VASIMR

    NASA Technical Reports Server (NTRS)

    Goulding, R. H.; Baity, F. W.; Barber, G. C.; Carter, M. D.; ChangDiaz, F. R.; Pavarin, D.; Sparks, D. O.; Squire J. P.

    1999-01-01

    A helicon plasma source at Oak Ridge National Laboratory is being used to investigate operating scenarios relevant to the VASIMR (VAriable Specific Impulse Magnetoplasma Rocket). These include operation at high magnetic field (> = 0.4 T), high frequency (<= 30 MHz), high power (< = 3 kW), and with light ions (He+, H+). To date, He plasmas have been produced with n(sub e0) = 1.7 x 10(exp 19)/cu m (measured with an axially movable 4mm microwave interferometer), with Pin = I kW at f = 13.56 MHz and absolute value of B(sub 0) = 0.16 T. In the near future, diagnostics including a mass flow meter and a gridded energy analyzer array will be added to investigate fueling efficiency and the source power balance. The latest results, together with modeling results using the EMIR rf code, will be presented.

  15. Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect

    Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

    1980-03-01

    Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

  16. Anisotropic pattern transfer in ultrananocrystalline diamond films by inductively coupled plasma etching.

    PubMed

    Park, Jong Cheon; Kim, Seong Hak; Cha, Seung Uk; Jeong, Geun; Kim, Tae Gyu; Kim, Jin Kon; Cho, Hyun

    2014-12-01

    High density plasma etching of ultrananocrystalline diamond (UNCD) films wasperformed in O2 and O2/Ar inductively coupled plasma (ICP) discharges. The O2/Ar ICP discharges produced higher etch rates due to enhanced physical component of the etching, and a maximum etch rate of -280 nm/min was obtained in 10 sccm O2/5 sccm Ar discharges. Very high etch selectivities up to -140:1 were obtained for the UNCD over Al mask layer. Anisotropic pattern transfer with a vertical sidewall profile was achieved in the 10 sccm O2/5 sccm Ar discharges at a relatively low source power (300 W) and a moderate rf chuck power (200 W).

  17. Microwave Plasma Sources for Gas Processing

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  18. Microwave Plasma Sources for Gas Processing

    SciTech Connect

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-03-19

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

  19. Plasma Sources and Magnetospheric Consequences at Saturn

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.

    2012-12-01

    Saturn's magnetospheric dynamics are dominated by two facts: 1) the planet rotates very rapidly (~10-hour period); and 2) the moon Enceladus, only 500 km in diameter, orbits Saturn at a distance of 4 Rs. This tiny moon produces jets of water through cracks in its icy surface, filling a large water-product torus of neutral gas that surrounds Saturn near Enceladus' orbit. Through photoionization and electron-impact ionization, the torus forms the dominant source of Saturn's magnetospheric plasma. This inside-out loading of plasma, combined with the rapid rotation of the magnetic field, leads to outward transport through a nearly continuous process of discrete flux-tube interchange. The magnetic flux that returns to the inner magnetosphere during interchange events brings with it hotter, more-tenuous plasma from the outer magnetosphere. When dense, relatively cold plasma from the inner magnetosphere flows outward in the tail region, the magnetic field is often not strong enough to confine it, and magnetic reconnection allows the plasma to break off in plasmoids that escape the magnetospheric system. This complicated ballet of production, transport, and loss is carried on continuously. In this talk we will investigate its temporal variability, on both short and long timescales.

  20. Plasmas as Light Sources for Lasers.

    DTIC Science & Technology

    1984-09-01

    RD-R159 460 PLASMS RS LIGHT SOURCES FOR LSERS(U) LBANA UNIV IN ./I HUNTSVILLE T A BARR ET AL. SEP 64 ANSMI/RH-CR-85-14 pAAHS-82-D-AS±6 N...and experimental results are presented, together with a * possible explanation of the optical radiation-tim history of the plasm . Potential...into a cold pl’sma device at Te - 1 eV and l018 / cc ions. Incidentally this experiment showed why there may be a need for a plasma light source

  1. Extraction and neutralization of positive and negative ions from a pulsed electronegative inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Marinov, D.; el Otell, Z.; Bowden, M. D.; Braithwaite, N. St. J.

    2015-12-01

    Almost electron-free (ion-ion) plasmas can be transiently formed during the afterglow phase of pulsed plasmas in electronegative gases. In ion-ion plasmas, both positive and negative ions can be extracted which makes them advantageous for a number of applications. In this paper, we investigate the extraction and acceleration of positive and negative ion beams from a pulsed inductively coupled plasma in SF6. The plasma is bounded by two electrodes biased synchronously with the discharge modulation. It is shown that when a DC bias voltage is applied during the afterglow phase, positive/negative ions are accelerated in a positive/negative space charge sheath formed in front of one of the electrodes. The energy of extracted ions closely follows the amplitude of the applied bias voltage (25-150 V) and the peak beam current density reaches 2 A m-2. With a view to using the described system as a source of energetic neutral beams for low damage material processing, simultaneous extraction and surface neutralization of positive and negative ions using an extraction electrode with high aspect ratio apertures is investigated.

  2. Characteristic of a triple-cathode vacuum arc plasma source.

    PubMed

    Xiang, W; Li, M; Chen, L

    2012-02-01

    In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.

  3. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  4. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    SciTech Connect

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer

  5. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  6. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  7. Plasma ignition and steady state simulations of the Linac4 H{sup −} ion source

    SciTech Connect

    Mattei, S. Lettry, J.; Grudiev, A.; Ohta, M.; Yasumoto, M.; Hatayama, A.

    2014-02-15

    The RF heating of the plasma in the Linac4 H{sup −} ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 10{sup 12} m{sup −3} and its stabilization at 10{sup 18} m{sup −3}. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e{sup −}/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  8. Feedback control of plasma electron density and ion energy in an inductively coupled plasma etcher

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Huang, H.-M.; Hsieh, C.-H.

    2009-01-15

    Here the authors report the development of a fuzzy logic based feedback control of the plasma electron density and ion energy for high density plasma etch process. The plasma electron density was measured using their recently developed transmission line microstrip microwave interferometer mounted on the chamber wall, and the rf voltage was measured by a commercial impedance meter connected to the wafer stage. The actuators were two 13.56 MHz rf power generators which provided the inductively coupled plasma power and bias power, respectively. The control system adopted the fuzzy logic control algorithm to reduce frequent actuator action resulting from measurement noise. The experimental results show that the first wafer effect can be eliminated using closed-loop control for both poly-Si and HfO{sub 2} etching. In particular, for the HfO2 etch, the controlled variables in this work were much more effective than the previous one where ion current was controlled, instead of the electron density. However, the pressure disturbance effect cannot be reduced using plasma electron density feedback.

  9. Negative hydrogen ion production in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.

    2015-09-01

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  10. Negative hydrogen ion production in a helicon plasma source

    SciTech Connect

    Santoso, J. Corr, C. S.; Manoharan, R.; O'Byrne, S.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  11. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    SciTech Connect

    Sudhir, Dass Bandyopadhyay, M.; Chakraborty, A.

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  12. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  13. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    NASA Astrophysics Data System (ADS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  14. Pure Material Vapor Source by Induction Heating Evaporator for an Electron Cyclotron Resonance Ion Source

    SciTech Connect

    Matsui, Y.; Watanabe, T.; Satani, T.; Sato, F.; Kato, Y.; Iida, T.; Muramatsu, M.; Kitagawa, A.; Tanaka, K.; Yoshida, Y.

    2008-11-03

    Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4} to 10{sup -3} Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.

  15. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.

  16. Environmental analysis by inductively coupled plasma mass spectrometry.

    PubMed

    Beauchemin, Diane

    2010-01-01

    This article reviews the numerous ways in which inductively coupled plasma mass spectrometry has been used for the analysis of environmental samples since it was commercially introduced in 1983. Its multielemental isotopic capability, high sensitivity and wide linear dynamic range makes it ideally suited for environmental analysis. Provided that some care is taken during sample preparation and that appropriate calibration strategies are used to circumvent non-spectroscopic interferences, the technique is readily applicable to the analysis of a wide variety of environmental samples (natural waters, soils, rocks, sediments, vegetation, etc.), using quadrupole, time-of-flight or double-focusing sector-field mass spectrometers. In cases where spectroscopic interferences arising from the sample matrix cannot be resolved, then separation methods can be implemented either on- or off-line, which can simultaneously allow analyte preconcentration, thus further decreasing the already low detection limits that are achievable. In most cases, the blank, prepared by following the same steps as for the sample but without the sample, limits the ultimate detection limits that can be reached.

  17. Uranium quantification in semen by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, Todor; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.

  18. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    PubMed

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments. Published by Elsevier GmbH.

  19. High-Density Plasma Sources and Technology for the Next Generation

    NASA Astrophysics Data System (ADS)

    Sugai, Hideo

    1998-10-01

    These days, rapid progress in semiconductor devices such as LSI, flat panel displays and solar cells requires technical innovation in plasma-aided deposition and etching. Due to the primary importance of plasma sources, a great deal of effort has been made to develop high-density large-diameter sources and to control reactive plasmas for the next generation. Here I briefly review high-density sources developed so far, focusing mainly on current understanding of nonlinear coupling from RF antenna to high density sources, and on chemistry control of highly dissociated plasmas. First of all, I introduce various high density sources such as ECR, helicon, inductively-coupled and surface-wave plasmas; then they are classified into three categories depending on the antenna-induced electromagnetic fields. In general, antenna-plasma coupling is nonlinear, which causes plasma density jump with a discharge power increase in most high-density sources. I describe such examples of helicon,(H. Sugai et al., Plasma Phys. Control. Fusion) 39 (1997) A445. and surface wave discharges along with a model explaining the mechanism. In the case of inductive RF discharge, power transfer efficiency measurements(K. Suzuki, K. Nakamura, H. Ohkubo, H. Sugai, Plasma Sources Sci. Technol.) 7 (1998) 13. enable discrimination of electrostatic coupling from inductive coupling, and a few methods to reduce the electrostatic coupling will be presented. The wave excitation and absorption processes in surface wave discharge(H. Sugai, I. Ghanashev, M. Nagatsu, Plasma Sources Sci. Technol.) 7 (1998) 192. will then be discussed, but only qualitatively as the physics involved there is not clearly understood yet. Besides the discharge physics described above, plasma chemistry significantly influences the processing performance in high density plasmas. The radical composition is markedly different from the low density case, due to secondary processes accompanied with electron-impact dissociation of radicals

  20. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  1. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food...

  2. The Earth: Plasma Sources, Losses, and Transport Processes

    NASA Astrophysics Data System (ADS)

    Welling, Daniel T.; André, Mats; Dandouras, Iannis; Delcourt, Dominique; Fazakerley, Andrew; Fontaine, Dominique; Foster, John; Ilie, Raluca; Kistler, Lynn; Lee, Justin H.; Liemohn, Michael W.; Slavin, James A.; Wang, Chih-Ping; Wiltberger, Michael; Yau, Andrew

    2015-10-01

    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

  3. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. Link to an amendment published at 77 FR 18, Jan. 3, 2012. (a) Upon approval by the...

  4. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  5. 21 CFR 640.74 - Modification of Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Modification of Source Plasma. 640.74 Section 640...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.74 Modification of Source Plasma. (a) Upon approval by the Director, Center for Biologics Evaluation and Research, Food and...

  6. Z-pinch plasma neutron sources

    SciTech Connect

    Velikovich, A. L.; Clark, R. W.; Davis, J.; Chong, Y. K.; Deeney, C.; Coverdale, C. A.; Ruiz, C. L.; Cooper, G. W.; Nelson, A. J.; Franklin, J.; Rudakov, L. I.

    2007-02-15

    A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields {approx}3x10{sup 13}, in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion accelerator. No matter what mechanism is eventually determined to be responsible for generating fusion neutrons in deuterium gas-puff shots on Z, the deuterium neutron yield is shown to scale as Y{sub n}{approx}I{sub m}{sup 4}, where I{sub m} is the peak current of the pinch. Theoretical estimates and numerical modeling of deuterium gas-puff implosions demonstrate that the yields of thermonuclear fusion neutrons that can be produced on ZR and the next-generation machines are sufficiently high to make PNS the most powerful, cost- and energy-efficient laboratory sources of 2.5-14 MeV fusion neutrons, just like plasma radiation sources are the most powerful sources of soft and keV x rays. In particular, the predicted deuterium-tritium thermal neutron-producing capability of PNS driven by the next-generation ZR and ZX accelerators is {approx}5x10{sup 16} and {approx}10{sup 18}, respectively.

  7. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  8. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream

  9. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  10. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device.

    PubMed

    Srivastava, P K; Singh, S K; Sanyasi, A K; Awasthi, L M; Mattoo, S K

    2016-07-01

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  11. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    SciTech Connect

    Srivastava, P. K. Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M. Mattoo, S. K.

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  12. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  13. Formation of High Quality AlN Tunnel Barriers via an Inductively Couple Plasma

    NASA Astrophysics Data System (ADS)

    Cecil, Thomas W.; Lichtenberger, Arthur W.; Kerr, Anthony R.

    2008-04-01

    Increasing operating frequencies of SIS receivers requires junctions that can operate at higher current densities. A major limiting factor of higher current density junctions is the increase in subgap leakage that occurs in AlOX barriers as current densities approach and exceed 10kA/cm2. AlN insulators are a promising alternative due to their lower leakage current at these high current densities. In this paper we present a more detailed analysis of the formation of AlN barriers using our previously reported inductively coupled plasma (ICP) source growth technique. The ICP allows for independent control of ion energy and current density in the plasma. Additionally, plasmas with very low ion energy (~20eV) and a high degree of dissociation (~80%) can be achieved. This improved control allows for the repeatable formation of high quality barriers. In particular, we report on the relationship between barrier thickness and plasma conditions as determined by in-situ discrete ellipsometry. Ellipsometry results were verified by fabricating Nb/Al-AlN/Nb junctions and measuring current-voltage, I(V), curves. dc I(V) curves for a range of current densities are presented.

  14. F-atom kinetics in SF{sub 6}/Ar inductively coupled plasmas

    SciTech Connect

    Yang, Wei; Zhao, Shu-Xia; Liu, Yong-Xin; Li, Xue-Chun; Wang, You-Nian; Wen, De-Qi; Liu, Wei

    2016-05-15

    The F-atom kinetics in SF{sub 6} and SF{sub 6}/Ar inductively coupled plasmas (ICPs) were investigated using a global model. This report particularly focuses on the effects of ICP power and Ar fraction on F-atom density and its main production and loss mechanisms. The results are presented for a relatively wide pressure range of 1–100 mTorr. Very different behaviors were observed for Ar fractions in the low- and high-pressure limits, which can be attributed to different electron kinetics. In addition, the authors found that increasing the Ar fraction in the SF{sub 6}/Ar plasma has almost the same effects on the F-atom kinetics as increasing the power in the SF{sub 6} plasma. This is because a high electron density occurs in both cases. Moreover, it was confirmed that, for both sample types, a cycle of F atoms formed in the bulk plasma. The source of these is F{sub 2} molecules that are first formed on the chamber wall and then emitted. Finally, the simulations of F-atom kinetics are validated by quantitatively comparing the calculated electron and F-atom densities with identical experimental discharge conditions.

  15. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    SciTech Connect

    Jahanbakhsh, Sina Satir, Mert; Celik, Murat

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  16. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications.

