Sample records for inductive poloidal current

  1. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  2. Spheromak reactor with poloidal flux-amplifying transformer

    DOEpatents

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  3. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  4. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  5. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  6. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  7. The effect of the inductive electric field on ion poloidal rotation in all collisionality regimes for the primary ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Chengkang; Wang Shaojie; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031

    2007-11-15

    The expression for the poloidal rotation velocity of the primary ions that is caused by the parallel inductive electric field in tokamaks and valid in all collisionality regimes is derived via the Hirshman-Sigmar moment approach. Also the expression of the collisional impurity ions poloidal rotation velocity that is caused by the parallel inductive electric field in tokamaks is derived. The poloidal rotation velocities of the primary ions and the impurity ions are sensitive to the primary ion collisionality parameter and the impurity strength parameter. The poloidal rotation velocities of the primary ions and the impurity ions decrease with the primarymore » ion collisionality parameter and decrease with the impurity strength parameter.« less

  8. Increased confinement and beta by inductive poloidal current drive in the RFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, J.S.; Lanier, N.E.; Prager, S.C.

    1996-10-01

    Progress in understanding magnetic-fluctuation-induced transport in the reversed field pinch (RFP) has led to the idea of current profile control to reduce fluctuations and transport. With the addition of inductive poloidal current drive in the Madison Symmetric Torus (MST), the magnetic fluctuation amplitude is halved, leading to a four- to five-fold increase in the energy confinement time to {tau}{sub E}{approximately}5 ms as a result of both decreased plasma resistance and increased stored thermal energy. The record low fluctuation amplitude coincides with a record high electron temperature of {approximately}600 eV (for MST), and beta {beta} = 2{mu}{sub 0} / B(a){sup 2}more » increases from 6% to 8% compared with conventional MST RFP plasmas. Other improvements include increased particle confinement and impurity reduction. 19 refs., 4 figs., 1 tab.« less

  9. Stability analysis of the high poloidal bet scenario on DIII-Dtowards operation athigher plasma current

    NASA Astrophysics Data System (ADS)

    Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.

    2017-10-01

    The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.

  10. Estimating turbulent electrovortex flow parameters hear the dynamo cycle bifurcation point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimin, V.D.; Kolpakov, N.Yu.; Khripchenko, S.Yu.

    1988-07-01

    Models for estimating turbulent electrovortex flow parameters, derived in earlier studies, were delineated and extended in this paper to express those parameters near the dynamo cycle bifurcation point in a spherical cavity. Toroidal and poloidal fields rising from the induction currents within the liquid metal and their electrovortex interactions were calculated. Toroidal field strengthening by the poloidal electrovortex flow, the first part of the dynamo loop, was determined by the viscous dissipation in the liquid metal. The second part of the loop, in which the toroidal field localized in the liquid metal is converted to a poloidal field and emergesmore » from the sphere, was also established. The dissipative effects near the critical magnetic Reynolds number were estimated.« less

  11. Steady-state inductive spheromak operation

    DOEpatents

    Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki

    1987-01-01

    The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

  12. Non-inductive current driven by Alfvén waves in solar coronal loops

    NASA Astrophysics Data System (ADS)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  13. Extrapolation of the DIII-D high poloidal beta scenario to ITER steady-state using transport modeling

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2016-10-01

    Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.

  14. Inductive flux usage and its optimization in tokamak operation

    DOE PAGES

    Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; ...

    2014-07-30

    The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate ofmore » rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.« less

  15. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  16. Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma

    DOEpatents

    Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.

    1988-01-01

    A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.

  17. Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.; Kagei, Y.

    2012-10-01

    The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.

  18. Overview of HIT-SI Results and Plans

    NASA Astrophysics Data System (ADS)

    Ennis, D. A.; Akcay, C.; Hansen, C. J.; Hicks, N. K.; Hossack, A. C.; Jarboe, T. R.; Marklin, G. J.; Nelson, B. A.; Victor, B. S.

    2011-10-01

    Experiments in the Helicity Injected Torus-Steady Inductive (HIT-SI) device have achieved record spheromak current amplification during operations in deuterium plasmas. HIT-SI investigates steady inductive helicity injection with the aim of forming and sustaining a high-beta equilibrium in a spheromak geometry using two semi-toroidal injectors. Recent operations in deuterium plasmas have produced toroidal plasma currents greater than 50 kA, with current amplifications (Itor / Iinj) > 3 , and poloidal flux amplifications (ψpol /ψinj) > 10 . High performance deuterium discharges are achieved by initially conditioning the plasma-facing alumina surface of the HIT-SI confinement volume with helium plasmas. During subsequent deuterium operation the alumina surface strongly pumps deuterium, thereby limiting the density in the confinement volume. Additional measurements during high current deuterium discharges demonstrate reduced current and electron density fluctuations, impurity O III ion temperatures up to 50 eV and a toroidal current persistence for 0.6 ms after the injectors are shut off. Progress and plans for the HIT-SI3 configuration, with three injectors mounted on the same side of the confinement volume, will also be presented. Work supported by USDoE and ARRA.

  19. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  20. The Physics of Tokamak Start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Mueller

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-upmore » techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less

  1. The physics of tokamak start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, D.

    Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in themore » solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less

  2. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  3. Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platania, P., E-mail: platania@ifp.cnr.it; Figini, L.; Farina, D.

    The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts ofmore » the launcher system.« less

  5. High beta plasma operation in a toroidal plasma producing device

    DOEpatents

    Clarke, John F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

  6. Equilibrium evolution in oscillating-field current-drive experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-01

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  7. MST's Programmable Power Supplies: Bt Update, Bp Prototype

    NASA Astrophysics Data System (ADS)

    Holly, D. J.; Chapman, B. E.; McCollam, K. J.; Morin, J. C.; Thomas, M. A.

    2013-10-01

    MST's toroidal field programmable power supply (Bt PPS) has now been in operation for several years and has provided important new capabilities. One of the primary goals for the Bt PPS is the partial optimization of inductive current profile control, involving control of the poloidal electric field. The Bt PPS has achieved fluctuation reduction over MST's entire range of Ip. At the largest Ip, the Bt PPS achieves fluctuation reduction with a smaller poloidal electric field than the previous passive system, implying that substantially longer periods of current profile control may be possible. The Bt PPS has also been used to produce Ohmic tokamak plasmas in MST. With an applied toroidal field of 0.135 T, and q(a) > 2, the estimated energy confinement time is roughly consistent with neo-Alcator scaling. Driving q(a) < 2 with larger Ip, the confinement time degrades, but the discharge duration does not terminate prematurely. To fully optimize current profile control and to test MST operational limits, a PPS is also needed for the Bp circuit. Currently in prototype stage, the Bp PPS will feature a number of innovations to increase its flexibility and performance. Isolated charging, control, and monitor systems will eliminate charging relays, reduce coupling between modules, and minimize capacitor heating. Seven-level pulse width modulation will reduce output ripple and switching losses. Solid state shorting bars will eliminate shorting relays and minimize wiring. A balanced switching algorithm will minimize capacitive noise generation. Work supported by U. S. D. o. E.

  8. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, R.D.

    1998-09-08

    A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

  9. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  10. Non-solenoidal Plasma Startup in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Sontag, Aaron

    2008-11-01

    Non-solenoidal (NS) startup will simplify the design of future tokamaks by eliminating need for a central solenoid and is required for an ST based CTF. In Pegasus, washer-stack current sources (plasma guns) are used to initiate NS discharges via point-source DC helicity injection. Current injected parallel to the helical vacuum field can relax into a tokamak-like configuration with toroidally-averaged closed flux and tokamak-like confinement. This requires no modification of the vacuum vessel and is scalable to fusion grade systems with proper geometry. Guns in the divertor region create discharges with Ip up to 50 kA, 3 times the vacuum windup. Nonlinear 3D simulation with NIMROD shows excitation of a line-tied kink, producing poloidal flux amplification. Evidence of flux amplification includes: reversal of edge poloidal magnetic flux; Ip increase over vacuum geometric windup; plasma position subject to radial force balance; and persistence of Ip after gun shut-off. Equilibria show high edge current (li = 0.2) and elevated q (qmin> 6), allowing access to high IN (IN> 12). Guns at the outboard midplane produce Ip up to 7 times the vacuum windup with large n=1 activity when edge q passes through rational surfaces. Line averaged density up to 2x10^19 m-3 after relaxation shows an increase in particle confinement over non-relaxed cases. Maximum Ip is determined by helicity and radial force balance, tokamak stability, and Taylor relaxation. Coupling midplane gun discharges to other CD is straightforward due to Ip decay times >3 ms. Poloidal field induction has been used to create NS discharges up to 80 kA and gun plasmas with Ip of 60 kA have been ramped to over 100 kA by including OH drive. Present research is aimed at understanding the physics of this technique in order to form NS targets in excess of 200 kA and design NS startup systems for larger devices.

  11. Demonstration of plasma start-up by Coaxial Helicity Injection

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2003-10-01

    Experimental results on the first successful transfer of a Coaxial-Helicity-Injection- (CHI)-produced discharge to inductive operation are reported. CHI assisted plasma start-up is more robust than inductive-only operation and reduces volt-seconds consumption. After hand-off for inductive operation, the initial 100 kA of CHI-produced current drops to 44 kA, then ramps up to 180 kA, using only 30 mVs, more than 30induction alone. Coupling a CHI-produced discharge to induction from a pre-charged central solenoid has produced record plasma currents of 265kA in HIT-II. CHI discharges can also be generated while the central transformer is in the process of being pre-charged, during which period it induces a negative loop voltage on the CHI discharge. Such capability is believed to be important for a short pulse burning plasma experiment that could contain a solenoid. In the latest results, which improve upon the earlier work (Raman et. al., Phys. Rev. Lett., 90, (2003) 075005-1), no transient coil currents are necessary for the CHI produced closed flux generation. This is particularly important for a reactor in which the poloidal field coils would be located outside blanket structures. Three important results are reported. First, CHI is shown to produce closed flux plasma. Second, it is shown that electrode-based CHI plasmas can be sufficiently clean for fusion research purposes. Finally, it is shown that CHI discharges, in addition to generating useful startup current, improve the performance of inductive discharges. This work was motivated by earlier experiments on HIT-II and NSTX that showed coupling of the inductive drive to the external CHI power supply circuit, instead of to the main plasma discharge. These important results were obtained on the HIT-II spherical torus experiment (R/a of 0.3/0.2m, elongation of 1.5).

  12. High-beta, steady-state hybrid scenario on DIII-D

    DOE PAGES

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less

  13. Advancing Non-Solenoidal Startup on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    The Pegasus experiment utilizes compact, edge-localized current sources (Ainj 2 - 4 cm2, Iinj 10 kA, Vinj 1 kV) for non-solenoidal local helicity injection (LHI) startup. Recent campaigns are comparing two injector geometries that vary the differing relative contributions of DC helicity input and non-solenoidal inductive voltages. A predictive 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces Ip limits from Taylor relaxation was tested with inward growth of the plasma current channel using injectors on the outboard midplane. Strong inductive drive arises from plasma shape evolution and poloidal field (PF) induction. A major unknown in the model is the resistive dissipation, and hence the electron confinement. Te (R) profile measurements in LHI show centrally-peaked Te > 100 eV while the plasma is coupled to the injectors, suggesting LHI confinement is not strongly stochastic. A second campaign utilizes new injectors in the lower divertor region. This geometry trades subtler relaxation field programming and reduced PF induction for higher HI rates. Present efforts are developing relaxation methods at high BT, with relaxation at BT , inj > 0.15 T achieved to date via higher Iinj and PF manipulation. Conceptual design studies of coaxial helicity injection (CHI) and ECH heating systems for Pegasus have been initiated to explore direct comparison of LHI to CHI with and without ECH assist. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  14. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  15. Design of snowflake-diverted equilibria of CFETR

    NASA Astrophysics Data System (ADS)

    Hang, LI; Xiang, GAO; Guoqiang, LI; Zhengping, LUO; Damao, YAO; Yong, GUO

    2018-03-01

    The Chinese Fusion Engineering Test Reactor (CFETR) represents the next generation of full superconducting fusion reactors in China. Recently, CFETR was redesigned with a larger size and will be operated in two phases. To reduce the heat flux on the target plate, a snowflake (SF) divertor configuration is proposed. In this paper we show that by adding two dedicated poloidal field (PF) coils, the SF configuration can be achieved in both phases. The equilibria were calculated by TEQ code for a range of self-inductances l i3. The coil currents were calculated at some fiducial points in the flattop phase. The results indicate that the PF coil system has the ability to maintain a long flattop phase in 7.5 and 10 MA inductive scenarios for the single null divertor (SND) and SF divertor configurations. The properties of the SF configuration were also analyzed. The connection length and flux expansion of the SF divertor were both increased significantly over the SND.

  16. Advances in the steady-state hybrid regime in DIII-D – a fully non-inductive, ELM-suppressed scenario for ITER

    DOE PAGES

    Petty, Craig C.; Nazikian, Raffi; Park, Jin Myung; ...

    2017-07-19

    Here, the hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n=3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (β ≤ 2.8%) and high confinement (98y2 ≤ 1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n=3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybridmore » plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q = 5 ITER steady-state mission.« less

  17. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    DOE PAGES

    Chrystal, Chrystal; Burrell, Keith H.; Grierson, Brian A.; ...

    2014-08-08

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution ismore » improved. Furthermore, significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.« less

  18. The Helicity Injected Torus Program

    NASA Astrophysics Data System (ADS)

    Jarboe, T. R.; Nelson, B. A.; Jewell, P. D.; Liptac, J. E.; McCollam, K. J.; Raman, R.; Redd, A. J.; Rogers, J. A.; Sieck, P. E.; Shumlak, U.; Smith, R. J.; Nagata, M.; Uyama, T.

    1999-11-01

    The Helicity Injected Torus--II (HIT--II) spherical torus is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. HIT--II has a major radius R = 0.3, minor radius a = 0.2, aspect ratio A = R/a = 1.5, with an on axis magnetic field of up to Bo = 0.67 T. HIT--II provides equilibrium control, CHI flux boundary conditions, and transformer action using 28 poloidal field coils, using active flux feedback control. HIT--II has driven up to 200 kA of plasma current, using either CHI or transformer drive. An overview and recent results of the HIT--II program will be presented. The development of a locked-electron current drive model for HIT and HIT--II has led to the design of a constant inductive helicity injection method for spherical torii. This method is incorporated in the design of the Helicity Injected Torus -- Steady Inductive (HIT-- SI)(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 experiment. HIT--SI can form a high-beta spheromak, a low aspect ratio RFP, or a spherical tokamak in a steady-state manner without using electrodes. The HIT--SI design and methodology will be presented.

  19. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  20. Magnetism and the interior of the moon

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    The application of lunar magnetic field measurements to the study of properties of the lunar crust and deep interior is reviewed. Following a brief description of lunar magnetometers and the lunar magnetic environment, measurements of lunar remanent fields and their interaction with the solar plasma are discussed. The magnetization induction mode is considered with reference to lunar magnetic permeability and iron abundance calculations. Finally, electrical conductivity and temperature calculations from analyses of poloidal induction, for data taken in both the solar wind and in the geomagnetic tail, are reviewed.