    PubMed

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  17. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  18. A study on the maximum power transfer condition in an inductively coupled plasma using transformer circuit model

    SciTech Connect

    Kim, Young-Do; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-09-15

    Correlations between the external discharge parameters (the driving frequency ω and the chamber dimension R) and plasma characteristics (the skin depth δ and the electron-neutral collision frequency ν{sub m}) are studied using the transformer circuit model [R. B. Piejak et al., Plasma Sources Sci. Technol. 1, 179 (1992)] when the absorbed power is maximized in an inductively coupled plasma. From the analysis of the transformer circuit model, the maximum power transfer conditions, which depend on the external discharge parameters and the internal plasma characteristics, were obtained. It was found that a maximum power transfer occurs when δ≈0.38R for the discharge condition at which ν{sub m}/ω≪1, while it occurs when δ≈√(2)√(ω/ν{sub m})R for the discharge condition at which ν{sub m}/ω≫1. The results of this circuit analysis are consistent with the stable last inductive mode region of an inductive-to-capacitive mode transition [Lee and Chung, Phys. Plasmas 13, 063510 (2006)], which was theoretically derived from Maxwell's equations. Our results were also in agreement with the experimental results. From this work, we demonstrate that a simple circuit analysis can be applied to explain complex physical phenomena to a certain extent.

  19. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  20. Microwave generated plasma light source apparatus

    SciTech Connect

    Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

    1985-02-05

    A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

  1. Laser-produced plasma source system development

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  2. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  3. Plasma Sheet Source and Loss Processes

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    2000-01-01

    Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the plasma sheet-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central plasma sheet proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial plasma source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central plasma sheet particles along reconfigured ("dipolarized") magnetic field lines.

  4. Inductively Coupled Plasma-Mass Spectrometry and the European Discovery of America

    NASA Astrophysics Data System (ADS)

    Houk, R. S.

    2000-05-01

    The background and initial experimental results in inductively coupled plasma-mass spectrometry (ICP-MS) are juxtaposed with similar events from the voyages of Christopher Columbus, particularly with the first voyage.

  5. Inductively Coupled Plasma Mass Spectrometry and the Determination of Neptunium and Plutonium in the Marine Environment

    NASA Astrophysics Data System (ADS)

    Sampson, Kate

    This project is concerned with the application of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of neptunium-237, plutonium-239 and plutonium-240 concentrations in the marine environment…

  6. Optical Diagnostics of the Plasma and Surface during Inductively Coupled Plasma Etching

    NASA Astrophysics Data System (ADS)

    Herman, Irving P.

    1999-10-01

    The use of optical diagnostics to analyze the etching of Si, Ge, and InP by chlorine in an inductively coupled plasma (ICP) is investigated. Optical probes, along with other conventional plasma diagnostics, are used to characterize the process through measurements of the constituents of the plasma and the surface composition to obtain a more complete picture of the etching process. Neutral Cl2 and Cl densities are determined by optical emission actinometry by following optical emission from Cl_2. The absolute densities of Cl_2^+ and Cl^+ are determined by laser- induced fluorescence (LIF) of Cl_2^+ and Langmuir probe measurements of the total positive ion density. The surface is probed by using laser-induced thermal desorption with an XeCl laser (308 nm) to desorb the steady-state adlayer and optical methods to detect these desorbed species. The development of a new method to detect optically these laser desorbed (LD) species is detailed, that of examining transient changes in the plasma-induced emission (PIE). This LD-PIE method is more universal than the previously reported detection by LIF (LD-LIF), but requires more calibration due to varying electron density and temperature with varying plasma conditions. This is detailed for Si etching, for which LD-PIE and LD-LIF results are compared. The calibration methods are seen to be valid when the surface is analyzed as the rf power supplied to the reactor is varied. The electron density - needed for LD-PIE calibration - is measured by microwave interferometry. An improved understanding of the etching mechanism is obtained by combining the results of each of these measurements. This work was supported by NSF Grant No. DMR-98-15846. note

  7. Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold

    1998-01-01

    The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.

  8. Plasma Source Design for the PWFA Experiments at SLAC

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Muggli, P.

    2002-12-01

    We discuss the design issues associated with producing a plasma source for the plasma wake field accelerator (PWFA) experiments at SLAC. There are many possible sources, but for our purposes uv, single photon ionized, lithium vapor, in a heat pipe oven, is our best option. Optimum parameters are derived and the plasma decay rate is estimated.

  9. Effects of capacitance termination of the internal antenna in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Konishi, K.; Nakamura, K.; Sugai, H.

    2000-05-01

    In a conventional inductive rf discharge, the electrostatic coupling from the coil to the plasma causes a serous problem of sputtering of any dielectric materials in the vicinity of the coil. This paper reports the suppression of the electrostatic coupling by terminating the coil (inductance L ) with a capacitor (capacitance C ). The suppression resonantly takes place when the termination reactance (1/icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/> C ) coincides with a half of the coil reactance (icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/> L ). In this condition, the plasma density is observed to increase by ~50% at the same input power, in comparison with the conventional internal antenna inductively coupled plasma without the capacitance termination. The electrical transmission-line properties of the coil well account for the termination capacitance dependence of the coil voltages, currents, plasma potential oscillation, plasma density and dc self-bias voltage.

  10. Incorporation of an energy equation into a pulsed inductive plasma acceleration model

    NASA Astrophysics Data System (ADS)

    Reneau, Jarred

    Electric propulsion systems utilize electrical energy to produce thrust for spacecraft propulsion. These systems have multiple applications ranging from Earth orbit North-South station keeping to solar system exploratory missions such as NASA's Discovery, New Frontiers, and Flagship class missions that focus on exploring scientifically interesting targets. In an electromagnetic thruster, a magnetic field interacting with current in an ionized gas (plasma) accelerates the propellant to produce thrust. Pulsed inductive thrusters rely on an electrodeless discharge where both the magnetic field in the plasma and the plasma current are induced by a time-varying current in an external circuit. The multi-dimensional acceleration model for a pulsed inductive plasma thruster consists of a set of circuit equations describing the electrical behavior of the thruster coupled to a one-dimensional momentum equation that allow for estimating thruster performance. Current models lack a method to account for the time-varying energy distribution in an inductive plasma accelerator.

  11. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application

    SciTech Connect

    Lee, J. H.; Kim, M. J.; Yoon, Y. S.

    2013-04-15

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  12. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  13. Metastable CF and CF2 molecules in CF4 inductively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Corr, Cormac

    2006-02-01

    The radicals CF and CF2, which are important intermediates in fluorocarbon plasma chemistry, both have low-lying metastable levels (4CF at 3.54 eV and 3CF2 at 2.46 eV). Recent calculations (Rozum et al 2006 J. Phys. Chem. Ref. Data in press) indicate that electron-impact excitation of the ground-state radicals into these states could be fast. A recent study of inductively-coupled plasmas (ICP) in low-pressure CF4 (Booth et al 2005 Plasma Sources Sci. Technol. 14 273) indicated the presence of a fast electron-impact induced loss process for ground-state CF and CF2 molecules, which could be attributed to this process. In the current study 4CF and 3CF2 were detected in the afterglow of ICP in pure CF4 at pressures between 3 and 33 mTorr, from their weak forbidden optical emission back to their respective ground-states. From the lifetimes of these optical emission signals, determined as a function of gas pressure, the quenching coefficients at the chamber walls and the metastable destruction rates by gas-phase processes (giving unknown products) were estimated. Another prominent and long-lived feature of the afterglow is strong emission from the d state of C2 molecules: the emitting C2 molecules may be produced by chemiluminescent reactions or by excitation transfer from 3CF2.

  14. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  15. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  16. Ions Beams and Ferroelectric Plasma Sources

    SciTech Connect

    Stepanov, Anton

    2014-09-01

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40~keV, perveance-dominated Ar$^+$ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50~keV Ar$^+$ beam with pulse duration $<$300~$\\mu$s and dimensionless perveance $Q$ up to 8$\\times$10$^{-4}$. Transverse profile measurements 33~cm downstream of the ion source showed that the dependence of beam radius on $Q$ was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5~$\\mu$s. The duration of neutralization was about 10~$\\mu$s at a charging voltage $V_{FEPS}$~=~5.5~kV and 35~$\\mu$s at $V_{FEPS}$~=~6.5~kV. With $V_{FEPS}$~=~6.5~kV, the

  17. Laser plasma as an effective ion source

    NASA Astrophysics Data System (ADS)

    Masek, Karel; Krasa, Josef; Laska, Leos; Pfeifer, Miroslav; Rohlena, Karel; Kralikova, Bozena; Skala, Jiri; Woryna, Eugeniusz; Farny, J.; Parys, Piotr; Wolowski, Jerzy; Mraz, W.; Haseroth, H.; Sharkov, B.; Korschinek, G.

    1998-09-01

    Ions in different charge state and with different energy distribution are generated in the process of interaction of intense laser radiation with solid targets. Multiply charged ions of medium- and high-Z elements (Al, Co, Ni, Cu, Sn, Ta, W, Pt, Au, Pb, Bi), produced by photodissociation iodine laser system PERUN ((lambda) equals 1.315 micrometer, EL approximately 40 J, (tau) approximately 500 ps) are reported. Corpuscular diagnostics based on time-of-flight method (ion collectors and a cylindrical electrostatic ion energy analyzer) as well as Thomson parabola spectrometer were used in the experiments. The ions in maximum charge state up to about 55+ and with energies of several MeV were registered at a distance of about 2 m from the plasma plume. Measured ion current densities higher than 10 mA/cm2 in about 1 m from the target demonstrate the performance of laser ion source. A theoretical interpretation of ion spectra is attempted.

  18. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    SciTech Connect

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  19. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (Te) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (ne) is in the range 108--1010 -cm at the skimmer tip and drops abruptly to 106--108 cm-3 near the skimmer tip and drops abruptly to 106--108 cm-3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 104--105 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  20. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    SciTech Connect

    Belchenko, Yu. Ivanov, A.; Sanin, A.; Sotnikov, O.; Shikhovtsev, I.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the driver and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.

  1. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  2. Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta

  3. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    NASA Astrophysics Data System (ADS)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  4. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Jin, Chenggang; Yu, Tao; Wu, Xuemei; Zhuge, Lanjian; Ning, Zhaoyuan; Ye, Chao; Ge, Shuibing

    2013-10-01

    The dual-frequency capacitively coupled plasma (DF-CCP) with inductive enhancement system is a newly designed plasma reactor. Different from the conventional inductively coupled plasma (ICP) reactors, now a radio frequency (rf) power is connected to an antenna placed outside the chamber with a one-turn bare coil placed between two electrodes in DF-CCP. This paper gives a detailed description of its structure. Moreover, investigations on some characteristics of discharges in this apparatus were made via a Langmuir probe.

  5. A Self-Consistent Plasma-Sheath Model for the Inductively Coupled Plasma Reactor

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindam, T. R.; Meyyappan, M.

    2000-01-01

    Accurate determination of ion flux on a wafer requires a self-consistent, multidimensional modeling of plasma reactor that adequately resolves the sheath region adjoining the wafer. This level of modeling is difficult to achieve since non-collisional sheath lengths are usually 3-4 orders of magnitude smaller than the reactor scale. Also, the drift-diffusion equations used for ion transport becomes invalid in the sheath since the ion frictional force is no longer in equilibrium with drift and diffusion forces. The alternative is to use a full momentum equation for each ionic species. In this work we will present results from a self-consistent reactor scale-sheath scale model for 2D inductively coupled plasmas. The goal of this study is to improve the modeling capabilities and assess the importance of additional physics in determining important reactor performance features, such as the ion flux uniformity, coil frequency and configuration effects, etc. Effect of numerical dissipation on the solution quality will also be discussed.

  6. High density plasma calculation of J-PARC RF negative ion source

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Asano, H.; Ikegami, K.; Naito, F.; Nanmo, K.; Oguri, H.; Ohkoshi, K.; Shinto, K.; Takagi, A.; Ueno, A.

    2017-08-01

    Ignition and steady state phases of Radio Frequency (RF) plasma in J-PARC ion source has been investigated by numerical modeling. The model takes into account the transport of plasma particles (electrons, protons, hydrogen molecular ions and cesium ions) in electromagnetic (EM) field with collision processes. Inductively coupled and capacitive EM fields are simultaneously solved in the model with plasma transport. Applying KEK parallel computation system A (64 cores, 56 nodes with 256 GB memory per node), behavior of high density plasma up to 1019 - 1020 m-3 in the steady state is calculated. In the simulation, it has been clarified that inductively coupled electric field in azimuthal direction and magnetic field in axial direction play a key role to maintain high density plasma which oscillates with frequency up to doubled value of applied RF frequency. The spatial distribution plot of plasma density and EM field at each phase may lead to understandings on how RF plasma is kept stable inside the source chamber.

  7. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  8. Independent induction of two blue light-dependent monovalent anion transport systems in the plasma membrane of Monoraphidium braunii.

    PubMed

    Mora, Cristina; Witt, Federico G; Aparicio, Pedro J; Quiñones, Miguel A

    2002-09-01

    In the plasma membrane of the green alga Monoraphidium braunii there are at least two monovalent anion transport systems. One of them is specific for bicarbonate. This transport system is activated by blue light and its induction is triggered by a decrease in the external CO2 concentration. The second transport system is responsible for nitrate uptake at least. This transport system is also activated by blue light and its induction occurs when there is no ammonium in the external medium. Both transport systems are synthesized independently. Hence, when M. braunii cells grow with nitrate as the only nitrogen source under high CO2, they have a nitrate transport system but lack a bicarbonate transporter. Conversely, cells grown with ammonium under low CO2, have a bicarbonate transport system but lack a nitrate transporter. Both transport systems are induced in cells irradiated with white light in the absence of a carbon source, suggesting that there may be precursors in the plasma membrane that only need the synthesis and assembly of some component(s) to become fully active. The induction of nitrate and nitrite reductases, however, only takes place when a carbon source is supplied to the cells.

  9. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  10. Operating a radio-frequency plasma source on water vapor.

    PubMed

    Nguyen, Sonca V T; Foster, John E; Gallimore, Alec D

    2009-08-01

    A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, and a spectrometer. The plasma source operated first on argon and then on water vapor at operating pressures just over 300 mtorr. Argon and water vapor plasma number densities differ significantly. In the electropositive argon plasma, quasineutrality requires n(i) approximately = n(e), where n(i) is the positive ion density. But in the electronegative water plasma, quasineutrality requires n(i+) = n(i-) + n(e). The positive ion density and electron density of the water vapor plasma are approximately one and two orders of magnitude lower, respectively, than those of argon plasma. These results suggest that attachment and dissociative attachment are present in electronegative water vapor plasma. The electron temperature for this water vapor plasma source is between 1.5 and 4 eV. Without an applied axial magnetic field, hydrogen production increases linearly with rf power. With an axial magnetic field, hydrogen production jumps to a maximum value at 500 W and then saturates with rf power. The presence of the applied axial magnetic field is therefore shown to enhance hydrogen production.

  11. Influence of Discharge Parameters on Tuned Substrate Self-Bias in an Radio-Frequency Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Ding, Zhenfeng; Sun, Jingchao; Wang, Younian

    2005-12-01

    The tuned substrate self-bias in an rf inductively coupled plasma source is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. The influencing parameters such as the substrate axial position, different coupling coils and inserted resistance are experimentally studied. To get a better understanding of the experimental results, the axial distributions of the plasma density, electron temperature and plasma potential are measured with an rf compensated Langmuir probe; the coil rf peak-to-peak voltage is measured with a high voltage probe. As in the case of changing discharge power, it is found that continuity, instability and bi-stability of the tuned substrate bias can be obtained by means of changing the substrate axial position in the plasma source or the inserted resistance. Additionally, continuity can not transit directly into bi-stability, but evolves via instability. The inductance of the coupling coil has a substantial effect on the magnitude and the property of the tuned substrate bias.