  1. Predictive Power-balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Local helicity injection (LHI) with outer poloidal-field (PF) induction for solenoid-free startup is being studied on PEGASUS, reaching Ip <= 0 . 175 MA with 6 kA of injected current. A lumped-parameter circuit model for predicting the performance of LHI initiated plasmas is under development. The model employs energy and helicity balance, and includes applied PF ramping and the inductive effects of shape evolution. Low- A formulations for both the plasma external inductance and a uniform equilibrium-field are used to estimate inductive voltages. PEGASUS LHI plasmas are created near the outboard injectors with aspect ratio (A) ~ 5-6.5 and grow inward to fill the confinement region at A <= 1 . 3 . Initial results match experimental Ip (t) trajectories within 15 kA with a prescribed geometry evolution. Helicity injection is the largest driving term in the initial phase, but in the later phase is reduced to 20-45% of the total drive as PF induction and decreasing plasma inductance become dominant. In contrast, attaining ~1 MA non-solenoidal startup via LHI on NSTX-U will require operation in the regime where helicity injection drive exceeds inductive and geometric changes at full size. A large-area multi-injector array will increase available helicity injection by 3-4 times and allow exploration of this helicity-dominated regime at Ip ~ 0 . 3 MA in PEGASUS. Comparison of model predictions with time-evolving magnetic equilibria is in progress for model validation. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Solenoid-free plasma start-up in spherical tokamaks

    NASA Astrophysics Data System (ADS)

    Raman, R.; Shevchenko, V. F.

    2014-10-01

    The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.

  3. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    PubMed

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  4. Optimizing LHCD launcher using poloidal steering on Alcator C-Mod and ADX

    NASA Astrophysics Data System (ADS)

    Bonoli, P.; Labombard, B.; Parker, R.; Shiraiwa, S.; Wallace, G.; Wukitch, S.; Leccacorvi, R.; Vieira, R.; Alcator C-Mod Team

    2014-10-01

    The poloidal location of the lower hybrid current drive (LHCD) launcher has a strong influence on the trajectory and absorption of the LH wave (poloidal steering). The physics design of an additional off-midplane launcher (LH3) for Alcator C-Mod exploits this characteristic. By shifting the launcher from the mid-plane by 25cm, it is predicted to realize strong (>80%) single pass absorption localized at about r/a = 0.7 in conjunction with the mid-plane (LH2) antenna. While LH3 is a proposal to overcome the LH density limit and to provide a unique opportunity to validate LHCD simulation codes under reactor-like conditions, poloidal steering can be used more extensively by launching waves from the high field side (HFS). On ADX, the LHCD launcher is proposed to be located on the HFS. Better accessibility due to higher magnetic field allows for using lower N//, which results in higher current drive efficiency. Also a more quiescent edge plasma may reduce the effect of N// shifts due to scattering from density fluctuations. LHCD simulations for target plasmas expected on ADX, optimization of poloidal steering, and RF simulation of high field side launcher will be presented. This work supported by USDoE awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  5. Multi-pulse power injection and spheromak sustainment in SSPX

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Hill, D. N.; Hooper, E. B.; Bulmer, R. H.; McLean, H. S.; Wood, R. D.; Woodruff, S.; Sspx Team

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. Spheromak formation (gun injection phase) and sustainment experiments are now routine in SSPX using a multi-bank power system. Gun voltage, impedance, and power coupling show a clear current threshold dependence on gun flux (I_th~=λ_0φ_gun/μ_0), increasing with current above the threshold, and are compared with CTX results. The characteristic gun inductance, L_gun~=0.6 μH, derived from the gun voltage dependence on di/dt, is larger than expected from Corsica modeling of the spheromak equilibrium. It’s value is consistent with the n=1 ‘doughook’ mode structure reported in SPHEX and believed important for helicity injection and toroidal current drive. Results of helicity and power balance calculations of spheromak poloidal field buildup are compared with experiment and used to project sustainment with a future longer pulse power supply. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  6. Advances in the steady-state hybrid regime in DIII-D—a fully non-inductive, ELM-suppressed scenario for ITER

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Nazikian, R.; Park, J. M.; Turco, F.; Chen, Xi; Cui, L.; Evans, T. E.; Ferraro, N. M.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Holcomb, C. T.; Hyatt, A. W.; Kolemen, E.; La Haye, R. J.; Lasnier, C.; Logan, N.; Luce, T. C.; McKee, G. R.; Orlov, D.; Osborne, T. H.; Pace, D. C.; Paz-Soldan, C.; Petrie, T. W.; Snyder, P. B.; Solomon, W. M.; Taylor, N. Z.; Thome, K. E.; Van Zeeland, M. A.; Zhu, Y.

    2017-11-01

    The hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n  =  3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (≤ft< β \\right>   ⩽  2.8%) and high confinement (H98y2  ⩽  1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n  =  3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybrid plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q fus  =  5 ITER steady-state mission.

  7. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  8. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  9. Numerical investigation of disruption characteristics for the snowflake divertor configuration in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Pan, Y. D.; Yan, S. L.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2016-05-01

    Cold and hot vertical displacement events (VDEs) are frequently related to the disruption of vertically-elongated tokamaks. The weak poloidal magnetic field around the null-points of a snowflake divertor configuration may influence the vertical displacement process. In this paper, the major disruption with a cold VDE and the vertical disruption in the HL-2M tokamak are investigated by the DINA code. In order to better illustrate the effect from the weak poloidal field, a double-null snowflake configuration is compared with the standard divertor (SD) configuration under the same plasma parameters. Computational results show that the weak poloidal magnetic field can be partly beneficial for mitigating the vertical instability of the plasma under small perturbations. For major disruption, the peak poloidal halo current fraction is almost the same between the snowflake and the SD configurations. However, this fraction becomes much larger for the snowflake in the event of a hot VDE. Furthermore, during the disruption for a snowflake configuration, the distribution of electromagnetic force on a vacuum vessel gets more non-uniform during the current quench.

  10. Disruption forces on the tokamak wall with and without poloidal currents

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2017-05-01

    The contributions into the disruption radial force on the tokamak vacuum vessel wall are calculated and analyzed. One is due to the induced toroidal current in the wall, and another is due to the poloidal current. The latter is not accounted for in the models that represent the wall as a set of isolated toroidal filaments. It is shown that such modeling must lead to significant errors in the evaluation of the force during either thermal or current quench. The analytical derivations are performed here for an arbitrary tokamak configuration with final estimates for a circular large-aspect-ratio plasma and a coaxial wall reacting on perturbations as a perfect conductor. The results are compared with those recently obtained numerically by the codes DINA, MAXFEA and CarMa0NL. The discrepancies between the DINA simulations (Khayrutdinov et al 2016 Plasma Phys. Control. Fusion 58 115012) and earlier analytical predictions are explained. The recent conclusion (Villone et al 2015 Fusion Eng. Des. 93 57) on the role of the disruption-induced poloidal current in the wall is confirmed and extended to a wider area.

  11. Comparison of measured impurity poloidal rotation in DIII-D with neoclassical predictions under low toroidal field conditions

    DOE PAGES

    Burrell, Keith H.; Grierson, Brian A.; Solomon, Wayne M.; ...

    2014-06-26

    Here, predictive understanding of plasma transport is a long-term goal of fusion research. This requires testing models of plasma rotation including poloidal rotation. The present experiment was motivated by recent poloidal rotation measurements on spherical tokamaks (NSTX and MAST) which showed that the poloidal rotation of C +6 is much closer to the neoclassical prediction than reported results in larger aspect ratio machines such as TFTR, DIII-D, JT-60U and JET working at significantly higher toroidal field and ion temperature. We investigated whether the difference in aspect ratio (1.44 on NSTX versus 2.7 on DIII-D) could explain this. We measured Cmore » +6 poloidal rotation in DIII-D under conditions which matched, as best possible, those in the NSTX experiment; we matched plasma current (0.65 MA), on-axis toroidal field (0.55T), minor radius (0.6 m), and outer flux surface shape as well as the density and temperature profiles. DIII-D results from this work also show reasonable agreement with neoclassical theory. Accordingly, the different aspect ratio does not explain the previously mentioned difference in poloidal rotation results.« less

  12. Electron Temperature Evolution During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Rodriguez Sanchez, C.

    2016-10-01

    Understanding the electron temperature (Te) evolution during local helicity injection (LHI) is critical for scaling up this non-solenoidal startup technique to MA-class devices. The first comprehensive Te measurements during LHI reveal centrally-peaked profiles with Te > 100 eV for plasma current Ip > 120 kA, toroidal field 0.15 T, and electron density ne 1019 m-3. Te rises and is sustained from just after magnetic relaxation through the plasma decoupling from edge-localized injectors. Results are presented for two injector edge locations: outboard midplane and inboard divertor. Outboard midplane injection couples LHI with inductive drive from poloidal field ramps and radial compression during inward plasma growth. Comparisons of Te at different LHI-to-inductive drive ratios show some profile flattening for higher LHI drive fraction. The latter, constant-shape discharges were necessarily lower performance, with Ip 50 kA and reduced Te , max. Inboard divertor injection achieves higher Ip using minimal inductive drive and thus isolates effects of LHI drive on Te. Initial results in this configuration show Te rising rapidly at the injector location as the discharge grows, settling to a roughly flat profile 100 eV. Thus far, both scenarios provide relatively stable discharges with moderate ne and high-Te, suitable for coupling to auxiliary current drive. Detailed studies of confinement dynamics and discharge optimization are planned for the near future. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  14. Simulation of profile evolution from ramp-up to ramp-down and optimization of tokamak plasma termination with the RAPTOR code

    NASA Astrophysics Data System (ADS)

    Teplukhina, A. A.; Sauter, O.; Felici, F.; Merle, A.; Kim, D.; the TCV Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-12-01

    The present work demonstrates the capabilities of the transport code RAPTOR as a fast and reliable simulator of plasma profiles for the entire plasma discharge, i.e. from ramp-up to ramp-down. This code focuses, at this stage, on the simulation of electron temperature and poloidal flux profiles using prescribed equilibrium and some kinetic profiles. In this work we extend the RAPTOR transport model to include a time-varying plasma equilibrium geometry and verify the changes via comparison with ATSRA code simulations. In addition a new ad hoc transport model based on constant gradients and suitable for simulations of L-H and H-L mode transitions has been incorporated into the RAPTOR code and validated with rapid simulations of the time evolution of the safety factor and the electron temperature over the entire AUG and TCV discharges. An optimization procedure for the plasma termination phase has also been developed during this work. We define the goal of the optimization as ramping down the plasma current as fast as possible while avoiding any disruptions caused by reaching physical or technical limits. Our numerical study of this problem shows that a fast decrease of plasma elongation during current ramp-down can help in reducing plasma internal inductance. An early transition from H- to L-mode allows us to reduce the drop in poloidal beta, which is also important for plasma MHD stability and control. This work shows how these complex nonlinear interactions can be optimized automatically using relevant cost functions and constraints. Preliminary experimental results for TCV are demonstrated.

  15. Plasma current start-up experiments without the central solenoid in the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Ejiri, A.; Shiraiwa, S.; Adachi, Y.; Ishii, N.; Kasahara, H.; Nuga, H.; Ono, Y.; Oosako, T.; Sasaki, M.; Shimada, Y.; Sumitomo, N.; Taguchi, I.; Tojo, H.; Tsujimura, J.; Ushigome, M.; Yamada, T.; Hanada, K.; Hasegawa, M.; Idei, H.; Nakamura, K.; Sakamoto, M.; Sasaki, K.; Sato, K. N.; Zushi, H.; Nishino, N.; Mitarai, O.

    2006-08-01

    Several techniques for initiating the plasma current without the use of the central solenoid are being developed in TST-2. While TST-2 was temporarily located at Kyushu University, two types of start-up scenarios were demonstrated. (1) A plasma current of 4 kA was generated and sustained for 0.28 s by either electron cyclotron wave or electron Bernstein wave, without induction. (2) A plasma current of 10 kA was obtained transiently by induction using only outboard poloidal field coils. In the second scenario, it is important to supply sufficient power for ionization (100 kW of EC power was sufficient in this case), since the vertical field during start-up is not adequate to maintain plasma equilibrium. In addition, electron heating experiments using the X-B mode conversion scenario were performed, and a heating efficiency of 60% was observed at a 100 kW RF power level. TST-2 is now located at the Kashiwa Campus of the University of Tokyo. Significant upgrades were made in both magnetic coil power supplies and RF systems, and plasma experiments have restarted. RF power of up to 400 kW is available in the high-harmonic fast wave frequency range around 20 MHz. Four 200 MHz transmitters are now being prepared for plasma current start-up experiments using RF power in the lower-hybrid frequency range. Preparations are in progress for a new plasma merging experiment (UTST) aimed at the formation and sustainment of ultra-high β ST plasmas.

  16. The high-βN hybrid scenario for ITER and FNSF steady-state missions

    DOE PAGES

    Turco, Francesca; Petty, Clinton C.; Luce, Timothy C.; ...

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and βN up to 3.7 sustained for ~3 s (~1.5 current diffusion time, τ R, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H 98y2~1.6) without performance limiting tearing modes. Furthermore, the hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficientmore » current drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ R when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β N~4-4.5. Off-axis NBI power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ', as calculated by the DCON and PEST3 codes. Our results are based on measured profiles that predict ideal limits at βN>4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, βN and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q=5 mission and the FNSF 6.7 MA scenario with Q=3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-βN hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  17. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Qian, J.; Chen, J.; Li, G.; Li, K.; Li, M. H.; Zhai, X.; Bonoli, P.; Brower, D.; Cao, L.; Cui, L.; Ding, S.; Ding, W. X.; Guo, W.; Holcomb, C.; Huang, J.; Hyatt, A.; Lanctot, M.; Lao, L. L.; Liu, H.; Lyu, B.; McClenaghan, J.; Peysson, Y.; Ren, Q.; Shiraiwa, S.; Solomon, W.; Zang, Q.; Wan, B.

    2017-07-01

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2 ~ 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.

  18. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    DOE PAGES

    Garofalo, Andrea M.; Gong, X. Z.; Qian, J.; ...

    2017-06-07

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2~1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drivemore » (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.« less

  19. Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok

    2011-10-01

    A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.

  20. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  1. Modeling of the JET-EP ICRH antenna

    NASA Astrophysics Data System (ADS)

    Koch, R.; Amarante, G. S.; Heuraux, S.; Pécoul, S.; Louche, F.

    2001-10-01

    The new ICRH antenna planned for the Enhanced Performance phase of JET (JET-EP) is analyzed using the antenna coupling code ICANT, which self-consistently determines the currents on all antenna parts. This study addresses, using a simplified antenna model, the question of the impact on the coupling of the poloidal segmentation of the conductors, of their width and of their poloidal phasing. We also address the question of the relation between the imaginary part of the power computed by the code and the input impedance of the antenna. An example of current distribution on the complete antenna in vacuum is also shown.