  12. Modeling of inductively coupled plasma SF{sub 6}/O{sub 2}/Ar plasma discharge: Effect of O{sub 2} on the plasma kinetic properties

    SciTech Connect

    Pateau, Amand; Rhallabi, Ahmed Fernandez, Marie-Claude; Boufnichel, Mohamed; Roqueta, Fabrice

    2014-03-15

    A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.

  13. Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Mattei, S.; Briefi, S.; Fantz, U.; Hatayama, A.; Lettry, J.; Nishida, K.; Tran, M. Q.

    2017-08-01

    The power requirements of RF heated sources for negative hydrogen ions in fusion are substantial, which poses strong demands on the generators and components of the RF circuit. Consequently, an increase of the RF coupling efficiency would be highly beneficial. Fundamental investigations of the RF efficiency in inductively coupled hydrogen and deuterium discharges in cylindrical symmetry are conducted at the lab experiment CHARLIE. The experiment is equipped with several diagnostics including optical emission spectroscopy and a movable floating double probe to monitor the plasma parameters. The presented investigations are performed in hydrogen at a varying pressure between 0.3 and 10 Pa, utilizing a conventional helical ICP coil driven at a frequency of 1 MHz and a fixed power of 520 W for plasma generation. The coupling efficiency is strongly affected by the variation in pressure, reaching up to 85 % between 1 and 3 Pa while dropping down to only 50 % at 0.3 Pa, which is the relevant operating pressure for negative hydrogen ion sources for fusion. Due to the lower power coupling, also the measured electron density at 0.3 Pa is only 5 . 1016 m-3, while it reaches up to 2.5 . 1017 m-3 with increasing coupling efficiency. In order to gain information on the spatially resolved aspects of RF coupling and plasma heating which are not diagnostically accessible, first simulations of the discharge by an electromagnetic Particle-In-Cell Monte Carlo collision method have been conducted and are compared to the measurement data. At 1 Pa, the simulated data corresponds well to the results of both axially resolved probe measurements and radially resolved emission profiles obtained via OES. Thereby, information regarding the radial distribution of the electron density and mean energy is provided, revealing a radial distribution of the electron density which is well described by a Bessel profile.

  14. Which is safer source plasma for manufacturing in China: apheresis plasma or recovered plasma?

    PubMed

    Liu, Yu; Li, Changqing; Wang, Ya; Zhang, Yan; Wu, Binting; Ke, Ling; Xu, Min; Liu, Gui; Liu, Zhong

    2016-05-01

    In most countries, the plasma for derivative production includes two types of plasma, apheresis plasma (AP) and recovered plasma (RP). However, the plasma recovered from whole blood is not permitted for manufacture in China. Because of the lack of source plasma and the surplus of RP, the Chinese government is considering allowing RP as an equivalent source for the production of plasma derivatives. It is known that human blood can be contaminated by various infectious agents. The objective of the study was to evaluate if infectious risk would increase by enacting this policy. The samples from the two types of blood donors from January 1 to December 31, 2013, were collected. Supplementary testing was conducted and the residual risk (RR) of human immunodeficiency virus (HIV), hepatitis B virus, and hepatitis C virus (HCV) in the two types of blood donors and donations were calculated through the incidence-window period model. Prevalence of the markers of hepatitis E virus, hepatitis A virus, severe fever with thrombocytopenia syndrome bunyavirus, cytomegalovirus, B19, and West Nile virus was calculated. No significant difference was found in the RR of the three pathogens in the two types of blood donors. However, after the quarantine period, the RR of HCV and HIV in AP was significantly lower than that in RP. A quarantine period of 2 years will make the infectious risk of RP not significantly different than that of AP. Our data demonstrate that allowing RP to be used for the manufacture of plasma derivatives will not increase its infectious disease risk if coupled with a 2-year inventory hold. © 2016 AABB.

  15. Transient three-dimensional dynamics of argon plasma within the vacuum interface of the inductively coupled plasma mass spectrometer system

    NASA Astrophysics Data System (ADS)

    Nagulin, K. Yu.; Tsivilskiy, I. V.; Akhmetshin, D. Sh.; Gilmutdinov, A. Kh.

    2017-09-01

    A three-dimensional transient mathematical model of the ;inductively coupled plasma - vacuum interface of the mass spectrometer; system was developed. The model takes into account spatial and temporal dynamics of hot gas flow (plasma emulation) and allows calculation of evolution of spatial distribution of pressure, velocity and temperature fields outside and within the interface of the mass-spectrometer. The results of modeling are verified using the experimental setup of high-speed optical and schlieren visualization of gas flows.

  16. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    SciTech Connect

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  17. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  18. Measurements of the Plasma Parameters and Low Frequency Oscillations in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Thomas, Edward, Jr.; Wallace, Kent; Lampkin, Gregory; Watson, Michael

    1998-01-01

    A new plasma device, the Fisk Plasma Source (FPS), has been developed at Fisk University. This plasma device is used to study the physics of low temperature plasmas and plasma-material interactions. The FPS device is a stainless steel vacuum 6-way cross vacuum vessel with at 10-inch inner diameter. Low temperature argon plasmas are generated using DC glow discharge and thermionic filament techniques. Spatial profiles of the plasma density, plasma potential, and electron temperature are measured using Langmuir probes. We present initial experimental measurements of density and temperature profiles in the FPS device. Experimental and theoretical studies of low frequency oscillations observed in the FPS device are also presented.

  19. Analysis of the tuning characteristics of microwave plasma source

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Jasiński, Mariusz; Mizeraczyk, Jerzy

    2016-04-01

    In this paper, we present an analysis of the tuning characteristics of waveguide-supplied metal-cylinder-based nozzleless microwave plasma source. This analysis has enabled to estimate the electron concentration ne and electron frequency collisions ν in the plasma generated in nitrogen and in a mixture of nitrogen and ethanol vapour. The parameters ne and ν are the basic quantities that characterize the plasma. The presented new plasma diagnostic method is particularly useful, when spectroscopic methods are useless. The presented plasma source is currently used in research of a hydrogen production from liquids.

  20. Analysis of the tuning characteristics of microwave plasma source

    SciTech Connect

    Miotk, Robert Jasiński, Mariusz; Mizeraczyk, Jerzy

    2016-04-15

    In this paper, we present an analysis of the tuning characteristics of waveguide-supplied metal-cylinder-based nozzleless microwave plasma source. This analysis has enabled to estimate the electron concentration n{sub e} and electron frequency collisions ν in the plasma generated in nitrogen and in a mixture of nitrogen and ethanol vapour. The parameters n{sub e} and ν are the basic quantities that characterize the plasma. The presented new plasma diagnostic method is particularly useful, when spectroscopic methods are useless. The presented plasma source is currently used in research of a hydrogen production from liquids.

  1. Chromatographic behavior of selenoproteins in rat serum detected by inductively coupled plasma mass spectrometry.

    PubMed

    Anan, Yasumi; Hatakeyama, Yoshiko; Tokumoto, Maki; Ogra, Yasumitsu

    2013-01-01

    Two major selenoproteins are present in mammalian serum: extracellular glutathione peroxidase (eGPx) and selenoprotein P (Sel P). The chromatographic behaviors of the two serum selenoproteins were compared in four rodent species, and the selenoproteins in rat serum were identified by measuring enzyme activity and Western blotting. The selenoproteins in rat serum showed a specific chromatographic behavior. In particular, rat eGPx was eluted faster than eGPxs of the other rodent species, although the amino-acid sequences of the rodent species were identical. The elution profiles of Se in rat serum obtained by inductively coupled plasma tandem mass spectrometry (ICP-MS-MS) and ICP-MS were compared. The tandem quadrupoles and the O₂ reaction/collision gas completely removed severe interferences with the Se speciation originating from the plasma source and the biological sample matrix. ICP-MS-MS under the O₂ mass shift mode gave us more accurate abundance ratios of Se than ICP-MS.

  2. Matrix effects during phosphorus determination with quadrupole inductively coupled plasma mass spectrometry.

    PubMed

    Kovacevic, Miroslav; Goessler, Walter; Mikac, Nevenka; Veber, Marjan

    2005-09-01

    A quadrupole inductively coupled plasma mass spectrometer was evaluated for use in the detection of phosphorus. The influences of nitric acid and methanol (simulating the composition of a sample solution after nitric acid digestion) on phosphorus determination were studied using two different measuring methods at different plasma conditions: detection of phosphorus ions at m/z 31 and detection of phosphorus oxide ions at m/z 47. The existence of polyatomic interferences at m/z 31 and 47 was explored. Nitric acid and methanol are shown to be the sources of polyatomic ions and therefore cause poorer detection limits. Better detection limits were achieved in such matrices when phosphorus was detected as 31P+. The presence of methanol improves the system sensitivity towards phosphorus sevenfold; however, this positive effect is hindered by the high background signal due to carbon-based polyatomic ions. For samples with an organic matrix an appropriate mineralization procedure should be applied (high excess of nitric acid and high temperature) to quantitatively oxidize organic compounds to carbon dioxide, which is easily removed from the sample, in order to achieve correct results.

  3. Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro

    2007-11-01

    Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.

  4. Plasma-based studies on 4th generation light sources

    NASA Astrophysics Data System (ADS)

    Lee, R. W.; Baldis, H. A.; Cauble, R. C.; Landen, O. L.; Wark, J. S.; Ng, A.; Rose, S. J.; Lewis, C.; Riley, D.; Gauthier, J.-C.; Audebert, P.

    2001-08-01

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warm dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (Te), the density (ne), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, ne⩾1022cm-3 implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However, the possibilities end for plasmas with ne⩾1022 since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  5. Plasma-Based Studies on 4th Generation Light Sources

    SciTech Connect

    Lee, R W; Baldis, H A; Cauble, R C; Landen, O L; Wark, J S; Ng, A; Rose, S J; Lewis, C; Riley, D; Gauthier, J-C; Audebert, P

    2000-11-28

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  6. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  7. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  8. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence.

    PubMed

    Tsolakidou, Alexandra; Kilikoglou, Vassilis

    2002-10-01

    The accurate measurement of the maximum possible number of elements in ancient ceramic samples is the main requirement in provenance studies. For this reason neutron activation analysis (NAA) and X-ray fluorescence (XRF) have been successfully used for most of the studies. In this work the analytical performance of inductively coupled plasma-optical-emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) has been compared with that of XRF and NAA for the chemical characterization of archaeological pottery. Correlation coefficients between ICP techniques and XRF or NAA data were generally better than 0.90. The reproducibility of data calculated on a sample prepared and analysed independently ten times was approximately 5% for most of the elements. Results from the ICP techniques were finally evaluated for their capacity to identify the same compositional pottery groups as results from XRF and NAA analysis, by use of multivariate statistics.

  9. A Novel Source of Mesoscopic Particles for Laser Plasma Studies

    DTIC Science & Technology

    2015-12-16

    fast ions from the plasma. Over the last decade laser plasma acceleration has made rapid strides in terms of providing high brightness,4,5 tunable...in Solid Targets with Wavelength-Scale Spheres. Phys. Rev. Lett. 98, 045001 (2007). 13Henig, A. et al. Laser -Driven Shock Acceleration of Ion Beams ...ABSTRACT Intense laser produced plasma are known for generating high dense - high temperatures plasma that is a source for electron, ion acceleration and

  10. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  11. Advanced Laser and RF Plasma Sources and Diagnostics

    DTIC Science & Technology

    2013-03-01

    June 2011. 3. R. Giar and J. Scharer, “Focused Excimer Laser Initiated, RF Sustained High Pressure Air Plasmas.” Journal of Applied Physics 110...AFRL-OSR-VA-TR-2013-0063 Advanced Laser and RF Plasma Sources and Diagnostics John Scharer University of Wisconsin March...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Laser and RF Plasma Sources and Diagnostics 5b. GRANT NUMBER F A9550-09-l-0357 5c. PROGRAM ELEMENT

  12. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  13. Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2010-07-01

    By using an atmospheric pressure plasma jet driven by pulsed dc voltage with repetition rate of several tens of kilohertz, we were able to induce apoptosis in cultured human breast cancer cells (MCF-7). The apoptotic changes in cells with plasma treatment were detected by flow cytometry and fluorescence staining assay. A significant portion of these cells was observed to exhibit the apoptotic fragmentation. Helium plasma with additive O2 gas was found to be effective in the induction of apoptosis. This plasma jet provides an effective mode of human breast cancer cell therapy.

  14. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  15. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    NASA Astrophysics Data System (ADS)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-01

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent©. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  16. Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Balla, Joseph V.

    2010-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.

  17. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Jing; Zhao, Shu-Xia; Fei, Gao; Yu-Ru, Zhang; Xue-Chun, Li; You-Nian, Wang

    2015-11-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175034, 11205025, 11305023, and 11075029).

  18. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  19. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  20. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  1. Comparing 193 nm photoresist roughening in an inductively coupled plasma system and vacuum beam system

    NASA Astrophysics Data System (ADS)

    Titus, M. J.; Nest, D. G.; Chung, T.-Y.; Graves, D. B.

    2009-12-01

    We present a comparison of blanket 193 nm photoresist (PR) roughening and chemical modifications of samples processed in a well-characterized argon (Ar) inductively coupled plasma (ICP) system and an ultra-high vacuum beam system. In the ICP system, PR samples are irradiated with Ar vacuum ultraviolet (VUV) and Ar ions, while in the vacuum beam system, samples are irradiated with either a Xe-line VUV source or Ar-lamp VUV source with Ar ions. Sample temperature, photon flux, ion flux and ion energy are controlled and measured. The resulting chemical modifications to bulk 193 nm PR and surface roughness are analysed with Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy. We demonstrate that under VUV-only conditions in the vacuum beam and ICP (with no substrate bias applied) systems 193 nm PR does not roughen. However, roughness increases with simultaneous high energy (>70 eV) ion bombardment and VUV irradiation and is a function of VUV fluence, substrate temperature and photon-to-ion flux ratio. PR processed in the ICP system experiences increased etching, probably due to release of H- and O-containing gaseous products and subsequent chemical etching, in contrast to samples in the vacuum beam system where etch-products are rapidly pumped away. The surface roughness structure and behaviour, however, remain similar and this is attributed to the synergy between VUV-photon and positive ions.

  2. Electron heating and control of electron energy distribution in hybrid plasma source for the enhancement of the plasma ashing processing

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-09-01

    In this study, control of the electron energy distribution function (EEDF) is investigated in hybrid plasma source with inductive and capacitive fields. With the addition of a small amount of antenna coil power to the capacitive discharge, low energy electrons are effectively heated and the EEDF is controlled. This method is applied to the ashing process of the photoresistor (PR). It is revealed that the ashing rate of the PR is significantly increased due to O radicals produced by the controlled EEDF, even though the ion density/energy flux is not increased. The roles of the power transfer mode, the electron heating, and the discharge parameters are also presented in the hybrid plasma source. This work can be used to an inter-ashing method during etching process.

  3. Comparison of pressure dependence of electron energy distributions in oxygen capacitively and inductively coupled plasmas.

    PubMed

    Lee, Min-Hyong; Lee, Hyo-Chang; Chung, Chin-Wook

    2010-04-01

    Electron energy distribution functions (EEDFs) were measured with increasing gas pressure in oxygen capacitively and inductively coupled plasmas. It was found that, in the capacitive discharge, abnormally low-energy electrons became highly populated and the EEDF evolved to a more distinct bi-Maxwellian distribution as the gas pressure was increased. This pressure dependence of the EEDF in the oxygen capacitive discharge is contrary to argon capacitively coupled plasma, where--at high gas pressure--low-energy electrons are significantly reduced due to collisional heating and the EEDF evolves to the Maxwellian. The highly populated low-energy electrons at high gas pressure, which was not observed in inductively coupled oxygen plasma, show that collisional heating is very inefficient in terms of the oxygen capacitive discharge. It appears that this inefficient collisional heating seems to be attributed to a low electric field strength at the center of the oxygen capacitive plasma.

  4. Capillary plasma jet: A low volume plasma source for life science applications

    SciTech Connect

    Topala, I. E-mail: tmnagat@ipc.shizuoka.ac.jp; Nagatsu, M. E-mail: tmnagat@ipc.shizuoka.ac.jp

    2015-02-02

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  5. Capillary plasma jet: A low volume plasma source for life science applications

    NASA Astrophysics Data System (ADS)

    Topala, I.; Nagatsu, M.

    2015-02-01

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  6. Non-inductive current drive and transport in high beta(N) plasmas in JET

    SciTech Connect

    Voitsekhovitch, I; Alper, B.; Budny, R. V.; Buratti, P.; Challis, C D; Ferron, J.R.; Giroud, C.; Laborde, L.; Luce, T.C.; McCune, D.; Menard, J.; Murakami, Masanori; Park, Jin Myung

    2009-01-01

    A route to stationary MHD stable operation at high beta(N) has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total beta(N) approximate to 3.3 and stationary (during high power phase) beta(N) approximate to 3 have been achieved by applying the feedback control of beta(N) with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a +/- 22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E x B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  7. Plasma Transport in a Magnetic Multicusp Negative Hydrogen Ion Source

    DTIC Science & Technology

    1991-12-01

    1 :15 AFIT/DS/ENP/91 -02 exic PLASMA TRANSPORT IN A MAGNETIC MULTICUSP NEGATIVE HYDROGEN ION kc.esioii Fo- SOURCE DISSERTATION P-1 TA~3 Ricky G. Jones... MULTICUSP NEGATIVE HYDROGEN ION SOURCE DISSERTATION Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air...Approved for public release; distributio, unlimited AFIT/DS/ENP/91-02 PLASMA TRANSPORT IN A MAGNETIC MULTICUSP NEGATIVE HYDROGEN ION SOURCE Hicky G. Jones

  8. Synthesis of carbon onionlike nanostructures from methane in plasma flow of induction plasmatron

    NASA Astrophysics Data System (ADS)

    Anchukov, K. E.; Zalogin, G. N.; Krasil'nikov, A. V.; Popov, M. Yu.; Kul'nitskii, B. A.

    2015-11-01

    The results of synthesis of carbon onionlike nanostructures from methane in plasma flow of inert gas (argon) generated in induction high-frequency plasmatron are considered and discussed. Carbon vapor obtained via dissociation of methane in plasma flow was condensed on copper substrates placed in a working chamber of the setup. The content of the synthesized soot was analyzed using scanning and transmission electron microscopy. As a result of the performed experiments, carbon onionlike structures with 20- to 100-nm sizes were obtained.

  9. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

    2014-05-01

    A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

  10. Comprehensive Chemical Analysis of Metal Alloys by Means of Inductively Coupled Plasma Optical Emission Spectroscopy

    DTIC Science & Technology

    1985-10-01

    Multielement standard solutions were prepared from commercially available atomic absorbtion standard solutions or Spex Industries plasma-grade materials... SPECTROSCOPY W. E. Glad D"TIC LECTEfl Naval Ocean Systems Center scR. San Diego, California 92152-5000 Approved for public release; distribution unlimited 0...MEANS OF INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROSCOPY 12. PENSOIAF 111151 W.. la boron Stitaim tantlum nibim tn sten and EC zircNI in n n

  11. Plasma source development for fusion-relevant material testing

    DOE PAGES

    Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...

    2017-05-01

    Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less

  12. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  13. Plasma Outages in Pulsed, High-Power RF Hydrogen Ion Sources

    NASA Astrophysics Data System (ADS)

    Stockli, Martin; Han, Baoxi; Murray, Syd; Pennisi, Terry; Piller, Chip; Santana, Manuel; Welton, Robert

    2011-04-01

    Pulsed, high-power RF ion sources are needed to produce copious amounts of negative H-ions for high-power accelerators with charge-changing injection schemes. When increasing the RF power, the plasma inductance changes the RF resonance, which drifts away from the low-power resonance. When the RF circuit is tuned to maximize the (pulsed) plasma power, the (off-resonance) power at the beginning of the pulse is reduced. If the induced electric fields fall below the breakdown strength of the hydrogen gas, the plasma fails to develop. This can be avoided with a compromise tune and/or by increasing the inductance of the resonant circuit. However, the breakdown strength of the hydrogen gas increases with time due to the gradual decrease of the electron-rich plasma impurities, which causes plasma outages after weeks of reliable operation. In this paper we discuss the success of different mitigations that were tested and implemented to overcome this fundamental problem of pulsed, high-power RF hydrogen ion sources.

  14. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  15. Cysteine as a Biological Probe for Comparing Plasma Sources

    NASA Astrophysics Data System (ADS)

    Lackmann, Jan-Wilm; Golda, Judith; Kogelheide, Friederike; Held, Julian; Schulz-von-der-Gathen, Volker; Stapelmann, Katharina

    2016-09-01

    A large variety of plasma sources are available in the plasma medicine community. While enabling to choose the most promising source for a certain biomedical application, comparison of the different sources with a focus on their effect on biological targets is rather challenging. To allow for better comparison of various sources, the recent European COST action MP1101 was used to design the COST reference microplasma jet. Cysteine is a promising candidate investigate the impact of plasma from various sources on a standardized biological molecule, which is especially relevant for the investigations on a molecular level after plasma treatment. The simple structure of cysteine allows for a more in-depth analysis of each chemical group after plasma treatment and enables a comparison between different plasma sources and treatment parameters on each chemical group. The model itself has already been successfully established using a dielectric barrier discharge. Here, additional plasma sources are compared by the means of their impact on cysteine samples, showing e.g. the influence of feed-gas variations by adding oxygen or nitrogen admixture This work was supported by the German Research Foundation (DFG) with the packet grant PAK816 (PlaCID).

  16. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K.; Gans, T.; O'Connell, D.

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  17. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  18. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  19. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2015-01-01

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...Navier-Stokes and Maxwell equa- tions [2]. In literature, the Local Thermodynamic Equi- librium (LTE) assumption is often used to describe the state of...the gas in the discharge region [4–17]. However, Non Local Thermodynamic Equilibrium (NLTE) simula- tions of Argon [18, 19] and air plasmas [20], have

  20. Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup

    DOE Data Explorer

    Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609)

    2016-05-31

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).

  1. Low-temperature atmospheric-pressure plasma sources for plasma medicine.

    PubMed

    Setsuhara, Yuichi

    2016-09-01

    In this review paper, fundamental overviews of low-temperature atmospheric-pressure plasma generation are provided and various sources for plasma medicine are described in terms of operating conditions and plasma properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Automated control of linear constricted plasma source array

    DOEpatents

    Anders, Andre; Maschwitz, Peter A.

    2000-01-01

    An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.

  3. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...

  4. Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan David

    2011-12-01

    The goal of this dissertation was to gain an understanding on the relative importance of microwave power, neutral pressure, and magnetic field configuration on the behavior of the hot electrons within an Electron Cyclotron Resonance Ion Source (ECRIS) plasma. This was carried out through measurement of plasma bremsstrahlung with both NaI(Tl) (hv > 30 keV) and CdTe (2 keV < hv < 70 keV) x-ray detectors, and through measurement of the plasma energy density with a diamagnetic loop placed around the plasma chamber. We also examined the anisotropy in x-ray power by simultaneously measuring the x-ray spectra in two orthogonal directions: radially and axially, using NaI(Tl) detectors. We have seen that for a 6.4 GHz ECRIS, both the x-ray power produced by confined electrons and the plasma energy density behave logarithmically with microwave power. The x-ray flux created by electrons lost from the plasma, however, does not saturate. Thus, the small increase in plasma density that occurred at high microwave powers (> 150 W on a 6.4 GHz ECRIS) was accompanied by a large increase in total x-ray power. We suggest that the saturation of x-ray power and plasma energy density was due to rf-induced pitch-angle scattering of the electrons. X-ray power and plasma energy density were also shown to saturate with neutral pressure, and to increase nearly linearly as the gradient of the magnetic field in the resonance zone was decreased. All of these findings were in agreement with the theoretical models describing ECRIS plasmas. We have discussed the use of a diamagnetic loop as a means of exploring various plasma time scales on a relative basis. Specifically, we focused much of our attention on studying how changing ion source parameters, such as microwave power and neutral pressure, would effect the rise and decay of the integrated diamagnetic signal, which can be related to plasma energy density. We showed that increasing microwave power lowers the e-fold times at both the leading

  5. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  6. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  7. Annular Plasmas for Intense X-Radiation Sources: Assessment Report,

    DTIC Science & Technology

    1983-03-14

    AD-Al29 382 ANNULAR PLASMAS FOR INTENSE X-RADIATION4 SOURCES: f ASSESSMENT REPORT(U) OFFICE OF NAVAL RESEARCH LONDON (ENGLAND) D MOSHER 14 MAR 83...STANDARDS 1963-A CNR LON inPO.T R-4-83 OFFICEIF NAVAL ___ ___ ___ ___ ANNULAR PLASMAS FOR INTENSE X-RADIATION SOURCES: ASSESSMENT REPORT D. MOSHER 14 MARCH...REPORT B PFmoo COVERED Annular Plasmas for Intense X-radiation Sources: Assessment Asses’sment Report I. PERFORMING ORG. REPORT NUMSER 7. AUTHOR(*) S

  8. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  9. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  10. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  11. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  12. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  13. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  14. Public Data Set: Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

    DOE Data Explorer

    Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422)

    2017-06-08

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et al., 'Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta,' Phys. Rev. Lett. 119, 035001 (2017).

  15. The analysis of some evidential materials by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Carpenter, R C

    1985-03-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) is under evaluation at the Central Research Establishment for the analysis of evidential materials. The analysis of standard reference materials has demonstrated that quantitative multi-element data can be obtained from small samples of a variety of materials. The results of some determinations carried out in support of casework investigations are reported.

  16. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  17. Inductively coupled plasma-atomic emission spectroscopy: The determination of trace impurities in uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Floyd, M. A.; Morrow, R. W.; Farrar, R. B.

    An analytical method has been developed for the determination of trace impurities in high-purity uranium hexafluoride using liquid-liquid extraction of the uranium from the trace impurities followed by analysis with inductively coupled plasma-atomic emission spectroscopy. Detection limits, accuracy, and precision data are presented.

  18. Temperature dependence of inductively coupled plasma assisted growth of TiN thin films.

    SciTech Connect

    Meng, W. J.; Curtis, T. J.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Louisiana State Univ.

    1999-11-01

    The use of low pressure high density plasmas to assist the synthesis of ceramic thin film materials is in its infancy. Using an inductively coupled plasma assisted magnetron sputtering system, we examine the dependence of plasma-assisted growth of TiN thin films on growth temperature at different ratios of ion flux to neutral atom flux. Our results indicate that a temperature independent densification of TiN films occurs above a certain ion to neutral atom flux ratio. As an example of this temperature independent densification, we demonstrate the formation of dense B1 TiN crystalline thin films at growth temperatures down to {approx}100 K.

  19. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  20. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  1. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  2. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  3. Photoemission starting of induction rf-driven multicusp ion sources

    NASA Astrophysics Data System (ADS)

    Pickard, D. S.; Leung, K. N.; Perkins, L. T.; Ponce, D. M.; Young, A. T.

    1996-02-01

    It has been demonstrated that pulsed and continuous wave, rf-driven hydrogen discharges can be started with photoemission. The extracted H- current from a photoemission-started plasma has been investigated and does not differ significantly from that of a filament-started plasma. The minimum pressure for photoemissive starting was found to be higher than that of filament starting, 17 mTorr compared to 7 mTorr, respectively, in this particular configuration.

  4. Physical investigation of a quad confinement plasma source

    NASA Astrophysics Data System (ADS)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  5. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  6. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  7. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  8. X-ray plasma source design simulations

    SciTech Connect

    Cerjan, C.

    1993-07-01

    The optimization of soft x-ray production from a laser-produced plasma for lithographic applications is discussed in the context of recent experiments by R. Kauffman et al. which indicate that a conversion efficiency of 0.01 can be obtained with Sn targets at modest laser intensity. Computer simulations of the experiments delineate the critical phenomena underlying these high conversion efficiencies, especially the role of hydrodynamic expansion and radiative emission. Qualitative features of the experiments are reproduced including the transition from one-dimensional to two-dimensional flow. The quantitative discrepancy is ascribed to incorrect initiation of the ablating plasma and to inadequate atomic transition rate evaluation.

  9. Matching network for RF plasma source

    DOEpatents

    Pickard, Daniel S.; Leung, Ka-Ngo

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  10. Laser-Produced Plasmas and Radiation Sources.

    DTIC Science & Technology

    1980-01-31

    Vlases, H. Rutkowski, A. Hertzberg, A. Hoffman, L. Steinhauer, J. Dawson, D.R. Cohn, W. Halverson, B. Lax, J.D. Daugherty, J.E. Eninger , E.R. Pugh, T.K...Meeting, Albuquerque (October 1974). J.D. Daugherty, J.E. Eninger , D.R. Cohn, and W. Halverson, "Scaling of Laser Heated Plasmas Confined in Long Solenoids...Cohn, H.E. Eninger , W. Halverson, and D.J. Rose, "Stress, Dissipation, and Neutronics Constraints on ’fagnets for Laser-Solenoid Reactors," APS Plasma

  11. A new air-cooled argon/helium-compatible inductively coupled plasma torch.

    PubMed

    Miyahara, Hidekazu; Iwai, Takahiro; Kaburaki, Yuki; Kozuma, Tomokazu; Shigeta, Kaori; Okino, Akitoshi

    2014-01-01

    A new inductively coupled plasma (ICP) torch with an air-cooling system has been designed and developed for both argon and helium plasma. The same torch and impedance-matching network could be used to generate stable Ar- and He-ICP. The torch consists of three concentric quartz tubes. The carrier gas, plasma gas, and cooling gas flow through the intervals between each tube. In an experiment, it was found that Ar-ICP could form a stable plasma under the following conditions: RF power of 1 kW, plasma gas flow rate of 11 L min(-1), and cooling gas flow rate of 20 L min(-1). For He-ICP, an input RF power of 2 kW, which is two-times higher than that of a conventional He-ICP, could be constantly applied to the plasma with plasma gas and cooling gas flow rates of 15 and 20 L min(-1), respectively. Using this torch, it is possible to realize lower plasma gas consumption for Ar- and He-ICP and a high-power drive for He-ICP. It has been found that the air-cooling gas stabilizes the shape of the plasma due to the pressure difference between the cooling gas and the plasma gas.

  12. Studies on plasma production in a large volume system using multiple compact ECR plasma sources

    NASA Astrophysics Data System (ADS)

    Tarey, R. D.; Ganguli, A.; Sahu, D.; Narayanan, R.; Arora, N.