  2. The halo current in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  3. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Almagri, A.F.; Cekic, M.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude {tilde b}/B decreases from 1.5% to 0.8%, the electron temperature T{sub e0} increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta {beta}{sub 0} increases from 6% to 9%,more » and the energy confinement time {tau}{sub E} increases from 1 ms to {approximately}5 ms in I{sub {phi}} = 340 kA plasmas with density {tilde n} = 1 {times} 10{sup 19} m{sup -3}. Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the `electron diamagnetic dynamo,` is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E{sub r} with a robust biased probe. 24 refs.« less

  4. Overview of Non-Solenoidal Startup Studies in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup method pursued on Pegasus utilizing compact, high power current sources (Ainj 2 - 4 cm2, Iinj 10 kA, Vinj 1 kV) at the plasma edge. Outboard injectors (Ninj = 4 , Ainj = 8 cm2) produce Ip 170 kA plasmas compatible with Ohmic drive. A 0-D model that treats the plasma as a resistive element with time-varying inductance and enforces Ip limits from Taylor relaxation is used to interpret experimental Ip(t) in several scenarios. Strong inductive drive arises from the plasma shape evolution, in addition to poloidal field induction. A new injector system has recently been installed in the lower divertor region (Ninj = 2 , Ainj = 8 cm2) to explore the implications of geometric placement of the helicity injectors on LHI startup. This geometry supports tests of reconnection dynamics seen in NIMROD simulations, high-BT effects expected in larger devices, and LHI electron confinement with and without inductive assist. Plasmas with Ip > 130 kA, Vinj 0.5 kV, Δtpulse 8 ms and BT /BT , max <= 50 % are produced with the inboard system to date, consistent with performance expectations. Higher Ip is expected with increased BT, Vinj, and Δtpulse . Thomson scattering data in both geometries indicate high Te >= 100 eV during LHI, suggesting the confinement is not strongly stochastic. Conceptual design work is exploring the feasibility of coaxial helicity injection and ECH heating on Pegasus in addition to LHI. Work supported by US DOE Grant DE-FG02-96ER54375.

  5. Physics of Tokamak Plasma Start-up

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  6. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  7. Overview of long pulse H-mode operation on EAST

    NASA Astrophysics Data System (ADS)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  8. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less

  9. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-09-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. Comparisons with experiments indicate that these 2-D calculations can overestimate the loading of the antenna and fail to give the correct reactive behavior. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap, conducting sidewalls,more » and finite phase velocity are considered. The plasma impedance matrix for the loading calculation is generated by use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D limit. For finite-length antennas, inductance calculations are found to be in much more reasonable agreement with experiments for 3-D modeling than for the 2-D estimates. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna sidewalls rather than in the plasma as in the 2-D model. Thus, the feeders have much more influence than the plasma on the currents that return in the sidewall. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model.« less

  10. Neoclassical poloidal and toroidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-08-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less

  11. Divertor-localized fluctuations in NSTX-U L-mode discharges

    NASA Astrophysics Data System (ADS)

    Scotti, Filippo; Soukhanovskii, V. A.; Zweben, S.; Myra, J.; Baver, D.; Sabbagh, S. A.

    2017-10-01

    The 3-D structure of divertor turbulence is characterized in NSTX-U by means of fast camera imaging. Edge and divertor turbulence can be important in determining the heat flux width in fusion devices. Field-aligned filaments are found on the divertor legs via imaging of C III and D- α emission in NBI-heated diverted L-mode discharges, similar to observations in Alcator C-Mod and MAST. These flute-like fluctuations of up to 10-20% in RMS/mean are radially localized around the separatrix and limited to the region below the X-point. Poloidal and parallel correlation lengths are a few cm (10-50ρi) and several meters, respectively. For the outer leg filaments, poloidal correlation lengths decrease along the leg away from the strike point and typical effective toroidal mode numbers are in the range of 10-20. Opposite toroidal rotation is observed for inner (co-current rotation) and outer leg (counter-current rotation) filaments with apparent poloidal propagation of 1 km/s. The poloidal motion of outer leg filaments is opposite to the one typically observed for NSTX upstream blobs in the scrape-off layer. The shape, dynamics and absence of correlation with upstream turbulence suggest that these fluctuations are generated and localized in the divertor region. Supported by US DOE DE-AC52-07NA27344, DE-AC02-09CH11466, DE-FG02- 02ER54678, DE-FG02-99ER54524.

  12. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  13. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Brown, T.; El-Guebaly, L.; Boyer, M.; Canik, J.; Colling, B.; Raman, R.; Wang, Z.; Zhai, Y.; Buxton, P.; Covele, B.; D'Angelo, C.; Davis, A.; Gerhardt, S.; Gryaznevich, M.; Harb, M.; Hender, T. C.; Kaye, S.; Kingham, D.; Kotschenreuther, M.; Mahajan, S.; Maingi, R.; Marriott, E.; Meier, E. T.; Mynsberge, L.; Neumeyer, C.; Ono, M.; Park, J.-K.; Sabbagh, S. A.; Soukhanovskii, V.; Valanju, P.; Woolley, R.

    2016-10-01

    A fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR  ≈  1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m-2.2 m are described. In particular, it is found the threshold major radius for TBR  =  1 is {{R}0}≥slant 1.7 m, and a smaller R 0  =  1 m ST device has TBR  ≈  0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A  =  2, R 0  =  3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.

  14. Fusion nuclear science facilities and pilot plants based on the spherical tokamak

    DOE PAGES

    Menard, J. E.; Brown, T.; El-Guebaly, L.; ...

    2016-08-16

    Here, a fusion nuclear science facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR ≈ 1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions versus configuration studies including dependence on plasma major radius R 0 for a range 1 m–2.2 m are described. In particular, it is found the threshold major radius for TBR = 1 ismore » $${{R}_{0}}\\geqslant 1.7$$ m, and a smaller R 0 = 1 m ST device has TBR ≈ 0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A = 2, R = 3 m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.« less

  15. Current drive by helicon waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Manash Kumar; Bora, Dhiraj; ITER Organization, Cadarache Centre-building 519, 131008 St. Paul-Lez-Durance

    2009-01-01

    Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due tomore » the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.« less

  16. Fluctuations and intermittent poloidal transport in a simple toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goud, T. S.; Ganesh, R.; Saxena, Y. C.

    In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less

  17. The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turco, F.; Petty, C. C.; Luce, T. C.

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient currentmore » drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  18. On axisymmetric resistive magnetohydrodynamic equilibria with flow free of Pfirsch-Schlüter diffusion

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, G. N.; Tasso, H.

    2003-06-01

    The equilibrium of an axisymmetric magnetically confined plasma with anisotropic resistivity and incompressible flows parallel to the magnetic field is investigated within the framework of the magnetohydrodynamic (MHD) theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order elliptic partial differential equation for the poloidal magnetic flux function ψ along with a decoupled Bernoulli equation for the pressure identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the resistivities η∥ and η⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic resistivity and parallel flows [G. N. Throumoulopoulos and H. Tasso, J. Plasma Phys. 64, 601 (2000)] the equilibrium is compatible with nonvanishing poloidal current densities. Also, although exactly Spitzer resistivities either η∥(ψ) or η⊥(ψ) are not allowed, exact solutions with vanishing poloidal electric fields can be constructed with η∥ and η⊥ profiles compatible with roughly collisional resistivity profiles, i.e., profiles having a minimum close to the magnetic axis, taking very large values on the boundary and such that η⊥>η∥. For equilibria with vanishing flows satisfying the relation (dP/dψ)(dI2/dψ)>0, where P and I are the pressure and the poloidal current functions, the difference η⊥-η∥ for the reversed-field pinch scaling, Bp≈Bt, is nearly two times larger than that for the tokamak scaling, Bp≈0.1Bt (Bp and Bt are the poloidal and toroidal magnetic-field components). The particular resistive equilibrium solutions obtained in the present work, inherently free of—but not inconsistent with—Pfirsch-Schlüter diffusion, indicate that parallel flows might result in a reduction of the diffusion observed in magnetically confined plasmas.

  19. Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Wang, L

    2014-11-01

    The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.

  20. Global lunar crust - Electrical conductivity and thermoelectric origin of remanent magnetism

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    An upper limit is placed on the average crustal conductivity from an investigation of toroidal (V x B) induction in the moon, using ten-minute data intervals of simultaneous lunar orbiting and surface magnetometer data. Crustal conductivity is determined as a function of crust thickness. For an average global crust thickness of about 80 km, the crust surface electrical conductivity is of the order of 1 hundred millionth mho/m. The toroidal-induction results lower the surface-conductivity limit obtained from poloidal-induction results by approximately four orders of magnitude. In addition, a thermoelectric (Seebeck effect) generator model is presented as a magnetic-field source for thermoremanent magnetization of the lunar crust during its solidification and cooling. Magnetic fields from 1000 to 10,000 gammas are calculated for various crater and crustal geometries. Solidified crustal material cooling through the iron Curie temperature in the presence of such ancient lunar fields could have received thermoremanent magnetization consistent with that measured in most returned lunar samples.

  1. Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Seidl, J.; Krbec, J.; Hron, M.; Adamek, J.; Hidalgo, C.; Markovic, T.; Melnikov, A. V.; Stockel, J.; Weinzettl, V.; Aftanas, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Eliseev, L. G.; Hacek, P.; Havlicek, J.; Horacek, J.; Imrisek, M.; Kovarik, K.; Mitosinkova, K.; Panek, R.; Tomes, M.; Vondracek, P.

    2017-12-01

    Axisymmetric geodesic acoustic mode (GAM) oscillations of the magnetic field, plasma potential and electron temperature have been identified on the COMPASS tokamak. This work brings an overview of their electromagnetic properties studied by multi-pin reciprocating probes and magnetic diagnostics. The n  =  0 fluctuations form a continuous spectrum in limited plasmas but change to a single dominant peak in diverted configuration. At the edge of diverted plasmas the mode exhibits a non-local structure with a constant frequency over a radial extent of at least several centimeters. Nevertheless, the frequency still reacts on temporal changes of plasma temperature caused by an auxiliary NBI heating as well as those induced by periodic sawtooth crashes. Radial wavelength of the mode is found to be about 1-4 cm, with values larger for the plasma potential than for the electron temperature. The mode propagates radially outward and its radial structure induces oscillations of a poloidal E  ×  B velocity, that can locally reach the level of the mean poloidal flow. Bicoherence analysis confirms a non-linear interaction of GAM with a broadband ambient turbulence. The mode exhibits strong axisymmetric magnetic oscillations that are studied both in the poloidal and radial components of the magnetic field. Their poloidal standing-wave structure was confirmed and described for the first time in diverted plasmas. In limited plasmas their amplitude scales with safety factor. Strong suppression of the magnetic GAM component, and possibly of GAM itself, is observed during co-current but not counter-current NBI.

  2. Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2013-10-01

    Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.

  3. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Current profile modification experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Spizzo, G.; Chapman, B. E.; Gravestjin, R. M.; Franz, P.; Piovesan, P.; Martin, P.; Drake, J. R.

    2004-01-01

    Pulsed poloidal current drive (PPCD) experiments have been conducted in the resistive shell EXTRAP T2R reversed-field pinch experiment. During the current profile modification phase, the fluctuation level of the m = 1 internally resonant tearing modes decreases, and the velocity of these modes increases. The m = 0 modes are not affected during PPCD, although termination occurs with a burst in the m = 0 amplitude. The PPCD phase is characterized by an increase in the central electron temperature (up to 380 eV) and in the soft x-ray signal. Spectroscopic observations confirm an increase in the central electron temperature. During PPCD, the plasma poloidal beta increases to 14%, and the estimated energy confinement time doubles, reaching 380 µs. The reduction in the fluctuation level and the corresponding increase in the energy confinement time are qualitatively consistent with a reduction in parallel transport along stochastic magnetic field lines.

  5. Nonlinear Simulation of DIII-D Plasma and Poloidal Systems Using DINA and Simulink

    NASA Astrophysics Data System (ADS)

    Walker, M. L.; Leuer, J. A.; Deranian, R. D.; Humphreys, D. A.; Khayrutdinov, R. R.

    2002-11-01

    Hardware-in-the-loop simulation capability was developed previously for poloidal shape control testing using Matlab Simulink [1]. This has been upgraded by replacing a linearized plasma model with the DINA nonlinear plasma evolution code [2]. In addition to its use for shape control studies, this new capability will allow study of current profile control using the DINA model of electron cyclotron current drive (ECCD) and current profile information soon to be available from the Plasma Control System (PCS) real time EFIT [3] calculation. We describe the incorporation of DINA into the Simulink DIII-D tokamak systems model and results of validating this combined model against DIII-D data. \\vspace0.1em [1] J.A. Leuer, et al., 18th IEEE/NPSS SOFE (1999), p. 531. [2] R.R. Khayrutdinov, V.E. Lukash, J. Comput. Phys. 109, 193 (1993). [3] J.R. Ferron, et al., Nucl. Fusion 38, 1055 (1988).

  6. Expanding Non-solenoidal Startup with Local Helicity Injection to Increased Toroidal Field and Helicity Injection Rate

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.

  7. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  8. Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, J.; Aydemir, A. Y.; Shaing, K. C.

    2016-04-15

    In the high confinement mode of tokamaks, magnitude of the radial electric field increases at the edge. Thus, the poloidal flow inside the transport barrier can be sonic when the edge pressure gradient is not steep enough to make the poloidal flow subsonic. When the poloidal Mach number is close to unity, a shock appears in the low field side and causes a large density perturbation. In this study, we describe a shock induced by the sonic poloidal plasma flow. Then, an entropy production across the shock is calculated. Finally, we introduce a simple model for Type III edge localizedmore » modes using the poloidal density variation driven by the sonic poloidal flow.« less

  9. New insights on boundary plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod using a Mirror Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Labombard, Brian

    2013-10-01

    A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.

  10. Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2016-08-11

    Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less

  11. Overview of EAST experiments on the development of high-performance steady-state scenario

    NASA Astrophysics Data System (ADS)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  12. Local and integral disruption forces on the tokamak wall

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.; Kiramov, D. I.

    2018-04-01

    The disruption-induced forces on the tokamak wall are evaluated analytically within the standard large-aspect-ratio model that implies axisymmetry, circular plasma and wall, and absence of halo currents. Additionally, the ideal-wall reaction is assumed. The disruptions are modelled as rapid changes in the plasma pressure (thermal quench (TQ)) and net current (current quench (CQ)). The force distribution over the poloidal angle is found as a function of these inputs. The derived formulas allow comparison of the TQ- and CQ-produced forces calculated differently, with and without account of the poloidal current induced in the wall. The latter variant represents the inherent property of the codes treating the wall as a set of toroidal filaments. It is proved here that such a simplification leads to unacceptably large errors in the simulated forces for both TQs and CQs. It is also shown that the TQ part of the force must prevail over that due to CQ in the high-β scenarios developed for JT-60SA and ITER.

  13. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

    NASA Astrophysics Data System (ADS)

    Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.

    2017-12-01

    Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.