    2017-01-01

    This paper presents a scheme for large volume plasma production using multiple highly portable compact ECR plasma sources (CEPS) (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026). The large volume plasma system (LVPS) described in the paper is a scalable, cylindrical vessel of diameter  ≈1 m, consisting of source and spacer sections with multiple CEPS mounted symmetrically on the periphery of the source sections. Scaling is achieved by altering the number of source sections/the number of sources in a source section or changing the number of spacer sections for adjusting the spacing between the source sections. A series of plasma characterization experiments using argon gas were conducted on the LVPS under different configurations of CEPS, source and spacer sections, for an operating pressure in the range 0.5-20 mTorr, and a microwave power level in the range 400-500 W per source. Using Langmuir probes (LP), it was possible to show that the plasma density (~1  -  2  ×  1011 cm-3) remains fairly uniform inside the system and decreases marginally close to the chamber wall, and this uniformity increases with an increase in the number of sources. It was seen that a warm electron population (60-80 eV) is always present and is about 0.1% of the bulk plasma density. The mechanism of plasma production is discussed in light of the results obtained for a single CEPS (Ganguli et al 2016 Plasma Source Sci. Technol. 25 025026).

  13. Electromagnetic field distribution calculation in solenoidal inductively coupled plasma using finite difference method

    SciTech Connect

    Li, W. P.; Liu, Y.; Long, Q.; Chen, D. H.; Chen, Y. M.

    2008-10-15

    The electromagnetic field (both E and B fields) is calculated for a solenoidal inductively coupled plasma (ICP) discharge. The model is based on two-dimensional cylindrical coordinates, and the finite difference method is used for solving Maxwell equations in both the radial and axial directions. Through one-turn coil measurements, assuming that the electrical conductivity has a constant value in each cross section of the discharge tube, the calculated E and B fields rise sharply near the tube wall. The nonuniform radial distributions imply that the skin effect plays a significant role in the energy balance of the stable ICP. Damped distributions in the axial direction show that the magnetic flux gradually dissipates into the surrounding space. A finite difference calculation allows prediction of the electrical conductivity and plasma permeability, and the induction coil voltage and plasma current can be calculated, which are verified for correctness.

  14. Rare-earth plasma light source for VUV applications

    SciTech Connect

    O'Sullivan, G.; Carroll, P.K.; Mcllrath, T.J.; Ginter, M.L.

    1981-09-01

    A compact versatile light source for producing VUV radiation from laser produced plasmas is described. Measurements of the spectral irradiance from CO/sub 2/ laser-produced plasmas on targets of gadolinium and ytterbium in the 155--220-nm range are given, and a comparison is made with analogous results obtaining using a ruby laser.

  15. Rare-earth plasma light source for VUV applications.

    PubMed

    O'Sullivan, G; Carroll, P K; McLlrath, T J; Ginter, M L

    1981-09-01

    A compact versatile light source for producing VUV radiation from laser produced plasmas is described. Measurements of the spectral irradiance from CO(2) laser-produced plasmas on targets of gadolinium and ytterbium in the 115-220-nm range are given, and a comparison is made with analogous results obtained using a ruby laser.

  16. Inhomogeneous Magnetic Field Geometry Light Ion Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Mori, Yoshitaka; Nakashima, Hideki; Goulding, R. H.; Carter Baity, M. D., Jr.; Sparks, D. O.; Barber, G. C.; White, K. F.; Jaeger, E. F.; Chang-Díaz, F. R.; Squire, J. P.

    2002-11-01

    Helicon plasma source is a well-known high-density plasma source for many applications including plasma processing and fusion. However, most helicon research has been focused on a uniform static magnetic field and relatively heavy ions. Light ion helicon operation is more sensitive to magnetic field strength and geometry than heavy ions. The axially inhomogeneous Mini-Radio Frequency Test Facility (Mini-RFTF) has a capability for controlling static magnetic fields then is applicative for light ion source plasma operation. Inhomogeneous static magnetic field geometry also can procedure a high velocity to plasma exhaust when combined with ICRF heating enabling the possibility of use in plasma propulsion. In this poster, we will show how the source has been optimized for a hydrogen operation and a specific plasma propulsion concept: The Variable Specific Impulse Magnetoplasma Rocket (VASIMR). Measurements of the rf magnetic fields and profile of plasma parameters for several magnetic field strengths and geometries will be discussed. Comparisons with a RF modeling code EMIR3 also will be reported here.

  17. Characterization of the cold atmospheric plasma hybrid source

    NASA Astrophysics Data System (ADS)

    Bárdoš, L.; Baránková, H.

    2005-07-01

    Parameters of the hybrid hollow electrode activated discharge (H-HEAD) source for cold atmospheric plasma applications are described. The source with a simple cylindrical electrode terminated by a gas nozzle combines the microwave antenna plasma with the hollow cathode plasma generated inside the nozzle by a pulsed dc power. The source can produce over 15 cm long plasma plumes at less than 200 sccm of argon and 100 sccm of neon flowing in open air at the microwave power of 400 W (2.4 GHz). Parameters of the hybrid plasma are controlled by both the microwave power and the power delivered to the hollow cathode. An anomalous effect of a sharp increase in the length of the plasma plume at low gas flows is discussed. Results of the optical emission spectroscopy in argon and neon are presented. Optical spectra confirmed the presence of Ti and Fe from the hollow cathode in the plasma. The production of metal increases with the power applied to the hollow cathode. Traces of Ti from the hollow cathode have been found at substrates positioned as far as 2 cm from the cathode. This finding confirms the possibility to use the H-HEAD source for atmospheric physical vapor deposition (PVD) and hybrid PVD and plasma-enhanced chemical-vapor deposition of composite films.

  18. Modelling the plasma plume of an assist source in PIAD

    NASA Astrophysics Data System (ADS)

    Wauer, Jochen; Harhausen, Jens; Foest, Rüdiger; Loffhagen, Detlef

    2016-09-01

    Plasma ion assisted deposition (PIAD) is a technique commonly used to produce high-precision optical interference coatings. Knowledge regarding plasma properties is most often limited to dedicated scenarios without film deposition. Approaches have been made to gather information on the process plasma in situ to detect drifts which are suspected to cause limits in repeatability of resulting layer properties. Present efforts focus on radiance monitoring of the plasma plume of an Advanced Plasma Source (APSpro, Bühler) by optical emission spectroscopy to provide the basis for an advanced plasma control. In this contribution modelling results of the plume region are presented to interpret these experimental data. In the framework of the collisional radiative model used, 15 excited neutral argon states in the plasma are considered. Results of the species densities show good consistency with the measured optical emission of various argon 2 p - 1 s transitions. This work was funded by BMBF under grant 13N13213.

  19. Development of a radio-frequency ion beam source for fast-ion studies on the large plasma device.

    PubMed

    Tripathi, S K P; Pribyl, P; Gekelman, W

    2011-09-01

    A helium ion beam source (23 kV/2.0 A) has been constructed for studying fast-ion physics in the cylindrical magnetized plasma of the large plasma device (LAPD). An inductive RF source produces a 10(19) m(-3) density plasma in a ceramic dome. A multi-aperture, rectangular (8 cm × 8 cm) three-grid system extracts the ion beam from the RF plasma. The ion beam is injected at a variety of pitch angles with Alfvénic speeds in the LAPD. The beam current is intense enough to excite magnetic perturbations in the ambient plasma. Measurements of the ion beam profile were made to achieve an optimum beam performance and a reliable source operation was demonstrated on the LAPD. © 2011 American Institute of Physics

  20. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gillon, X.; Diallo, M.; Houssiau, L.; Pireaux, J.-J.

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  1. Collisionless electron heating in periodic arrays of inductively coupled plasmas

    SciTech Connect

    Czarnetzki, U.; Tarnev, Kh.

    2014-12-15

    A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.

  2. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  3. Development of a new method for sulfide determination by vapor generator inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Colon, Mireia; Iglesias, Mònica; Hidalgo, Manuela

    2007-05-01

    A new sensitive methodology for the determination of total reduced sulfur species in natural waters and acid volatile sulfides in sediments at low levels (μg L - 1 ) is described. Reduced sulfur species were separated from the water matrix in the form of H 2S after reaction with hydrochloric acid in a commercial vapor generator coupled to an inductively coupled plasma quadrupole mass spectrometer (VG-ICP-QMS) equipped with a reaction cell. The method avoided the effect of polyatomic isobaric interferences at m/z 32 caused by 16O 16O + and 14N 18O + through the elimination of the aqueous matrix, a source of oxygen. By introducing a mixture of helium and hydrogen gases into the octopole reaction cell, a series of ion-molecule reactions were induced to reduce the interfering polyatomic species. Operating conditions of the octopole reaction cell system and the analyzer were optimized to get the best signal to background ratio for 32S; a full factorial 2 3 experimental design was developed in order to evaluate which variables had a significant effect and a simplex methodology was applied to find the optimum conditions for the variables. The new method was evaluated by comparison to the standard potentiometric method. The analytical methodology developed was applied to the analysis of reduced sulfur species in natural waters and acid volatile sulfides in sea sediments.

  4. High-Resolution THz Measurements of BrO Generated in AN Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Nemchick, Deacon J.; Drouin, Brian

    2017-06-01

    Building upon the foundation provided by previous work, the X_{1}^{2}Π_{3/2} and X_{2}^{2}Π_{1/2} states of the transient radical, BrO, were interrogated in previously unprobed spectral regions (0.5 to 1.7 THz) by employing JPL developed high-resolution cascaded frequency multiplier sources. Like other members of the halogen monoxides (XO), this species has been the target of several recent atmospheric remote sensing studies and is a known participant in a catalytic ozone degradation cycle. For the current work, BrO is generated in an inductively coupled plasma under dynamic flow conditions and rotational lines are observed directly at their Doppler-limited resolution. New spectral transitions including those owing to both the ground (ν=0) and excited (ν=1 and 2) vibrational states of isotopologues composed of permutations of natural abundance ^{16}O, ^{18}O, ^{79}Br, and ^{81}Br are fit to a global Hamiltonian containing both fine and hyperfine terms. In addition to further refining existing spectroscopic parameters, new observations will be made available to remote detection communities through addition to the JPL catalog. New findings will be discussed along with future plans to extend these studies to other halogen monoxides (X=Cl and I) and the more massive halogen dioxides (OXO & XOO).

  5. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    NASA Astrophysics Data System (ADS)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  6. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  7. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; McComas, D. J.; Nordholdt, J. E.; Thomsen, M. F.; Berthelier, J. J.; Robson, R.

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  8. Ion plasma sources based on a microwave oven

    SciTech Connect

    Kuz`michev, A.I.

    1995-04-01

    A domestic microwave oven with a vacuum ionization chamber inside can be used as a composite ion plasma source. The microwave discharge in the chamber is a source of charged particles and plasma. The power fed into the discharge can be up to 500 W at a frequency of 2.45 GHz, and the pressure in the chamber can be 0.1-1000 Pa. The microwave devices for material processing and film deposition are described.

  9. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  10. Helicon Plasma Source Configuration Analysis by Means of Density Measurements

    SciTech Connect

    Angrilli, F.; Barber, G.C.; Carter, M.D.; Goulding, R.H.; Maggiora, R.; Pavarin, D.; Sparks, D.O.

    1999-11-13

    Initial results have been obtained from operation of a helicon plasma source built to conduct optimization studies for space propulsion applications. The source features an easily reconfigurable antenna to test different geometries. Operating with He as the source gas, peak densities >= 1.6X10{sup 19} m{sup -3} have been achieved. Radial and axial plasma profiles have been obtained using a microwave interferometer that can be scanned axially and a Langmuir probe. The source will be used to investigate operation at high magnetic field, frequency, and input power.

  11. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before beginning...

  12. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before beginning...

  13. 40 CFR Appendix C to Part 136 - Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Method 200.7 C... Plasma-Atomic Emission Spectrometry Method 200.7 1.0Scope and Application 1.1Inductively coupled plasma... in the plasma, aspirate all solutions for 30 seconds after reaching the plasma before beginning...

  14. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  15. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Nakamura, Kae; Hayashi, Moemi; Tanaka, Hiromasa; Kondo, Hiroki; Kajiyama, Hiroaki; Kano, Hiroyuki; Kikkawa, Fumitaka; Hori, Masaru

    2012-03-01

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  16. Studies on Mixed-Gas Plasmas and Segmented Flow Injection for Use with Inductively Coupled Plasma Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Craig, Jane Mary

    In this thesis, mixed gas plasmas and flow injection into air bubbles were investigated for use with inductively coupled plasma mass spectrometry (ICP-MS), in order to improve the technique's analytical capabilities. The mixed gas plasmas were created in two different ways: (i) by adding another gas, either argon, nitrogen, or hydrogen, to the nebulizer gas flow using a sheathing device or (ii) by adding nitrogen to the plasma gas flow. The introduction of each sheathing gas led to degraded analyte sensitivity but generally improved plasma stability, resulting in improved detection limits for a few elements. Introduction of nitrogen into the plasma gas, under the same operating conditions used for an all-argon plasma, resulted in degraded sensitivity but improved signal-to-noise and signal-to-background ratios for Cr, Fe, and Se. The tolerance of ICP-MS to effects caused by the concomitant elements Na and K was improved by addition of nitrogen to the plasma gas flow. Flow injection using a segmented air/water carrier resulted in improved precision, sensitivity, and detection limits compared to those obtained using an all-water carrier. The enhancement in sensitivity was found to be mass dependent and was attributable to more than simply a reduction in dispersion. Under optimized operating conditions, using segmented flow injection resulted in similar or improved detection limits for all analytes except Se when compared to those obtained using continuous nebulization. Changing the gas used to segment the carrier stream did not result in appreciable changes in analyte signals or positions of maximum ionization within the plasma, indicating that the fundamental properties of the plasma did not change. The tolerance of ICP-MS to effects caused by the concomitant elements Na and Ca was not improved by using a segmented carrier compared to that experienced using an all-water carrier.

  17. Induction therapy alters plasma fibrin clot properties in multiple myeloma patients: association with thromboembolic complications.

    PubMed

    Undas, Anetta; Zubkiewicz-Usnarska, Lidia; Helbig, Grzegorz; Woszczyk, Dariusz; Kozińska, Justyna; Dmoszyńska, Anna; Dębski, Jakub; Podolak-Dawidziak, Maria; Kuliczkowski, Kazimierz

    2015-09-01

    Induction therapy in patients with multiple myeloma increases the risk of thromboembolism. We have recently shown that multiple myeloma patients tend to form denser fibrin clots displaying poor lysability. We investigated the effect of induction therapy on fibrin clot properties in multiple myeloma patients. Ex-vivo plasma fibrin clot permeability, turbidity, susceptibility to lysis, thrombin generation, factor VIII and fibrinolytic proteins were compared in 48 multiple myeloma patients prior to and following 3 months of induction therapy, mainly with cyclophosphamide-thalidomide-dexamethasone regimen. Patients on thromboprophylaxis with aspirin or heparins were eligible. A 3-month induction therapy resulted in improved clot properties, that is higher clot permeability, compaction, shorter lag phase and higher final turbidity, along with shorter clot lysis time and higher rate of D-dimer release from fibrin clots than the baseline values. The therapy also resulted in lower thrombin generation, antiplasmin and thrombin-activatable fibrinolysis inhibitor (TAFI), but elevated factor VIII. Progressive disease was associated with lower posttreatment clot permeability and lysability. Despite thromboprophylaxis, two patients developed ischemic stroke and 10 had venous thromboembolism. They were characterized by pretreatment lower clot permeability, prolonged clot lysis time, longer lag phase, higher peak thrombin generation, TAFI and plasminogen activator inhibitor -1. Formation of denser plasma fibrin clots with reduced lysability and increased thrombin generation at baseline could predispose to thrombotic complications during induction treatment in multiple myeloma patients. We observed improved fibrin clot properties and thrombin generation in multiple myeloma patients except those with progressive disease.

  18. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  19. X-ray plasma source design simulations.

    PubMed

    Cerjan, C

    1993-12-01

    The optimization of soft x-ray production from a laser-produced plasma for lithographic applications is discussed in the context of recent experiments by Kauffman et al. [Appl. Opt. 32, 6897 (1993)], which indicate that a conversion efficiency of 0.01 can be obtained with Sn targets at modest laser intensity. Computer simulations of the experiments delineate the critical phenomena underlying these high conversion efficiencies, especially the role of hydrodynamic expansion and radiative emission. Qualitative features of the experiments are reproduced, including the transition from one-dimensional to two-dimensional flow. The quantitative discrepancy is ascribed to incorrect initiation of the ablating plasma and to inadequate atomic transition rate evaluation.

  20. Characteristics of Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.

    2016-10-01

    A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  1. Induction of Malignant Plasma Cell Proliferation by Eosinophils

    PubMed Central

    Wong, Tina W.; Kita, Hirohito; Hanson, Curtis A.; Walters, Denise K.; Arendt, Bonnie K.; Jelinek, Diane F.

    2013-01-01

    The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos) can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s). Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL), respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial. PMID:23894671

  2. Arc initiation in cathodic arc plasma sources

    SciTech Connect

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  3. Alternative modeling methods for plasma-based Rf ion sources

    SciTech Connect

    Veitzer, Seth A. Kundrapu, Madhusudhan Stoltz, Peter H. Beckwith, Kristian R. C.

    2016-02-15

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two

  4. Alternative modeling methods for plasma-based Rf ion sources

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  5. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  6. Combined Gas-Liquid Plasma Source for Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Kiris, V. V.; Nevar, A. A.; Nedelko, M. I.; Tarasenko, N. V.

    2016-09-01

    A gas-liquid plasma source for the synthesis of colloidal nanoparticles by spark erosion of the electrode material was developed and allowed the particle synthesis regime to be varied over a wide range. The source parameters were analyzed in detail for the electrical discharge conditions in water. The temperature, particle concentration, and pressure in the discharge plasma were estimated based on spectroscopic analysis of the plasma. It was found that the plasma parameters did not change signifi cantly if the condenser capacitance was increased from 5 to 20 nF. Purging the electrode gap with argon reduced substantially the pressure and particle concentration. Signifi cant amounts of water decomposition products in addition to electrode elements were found in the plasma in all discharge regimes. This favored the synthesis of oxide nanoparticles.

  7. Inertial Electrostatic Confinement (IEC) Fusion using Helicon Injected Plasma Source

    NASA Astrophysics Data System (ADS)

    Miley, George; Ahern, Drew; Bowman, Jaerd

    2016-10-01

    The use of an external plasma source with the IEC has the advantage that the background pressure in the IEC chamber can be low. This then enables a deep potential well formation for ion confinement. Also unit efficiency is increase due to minimization of ion losses through charge exchange. This technique is under study experimentally for use in a plasma jet propulsion unit and as an IEC type neutron source. Current work has studied the effect of locating the IEC grids off-center in the vacuum chamber, near the plasma entrance from the Helicon. With double grids, the relative potentials employed are also key factors in device performance. Electron emitters are added for space charge neutralization in the case of plasma jet propulsion. Plasma simulations are used to supplement the experiments. Specifically, the electric field and the magnetic field effects on energetic ion trajectories are examined for varying configurations. Funding by NASA, Air Force Research Lab and NPL Associates.

  8. Compact plasma focus devices: Flexible laboratory sources for applications

    SciTech Connect

    Lebert, R.; Engel, A.; Bergmann, K.; Treichel, O.; Gavrilescu, C.; Neff, W.

    1997-05-05

    Small pinch plasma devices are intense sources of pulsed XUV-radiation. Because of their low costs and their compact sizes pinch plasmas seem well suited to supplement research activities based on synchrotrons. With correct optimisation, both continuous radiation and narrowband line radiation can be tailored for specific applications. For the special demand of optimising narrowband emission from these plasmas the scaling of K-shell line emission of intermediate atomic number pinch plasmas with respect to device parameters has been studied. Scaling laws, especially taking into account the transient behaviour of the pinch plasma, give design criteria. Investigations of the transition between column and micropinch mode offer predictable access to shorter wavelengths and smaller source sizes. Results on proximity x-ray lithography, imaging and contact x-ray microscopy, x-ray fluorescence (XFA) microscopy and photo-electron spectroscopy (XPS) were achieved.

  9. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  10. Ignition delay of a pulsed inductively coupled plasma (ICP) in tandem with an auxiliary ICP

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Sridhar, Shyam; Donnelly, Vincent M.; Economou, Demetre J.

    2015-12-01

    Plasma ignition delays were observed in a ‘main’ inductively coupled plasma (ICP), in tandem with an ‘auxiliary’ ICP. The Faraday-shielded ICPs were separated by a grounded metal grid. Power (13.56 MHz) to the main ICP was pulsed with a frequency of 1 kHz, while the auxiliary ICP was operated in continuous wave (cw) mode. In chlorine plasmas, ignition delay was observed for duty cycles greater than 60% and, in contrast to expectation, the delay was longer with increasing duty cycle up to ~99.5%. The ignition delay could be varied by changing the auxiliary and/or main ICP power. Langmuir probe measurements provided the temporal evolution of electron temperature, and electron and positive ion densities. These measurements revealed that the plasma was ignited shortly after the decaying positive ion density (n +), in the afterglow of the main ICP, reached the density ({{n}+},\\text{aux} ) prevailing when only the auxiliary ICP was powered. At that time, production of electrons began to dominate their loss in the main ICP, due to hot electron injection from the auxiliary ICP. As a result, {{n}\\text{e}} increased from a value below {{n}\\text{e,\\text{aux}}} , improving inductive power coupling efficiency, further increasing plasma density leading to plasma ignition. Plasma ignition delay occurred when the afterglow of the pulsed plasma was not long enough for the ion density to reach {{n}+},\\text{aux} during the afterglow. Besides Cl2, plasma ignition delays were also observed in other electronegative gases (SF6, CF4/O2 and O2) but not in an electropositive gas (Ar).

  11. Development of a long-slot microwave plasma source

    SciTech Connect

    Kuwata, Y. Kasuya, T.; Miyamoto, N.; Wada, M.

    2016-02-15

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10{sup 9} cm{sup −3} to 5.8 × 10{sup 9} cm{sup −3}, and from 1.1 eV to 2.1 eV, respectively.

  12. Development of a long-slot microwave plasma source.

    PubMed

    Kuwata, Y; Kasuya, T; Miyamoto, N; Wada, M

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10(9) cm(-3) to 5.8 × 10(9) cm(-3), and from 1.1 eV to 2.1 eV, respectively.

  13. Development of a long-slot microwave plasma source

    NASA Astrophysics Data System (ADS)

    Kuwata, Y.; Kasuya, T.; Miyamoto, N.; Wada, M.

    2016-02-01

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 109 cm-3 to 5.8 × 109 cm-3, and from 1.1 eV to 2.1 eV, respectively.

  14. Determination of chromium in airborne particulate matter by inductively coupled plasma dynamic reaction cell mass spectrometry.

    PubMed

    Ma, Hoi-Ling; Tanner, Peter A

    2008-10-01

    A modified three-stage microwave-assisted digestion protocol for chromium analysis in airborne total suspended particulate matter (TSP) with recovery > 90%, which utilizes inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS), has been developed and validated. Similar results were obtained for 52Cr and 53Cr analyses, with a method detection limit of 950 ng g(-1) (0.38 ng ml(-1)) for 52Cr. The method is applicable to the analyses of a suite of other elements in TSP, particularly for Al, Fe and Ti. A comparison of the method with various other extraction and digestion procedures has been given. Our results highlight the difficulties in Cr analyses. Concentrations of Cr in TSP at two urban sites in Hong Kong were determined in the range from 5.8-32.3 ng m(-3), with an average value of 13.2 ng m(-3). The mean concentration of Cr was found to be 10.7 ng m(-3) at a residential/commercial site and 15.6 ng m(-3) at a mixed industrial/residential/commercial site. Ambient Cr concentrations did not reach maxima at vehicular rush-hour times but peaked at combined vehicle and industrial activity. The Cr concentrations at each site were strongly correlated with the total PM10 (particulate matter with aerodynamic diameter < 10 microm) concentrations and inversely correlated with ambient relative humidity. Relationships of Cr with ambient pollutant gases and other elements in TSP suggest that there is no single source which dominates the concentration of Cr in aerosol. There are several contributing sources and their relative proportions vary at different locations.

  15. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Plasma lasers (a strong source of coherent radiation in astrophysics)

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1981-01-01

    The generation of electromagnetic radiation from the free energy available in electron streams is discussed. The fundamental principles involved in a particular class of coherent plasma radiation sources, i.e., plasma lasers, are reviewed, focusing on three wave coupling, nonlinear parametric instabilities, and negative energy waves. The simplest case of plasma lasers, that of an unmagnetized plasma containing a finite level of density fluctuations and electrons streaming with respect to the ions, is dealt with. A much more complicated application of plasma lasers to the case of auroral kilometric radiation is then examined. The concept of free electron lasers, including the role of relativistic scattering, is elucidated. Important problems involving the escape of the excited radiation from its generation region, effects due to plasma shielding and nonlinear limits, are brought out.

  17. Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua

    2015-10-01

    The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)

  18. Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale.

    PubMed

    Kreitals, Natasha M; Watling, R John

    2014-11-01

    Chemical signatures within the environment vary between regions as a result of climatological, geochemical and anthropogenic influences. These variations are incorporated into the region's geology, soils, water and vegetation; ultimately making their way through the food chain to higher level organisms. Because the variation in chemical signatures between areas is significant, a specific knowledge of differences in elemental distribution patterns between, and within populations, could prove beneficial for provenancing animals or animal related products when applied to indigenous and feral faunal populations. The domestic pig (Sus scrofa domestica) was used as an investigative model to determine the feasibility of using a chemical traceability method for the provenance determination of animal tissue. Samples of pig muscle, tongue, stomach, heart, liver and kidney were collected from known farming areas around Australia. Samples were digested in 1:3 H2O2:HNO3 and their elemental composition determined using solution based Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Pigs from different growing regions in Australia could be distinguished based on the chemical signature of each individual tissue type. Discrimination was possible at a region, state and population level. This investigation demonstrates the potential for multi-element analysis of low genetic variation native and feral species of forensic relevance.

  19. Determination of silver in nano-plastic food packaging by microwave digestion coupled with inductively coupled plasma atomic emission spectrometry or inductively coupled plasma mass spectrometry.

    PubMed

    Lin, Q-B; Li, B; Song, H; Wu, H-J

    2011-08-01

    The detection of silver in nano-plastic food packaging by microwave digestion coupled with either inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) was investigated. Microwave digestion was optimised by trialling different acid mixtures. Both ICP-AES and ICP-MS showed good reproducibility, repeatability and recovery. For ICP-AES the limit of detection of the method (LODm) was 25.0 µg g(-1), the limit of detection of the instrument (LODi) was 30.0 ng ml(-1), the linear range was 0.10-10.0 µg ml(-1). The average recoveries for blank samples spiked with silver at 100, 250 and 500 µg g(-1) ranged from 82.53% to 87.60%, and the relative standard deviations (RSDs) were from 1.79% to 8.30%. For ICP-MS analysis the LODm was 0.75 µg g(-1), the LODi was 0.04 ng ml(-1), the linear range was 0.20-500.0 ng ml(-1), the RSDs were 2.26-4.79%, and the recoveries were 78.09-92.72% (spiked concentrations of 2.5, 5.0 and 10.0 µg g(-1)). These results indicate that the proposed method could be employed to analyse silver in nano-plastic food packaging.

  20. Operation of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Campbell, I. H.; Diem, S. J.; Martin, E. H.; Pesavento, P. V.; Rapp, J.; Ray, H. B.; Shaw, G. C.; Showers, M. A.; Luo, G.-N.

    2015-11-01

    The Prototype Materials Plasma Experiment (Proto-MPEX) is a linear high-intensity rf plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is produced by coupling 13.56 MHz rf power at levels up to 100 kW. Microwaves at 28 GHz (~ 150 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW). Ion cyclotron heating (~ 30 kW) will be via a magnetic beach approach. Plasma diagnostics include Thomson Scattering and a retarding field energy analyzer near the target, while a microwave interferometer and double-Langmuir probes are used to determine plasma parameters elsewhere in the system. Filterscopes are being used to measure D-alpha emission and He line ratios at multiple locations, and IR cameras image the target plates to determine heat deposition. High plasma densities in the helicon region have been produced in He (>3x1019/m3) and D (>1.5x1019/m3) , and operation with on-axis magnetic field strength >1 T has been demonstrated. Details of the experimental results and future plans for studying plasma surface/RF antenna interactions will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  1. Mass spectroscopy of the ion flux produced during inductively coupled plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Kolodko, D. V.; Kaziev, A. V.; Ageychenkov, D. G.; Meshcheryakova, E. A.; Pisarev, A. A.; Tumarkin, A. V.

    2017-05-01

    Ion fluxes on the surface of sample embedded in inductively coupled plasma have been studied in conditions typical for titanium alloy nitriding: total pressure 0.44 Pa, Ar/N2 = 70%/30%, and RF power 1500 W. The gas composition was independently monitored by the quadrupole analyser. The ion fluxes were sampled using a specially designed electrostatic extractor and then analysed with a magnetic sector mass-separator. The extractor design allowed us to apply a bias voltage to the plasma facing electrode thus imitating interaction of ions with the surface during the plasma processing. The ion fluxes of Ar+, {{{N}}}2{}+, and N+ on the surface were measured. The mass spectroscopy diagnostics unit is suitable for extensive ion content studies in the plasma technology facilities.

  2. Influence of instrumental parameters on the kinetic energy of ions and plasma temperature for a hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometer.

    PubMed

    Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine

    2009-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.

  3. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.

  4. A pulsed xenon megawatt arc plasma source

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    The exhaust of the source flowing into vacuum was measured by Thomson scattering diagnosis. Mean electron temperatures and densities were found to be 4-8 eV and of order ten to the 13th power cm/3 respectively over the 8 cm exhaust diameter at 30 cm from the source. Large shot to shot variations were noted. After a transient spike passes, these conditions persist during the power time of 125 microsecond. These exhaust conditions are marginal for evaluation of a proposed near resonant charge exchange pumped laser theory.

  5. Inductive Pulsed Plasma Thruster Model with Time-Evolution of Energy and State Properties

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sankaran, Kamesh

    2012-01-01

    A model for pulsed inductive plasma acceleration is presented that consists of a set of circuit equations coupled to both a one-dimensional equation of motion and an equation governing the partitioning of energy. The latter two equations are obtained for the plasma current sheet by treating it as a single element of finite volume and integrating the governing equations over that volume. The integrated terms are replaced where necessary by physically-equivalent quantities that are calculated through the solution of other parts of the governing equation set. The model improves upon previous one-dimensional performance models by permitting the time-evolution of the energy and state properties of the plasma, the latter allowing for the tailoring of the model to different gases that may be chosen as propellants. The time evolution of the various energy modes in the system and the associated plasma properties, calculated for argon propellant, are presented to demonstrate the efficacy of the model. The model produces a result where efficiency is maximized at a given value of the electrodynamic scaling term known as the dynamic impedance parameter. Qualitatively and quantitatively, the model compares favorably with performance measured for two separate inductive pulsed plasma thrusters, with disagreements attributable to simplifying assumptions employed in the generation of the model solution.