  14. Computational Study of Poloidal Angular Momentum Transport in DIII-D

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Kruger, Scott; Kritz, Arnold; Rafiq, Tariq; Weiland, Jan

    2013-10-01

    The new Multi-Mode Model, MMM8.1, includes the capability to predict the anomalous poloidal momentum diffusivity [T. Rafiq et al., Phys. Plasmas 20, 032506 (2013)]. It is important to consider the effect of this diffusivity on the poloidal rotation of tokamak plasmas since some experimental observations suggest that neoclassical effects are not always sufficient to explain the observed poloidal rotation [B.A. Grierson et al., Phys. Plasmas 19, 056107 (2012)]. One of the objectives of this research is to determine if the anomalous contribution to the poloidal rotation can be significant in the regions of internal transport barriers (ITBs). In this study, the MMM8.1 model is used to compute the poloidal momentum diffusivity for a range of plasma parameters that correspond to the parameters that occur in DIII-D discharges. The parameters that are considered include the temperature and density gradients, and magnetic shear. The role of anomalous poloidal transport in the possible poloidal spin up in the ITB regions is discussed. Progress in the implementation of poloidal transport equations in the ASTRA transport code is reported and initial predictive simulation results for the poloidal rotation profiles are presented. This research is partially support by the DOE Grants DE-SC0006629 and DE-FG02-92ER54141.

  15. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  16. Extending the validation of multi-mode model for anomalous transport to high beta poloidal tokamak scenario in DIII-D

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.

    2018-05-01

    The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.

  17. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  18. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-12-31

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  19. Radial localization of magnetospheric guided poloidal Pc 4-5 waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Lessard, M. R.; Kistler, L. M.

    2003-03-01

    The toroidal Alfvén wave, with magnetic field oscillations in the azimuthal direction, exhibits a singularity in the vicinity of the toroidal resonant frequency (field line resonance), so it is not surprising that this wave often exhibits varying frequency as a function of L shell. It is less clear why the poloidal Alfvén wave, with magnetic field oscillations in the radial direction, often exhibits a relatively constant frequency over a range of L shells. So far, the most promising proposal to explain this phenomenon is the theory of [1994, 1996], who showed that an energetically trapped global poloidal mode can exist in a region where the poloidal Alfvén frequency is lower than the toroidal frequency and where it exhibits a dip (minimum) with respect to L. While this theory is mathematically plausible, it has never been shown that poloidal Alfvén waves actually occur in association with such a dip in poloidal frequency. Here we examine poloidal wave events observed by the AMPTE/IRM spacecraft and calculate the theoretical poloidal frequency as a function of L using the equilibrium parameters obtained from the spacecraft observations. We find that the poloidal Alfvén wave does occur in association with such a dip (or at least a flattening) in poloidal frequency. While Vetoulis and Chen hypothesized that such a dip would occur because of a sharp gradient in plasma pressure, we find that the dip in poloidal frequency may result from the L dependence of the equilibrium density or magnetic field. The observed frequencies are in rough agreement with the theoretical frequencies, though in some cases we must assume that the observed oscillations result from a high harmonic (third or fourth harmonic structure along the magnetic field). We also apply the same analysis to compressional wave events (with oscillations in the direction of the equilibrium magnetic field). Such oscillations may be on the poloidal wave branch or the mirror mode branch. Here also, the observed fluctuations occur in the region of a dip in poloidal frequency. In one case the observed frequency is consistent with the theoretical poloidal frequency, whereas in another case it is not.

  20. Magnetic Diagnostics Suite Upgrade on LTX- β

    NASA Astrophysics Data System (ADS)

    Hughes, P. E.; Majeski, R.; Kaita, R.; Kozub, T.; Hansen, C.; Smalley, G.; Boyle, D. P.

    2017-10-01

    LTX- β will be exploring a new regime of flat temperature-profile tokamak plasmas first demonstrated in LTX [D.P. Boyle et al. PRL July 2017]. The incorporation of neutral beam core-fueling and heating in LTX- β is expected to increase plasma beta and drive increased MHD activity. An upgrade of the magnetic diagnostics is underway, including an expansion of the reentrant 3-axis poloidal Mirnov array, as well as the addition of a toroidal array of poloidal Mirnov sensors and a set of 2-axis Mirnov sensors measuring fields from shell eddy currents. The poloidal and toroidal arrays will facilitate the study of MHD mode activity and other non-axisymmetric perturbations, while the new shell eddy sensors and improvements to existing axisymmetric measurements will support enhanced equilibrium reconstructions using the PSI-Tri equilibrium code [C. Hansen et al. PoP Apr. 2017] to better characterize these novel hot-edge discharges. This work is supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  1. Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Zhongbing; Jiang, Min; Yu, Liming; Chen, Wei; Shi, Peiwan; Zhong, Wulyu; Yang, Zengchen; Zhang, Boyu; Ji, Xiaoquan; Li, Yonggao; Zhou, Yan; Song, Shaodong; Huang, Mei; Song, Xianming; Li, Jiaxuan; Yuan, Baoshan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Xu, Yuhong; Yang, Qingwei; Duan, Xuru

    2017-07-01

    Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) × 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied.

  2. Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi

    2013-10-01

    Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.

  3. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, W. M.

    2008-01-15

    Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented.

  4. Divertor with a third-order null of the poloidal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Umansky, M. V.

    2013-09-15

    A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, themore » configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.« less

  5. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE PAGES

    Hanada, K.; Zushi, H.; Idei, H.; ...

    2016-10-28

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  6. Power Balance Estimation in Long Duration Discharges on QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, K.; Zushi, H.; Idei, H.

    Fully non-inductive plasma start-up was successfully achieved by using a well-controlled microwave source on the spherical tokamak, QUEST. Non-inductive plasmas were maintained for approximately 3–5 min, during which time power balance estimates could be achieved by monitoring wall and cooling-water temperatures. Approximately 70%–90% of the injected power could be accounted for by calorimetric measurements and approximately half of the injected power was found to be deposited on the vessel wall, which is slightly dependent on the magnetic configuration. Lastly, the power distribution to water-cooled limiters, which are expected to be exposed to local heat loads, depends significantly on the magneticmore » configuration, however some of the deposited power is due to energetic electrons, which have large poloidal orbits and are likely to be deposited on the plasma facing components.« less

  7. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  8. Harmonics analysis of the ITER poloidal field converter based on a piecewise method

    NASA Astrophysics Data System (ADS)

    Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU

    2017-12-01

    Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.

  9. Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B A Grierson, et al

    In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking themore » radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.« less

  10. Measurement of poloidal velocity on the National Spherical Torus Experiment (invited).

    PubMed

    Bell, Ronald E; Feder, Russell

    2010-10-01

    A diagnostic suite has been developed to measure the impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all the quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both the active emission in the plane of the neutral heating beams and the background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent charge exchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. The local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. The radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  11. Large-scale disruptions in a current-carrying magnetofluid

    NASA Technical Reports Server (NTRS)

    Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.

    1986-01-01

    Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.

  12. Unstable domains of tearing and Kelvin-Helmholtz instabilities in a rotating cylindrical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D. M.; Wei, L.; Wang, Z. X., E-mail: zxwang@dlut.edu.cn

    2014-09-15

    Effects of poloidal rotation profile on tearing and Kelvin-Helmholtz (KH) instabilities in a cylindrical plasma are investigated by using a reduced magnetohydrodynamic model. Since the poloidal rotation has different effects on the tearing and KH modes in different rotation regimes, four unstable domains are numerically identified, i.e., the destabilized tearing mode domain, stabilized tearing mode domain, stable-window domain, and unstable KH mode domain. It is also found that when the rotation layer is in the outer region of the rational surface, the stabilizing role of the rotation can be enhanced so significantly that the stable window domain is enlarged. Moreover,more » Alfvén resonances can be induced by the tearing and KH modes in such rotating plasmas. Radially wide profiles of current and vorticity perturbations can be formed when multiple current sheets on different resonance positions are coupled together.« less

  13. Reynolds Stress and Sheared Poloidal Flow in the Edge Plasma Region of the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Hao; Yu, Chang-Xuan; Xu, Yu-Hong; Ling, Bi-Li; Gong, Xian-Zu; Liu, Bao-Hua; Wan, Bao-Nian

    2001-02-01

    High spatial resolution measurements of the electrostatic Reynolds stress, radial electric field and poloidal phase velocity of fluctuations in the edge region of the HT-6M tokamak are carried out. The Reynolds stress shows a radial gradient in proximity to the poloidal velocity shear. A comparison of the profiles between the Reynolds stress gradient and the poloidal velocity damping reveals some similarity in their magnitude and radial structure. These facts suggest that the turbulence-induced Reynolds stress may play a significant role in generating the poloidal flow in the plasma edge region.

  14. Transport modeling of the DIII-D high $${{\\beta}_{p}}$$ scenario and extrapolations to ITER steady-state operation

    DOE PAGES

    McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...

    2017-08-03

    In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less

  15. Characteristics of Muti-pulsing CHI driven ST plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2011-10-01

    The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.

  16. Geodesic acoustic mode (GAM) like oscillations and RMP effect in the STOR-M tokamak

    NASA Astrophysics Data System (ADS)

    Basu, Debjyoti; Nakajima, Masaru; Melnikov, A. V.; McColl, David; Rohollahi, Akbar; Elgriw, Sayf; Xiao, Chijin; Hirose, Akira

    2018-02-01

    A new kind of quasi-coherent mode was observed in ohmic plasma in the STOR-M tokamak. It is featured with a clear solitary peak around 30-35 kHz in the power spectra of the ion saturation current (I_sat) of Langmuir probe as well as poloidal and toroidal mode numbers (m  =  1,n  =  0) as per the prediction of conventional geodesic acoustic mode (GAM) theory. The dispersion relation of the mode is also similar to GAM and it also shows collisional damping. In contrast to conventional GAM, the floating potential ϕ of the observed GAM-like mode does not show similar symmetric poloidal and toroidal mode numbers (m  =  0,n  =  0), but has (m  =  1,n  =  1). The GAM-like mode has also a pronounced magnetic component with mixed poloidal modes (m=3~and~m=5; n=1 ), as observed by Mirnov coils. This mode is suppressed by the application of resonance magnetic perturbations.

  17. Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.

  18. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  19. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  20. Initial development of the DIII–D snowflake divertor control

    NASA Astrophysics Data System (ADS)

    Kolemen, E.; Vail, P. J.; Makowski, M. A.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.

    2018-06-01

    Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5×  reduction in the peak heat flux for many energy confinement times (2–3 s) without any adverse effects on core plasma performance.

  1. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE PAGES

    Ding, Siye; Garofalo, A. M.; Qian, J.; ...

    2017-05-03

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  2. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.

    2017-05-01

    Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.

  3. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Siye; Garofalo, A. M.; Qian, J.

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  4. A poloidal section neutron camera for MAST upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangaroon, S.; Weiszflog, M.; Cecconello, M.

    2014-08-21

    The Mega Ampere Spherical Tokamak Upgrade (MAST Upgrade) is intended as a demonstration of the physics viability of the Spherical Tokamak (ST) concept and as a platform for contributing to ITER/DEMO physics. Concerning physics exploitation, MAST Upgrade plasma scenarios can contribute to the ITER Tokamak physics particularly in the field of fast particle behavior and current drive studies. At present, MAST is equipped with a prototype neutron camera (NC). On the basis of the experience and results from previous experimental campaigns using the NC, the conceptual design of a neutron camera upgrade (NC Upgrade) is being developed. As part ofmore » the MAST Upgrade, the NC Upgrade is considered a high priority diagnostic since it would allow studies in the field of fast ions and current drive with good temporal and spatial resolution. In this paper, we explore an optional design with the camera array viewing the poloidal section of the plasma from different directions.« less

  5. Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team

    2017-10-01

    DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.

  6. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  7. Modeling Pc4 Pulsations in Two and a Half Dimensions with Comparisons to Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    McEachern, Charles A.

    Field line resonances---that is, Alfven waves bouncing between the northern and southern foot points of a geomagnetic field line---serve to energize magnetospheric particles through drift-resonant interactions, carry energy from high to low altitude, induce currents in the magnetosphere, and accelerate particles into the atmosphere. Wave structure and polarization significantly impact the execution these roles. The present work showcases a new two and a half dimensional code, Tuna, ideally suited to model FLRs, with the ability to consider large-but-finite azimuthal modenumbers, coupling between the poloidal, toroidal, and compressional modes, and arbitrary harmonic structure. Using Tuna, the interplay between Joule dissipation and poloidal-to-toroidal rotation is considered for both dayside and nightside conditions. An attempt is also made to demystify giant pulsations, a class of FLR knows for its distinctive ground signatures. Numerical results are supplemented by a survey of ˜700 FLRs using data from the Van Allen Probes, the first such survey to characterize each event by both polarization and harmonic. The combination of numerical and observational results suggests an explanation for the disparate distributions observed in poloidal and toroidal FLR events.

  8. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.

    1982-01-01

    A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

  9. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE PAGES

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; ...

    2017-02-24

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  10. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves aremore » a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.« less

  11. The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection

    NASA Astrophysics Data System (ADS)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-06-01

    Radial substructures in circumstellar discs are now routinely observed by Atacama Large Millimeter/submillimeter Array. There is also growing evidence that disc winds drive accretion in such discs. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disc-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal magnetohydrodynamic effect. In simulations where the magnetic field and matter are moderately coupled, the disc remains relatively laminar with the radial electric current steepened by AD into a thin layer near the mid-plane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called avalanche accretion streams develop continuously near the disc surface, rendering the disc-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disc material similar to the more diffusive discs. However, the reconnection is now driven by the non-linear growth of magnetorotational instability channel flows. The formation of rings and gaps in rapidly accreting yet laminar discs has interesting implications for dust settling and trapping, grain growth, and planet formation.

  12. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    NASA Astrophysics Data System (ADS)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  13. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  14. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Hao; Zhang, Tao; Han, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less

  15. Steady state scenario development with elevated minimum safety factor on DIII-D

    DOE PAGES

    Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...

    2014-08-15

    On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less

  16. Toroidal band limiter for a plasma containment device

    DOEpatents

    Kelley, George G.

    1978-01-01

    This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.

  17. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    NASA Astrophysics Data System (ADS)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.

  18. Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2016-10-01

    Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.

  19. Initial development of the DIII–D snowflake divertor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolemen, Egemen; Vail, P. J.; Makowski, M. A.

    Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less

  20. Initial development of the DIII–D snowflake divertor control

    DOE PAGES

    Kolemen, Egemen; Vail, P. J.; Makowski, M. A.; ...

    2018-04-11

    Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less

  1. Nearly axisymmetric hot plasmas in a highly rippled tokamak

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2002-11-01

    Tokamak ohmic heating current flowing along toroidally rippled flux surfaces results in a poloidal torque. Since pressure gradients cannot offset torques, the torque drives plasma flows which convect plasma toroidally from ripple necks (high B_pol^2) to ripple bulges (low B_pol^2). Stagnation of the oppositely directed toroidal flows at the ripple bulges thermalizes the directed flow velocity ˜ B_pol/μ_0ρ , giving β _pol ˜1. These flows also convect frozen-in poloidal field lines which accumulate at the bulges enhancing the pinch force there and so reducing the bulge. Thus, a nearly axisymmetric β_pol ˜1 equilibrium is achieved using only a few TF coils. Particles bouncing in step between approaching flows will be Fermi accelerated to form a high energy tail. The ST tokamak magnetic mountain experiment [1] showed that, compared to a 1.8% ripple configuration, a 28% ripple configuration had four times the neutron production, and only a modest degradation of overall confinement; the former is consistent with the notion of Fermi acceleration of particles bouncing between colliding toroidal flows and the latter is consistent with ripple reduction due to toroidal convection of poloidal field lines. [1] W. Stodiek et al, Proc. 4th Intl. Conf. Plasma Phys. and Contr. Nuc. Fusion Res., (Madison, 1971), Vol. 1, p. 465

  2. Poloidal motion of trapped particle orbits in real-space coordinates

    NASA Astrophysics Data System (ADS)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.