  6. Characterization of a small railgun-based plasma jet source

    NASA Astrophysics Data System (ADS)

    Schneider, Maximilian; Adams, Colin; Popescu, Marius; Korsness, Joshua; Sherburne, Michael

    2016-10-01

    Experimental characterization of a small plasma jet source has been undertaken at Virginia Tech's Center for Space Science and Engineering Research (Space@VT). The plasma-armature railgun features a square bore approximately 0.5 × 0.5 cm and a rail length of 10 cm. Fed by an 100 psi- gas manifold and powered by an LC pulse-forming network capable of delivering 100 kA current on timescales of several microseconds, jet velocities in the 10-20 km/s range are predicted. A modular design, the insulators and rails are readily swappable for investigation the interaction of the plasma armature with plasma-facing components fabricated with different materials and geometry. The plasma jet is characterized by a suite of diagnostics including a multichord Mach-Zehnder interferometer, spectrometer, photodiode array, and fast photography. Diagnostics planned for the near future include plasma laser-induced fluorescence and particle energy analyzers. The railgun source described is envisioned as a future platform for basic science experiments on topics ranging from plasma-material interaction to plasma shocks.

  7. Photo-ionized lithium source for plasma accelerator applications

    SciTech Connect

    Muggli, P. . Dept. of Electrical Engineering Univ. of Southern California, Los Angeles, CA . Dept. of Electrical Engineering and Quantum Electronics); Marsh, K.A.; Wang, S.; Clayton, C.E.; Joshi, C. . Dept. of Electrical Engineering); Lee, S.; Katsouleas, T.C. . Dept. of Electrical Engineering and Quantum Electronics)

    1999-06-01

    A photo-ionized lithium source is developed for plasma acceleration applications. A homogeneous column of lithium neutral vapor with a density of 2 [times] 10[sup 15] cm[sup [minus]3] is confined by helium gas in a heat-pipe oven. A UV laser pulse ionizes the vapor. In this device, the length of the neutral vapor and plasma column is 25 cm. The plasma density was measured by laser interferometry in the visible on the lithium neutrals and by CO[sub 2] laser interferometry on the plasma electrons. The maximum measured plasma density was 2.9 [times] 10[sup 14] cm[sup [minus]3], limited by the available UV fluence ([approx]83 mJ/cm[sup 2]), corresponding to a 15% ionization fraction. After ionization, the plasma density decreases by a factor of two in about 12 [micro]s. These results show that such a plasma source is scaleable to lengths of the order of 1 m and should satisfy all the requirements for demonstrating the acceleration of electrons by 1 GeV in a 1-GeV/m amplitude plasma wake.

  8. Induction-linac based free-electron laser amplifiers for plasma heating

    SciTech Connect

    Jong, R.A.

    1988-08-22

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab.

  9. Induction-linac based free-electron laser amplifiers for plasma heating

    NASA Astrophysics Data System (ADS)

    Jong, R. A.

    1988-08-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging from 280 to 560 GHz.

  10. Optical diagnostics for a high power, rf-inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Nogar, N. S.; Keaton, G. L.; Anderson, J. E.; Trkula, M.

    Emission spectroscopy and laser-induced fluorescence have been used to monitor the field and tail-flame regions of a Hull-design inductively coupled plasma. This plasma is used for a variety of syntheses including SiC, TiC, BN, A1N and diamond. Temporally- and spatially-resolved spectra of both pure Ar and Ar/gas mixtures have been studied as a function of RF power, pressure and flow rate. Preliminary data suggest that the system is far from local thermodynamic equilibrium.

  11. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  12. [Determination of trace elements in shark cartilage by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Deng, B; Zhang, Z

    1998-10-01

    Semiquantitative estimation of all elements in shark cartilage was investigated by inductively coupled plasma mass spectrometry (ICP-MS). The determination of trace elements, namely Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr in shark cartilage, was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES). The matrix effects were overcome by using yttrium as an internal standard element. The recoveries are in the range of 81.6 to 100.7%. The determination limits of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr are 0.60, 0.55, 0.21, 0.39, 0.042, 0.27, 0.038 and 0.48 microg x g(-1), respectively. The results showed that the shark cartilage contains higher amount of Fe, Zn, Se, Cu, Mn, Mo, Ti and Sr than those in other fishes and in other animal bones.

  13. NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA

    DOEpatents

    Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.

    1961-10-31

    A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)

  14. Excitation of whistler waves from inductive sources: Experiment and computer modeling

    NASA Astrophysics Data System (ADS)

    Rousculp, Christopher Lee

    1997-09-01

    Low frequency whistler waves are studied in the context of electron-magnetohydro-dynamics (EMHD) with experiments and computer modeling. Experiments show that an oblique whistler wave packet is excited from a single current pulse applied to a magnetic loop antenna. The magnetic field is mapped in three dimensions and time. The angle of dominant radiation is determined by the antenna dimensions, not by the constraints of the resonance cone. Topological properties of the inductive and space charge electric fields and space charge density confirm EMHD physics. Transverse currents are dominated by Hall currents, while no net current flows in the parallel direction. Electron-ion collisions damp both the energy and the helicity of the wave packet. Landau damping is negligible. The radiation resistance of the loop is a few tenths of an Ohm for the observed frequency range. The loop injects zero net helicity. Rather, oppositely traveling wave packets carry equal amounts of opposite signed helicity. Modeling confirms the experimental results for a single turn antenna. Linked or knotted antennas are shown to be directional whistler sources that inject helicity into an EMHD plasma. Electron inertial effects are included in the modeling and an antenna radiating predominantly at Gendrin's constant velocity mode is designed. Experiments currently underway show preliminary results that support the conclusions of the modeling.

  15. Performance scaling of inductive pulsed plasma thrusters with coil angle and pulse rate

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2016-01-01

    A circuit model for an inductive pulsed plasma thruster was developed in order to investigate the performance of thrusters with conical coils; the model can accommodate cone-angles from 0° (a straight theta-pinch coil) to 90° (a planar coil). The plasma is treated as a deformable slug that moves both radially and axially in response to the force applied by the coil. The radial equation of motion includes a restoring force due to the plasma pressure, which is derived under the assumption that the electron population is isothermal, while the ions are isothermal, adiabatic, or shock-heated depending on the magnitude and sign of the radial velocity. The inductance of the coil and the plasma slug, and their mutual inductance, was determined using QuickField. A local maximum in efficiency and specific impulse was found for angles less than 90° however the absolute maximum for both these quantities occurs at 90°. High pulse-rate operation was found to yield dynamic efficiencies (excluding ionization cost) as high as 60-70% for I SP in the range of 3000-5000 s, even for a device with modest jet-power (5 kW). This mode of operation also permits elimination of the pulsed gas valve, which would be a significant system-level simplification. An alternate mode of inductive recapture, in which the current is interrupted at the second zero-crossing, was found to result in a sacrifice of only 1-2% in efficiency, while offering other significant system-level benefits for this kind of thruster.

  16. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  17. Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)

    NASA Technical Reports Server (NTRS)

    Coedo, A. G.; Lopez, M. T. D.

    1986-01-01

    The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel.

  18. Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyan, V. I.; Borisyuk, P. V.; Khalitov, R. R.; Krasavin, A. V.; Lebedinskii, Yu Yu; Palchikov, V. G.; Poteshin, S. S.; Sysoev, A. A.; Yakovlev, V. P.

    2013-10-01

    Single- and double-charged 232Th and 229Th ions were produced by laser ablation of solid-state thorium compounds and by inductively coupled plasma techniques with mass-spectrometry analysis from liquid solutions of thorium. The latter method was found to be more applicable for producing ions of radioactive 229Th for laser experiments when searching for the energy value of the isomeric nuclear transition.

  19. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  20. Inductive plasma current start-up by the outer vertical field coil in a spherical tokamak

    NASA Astrophysics Data System (ADS)

    Mitarai, Osamu

    1999-12-01

    Plasma current-start up induced by an outer vertical field coil is studied during the ignition access phase in a spherical tokamak reactor. We have illustrated the concept that the plasma current of ~50 MA could be induced by the outer vertical field coil in the proposed spherical tokamak with the help of the small central solenoid flux of +/-5 V s and the strong heating power less than 100 MW for the internal inductance of icons/Journals/Common/ell" ALT="ell" ALIGN="TOP"/>i~0.4-0.8 without the help of bootstrap current and non-inductive current drive power. The required condition to achieve this operation scenario is that the flux produced by the equilibrium vertical field is larger than the inductive flux. Current start-up operation is achieved by adding the small ohmic heating solenoid flux for the flux waveform adjustment because the flux from the outer vertical field coil cannot solely induce the desired plasma current waveform in the case of the preprogramming of the heating power.

  1. Efficient Plasma Ion Source Modeling With Adaptive Mesh Refinement (Abstract)

    SciTech Connect

    Kim, J.S.; Vay, J.L.; Friedman, A.; Grote, D.P.

    2005-03-15

    Ion beam drivers for high energy density physics and inertial fusion energy research require high brightness beams, so there is little margin of error allowed for aberration at the emitter. Thus, accurate plasma ion source computer modeling is required to model the plasma sheath region and time-dependent effects correctly.A computer plasma source simulation module that can be used with a powerful heavy ion fusion code, WARP, or as a standalone code, is being developed. In order to treat the plasma sheath region accurately and efficiently, the module will have the capability of handling multiple spatial scale problems by using Adaptive Mesh Refinement (AMR). We will report on our progress on the project.

  2. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation.

  3. Induction of stable ER–plasma-membrane junctions by Kv2.1 potassium channels

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Akin, Elizabeth J.; Seel, Peter J.; Krapf, Diego; Tamkun, Michael M.

    2015-01-01

    ABSTRACT Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER–plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K+ channel in the mammalian brain, induces the formation of ER–plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER–plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER–plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca2+ signaling. PMID:25908859

  4. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  5. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  6. Are Spicules the Primary Source of Hot Coronal Plasma?

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  7. Development of a strong field helicon plasma source

    SciTech Connect

    Shinohara, Shunjiro; Mizokoshi, Hiroshi

    2006-03-15

    We developed a high-density helicon plasma source with a very strong field of up to 10 kG. Using a double-loop antenna wound around a quartz tube, 9.5 cm in inner diameter and 90 cm in axial length, initial plasmas with a high density more than 10{sup 13} cm{sup -3} were successfully produced with a radio frequency power less than a few kilowatts, and with changing magnetic fields, fill pressures, and gas species.

  8. Magnetospheric plasma - Sources, wave-particle interactions and acceleration mechanisms.

    NASA Technical Reports Server (NTRS)

    Speiser, T. W.

    1971-01-01

    Some of the basic problems associated with magnetospheric physics are reviewed. The sources of magnetospheric plasma, with auroral particles included as a subset, are discussed. The possible ways in which the solar wind plasma can gain access to the magnetosphere are outlined. Some important consequences of wave-particle interactions are examined. Finally, the basic mechanisms which energize or accelerate particles by reconnection and convection are explained.

  9. Photoionization of an aluminum plasma by a tantalum X source

    NASA Astrophysics Data System (ADS)

    Renaudin, Patrick; Back, Christina A.; Chenais-Popovics, Claude; Audebert, Patrick; Geindre, Jean-Paul; Gauthier, Jean-Claude

    1991-05-01

    Photoionization of a helium like aliminum plasma is carried out by an external x-source. The laser beam used corresponds to the 3d to 4F transition level of tantalum. The experimental spectrum of tantalum is shown superimposed over the emission spectrum of aluminum on diagrammatic form. Good correspondence is seen between the 3d to 4F emissions of tantalum and helium like aluminum. Plasma pumping is obtained by exposure of a tantalum target to laser rays.

  10. Sources, transport, energization, and loss of magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Horwitz, J. L.; Moore, T. E.

    Sources, transport, energization, and loss of magnetospheric plasma was the theme of the third Huntsville Workshop on Magnetospheric Plasma Models, which was held in Guntersville, Ala., from October 4 to 8, 1992. Approximately ninety researchers attended the workshop, which was supported in part by a grant from the National Science Foundation.The first topical session summarized our knowledge of plasma distributions and set the stage for the later sessions. Dennis Gallagher reviewed the distributions of bulk parameters and reported on the new results of his empirical model of the plasmasphere. Ed Shelley traced the origins of the plasma sheet, concluding that medium-energy magnetospheric plasma is of between 5 and 50% ionospheric origin. Tony Lui addressed the distribution of energetic particles and noted that the observed pressure gradients account for the field-aligned currents in the inner magnetosphere. Dan Baker pointed out the glaring problem of how electrons gain relativistic energies during substorms.

  11. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, Elise

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 ± 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 ± 0.4 ng/g, while the certified value is 11.5 ± 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 ± 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and β-cyclodextrin are chosen for the study, initial observation of spectral interference of 13C+ with 12C 1H+ comes from the incomplete dissociation of myoglobin and/or β-cyclodextrin.

  12. Radical kinetics in an inductively-coupled plasma in CF4

    SciTech Connect

    Booth, J.P.; Abada, H.; Chabert, P.; Graves, D.B.

    2004-12-01

    Radiofrequency discharges in low pressure fluorocarbon gases are used for anisotropic and selective etching of dielectric materials (SiO2 and derivatives), a key step in the manufacture of integrated circuits. Plasmas in these gases are capable not only of etching, but also of depositing fluorocarbon films, depending on a number of factors including the ion bombardment energy, the gas composition and the surface temperature: this behavior is indeed responsible for etch selectivity between materials and plays a role in achieving the desired etched feature profiles. Free radical species, such as CFx and fluorine atoms, play important but complex roles in these processes. We have used laser-induced fluorescence (LIF), with time and space resolution in pulsed plasmas, to elucidate the kinetics of CF and CF2 radicals, elucidating their creation, destruction and transport mechanisms within the reactor. Whereas more complex gas mixtures are used in industrial processes, study of the relatively simple system of a pure CF4 plasma is more appropriate for the study of mechanisms. Previously the technique was applied to the study of single-frequency capacitively-coupled 'reactive ion etching' reactors, where the substrate (placed on the powered electrode) is always bombarded with high-energy CF{sub x}{sup +} ions. In this case it was found that the major source of CFx free radicals was neutralization, dissociation and backscattering of these incident ions, rather than direct dissociation of the feedstock gas. Subsequently, an inductively-coupled plasma (ICP) in pure CF4 was studied. This system has a higher plasma density, leading to higher gas dissociation, whereas the energy of ions striking the reactor surfaces is much lower (in the absence of additional RF biasing). The LIF technique also allows the gas temperature to be measured with good spatial and temporal resolution. This showed large gas temperature gradients within the ICP reactor, which must be taken into account

  13. ECR plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.; Grisham, L.; Kolchin, P.; Davidson, E.C.; Yu, S.S.; Logan, B.G.

    2002-05-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures {approx} 10{sup -6} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr. Electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3} have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  14. Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.

    2011-01-01

    A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.