    2008-05-01

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of α-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantly also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].

  3. Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST

    NASA Astrophysics Data System (ADS)

    Xiong, Z.

    2005-10-01

    TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.

  4. PT-1 Plasmoid Thruster Capable of Multi-Mode Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Rose, Frank; Eskridge, Richard; Martin, Adam; Alam, Mohammed

    2008-01-01

    This slide presentation reviews the concept of a Plasmoid Thruster that is capable of operating in several different modes. A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. The Drive and Bias circuits, the gas distribution, the pre-ionization stage, and the operation sequence are detailed. The advantages of the Plasmoid thruster and the research and technology required for development of this form of propulsion is reviewed.

  5. The eddy current probe array for Keda Torus eXperiment.

    PubMed

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  6. Translations on Eastern Europe, Scientific Affairs, Number 569

    DTIC Science & Technology

    1978-01-12

    compensation of the plasma pres- sure is achieved by means of a magnetic field produced in conjunction with an induced high current flowing in the plasma ring (poloidal... plasma ring acts as the "secondary coil." -2 Inertial confinement is, in principle, simpler, but as yet realized technically only in the relatively

  7. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  8. The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Odstrcil, T.; Pütterich, T.; Angioni, C.; Bilato, R.; Gude, A.; Odstrcil, M.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-01-01

    Due to the high mass and charge of the heavy ions, centrifugal and electrostatic forces cause a significant variation in their poloidal density. The impact of these forces on the poloidal density profile of tungsten was investigated utilizing the detailed two-dimensional SXR emissivity profiles from the ASDEX Upgrade tokamak. The perturbation in the electrostatic potential generated by magnetic trapping of the non-thermal ions from neutral beam injection was found to be responsible for significant changes in the poloidal distribution of tungsten ions. An excellent match with the results from fast particle modeling was obtained, validating the model for the poloidal fast particle distribution. Additionally, an enhancement of the neoclassical transport due to an outboard side impurity localization was measured in the experiment when analyzing the tungsten flux between sawtooth crashes. A qualitative match with neoclassical modeling was found, demonstrating the possibility of minimizing neoclassical transport by an optimization of the poloidal asymmetry profile of the impurity.

  9. Analysis of Poloidal Asymmetric Density Behaviors in SOL Induced by 4.6-GHz Lower Hybrid Launcher Power in EAST

    NASA Astrophysics Data System (ADS)

    Li, Y. C.; Ding, B. J.; Li, M. H.; Wang, M.; Liu, L.; Wang, X. J.; Xu, H. D.; Shan, J. F.; Liu, F. K.

    2018-02-01

    On the experimental advanced superconducting tokamak (EAST), a series of striations, including a few strong emissivity striations and several low emissivity striations, were observed in front of the 4.6-GHz lower hybrid (LH) launcher with the visible video camera for the LH power discharge. These striations indicate that LH may create significant poloidal scrape-off layer (SOL) density profile asymmetries in front of the LH launcher. These poloidal asymmetric density behaviors are further confirmed with the edge density measured by two Langmuir probes installed at the top and bottom of the LH launcher. The measured density depends on LH power injection and magnetic field direction. A 2D diffusive convective model was used to study the mechanisms of the observed striations and poloidal asymmetric density. The simulation results qualitatively match with the measured density, indicating these poloidal asymmetric effects are ascribed to the LHW-induced E LH × B t drift.

  10. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Buehler, L.

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less

  11. MHD and Reconnection Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.

    2016-10-01

    Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  12. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  13. On axisymmetric resistive MHD equilibria with flow free of Pfirsch-Schlüter diffusion

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, George N.; Tasso, Henri

    2002-11-01

    The equilibrium of an axisymmetric magnetically confined plasma with anisotropic electrical conductivity and flows parallel to the magnetic field is investigated within the framework of the MHD theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order partial differential equation for the poloidal magnetic flux function along with a Bernoulli equation for the density identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the conductivities σ_allel and σ_⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic conductivity and parallel flows (see [1]) the equilibrium is compatible with non-vanishing poloidal currents. For incompressible flows exact solutions of the above mentioned set of equations can be constructed with σ_allel and σ_⊥ profiles compatible with collisional conductivity profiles, i.e. profiles peaked close to the magnetic axis, vanishing on the boundary and such that σ_allel> σ_⊥. In particular, an exact equilibrium describing a toroidal plasma of arbitrary aspect ratio being contained within a perfectly conducting boundary of rectangular cross-section and peaked toroidal current density profile vanishing on the boundary is further considered. For this equilibrium in the case of vanishing flows the difference σ_allel-σ_⊥ for the reversed field pinch scaling Bp Bt (where Bp and Bt are the poloidal and toroidal magnetic field components) is nearly two times larger than that for the tokamak scaling B_p 0.1 B_t. [1] G. N. Throumoulopoulos, H. Tasso, J. Plasma Physics 64, 601 (2000).

  14. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Sabbagh, S. A.; Ahn, J.-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D'Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R. J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y. S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R. J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C. H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, J.; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K. L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S. J.

    2013-10-01

    Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate βN is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding βN = 6.4 and βN/li = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V∥/V = 1 where destabilizing compressional Alfvén eigenmode resonances are expected. Applied 3D fields altered global Alfvén eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m-2 to less than 1.5 MW m-2). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E × B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current Ip = 0.7 MA and between 70-100% with HHFW application at Ip = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < Ip(MA) < 1.35.

  15. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less

  16. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  17. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    NASA Astrophysics Data System (ADS)

    Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.

    2017-08-01

    The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  19. Blob dynamics in TORPEX poloidal null configurations

    NASA Astrophysics Data System (ADS)

    Shanahan, B. W.; Dudson, B. D.

    2016-12-01

    3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.

  20. Injection of electrons with predominantly perpendicular energy into an area of toroidal field ripple in a tokamak plasma to improve plasma confinement

    DOEpatents

    Ono, Masayuki; Furth, Harold

    1993-01-01

    An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..

  1. Poloidal motion of trapped particle orbits in real-space coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.

    The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of {alpha}-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantlymore » also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].« less

  2. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  3. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  4. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    NASA Astrophysics Data System (ADS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  5. Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment

    DOE PAGES

    Sechrest, Y.; Munsat, T.; D’Ippolito, D. A.; ...

    2011-01-01

    Fluctuations in the edge and scrape-off layer (SOL) of L-mode plasmas in the National Spherical Torus Experiment (NSTX) as observed by the gas puff imaging (GPI) diagnostic are studied. Calculation of local, time resolved velocity maps using the Hybrid Optical Flow and Pattern Matching Velocimetry (HOP-V) code enables analysis of turbulent flow and shear behavior. Periodic reversals in the direction of the poloidal flow near the separatrix are observed. Also, poloidal velocities and their radial shearing rate are found to be well correlated with the fraction of D α light contained in the SOL, which acts as a measure ofmore » turbulent bursts. The spectra of GPI intensity and poloidal velocity both have a strong feature near 3 kHz, which appears to correspond with turbulent bursts. This mode exhibits a poloidal structure with poloidal wavenumber of 7.7 m -1 for GPI intensity and 3.4 m -1 for poloidal velocity, and the poloidal velocity fluctuations near 3 kHz remain coherent over length scales in excess of the turbulent scales. Furthermore, recent SOL Turbulence (SOLT) simulations find a parameter regime that exhibits periodic bursty transport and shares many qualitative similarities with the experimental data. Strong correlations between the shearing rate and the turbulent bursts are observed for time periods of ~ 2 ms, but the relationship is complicated by several factors. Finally, measurements of the radial profiles of the Reynolds shear stresses are reported. These radial profiles exhibit many similarities for several shots, and a region with positive radial gradient is seen to be coincident with local flow shear.« less

  6. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  7. Lessons learned from twenty-year operation of the Large Helical Device poloidal coils made from cable-in-conduit conductors

    NASA Astrophysics Data System (ADS)

    Takahata, Kazuya; Moriuchi, Sadatomo; Ooba, Kouki; Takami, Shigeyuki; Iwamoto, Akifumi; Mito, Toshiyuki; Imagawa, Shinsaku

    2018-04-01

    The Large Helical Device (LHD) superconducting magnet system consists of two pairs of helical coils and three pairs of poloidal coils. The poloidal coils use cable-in-conduit (CIC) conductors, which have now been adopted in many fusion devices, with forced cooling by supercritical helium. The poloidal coils were first energized with the helical coils on March 27, 1998. Since that time, the coils have experienced 54,600 h of steady cooling, 10,600 h of excitation operation, and nineteen thermal cycles for twenty years. During this period, no superconducting-to-normal transition of the conductors has been observed. The stable operation of the poloidal coils demonstrates that a CIC conductor is suited to large-scale superconducting magnets. The AC loss has remained constant, even though a slight decrease was observed in the early phase of operation. The hydraulic characteristics have been maintained without obstruction over the entire period of steady cooling. The experience gained from twenty years of operation has also provided lessons regarding malfunctions of peripheral equipment.

  8. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    NASA Astrophysics Data System (ADS)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  9. Heat flux and plasma flow in the far scrape-off layer of the inboard poloidal field null configuration in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onchi, T.; Zushi, H.; Hanada, K.

    2015-08-15

    Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (I{sub p}) ramp-up phase, high heat flux (>1 MW/m{sup 2}) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of I{sub p} at 20 Hz is observed. Heat flux and subsonic plasma flowmore » in the far-SOL are modified corresponding to the I{sub p}-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-I{sub p} phase. Modification of plasma flow in the far SOL occurs earlier than the I{sub p} crash. The M–I{sub p} curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core–SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of I{sub p} in the IPN configuration.« less

  10. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xu, Y. H.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-05-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υθ plays a key role in developing the electric field Er and triggering the transition. The acceleration of υθ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient.

  11. Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2018-05-01

    We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\

  12. Intrinsic Flow and Momentum Transport during Improved Confinement in MST

    NASA Astrophysics Data System (ADS)

    Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.

    2017-10-01

    Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.

  13. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  14. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.

    A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap betweenmore » the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m/sup 2/ and for the latter 0.5 MW/m/sup 2/. The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented.« less

  16. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less

  17. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  18. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    NASA Astrophysics Data System (ADS)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  19. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    DOE PAGES

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...

    2017-06-23

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  20. A super-cusp divertor configuration for tokamaks

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.

    2015-10-01

    > This study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase's cusp divertor. It turns out that the set of remote coils can indeed produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called `a super-cusp'. General geometrical features of the three-null configurations produced by remote coils are described. Issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  1. Formation and Sustainment of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Oguro, T.; Jinno, T.; Hasegawa, H.; Nagata, M.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2002-11-01

    In order to understand comprehensively the relaxation and self-organization in the coaxial helicity injection system, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped/reversed ST configurations. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for global helicity conservation. Taylor helicity-driven relaxed theory predicts that there exists the relaxed state of the flipped ST plasma when the TF current is reversed. We found that when q_axis passes through the q_axis =1 rational barrier in the initial phase, the ST plasma becomes unstable and relaxes to flipped states through RFP states. The n=1 mode activities are essential in the formation and sustainment of the flipped ST.

  2. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  3. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-04-01

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.

  4. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the HT-6M tokamak

    PubMed

    Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan

    2000-04-24

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.

  5. Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE

    DOE PAGES

    Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...

    2017-01-27

    Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less

  6. Properties of the electrostatically driven helical plasma state

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r

  7. MAST magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  8. Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; hide

    2017-01-01

    We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  9. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm.

    PubMed

    Le, G; Chi, P J; Strangeway, R J; Russell, C T; Slavin, J A; Takahashi, K; Singer, H J; Anderson, B J; Bromund, K; Fischer, D; Kepko, E L; Magnes, W; Nakamura, R; Plaschke, F; Torbert, R B

    2017-04-28

    We report global observations of high- m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers ( m  ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L . Each discrete L shell has a steady wave frequency and spans about 1  R E , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  10. Drifts, currents, and power scrape-off width in SOLPS-ITER modeling of DIII-D

    DOE PAGES

    Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...

    2016-12-27

    The effects of drifts and associated flows and currents on the width of the parallel heat flux channel (λ q) in the tokamak scrape-off layer (SOL) are analyzed using the SOLPS-ITER 2D fluid transport code. Motivation is supplied by Goldston’s heuristic drift (HD) model for λ q, which yields the same approximately inverse poloidal magnetic field dependence seen in multi-machine regression. The analysis, focusing on a DIII-D H-mode discharge, reveals HD-like features, including comparable density and temperature fall-off lengths in the SOL, and up-down ion pressure asymmetry that allows net cross-separatrix ion magnetic drift flux to exceed net anomalous ionmore » flux. In experimentally relevant high-recycling cases, scans of both toroidal and poloidal magnetic field (B tor and B pol) are conducted, showing minimal λ q dependence on either component of the field. Insensitivity to B tor is expected, and suggests that SOLPS-ITER is effectively capturing some aspects of HD physics. Absence of λ q dependence on B pol, however, is inconsistent with both the HD model and experimental results. As a result, the inconsistency is attributed to strong variation in the parallel Mach number, which violates one of the premises of the HD model.« less

  11. A Compact Torus Fusion Reactor Utilizing a Continuously Generated Strings of CT's. The CT String Reactor, CTSR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C W; Reisman, D B; McLean, H S

    2007-05-30

    A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less

  12. Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xiaoyin

    The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less

  13. The spectral basis of optimal error field correction on DIII-D

    DOE PAGES

    Paz-Soldan, Carlos A.; Buttery, Richard J.; Garofalo, Andrea M.; ...

    2014-04-28

    Here, experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first- principles modeling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibriummore » properties which are routinely calculated in real-time.« less

  14. Two-dimensional turbulence cross-correlation functions in the edge of NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweben, S. J.; Stotler, D. P.; Scotti, F.

    The 2D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using a gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r = 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p = 0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross-correlation regions and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average resultsmore » over this dataset were ε = 2.2 ± 0.9, φ = 87° ± 34° (i.e., poloidally oriented), cmin =-0.30 ± 0.15, and neg/pos = 0.25 ± 0.24. Thus, there was a significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. In conclusion, possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines at the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density 'shadowing' effect in GPI.« less

  15. Two-dimensional turbulence cross-correlation functions in the edge of NSTX

    DOE PAGES

    Zweben, S. J.; Stotler, D. P.; Scotti, F.; ...

    2017-09-26

    The 2D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using a gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r = 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p = 0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross-correlation regions and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average resultsmore » over this dataset were ε = 2.2 ± 0.9, φ = 87° ± 34° (i.e., poloidally oriented), cmin =-0.30 ± 0.15, and neg/pos = 0.25 ± 0.24. Thus, there was a significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. In conclusion, possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines at the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density 'shadowing' effect in GPI.« less

  16. Effect of neoclassical poloidal viscosity and resonant magnetic perturbation on the response of the m/n=1/1 magnetic island in LHD

    NASA Astrophysics Data System (ADS)

    Botsz, Huang; Satake, Shinsuke; Kanno, Ryutaro; Narushima, Yoshiro; Sakakibara, Satoru; Ohdachi, Satoshi

    2014-10-01

    In the LHD experiments in which m/n = 1/1 resonant magnetic perturbation (RMP) amplitude is ramped up, it is observed that the perturbed field is initially shielded, and when the amplitude exceeds a threshold value, the field penetrates into the plasma and m/n/ = 1/1 magnetic island appears. It is also found that the threshold amplitude depends on the magnetic field configuration of LHD, that is, on the magnetic axis position. It is expected that the poloidal force balance between the electromagnetic force and the drug force from poloidal rotation determines the threshold of island formation. Since neoclassical poloidal viscosity (NPV) in LHD strongly depends on the magnetic axis position, we investigate the relationship between NPV and the threshold amplitude of m/n = 1/1 RMP to penetrate by using drift-kinetic simulation code FORTEC-3D. ExB poloidal rotation determined from the ambipolar radial flux condition is taken into account in the evaluation of NPV. We mainly focus on the situation that the external magnetic perturbation is compensated by the plasma response and therefore the effect of RMP on the total NPV is shielded. However, by using a simple model to express the penetrated magnetic perturbation, we will also study the dependence of NPV on the RMP amplitude.

  17. Elliptic-cylindrical analytical flux-rope model for ICMEs

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  18. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  19. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE PAGES

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui; ...

    2018-04-30

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  20. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  1. Statistical analysis of m/ n = 2/1 locked and quasi-stationary modes with rotating precursors at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.

    A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less

  2. Statistical analysis of m/ n = 2/1 locked and quasi-stationary modes with rotating precursors at DIII-D

    DOE PAGES

    Sweeney, Ryan Myles; Choi, W.; La Haye, R. J.; ...

    2016-11-01

    A database has been developed to study the evolution, the nonlinear effects on equilibria, and the disruptivity of locked and quasi-stationary modes with poloidal and toroidal mode numbers m = 2 and n = 1 at DIII-D. The analysis of 22500 discharges shows that more than 18% of disruptions are due to locked or quasi-stationary modes with rotating precursors (not including born locked modes). A parameter formulated by the plasma internal inductance l i divided by the safety factor at 95% of the poloidal flux, q 95, is found to exhibit predictive capability over whether a locked mode will cause a disruption or not, and does so up to hundreds of milliseconds before the disruption. Within 20 ms of the disruption, the shortest distance between the island separatrix and the unperturbed last closed flux surface, referred to as d edge, performs comparably tomore » $${{l}_{i}}/{{q}_{95}}$$ in its ability to discriminate disruptive locked modes. Out of all parameters considered, d edge also correlates best with the duration of the locked mode. Disruptivity following a m/n = 2/1 locked mode as a function of the normalized beta, $${{\\beta}_{\\text{N}}}$$ , is observed to peak at an intermediate value, and decrease for high values. The decrease is attributed to the correlation between $${{\\beta}_{\\text{N}}}$$ and q 95 in the DIII-D operational space. Within 50 ms of a locked mode disruption, average behavior includes exponential growth of the n = 1 perturbed field, which might be due to the 2/1 locked mode. Surprisingly, even assuming the aforementioned 2/1 growth, disruptivity following a locked mode shows little dependence on island width up to 20 ms before the disruption. Separately, greater deceleration of the rotating precursor is observed when the wall torque is large. At locking, modes are often observed to align at a particular phase, which is likely related to a residual error field. Timescales associated with the mode evolution are also studied and dictate the response times necessary for disruption avoidance and mitigation. Lastly, observations of the evolution of $${{\\beta}_{\\text{N}}}$$ during a locked mode, the effects of poloidal beta on the saturated width, and the reduction in Shafranov shift during locking are also presented.« less

  3. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  4. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  5. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  6. The Role of Viscosity in Causing the Plasma Poloidal Motion in Magnetic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ake; Wang, Yuming; Liu, Jiajia

    An interesting phenomenon, plasma poloidal motion, has been found in many magnetic clouds (MCs), and viscosity has been proposed as a possible mechanism. However, it is not clear how significant the role of viscosity is in generating such motion. In this paper, we conduct a statistical study of the MCs detected by the Wind spacecraft during 1995–2012. It is found that, for 19% of all the studied MCs (186), the poloidal velocities of the MC plasma near the MC boundaries are well correlated with those of the corresponding ambient solar wind plasma. A non-monotonic increase from inner to outer MCsmore » suggests that the viscosity does play a role, albeit weak, on the poloidal motion in the MC statistically. The possible dependence on the solar wind parameters is then studied in detail for the nine selected crossings, which represent the viscosity characteristic. There is an evident negative correlation between the viscosity and the density, a weak negative correlation between the viscosity and the turbulence strength, and no clear correlation between the viscosity and the temperature.« less

  7. Global observations of magnetospheric high‐m poloidal waves during the 22 June 2015 magnetic storm

    PubMed Central

    Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; Kepko, E. L.; Magnes, W.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-01-01

    Abstract We report global observations of high‐m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single‐frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step‐like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 R E, suggesting that there exist a discrete number of drift‐bounce resonance regions across L shells during storm times. PMID:28713180

  8. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    DOE PAGES

    Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...

    2014-07-09

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of themore » $$\\vec{E}$$ × $$\\vec{B}$$ shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Finally, predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.« less

  9. Study of runaway electrons using the conditional average sampling method in the Damavand tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourshahab, B., E-mail: bpourshahab@gmail.com; Sadighzadeh, A.; Abdi, M. R., E-mail: r.abdi@phys.ui.ac.ir

    2017-03-15

    Some experiments for studying the runaway electron (RE) effects have been performed using the poloidal magnetic probes system installed around the plasma column in the Damavand tokamak. In these experiments, the so-called runaway-dominated discharges were considered in which the main part of the plasma current is carried by REs. The induced magnetic effects on the poloidal pickup coils signals are observed simultaneously with the Parail–Pogutse instability moments for REs and hard X-ray bursts. The output signals of all diagnostic systems enter the data acquisition system with 2 Msample/(s channel) sampling rate. The temporal evolution of the diagnostic signals is analyzedmore » by the conditional average sampling (CAS) technique. The CASed profiles indicate RE collisions with the high-field-side plasma facing components at the instability moments. The investigation has been carried out for two discharge modes—low-toroidal-field (LTF) and high-toroidal-field (HTF) ones—related to both up and down limits of the toroidal magnetic field in the Damavand tokamak and their comparison has shown that the RE confinement is better in HTF discharges.« less

  10. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  11. A super-cusp divertor configuration for tokamaks

    DOE PAGES

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less

  12. Poloidal velocity of impurity ions in neoclassical theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S. K.; Chan, V. S.; Solomon, W. M.

    A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C{sup +6} ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisonsmore » among these theories are made, demonstrating the degree of uncertainty of theoretical predictions.« less

  13. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less

  14. Electron kinetic effects on optical diagnostics in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V.; Den Hartog, D. J.; Duff, J.

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. We calculate electron thermal corrections to the interferometric phase and polarization state of an EM wave propagating along tangential and poloidal chords (Faraday and Cotton-Mouton polarimetry) and perform analysis of the degree of polarization for incoherent TS. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy themore » high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH and RF current drive effects. The classical problem of degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sup e} measurement relevant to ITER operational scenarios.« less

  15. An investigation of the generation and properties of laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  16. Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.

    PubMed

    Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q

    2016-01-01

    In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.

  17. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  18. Flux amplification in helicity injected spherical tori

    NASA Astrophysics Data System (ADS)

    Tang, X. Z.; Boozer, A. H.

    2005-04-01

    An important measure of the effective current drive by helicity injection into spheromaks and spherical tori is provided by the flux amplification factor, defined as the ratio between the closed poloidal flux in the relaxed mean field and the initial injector vacuum poloidal flux. Flux amplification in magnetic helicity injection is governed by a resonant behavior for Taylor-relaxed plasmas satisfying j =kB. Under the finite net toroidal flux constraint in a spherical torus (ST), the constrained linear resonance k1c is upshifted substantially from the primary Jensen-Chu resonance k1 that was known to be responsible for flux amplification in spheromak formation. Standard coaxial helicity injection into a ST operates at large M, with M the characteristic dimensionless parameter defined as the ratio between the toroidal flux in the discharge chamber and the injector poloidal flux. Meaningful flux amplification for ST plasmas is limited by a critical kr at which edge toroidal field reverses its direction. The kr is downshifted from k1 by a small amount inversely proportional to M. The maximum flux amplification factor Ar≡A(k=kr) scales linearly with M. At the other end of k, substantial flux amplification A(k =ko)˜1 becomes available for ko that scales inversely proportional to M, a significant departure from that in spheromak formation. These important parameters follow the inequality ko

  19. Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2015-11-01

    Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.

  20. Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Cui, L.; Wang, H.; Sun, Y.; Gu, S.; Li, G.; Nazikian, R.; Paz-Soldan, C.

    2018-07-01

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n  =  2 fields in the same plasma for which the n  =  1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n  =  2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n  =  1 and n  =  2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.

  1. Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.

    2012-02-01

    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by Bo=Bpotanh(x /λ)ŷ+Bzoẑ, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the poloidal field Byo(x)=Bpotanh(x /λ), which is the only resonant surface in 2D or in the absence of a guide field. Here, Bpo is the asymptotic value of the equilibrium poloidal field, Bzo is the constant equilibrium guide field, and λ is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θ ≡arctan(kz/ky). The resonant surface location for angle θ is xs=λarctanh(μ), where μ =tanθBzo/Bpo and the existence of a resonant surface requires |θ |

  2. Main Cause of the Poloidal Plasma Motion Inside a Magnetic Cloud Inferred from Multiple-Spacecraft Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Ake; Wang, Yuming; Chi, Yutian; Liu, Jiajia; Shen, Chenglong; Liu, Rui

    2017-04-01

    Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. ( J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19 - 20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.

  3. Poloidal radiation asymmetries during disruption mitigation by massive gas injection on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.

    2016-10-01

    Measurements of poloidal asymmetry in the radiated power during thermal quench (TQ) mitigation by massive gas injection (MGI) on DIII-D show poloidal peaking in the radiated heat flux at the wall generally consistent with 3D resistive MHD modeling, that indicates a large n=1 tearing mode causes these asymmetries. Radiation asymmetries are a concern to ITER because they can cause localized melting of the first wall even if globally the mitigation successfully radiates 100% of the plasma thermal energy. Toroidal radiation asymmetries have been well-studied, but until now the equally important poloidal asymmetries were not well constrained. Radiation emissivity profiles are reconstructed by tomographic inversion of AXUV photodiode arrays, from which the peaking measurements are derived. The poloidal peaking measurements are compared to NIMROD 3D resistive MHD simulations. Qualitatively, the measured and modeled peaking evolve similarly. In both cases, peaking during the TQ changes little with toroidal phase, consistent with predictions of n=1 MHD during the TQ producing the asymmetry. Quantitatively, the measured TQ peaking amplitudes are comparable to but consistently higher than the modeled values. This is a result of the measured radiation exhibiting high emissivity lobes at larger minor radius (and outside the separatrix) than the modeled cases, which may indicate incomplete treatment of the plasma-neutral interaction at the plasma edge in the model. This work, combined with previous measurement and modeling and toroidal radiation asymmetries, provides a basis for constraining localized mitigation radiation heat flux in ITER. Work supported by US DOE under DE-FC02-04ER54698.

  4. Anomalous Transport in High Beta Poloidal DIII-D Discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A.; Garofalo, A.; Kritz, A.; Rafiq, T.; Weiland, J.

    2016-10-01

    Dominant instabilities that drive anomalous transport in high beta poloidal DIII-D discharges are investigated using the MMM7.1, and TGLF models in the predictive integrated modeling TRANSP code. The ion thermal transport is found to be strongly reduced in these discharges, but turbulence driven by the ITG modes along with the neoclassical transport still play a role in determining the ion temperature profiles. The electron thermal transport driven by the ETG modes impact the electron temperature profiles. The E × B flow shear is found to have a small effect in reducing the electron thermal transport. The Shafranov shift is found to strongly reduce the anomalous transport in the high beta poloidal DIII-D discharges. The reduction of Shafranov shift can destroy the ion internal transport barrier and can result in significantly lower core temperatures. The MMM7.1 model predicts electron and ion temperature profiles reasonably well, but it fails to accurately predict the properties of electron internal transport barrier, which indicates that the ETG model in MMM7.1 needs to be improved in the high beta poloidal operational regime. Research supported by the Office of Science, US DOE.

  5. Evidence for the role of turbulence-induced poloidal flow shear in triggering the L-H transition

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xu, Y. H.; Jiang, Y.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.

    1999-11-01

    We have studied the role of turbulence-driven Reynolds stress induced poloidal flow shear in triggering the L-H transition induced by turbulent heating (TH) on HT-6M tokamak. This improved confinement regime has a set of features similar to that of H-mode are commonly observed in large tokamaks. The time evolution indicates that V_θ begins to evolve 0.1ms prior to the change in Er which precedes any measurable change in local confinement characteristics. The measurements of the turbulence-driven Reynolds stress S shows that S and its gradient in the edge region evolve sharply after the start of the TH pulse. Moreover, the time evolution and the temporal structure of the poloidal velocity computed from the measured Reynolds stress profile and the directly measured V_θ look remarkably similar. The time behavior and magnitude of the Reynolds stress-induced-V_θ B_φ term are also found to be in good correlation with that of the measured E_r. These results suggest that the turbulence-driven Reynolds stress might be the dominant mechanism to generate the poloidal flow shear which causes the rapid changes in Er and its shear to trigger the transition.

  6. Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.; Ballard, E.O.

    1989-01-01

    The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less

  7. Azimuthal swirl in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  8. Currents in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Azari, A.; Eidietis, N. W.

    2012-10-01

    Loss of vertical control of an elongated tokamak plasma results in a vertical displacement event (VDE) which can induce large currents on open field lines and exert high JxB forces on in-vessel components. An array of first-wall tile current monitors on DIII-D provides direct measurement of the poloidal halo currents. These measurements are analyzed to create a database of halo current magnitude and asymmetry, which are found to lie within the ranges seen by numerous other tokamaks in the ITPA Disruption Database. In addition, an analysis of halo asymmetry rotation is presented, as rotation at the resonance frequencies of in-vessel components could lead to significant amplification of the halo forces. Halo current rotation is found to be far more prevalent in old (1997-2002) DIII-D halo current data than recent data (2009), perhaps due to a change in divertor geometry over that time.

  9. Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn

    2016-01-15

    In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less

  10. Functional form for plasma velocity in a rapidly rotating tokamak discharge

    DOE PAGES

    Burrell, Keith H.; Chrystal, C. olin

    2014-07-25

    A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less

  11. Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues

    DOE PAGES

    Soukhanovskii, V. A.; Xu, X.

    2015-09-15

    Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.

  12. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  13. An upgrade of the magnetic diagnostic system of the DIII-D tokamak for non-axisymmetric measurements

    DOE PAGES

    King, Joshua D.; Strait, Edward J.; Boivin, Rejean L.; ...