  15. Non-inductive Plasma Start-up and Current Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Jardin, S. C.; Kessel, C. E.; Mueller, D.; Nelson, B. A.; Poli, F.; Taylor, G.; NSTX Research Team; Princeton Plasma Physics Laboratory Team

    2013-10-01

    Results from NSTX Transient Coaxial Helicity Injection (CHI) experiments have demonstrated generation of 300 kA start-up currents, and when these discharges were coupled to induction they attained 1 MA of plasma current consuming 65% of the inductive flux of standard inductive-only discharges in NSTX. The NSTX-U device, which is now under construction at PPPL, will have numerous improvements to enhance transient CHI start-up. These are: (1) factor of two increase in toroidal field, (2) more than 2.5 times the injector flux, (3) increased CHI voltage, (4) full lithium coverage to reduce low-Z impurities and (5) 1 MW ECH system for increasing the electron temperature of CHI discharges to allow direct coupling to NBI current drive using a new second more tangential neutral beam system. In support of NSTX-U objectives for full non-inductive start-up and current ramp-up, the TSC code has been used for a full discharge simulation in which a transient CHI discharge is used as the front end of the non-inductive current ramp-up simulation. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  16. Simple filtered repetitively pulsed vacuum arc plasma source

    NASA Astrophysics Data System (ADS)

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-01

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10-2 mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  17. Experimental investigation of plasma impedance in Linac4 H- source

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mattei, S.; Briefi, S.; Butterworth, A.; Grudiev, A.; Haase, M.; Jones, A.; Paoluzzi, M. M.; Voulgarakis, G.; Hatayama, A.; Lettry, J.

    2017-08-01

    CERN 's new particle accelerator Linac4 is part of the upgrade of the LHC accelerator chain. Linac4 is required to deliver 160 MeV H- beam to improve the beam brightness and luminosity in the Large Hadron Collider (LHC). The Linac4 H- source must deliver 40-50 mA, 45 keV H- beam in the RFQ acceptance. Since the RF power coupled to the H- source plasma is one of the important parameters that determines the quality of the H- beam, the experimental investigation of the dependence of the load impedance on the operational parameters is mandatory. In this study, we have measured the impedance of the H- source plasma varying the RF power coupled to the plasma and the condition of the hydrogen gas. Also, optical emission spectroscopy (OES) measurements have been carried out simultaneously with the impedance measurement in order to determine the plasma parameters. The determination of the plasma parameters allows us to compare the experimental results with the analytic model of the plasma parameters, which is useful to discuss the results from a physical point of view.

  18. Atomic oxygen patterning from a biomedical needle-plasma source

    SciTech Connect

    Kelly, Seán; Turner, Miles M.

    2013-09-28

    A “plasma needle” is a cold plasma source operating at atmospheric pressure. Such sources interact strongly with living cells, but experimental studies on bacterial samples show that this interaction has a surprising pattern resulting in circular or annular killing structures. This paper presents numerical simulations showing that this pattern occurs because biologically active reactive oxygen and nitrogen species are produced dominantly where effluent from the plasma needle interacts with ambient air. A novel solution strategy is utilised coupling plasma produced neutral (uncharged) reactive species to the gas dynamics solving for steady state profiles at the treated biological surface. Numerical results are compared with experimental reports corroborating evidence for atomic oxygen as a key bactericidal species. Surface losses are considered for interaction of plasma produced reactants with reactive solid and liquid interfaces. Atomic oxygen surface reactions on a reactive solid surface with adsorption probabilities above 0.1 are shown to be limited by the flux of atomic oxygen from the plasma. Interaction of the source with an aqueous surface showed hydrogen peroxide as the dominant species at this interface.

  19. Dual radio frequency plasma source: Understanding via electrical asymmetry effect

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C. S.

    2013-04-21

    On the basis of the global model, the influences of driving voltage and frequency on electron heating in geometrically symmetrical dual capacitively coupled radio frequency plasma have been investigated. Consistent with the experimental and simulation results, non-monotonic behavior of dc self bias and plasma heating with increasing high frequency is observed. In addition to the local maxima of plasma parameters for the integer values of the ratio between the frequencies ({xi}), ourstudies also predict local maxima for odd integer values of 2{xi} as a consequence of the electrical asymmetry effect produced by dual frequency voltage sources.

  20. e+e- Plasma Photon Source

    SciTech Connect

    Hartouni, Ed P.

    2013-12-06

    This note addresses the idea of a photon source that is based on an e+e- plasma created by co-propagating beams of e+ and e-. The plasma has a well-defined temperature, and the thermal distribution of the charged particles is used to average over the relative velocity cross section multiplied by the relative velocity. Two relevant cross sections are the direct “free-free” annihilation of e+e- pairs in the plasma, and the radiative recombination of e+e- pairs into positronium (Ps) which subsequently undergoes annihilation.

  1. Model for a transformer-coupled toroidal plasma source

    SciTech Connect

    Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang; Collins, Ken

    2012-01-15

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.

  2. Development of plasma sources for Dipole Research EXperiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Peng, E.; Wang, Xiaogang; Xiao, Chijie; Ren, Yang; Ji, Hantao; Mao, Aohua; Li, Liyi

    2017-05-01

    Dipole Research EXperiment (DREX) is a new terrella device as part of the Space Plasma Environment Research Facility (SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance (ECR) system for the ‘whistler/chorus’ wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén’ wave study. The parameters of ‘whistler/chorus’ waves and ‘Alfvén’ waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt’ plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.

  3. Study of Operational Regimes of the VASIMR Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Molvig, K.

    2000-10-01

    Effective plasma production by a plasma source is crucial for the overall > 50% efficiency of the VASIMR plasma rocket. Primary propellant H (D) - enters the helicon source as cold molecular gas and leaves it as a hot gas-plasma mix. We present an analysis that shows the following plasma composition: e, H_2, H, H^+, H_2^+, H_3^+. Mass and energy balance is described by the 14 non-linear plasma chemistry equations for the species concentrations and temperatures. Their numerical solution shows agreement with the measured electron temperature ~ 6 eV, and density ~ 10^12 cm-3 for both H and D discharges. Simulation shows also that the Ly-α radiation may account for 25%, while Frank-Condon neutrals for 15% of the total input power ~ 1 kW. Gas ionization fraction is ~ 3 - 5% with sizable amount of H_2^+ and H_3^+ ions. However, mass-flow ratio neutral gas/plasma is close to 1 due to the huge difference in the exhaust velocities. A separate numerical analysis of the pure gas flow in the gas inlet - quartz tube - magnet bore channel shows very good agreement with the gas pressure measurements. Modeling indicates that gas flow in the mixed viscous - free molecular regime (Kn ~ 0.5 - 2) is very subsonic with V ~ 0.02 - 0.1 C_S. We discuss effects of gas pre-heating and residual vacuum tank pressure, and importance of baffles.

  4. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Perring, Loïc; Basic-Dvorzak, Marija

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99+/-5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given.

  5. Multielemental analyses of environmental and geological samples by inductively coupled plasma mass spectrometry

    SciTech Connect

    Wu, Xiaowen.

    1993-01-01

    The technique of inductively coupled plasma-mass spectrometry (ICP-MS) has been applied to determine trace elements in environmental (drinking water and tree rings) and geological (soil) samples. Most of this monograph is focused on analysis in these samples of rare-earth elements and lead, which have lower detection limits in ICP-MS than in other analytical techniques. A brief history of ICP-MS and discussions of fundamental principles of the instrument, interferences of the method, and common analytical protocols are provided. The application of the technique to four projects is described: (1) Quantitative analysis of rare-earth elements in individual tree rings of fire-scarred trees was performed. The result showed that the concentrations of La, Pr, and Nd are highest in the ring corresponding to the fire year. (2) Lead pollution in drinking water from New York City was investigated by measuring lead concentration and the isotope ratio of [sup 206]Pb/[sup 207]Pb in drinking water samples and in the suspected polluting sources. It was found that lead in drinking water mainly comes from lead pipe and plumbing materials containing high concentrations of lead. In addition, optimization of the operating parameters and enhancement of lead signal were also discussed in the chapter. (3) Lead concentration in soil and in annual-growth rings of trees from streets in Brookyln, New York were analyzed. The change of lead concentration in the rings from 1952 to 1991 correlates with the consumption of lead in gasoline in the United States during the same period. The study showed that tree rings can be used as an indirect historical indicator of environmental changes during the tree's lifetime. (4) Rare-earth-element ratios in archaeological tree samples were measured to determine the original locations of the samples. In Appendix I, application of proton induced X-ray emission (PIXE) to analysis of wood samples is briefly discussed.

  6. Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Ahn, Shihyun; Ren, F.; Khanna, Rohit; Bevlin, Kristen; Geerpuram, Dwarakanath; Pearton, S. J.; Kuramata, A.

    2017-04-01

    Bulk, single-crystal Ga2O3 was etched in BCl3/Ar inductively coupled plasmas as a function of ion impact energy. For pure Ar, the etch rate (R) was found to increase with ion energy (E) as predicted from a model of ion enhanced sputtering by a collision-cascade process, R ∝(E0.5 - ETH0.5), where the threshold energy for Ga2O3, ETH, was experimentally determined to be ˜75 eV. When BCl3 was added, the complexity of the ion energy distribution precluded, obtaining an equivalent threshold. Electrically active damage introduced during etching was quantified using Schottky barrier height and diode ideality factor measurements obtained by evaporating Ni/Au rectifying contacts through stencil masks onto the etched surfaces. For low etch rate conditions (˜120 Å min-1) at low powers (150 W of the 2 MHz ICP source power and 15 W rf of 13.56 MHz chuck power), there was only a small decrease in reverse breakdown voltage (˜6%), while the barrier height decreased from 1.2 eV to 1.01 eV and the ideality factor increased from 1.00 to 1.06. Under higher etch rate (˜700 Å min-1) and power (400 W ICP and 200 W rf) conditions, the damage was more significant, with the reverse breakdown voltage decreasing by ˜35%, the barrier height was reduced to 0.86 eV, and the ideality factor increased to 1.2. This shows that there is a trade-off between the etch rate and near-surface damage.

  7. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine metal-containing compounds only as the total metal (e.g., total arsenic), inductively coupled plasma-mass spectrometry.

  8. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    SciTech Connect

    Duysen, Ellen G.; Lockridge, Oksana

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher than the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.

  9. Synthesis of Lithium Oxide Composite Nanoparticles with Spinel Structure by Induction Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Kageyama, Takuya; Sone, Hirotaka; Tanaka, Manabu; Okamoto, Daisuke; Watanabe, Takayuki

    2015-09-01

    Lithium oxide composite nanoparticles were successfully synthesized by induction thermal plasma. Powder mixtures of Li2CO3 and MnO2were injected into the induction thermal plasma at 20 kW-4MHz operated in different O2gas flow rates. The injected precursors were evaporated immediately in the high temperature region of the plasma and nanoparticles were produced through the quenching process. The particles were characterized by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The obtained results indicated that the nanoparticles of LiMn2O4 and LiMnO2 were selectively synthesized by controlling partial pressure of O2 in thermal plasma. Then formation mechanism of Li-based oxide nanoparticles was investigated on the basis of homogenous nucleation rate and thermodynamic consideration. In higher partial pressure of O2, MnO nucleates and Li oxide condense on the nuclei with relatively high condensation rate, resulting in single-phase LiMn2O4 formation. On the other hand, in lower partial pressure of O2, LiMnO2 was obtained due to the lower condensation rate of Li oxide.

  10. Plasma analysis of inductively coupled impulse sputtering of Cu, Ti and Ni

    NASA Astrophysics Data System (ADS)

    Loch, D. A. L.; Aranda Gonzalvo, Y.; Ehiasarian, A. P.

    2017-06-01

    Inductively coupled impulse sputtering (ICIS) is a new development in the field of highly ionised pulsed PVD processes. For ICIS the plasma is generated by an internal inductive coil, replacing the need for a magnetron. To understand the plasma properties, measurements of the current and voltage waveforms at the cathode were conducted. The ion energy distribution functions (IEDFs) were measured by energy resolved MS and plasma chemistry was analysed by OES and then compared to a model. The target was operated in pulsed DC mode and the coil was energised by pulsed RF power, with a duty cycle of 7.5%. At a constant pressure (14 Pa) the set peak RF power was varied from 1000-4000 W. The DC voltage to the target was kept constant at 1900 V. OES measurements have shown a monotonic increase in intensity with increasing power. Excitation and ionisation processes were single step for ICIS of Ti and Ni and multi-step for Cu. The latter exhibited an unexpectedly steep rise in ionisation efficiency with power. The IEDFs measured by MS show the material- and time-dependant plasma potential in the range of 10-30 eV, ideal for increased surface mobility without inducing lattice defects. A lower intensity peak, of high energetic ions, is visible at 170 eV during the pulse.

  11. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  12. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  13. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma...

  14. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  15. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  16. 21 CFR 640.64 - Collection of blood for Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Collection of blood for Source Plasma. 640.64... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.64 Collection of blood for Source Plasma. (a) Supervision. All blood for the collection of Source Plasma shall...

  17. Development of a plasma coating system for induction melting zirconium in a graphite crucible

    SciTech Connect

    Bird, E.L.; Holcombe, C.E. Jr.

    1993-05-26

    A plasma coating system has been developed for induction melting zirconium at 1900 C using a graphite crucible. This laminated coating system consists of plasma spraying the following materials onto the graphite: (1) molybdenum or tungsten, (2) a 50% blend by weight of the metal powder and calcia-stabilized zirconium oxide, and (3) calcia-stabilized zirconia followed by painting a final coating of nonstabilized zirconia on top of the plasma-sprayed coating system. Zirconium was melted in argon using both laminating systems without any degradation of the graphite crucible and with only a minimal amount of carbon absorption. This novel approach that is being proposed as an alternative method of melting zirconium alloys offers substantial cost savings over the standard practice of electric arc melting using a consumable electrode.

  18. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  19. High-rate synthesis of Si nanowires using modulated induction thermal plasmas

    NASA Astrophysics Data System (ADS)

    Ishisaka, Yosuke; Kodama, Naoto; Kita, Kentaro; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Sueyasu, Shiori; Watanabe, Shu; Nakamura, Keitaro

    2017-09-01

    Using 20 kW Ar–H2 pulse-modulated induction thermal plasma (PMITP) with time-controlled feeding of feedstock (TCFF), numerous Si nanowires were synthesized rapidly at 1,000 mg h‑1 without the intentional addition of catalysts. The PMITP + TCFF method is our original method for nanomaterial synthesis. The PMITP periodically provides a unique field including higher-temperature plasma during “on-time” and a lower-temperature plasma during “off-time”. For rapid and efficient evaporation, metal-grade Si powder feedstock was intermittently injected synchronously into the generated Ar–H2 PMITP. The synthesized products were analyzed using various analytical techniques. The synthesized products were Si nanowires 10–30 nm in diameter with a SiO x surface layer.

  20. Synthesis of Ozone at Atmospheric Pressure by a Quenched Induction-Coupled Plasma Torch

    SciTech Connect

    A. Blutke; B.C. Stratton; D.R. Mikkelsen; J. Vavruska; R. Knight

    1998-01-01

    The technical feasibility of using an induction-coupled plasma (ICP) torch to synthesize ozone at atmospheric pressure is explored. Ozone concentrations up to ~250 ppm were produced using a thermal plasma reactor system based on an ICP torch operating at 2.5 MHz and ~11 kVA with an argon/oxygen mixture as the plasma-forming gas. A gaseous oxygen quench formed ozone by rapid mixing of molecular oxygen with atomic oxygen produced by the torch. The ozone concentration in the reaction chamber was measured by Fourier Transform infrared (FTIR) spectroscopy over a wide range of experimental configurations. The geometry of the quench gas flow, the quench flow velocity, and the quench flow rate played important roles in determining the ozone concentration. The ozone concentration was sensitive to the torch RF power, but was insensitive to the torch gas flow rates. These observations are interpreted within the framework of a simple model of ozone synthesis.