    2014-08-07

    Here, the DIII-D tokamak magnetic diagnostic system has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric “3D” fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers 1 ≤ n ≤ 3, and poloidal wavelengths smaller than MARS-F, IPEC, and VMEC magnetohydrodynamic (MHD) model predictions. Small 3D perturbations, relative to the equilibrium field (10 –5 0 <10 –4), require sub-millimeter fabrication and installation tolerances. This high precision is achieved using electrical discharge machined components, and alignment techniques employing rotary laser levels and a coordinate measurement machine. Amore » 16-bit data acquisition system is used in conjunction with analog signal-processing to recover non-axisymmetric perturbations. Co-located radial and poloidal field measurements allow up to 14.2 cm spatial resolution of poloidal structures (plasma poloidal circumference is ~ 500 cm). The function of the new system is verified by comparing the rotating tearing mode structure, measured by 31 BP fluctuation sensors, with that measured by the upgraded B R saddle loop sensors after the mode locks to the vessel wall. The result is a nearly identical 2/1 helical eigenstructure in both cases.« less

  14. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  15. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increasemore » again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.« less

  16. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  17. On virial analysis at low aspect ratio

    DOE PAGES

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; ...

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta β p and internal inductance ℓ i from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately representedmore » through the virial mean radius parameter R T. Alternate formulations for inferring β p and ℓ i that are independent of R T to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  18. A Model of Magnetic Braking of Solar Rotation that Satisfies Observational Constraints

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.

    2010-08-01

    The model of magnetic braking of solar rotation considered by Charbonneau & MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  19. Blobs and drift wave dynamics

    DOE PAGES

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2017-09-29

    The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less

  20. Multipoint Data Analysis of the Poloidal Motion inside a Magnetic Cloud

    NASA Astrophysics Data System (ADS)

    Zhao, A. K.

    2015-12-01

    The dynamical evolution of the magnetic clouds (MCs) has been the focus of the research since the MCs were identified several decades ago. Recently, some phenomena indicate the existence of the poloidal motion of plasma in MCs. In order to study the possible cause of this motion, we use in-situ data from STEREO-A, STEREO-B and Wind spacecraft to analyze the magnetic cloud on November 19 to 20, 2007. A velocity-modified cylindrical force-free flux rope model is used to fit the MC at three spacecraft and the relation between the value of fitting velocity and observed velocity in the x'-y' plane in MC frame is obtained. Through the analysis, we find the difference of the speed of the ambient solar wind before the leading edge and after the trailing edge of the MC is the major cause of the poloidal motion of plasma in MC.

  1. Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. S., E-mail: zhang.huasen@gmail.com; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Liu, Y. Q.

    2016-04-15

    The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observedmore » and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.« less

  2. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  3. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    PubMed

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  4. Near midplane scintillator-based fast ion loss detector on DIII-D.

    PubMed

    Chen, X; Fisher, R K; Pace, D C; García-Muñoz, M; Chavez, J A; Heidbrink, W W; Van Zeeland, M A

    2012-10-01

    A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (≤500 kHz). Combined with the first FILD at ∼45° below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r(L) ∼ [1.5-8] cm and pitch angle α ∼ [35°-85°]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.

  5. Numerical study of the existence criterion for the reversed shear Alfven eigenmode in the presence of a parallel equilibrium current

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.

    2017-06-01

    We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.

  6. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOEpatents

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  7. Transport and reconnection in tokamak sawteeth.

    PubMed

    Gentle, K W; Austin, M E; Phillips, P E

    2003-12-19

    The core of a tokamak discharge often undergoes periodic relaxation oscillations, sawteeth, as the steepening current and temperature profiles are flattened by fast reconnection events. Careful analysis of the electron temperature evolution over this cycle gives an estimate of the energy dissipated in the electrons during reconnection and a measure of the transport characteristic (energy flux versus temperature gradient) over the range of parameters occurring over the remainder of the cycle. The energy dissipated is consistent with estimates of the loss of poloidal magnetic energy. The transport characteristics exhibit a wide range of behaviors.

  8. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.

    1984-08-06

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed.

  9. Analytic expression for poloidal flow velocity in the banana regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, M.

    The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.

  10. Terrace retro-reflector array for poloidal polarimeter on ITER.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  11. Modulation of auroras by Pc5 pulsations in the dawn sector in association with reappearance of energetic particles at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.; Klimushkin, D. Yu.; Mager, P. N.

    2014-04-01

    Geomagnetic Pc5 pulsations were observed in the dawn sector of the auroral zone on 17 January 1994 in association with increased energetic ion fluxes at geosynchronous orbit 10 min after the Pi2 onset. The characteristic properties of auroras associated with these pulsations were studied using movies taken by an all-sky imager. It was found that a pulsating aurora (PA) can be an optical manifestation of the Pc5 waves by a strong poloidal component observed with ground-based magnetometers. Goes7 observations showed compressional pulsations with the same period which can be attributed to the influence of the finite pressure of plasma and field line curvature on the poloidally polarized Alfvén waves. These poloidal pulsations may be generated by the ion injection observed with the LANL 1989-046 satellite. Two auroral arcs were observed north of the PA with optical features characteristic for the toroidal field line resonances: strong localization across L-shells, 180° phase change across the resonance, poleward phase propagation. Thus the Pc5 oscillations split into the toroidal and poloidal mode and oscillated coherently at latitudes from 62°N to 70°N. This study provides observational evidence of polarization splitting of the Alfven oscillation spectrum. Such a polarization splitting would occur in association with the reappearance of the energetic particles at geosynchronous orbit.

  12. Physics Results from the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.

    2000-10-01

    The National Spherical Torus Experiment (NSTX) will produce plasmas with R/a=0.85/0.68 m 1.25, I_p= 1 MA, BT <=0.6 T, κ<=2.2, δ<=0.5, with 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-axial Helicity Injection (CHI) for non-inductive startup to establish the physics principles of low aspect ratio. Outboard passive conducting plates aid vertical stability and suppression of low-n modes. During the initial set of physics experiments, studies of poloidal flux consumption indicated an optimal current ramp rate of 5 MA/sec, with higher ramp rates limited by m=2 oscillations and Internal Reconnection Events possibly related to impurity accumulation and double tearing modes. Flux consumption optimization and real-time plasma control led to the achievement of ohmic discharges with 1 MA plasma current and stored energies up to 48 kJ and βT 9%. Inboard limited and single and double-null diverted plasmas over a wide range of κ and δ were produced. The density limit, so far, is consistent with the Hugill limit, which is about 60% of the Greenwald limit, and it was characterized by growing and locking m=1 oscillations, followed by a series of Reconnection Events. The q-limit was manifest as growing and locking 2/1 perturbations leading to severe kinking of the plasma surface and subsequent discharge termination as q_cyl decreased below 2. Initial observations of edge turbulence indicated filamentary structures with λ_perp 10 cm. Up to 2 MW of HHFW power was coupled to the plasma, with increases in stored energy observed for waves with k_parallel=14 m-1, but not at higher phase velocity. CHI experiments on NSTX produced up to 130 kA of toroidal current for up to 100 msec. NBI heating is planned for late September 2000. This work has been supported at PPPL by U.S. DOE Contract # DE-AC02-76CH03073.

  13. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  14. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Control of Non-Axisymmetric Fields With Static and Dynamic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.

    2013-10-01

    Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.

  15. Simulation Study on Neoclassical Poloidal Viscosity in Helical Plasmas

    NASA Astrophysics Data System (ADS)

    Satake, Shinsuke

    2012-10-01

    In helical plasma confinement devices such as LHD, CHS and TU-Heliac, biasing experiments have been carried out to study the relationships among the ExB rotation, neoclassical poloidal viscosity (NPV), JxB torque of biasing current, and plasma confinement properties. In earlier studies using simple analytic formulae, it has been suggested that the transition phenomena of plasma transport found in the biasing experiments is attributed to nonlinear dependence of NPV on poloidal Mach number of the ExB rotation speed, or Mp. To study the NPV dependence on Mp in LHD biasing plasmas more in detail, we have applied FORTEC-3D drift-kinetic Monte-Carlo simulation code which can evaluate NPV precisely in realistic 3-D magnetic configurations. This is the first application of the massive neoclassical transport simulation to study the dependence of NPV on the magnetic configuration and rotation speed. In LHD plasmas, neoclassical transport properties such as radial particle transport and viscosity can be controlled by shifting the magnetic axis position. Our simulation study revealed that the NPV is drastically reduced if magnetic axis moves from 3.75m to 3.53m. As the biasing voltage, or Mp increases, it is found that the local maximum of NPV appears when |Mp|˜1, at which the transition of plasma transport properties is expected to happen. The transition Mp value is much smaller than that is predicted from simple analytic estimations. Comparing with the data from LHD biasing experiments, we confirmed that Mp near the electrode is about unity when a transition occurs, and also found that the peak NPV value at |Mp|˜1 agrees with the magnitude of JxB torque at the transition point. This suggests that our simulation successfully explains the nonlinear dependence of NPV and can give a quantitative evaluation of NPV in realistic LHD biasing experiment.

  16. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (BP and Bt, respectively). An Object with B P t >> 1 is classified as a Field Reverse Configuration (FRC); if B, = Bt, it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids, and subsequently ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp s in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N/sq m. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to several MW s. The plasmoids mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing.

  17. Comparing TCV experimental VDE responses with DINA code simulations

    NASA Astrophysics Data System (ADS)

    Favez, J.-Y.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2002-02-01

    The DINA free-boundary equilibrium simulation code has been implemented for TCV, including the full TCV feedback and diagnostic systems. First results showed good agreement with control coil perturbations and correctly reproduced certain non-linear features in the experimental measurements. The latest DINA code simulations, presented in this paper, exploit discharges with different cross-sectional shapes and different vertical instability growth rates which were subjected to controlled vertical displacement events (VDEs), extending previous work with the DINA code on the DIII-D tokamak. The height of the TCV vessel allows observation of the non-linear evolution of the VDE growth rate as regions of different vertical field decay index are crossed. The vertical movement of the plasma is found to be well modelled. For most experiments, DINA reproduces the S-shape of the vertical displacement in TCV with excellent precision. This behaviour cannot be modelled using linear time-independent models because of the predominant exponential shape due to the unstable pole of any linear time-independent model. The other most common equilibrium parameters like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q, the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal magnetic field at the edge of the plasma βp, and the internal self inductance li also show acceptable agreement. The evolution of the growth rate γ is estimated and compared with the evolution of the closed-loop growth rate calculated with the RZIP linear model, confirming the origin of the observed behaviour.

  18. Runaway electrons and ITER

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2017-05-01

    The potential for damage, the magnitude of the extrapolation, and the importance of the atypical—incidents that occur once in a thousand shots—make theory and simulation essential for ensuring that relativistic runaway electrons will not prevent ITER from achieving its mission. Most of the theoretical literature on electron runaway assumes magnetic surfaces exist. ITER planning for the avoidance of halo and runaway currents is focused on massive-gas or shattered-pellet injection of impurities. In simulations of experiments, such injections lead to a rapid large-scale magnetic-surface breakup. Surface breakup, which is a magnetic reconnection, can occur on a quasi-ideal Alfvénic time scale when the resistance is sufficiently small. Nevertheless, the removal of the bulk of the poloidal flux, as in halo-current mitigation, is on a resistive time scale. The acceleration of electrons to relativistic energies requires the confinement of some tubes of magnetic flux within the plasma and a resistive time scale. The interpretation of experiments on existing tokamaks and their extrapolation to ITER should carefully distinguish confined versus unconfined magnetic field lines and quasi-ideal versus resistive evolution. The separation of quasi-ideal from resistive evolution is extremely challenging numerically, but is greatly simplified by constraints of Maxwell’s equations, and in particular those associated with magnetic helicity. The physics of electron runaway along confined magnetic field lines is clarified by relations among the poloidal flux change required for an e-fold in the number of electrons, the energy distribution of the relativistic electrons, and the number of relativistic electron strikes that can be expected in a single disruption event.

  19. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  20. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  1. Runaway electrons and ITER

    DOE PAGES

    Boozer, Allen H.

    2017-03-24

    The potential for damage, the magnitude of the extrapolation, and the importance of the atypical—incidents that occur once in a thousand shots—make theory and simulation essential for ensuring that relativistic runaway electrons will not prevent ITER from achieving its mission. Most of the theoretical literature on electron runaway assumes magnetic surfaces exist. ITER planning for the avoidance of halo and runaway currents is focused on massive gas or shattered-pellet injection of impurities. In simulations of experiments, such injections lead to a rapid large-scale magnetic-surface breakup. Surface breakup, which is a magnetic reconnection, can occur on a quasi-ideal Alfvénic time scalemore » when the resistance is sufficiently small. Nevertheless, the removal of the bulk of the poloidal flux, as in halo-current mitigation, is on a resistive time scale. The acceleration of electrons to relativistic energies requires the confinement of some tubes of magnetic flux within the plasma and a resistive time scale. The interpretation of experiments on existing tokamaks and their extrapolation to ITER should carefully distinguish confined versus unconfined magnetic field lines and quasi-ideal versus resistive evolution. The separation of quasi-ideal from resistive evolution is extremely challenging numerically, but is greatly simplified by constraints of Maxwell’s equations, and in particular those associated with magnetic helicity. Thus, the physics of electron runaway along confined magnetic field lines is clarified by relations among the poloidal flux change required for an e-fold in the number of electrons, the energy distribution of the relativistic electrons, and the number of relativistic electron strikes that can be expected in a single disruption event.« less

  2. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.

  3. Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, G.J.

    2001-10-29

    Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency.more » This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.« less

  4. Bursting reconnection of the two co-rotating current loops

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  5. Pitch Angle Dependence of Drift Resonant Ions Observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Wang, C.; Wang, Y.; Zong, Q. G.; Zhou, X.

    2017-12-01

    Acceleration and modulation of ring current ions by poloidal mode ULF waves is investigated. A simplified MHD model of ULF waves in a dipole magnetic field is presented that includes phase mixing to perpendicular scales determined by the ionospheric Pedersen conductivity. The wave model is combined with a full Lorentz force test particle code to study drift and drift bounce resonance wave-particle interactions. Ion trajectories are traced backward-in-time to an assumed form of the distribution function, and Liouville's method is used to reconstruct the phase space density response (PSD) poloidal mode waves observed by the Van Allen Probes. In spite of its apparent simplicity, simulations using the wave and test particle models are able to explain the acceleration of ions and energy dispersion observed by the Van Allen Probes. The paper focuses on the pitch angle evolution of the initial PSD as it responds to the action of ULF waves. An interesting aspect of the study is the formation of butterfly ion distributions as ions make periodic radial oscillations across L. Ions become trapped in an effective potential well across a limited range of L and follow trajectories that cause them to surf along constant phase fronts. The impications of this new trapping mechanism for both ions and electrons is discussed.

  6. Advanced Plasma Shape Control to Enable High-Performance Divertor Operation on NSTX-U

    NASA Astrophysics Data System (ADS)

    Vail, Patrick; Kolemen, Egemen; Boyer, Mark; Welander, Anders

    2017-10-01

    This work presents the development of an advanced framework for control of the global plasma shape and its application to a variety of shape control challenges on NSTX-U. Operations in high-performance plasma scenarios will require highly-accurate and robust control of the plasma poloidal shape to accomplish such tasks as obtaining the strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux through regulation of the divertor magnetic geometry. The new control system employs a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils and conducting structures as well as a first-principles driven calculation of the axisymmetric plasma response. The model-based nature of the control system enables real-time optimization of controller parameters in response to time-varying plasma conditions and control objectives. The new control scheme is shown to enable stable and on-demand plasma operations in complicated magnetic geometries such as the snowflake divertor. A recently-developed code that simulates the nonlinear evolution of the plasma equilibrium is used to demonstrate the capabilities of the designed shape controllers. Plans for future real-time implementations on NSTX-U and elsewhere are also presented. Supported by the US DOE under DE-AC02-09CH11466.

  7. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOEpatents

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  8. Multiscale interaction between a large scale magnetic island and small scale turbulence

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Kim, J.; Kwon, J.-M.; Park, H. K.; In, Y.; Lee, W.; Lee, K. D.; Yun, G. S.; Lee, J.; Kim, M.; Ko, W.-H.; Lee, J. H.; Park, Y. S.; Na, Y.-S.; Luhmann, N. C., Jr.; Park, B. H.

    2017-12-01

    Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence can mutually interact via coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island steepens outside and flattens inside the island. The T e turbulence can appear in increased T e gradient regions. The combined effects of the T e gradient and the poloidal flow shear determines the two-dimensional distribution of the T e turbulence. When the poloidal vortex flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like an electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the vortex flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.

  9. NIMROD modeling of poloidal flow damping in tokamaks using kinetic closures

    NASA Astrophysics Data System (ADS)

    Jepson, J. R.; Hegna, C. C.; Held, E. D.

    2017-10-01

    Calculations of poloidal flow damping in a tokamak are undertaken using two different implementations of the ion drift kinetic equation (DKE) in the extended MHD code NIMROD. The first approach is hybrid fluid/kinetic and uses a Chapman Enskog-like (CEL) Ansatz. Closure of the evolving lower-order fluid moment equations for n, V , and T is provided by solutions to the ion CEL-DKE written in the macroscopic flow reference frame. The second implementation solves the DKE using a delta-f approach. Here, the delta-f distribution describes all of the information beyond a static, lowest-order Maxwellian. We compare the efficiency and accuracy of these two approaches for a simple initial value problem that monitors the relaxation of the poloidal flow profile in high- and low-aspect-ratio tokamak geometry. The computation results are compared against analytic predictions of time dependent closures for the parallel viscous force. Supported by DoE Grants DE-FG02-86ER53218 and DE-FG02-04ER54746.

  10. Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source. 2. Numerical Modeling

    DTIC Science & Technology

    2010-07-14

    apex. The external field is thus mainly poloidal, with the ratio between toroidal and poloidal components at the flux rope apex being Bet/ Bep = 0.075...eruption involved a kink-unstable flux rope that had a high twist of Φ & 6π. This yields a coherent framework to understand the inverse gamma shape...leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement n 218816

  11. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.

  12. Prospects for Advanced Tokamak Operation of ITER

    NASA Astrophysics Data System (ADS)

    Neilson, George H.

    1996-11-01

    Previous studies have identified steady-state (or "advanced") modes for ITER, based on reverse-shear profiles and significant bootstrap current. A typical example has 12 MA of plasma current, 1,500 MW of fusion power, and 100 MW of heating and current-drive power. The implementation of these and other steady-state operating scenarios in the ITER device is examined in order to identify key design modifications that can enhance the prospects for successfully achieving advanced tokamak operating modes in ITER compatible with a single null divertor design. In particular, we examine plasma configurations that can be achieved by the ITER poloidal field system with either a monolithic central solenoid (as in the ITER Interim Design), or an alternate "hybrid" central solenoid design which provides for greater flexibility in the plasma shape. The increased control capability and expanded operating space provided by the hybrid central solenoid allows operation at high triangularity (beneficial for improving divertor performance through control of edge-localized modes and for increasing beta limits), and will make it much easier for ITER operators to establish an optimum startup trajectory leading to a high-performance, steady-state scenario. Vertical position control is examined because plasmas made accessible by the hybrid central solenoid can be more elongated and/or less well coupled to the conducting structure. Control of vertical-displacements using the external PF coils remains feasible over much of the expanded operating space. Further work is required to define the full spectrum of axisymmetric plasma disturbances requiring active control In addition to active axisymmetric control, advanced tokamak modes in ITER may require active control of kink modes on the resistive time scale of the conducting structure. This might be accomplished in ITER through the use of active control coils external to the vacuum vessel which are actuated by magnetic sensors near the first wall. The enhanced shaping and positioning flexibility provides a range of options for reducing the ripple-induced losses of fast alpha particles--a major limitation on ITER steady-state modes. An alternate approach that we are pursuing in parallel is the inclusion of ferromagnetic inserts to reduce the toroidal field ripple within the plasma chamber. The inclusion of modest design changes such as the hybrid central solenoid, active control coils for kink modes, and ferromagnetic inserts for TF ripple reduction show can greatly increase the flexibility to accommodate advance tokamak operation in ITER. Increased flexibility is important because the optimum operating scenario for ITER cannot be predicted with certainty. While low-inductance, reverse shear modes appear attractive for steady-state operation, high-inductance, high-beta modes are also viable candidates, and it is important that ITER have the flexibility to explore both these, and other, operating regimes.

  13. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  14. Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Xuan, Weimin; Wang, Haibing; Li, Huajun; Wang, Yingqiao; Wang, Shujin

    2013-03-01

    A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as x″d = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.

  15. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denissenkov, Pavel A., E-mail: pavel.denisenkov@gmail.co

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic withmore » the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.« less

  16. The kinematic dynamo problem, part I: analytical treatment with the Bullard-Gellman formalism

    NASA Astrophysics Data System (ADS)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2018-03-01

    This paper is dedicated to the description of kinematic dynamo action in a sphere and its analytical treatment with the uc(Bullard)-uc(Gellman) formalism. One goal of dynamo theory is to answer the question: Can magnetic fields of stellar objects be generated or sustained due to (fluid) motion in the interior? uc(Bullard) and uc(Gellman) were among the first to study this question, leading the way for many subsequent studies, cf. Bullard (Philos Trans R Soc A 247(928):213-278, 1954). In their publication the differential equations resulting from a toroidal-poloidal decomposition of the velocity and magnetic field are stated without an in-depth discussion of the employed methods and computation steps. This study derives the necessary formalism in a compact and concise manner by using an operator-based approach. The focus lies on the mathematical steps and necessary properties of the considered formalism. Prior to that a derivation of the induction equation is presented based on rational continuum electrodynamics. As an example of the formalism the decay of two magnetic fields is analyzed.

  17. Studying Filamentary Currents with Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.; Kubala, S. Z.

    2016-10-01

    The MST reversed-field pinch plasma generates bursts of toroidally localized magnetic activity associated with m = 0 modes resonant at the reversal surface near the plasma edge. Previously, using data from an array of edge magnetic probes, these bursts were connected to poloidal current filaments. Now the MST Thomson scattering diagnostic is being used to measure the net drift in the electron distribution due to these currents. An additional long-wavelength spectral bin has been added to several Thomson scattering polychromators, in addition to 5-7 pre-existing short wavelength spectral bins, to improve discrimination between shifted vs. broadened spectra. The bursts are examined in plasma conditions that display spontaneous periods of low tearing-mode activity, with higher confinement and higher temperatures that improve Thomson scattering measurement performance. This work is supported by the U.S. Department of Energy and the National Science Foundation.

  18. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; DeLuca, Edward E.; Dasi-Espuig, Maria

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databasesmore » covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.« less

  19. Magnetic Field Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.

    2018-02-01

    The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.

  20. Transport in the plateau regime in a tokamak pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, J.; Shaing, K. C.

    In a tokamak H-mode, a strong E Multiplication-Sign B flow shear is generated during the L-H transition. Turbulence in a pedestal is suppressed significantly by this E Multiplication-Sign B flow shear. In this case, neoclassical transport may become important. The neoclassical fluxes are calculated in the plateau regime with the parallel plasma flow using their kinetic definitions. In an axisymmetric tokamak, the neoclassical particles fluxes can be decomposed into the banana-plateau flux and the Pfirsch-Schlueter flux. The banana-plateau particle flux is driven by the parallel viscous force and the Pfirsch-Schlueter flux by the poloidal variation of the friction force. Themore » combined quantity of the radial electric field and the parallel flow is determined by the flux surface averaged parallel momentum balance equation rather than requiring the ambipolarity of the total particle fluxes. In this process, the Pfirsch-Schlueter flux does not appear in the flux surface averaged parallel momentum equation. Only the banana-plateau flux is used to determine the parallel flow in the form of the flux surface averaged parallel viscosity. The heat flux, obtained using the solution of the parallel momentum balance equation, decreases exponentially in the presence of sonic M{sub p} without any enhancement over that in the standard neoclassical theory. Here, M{sub p} is a combination of the poloidal E Multiplication-Sign B flow and the parallel mass flow. The neoclassical bootstrap current in the plateau regime is presented. It indicates that the neoclassical bootstrap current also is related only to the banana-plateau fluxes. Finally, transport fluxes are calculated when M{sub p} is large enough to make the parallel electron viscosity comparable with the parallel ion viscosity. It is found that the bootstrap current has a finite value regardless of the magnitude of M{sub p}.« less

  1. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  2. Reducing current reversal time in electric motor control

    DOEpatents

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  3. Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid

    NASA Astrophysics Data System (ADS)

    Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie

    2018-06-01

    During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.

  4. Development of real-time rotating waveplate Stokes polarimeter using multi-order retardation for ITER poloidal polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazawa, R., E-mail: imazawa.ryota@jaea.go.jp; Kawano, Y.; Ono, T.

    The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000more » rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.« less

  5. Development of real-time rotating waveplate Stokes polarimeter using multi-order retardation for ITER poloidal polarimeter.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Itami, K

    2016-01-01

    The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000 rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.

  6. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE PAGES

    Soukhanovskii, V. A.

    2017-04-28

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  7. On extended analytic theory of 2D ballooning modes in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Abdoul, Peshwaz; Dickinson, David; Roach, Colin; Wilson, Howard

    2016-10-01

    We have extended the leading order ballooning theory which typically yields more unstable isolated mode (IM) that usually sit on the outboard mid-plane, to higher order where less unstable general mode (GM) sits at a different poloidal location. Our analytic theory has revealed that any poloidal shift of the mode with respect to the outboard mid-plane - arising from the effect of profile variations, for example - is always accompanied by an asymmetry of the radial eigenmode structure. Hence, GMs have radial asymmetry. Our theory can have important consequences, especially for calculations that invoke quasilinear theory to model intrinsic rotation arising from Reynolds stress. This is very important in ITER for which external torques are small. In such theories it is the radial asymmetry in the global GM mode which can generate a Reynolds stress that could in principle contribute to the poloidal flow during the low to high (L-H) mode transition in tokamaks. I am also an associate member at the York Plasma Institute, University of York and teaching at the Physics Department, University of Sulaimani, Kurdistan Region, Iraq.

  8. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NASA Astrophysics Data System (ADS)

    Crombé, K; Andrew, Y; Biewer, T M; Blanco, E; de Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Tala, T; von Hellermann, M; Zastrow, K-D; JET EFDA Contributors

    2009-05-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (vθ) in the ITB region is measured to be of the order of a few tens of km s-1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of vθ is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.

  9. A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A.

    The present vision for a plasma–material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertormore » configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). As a result, this paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.« less

  10. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombe, K.; Andrew, Y.; Biewer, Theodore M

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v ) in the ITB region is measured tomore » be of the order of a few tens of km s 1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.« less

  11. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  12. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2more » + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  13. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  14. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I 1) while the outer conductor carries the remainder (I 2) with the injected beam current given by I b=I 1+I 2. The simulations are in agreement with the theory whichmore » predicts that the total force on the beam trajectory is proportional to (I 2-I 1) and the force on the beam envelope is proportional to I b. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  15. An inductance Fourier decomposition-based current-hysteresis control strategy for switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Qi, Ji; Jia, Meng

    2017-05-01

    Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.

  16. Plasma Measurements in an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.

  17. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  18. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  19. Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2007-05-01

    Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of potential and poloidal (or kinetic gravity wave) energy are investigated. The latter unbalance is characterized by a ratio χ /2, assuming initial proportionality between the kinetic energy spectrum and the potential energy one. The phase mixing yields asymptotic equipartition in terms of poloidal and potential energy components, and analytical solutions are found in terms of Weber functions. At large time, the damped oscillations for poloidal, potential and vertical components decay with time like (Nt)-1/2 (N is the buoyancy frequency), while the oscillations for the horizontal component decay with time like (Nt)-3/2. The long-time limit of the ratio of horizontal component to vertical one depends only on the parameters χ, β2(e), β0(z), β2(z), and β4(z).

  20. A current-driven resistive instability and its nonlinear effects in simulations of coaxial helicity injection in a tokamak

    DOE PAGES

    Hooper, E. B.; Sovinec, C. R.

    2016-10-06

    An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the magnetic field at the surface of the injected magnetic flux. At low plasma temperatures (~10–20 eV), the mode is benign, but at high temperatures (~100 eV) its amplitude undergoes relaxation oscillations, broadening the layer of injected current and flow at the surface of themore » injected toroidal flux and background plasma. The poloidal-field structure is affected and the magnetic surface closure is generally prevented while the mode undergoes relaxation oscillations during injection. Furthermore, this study describes the mode and uses linearized numerical computations and an analytic slab model to identify the unstable mode.« less

  1. Study of the choice of the decoupling layout for the ITER ICRH system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vervier, M., E-mail: michel.vervier@rma.ac.be; Messiaen, A.; Ongena, J.

    10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition ofmore » four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.« less

  2. Circulating Current Suppressing Control’s Impact on Arm Inductance Selection for Modular Multilevel Converter

    DOE PAGES

    Li, Yalong; Jones, Edward A.; Wang, Fred

    2016-10-13

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  3. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment.

    PubMed

    Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H

    2011-10-01

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

  4. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE PAGES

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  5. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  6. Developing physics basis for the snowflake divertor in the DIII-D tokamak

    DOE PAGES

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; ...

    2018-02-01

    Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less

  7. Developing physics basis for the snowflake divertor in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.

    Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (cf. standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power PNBImore » $$\\leqslant$$ 4-5 MW and a range of plasma currents Ip = 0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta !p support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies in the NSTX and DIII-D tokamaks and contribute to the physics basis of the SF divertor as a power exhaust concept for future tokamaks.« less

  8. Control of power to an inductively heated part

    DOEpatents

    Adkins, Douglas R.; Frost, Charles A.; Kahle, Philip M.; Kelley, J. Bruce; Stanton, Suzanne L.

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  9. Control of power to an inductively heated part

    DOEpatents

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  10. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). Themore » values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  11. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  12. Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Sarris, T. E.; Wright, A. N.; Li, X.

    2009-03-01

    Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.

  13. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  14. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  15. Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardt, J.; Klir, D.

    2015-05-15

    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures insidemore » the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.« less

  16. Stationary multifaceted asymmetric radiation from the edge and improved confinement mode in a superconducting tokamak.

    PubMed

    Gao, X; Xie, J K; Wan, Y X; Ushigusa, K; Wan, B N; Zhang, S Y; Li, J; Kuang, G L

    2002-01-01

    Stationary multifaceted asymmetric radiation from the edge (MARFE) is studied by gas-puffing feedback control according to an empirical MARFE critical density ( approximately 1.8 x 10(13) cm(-3)) in the HT-7 Ohmic discharges (where the plasma current I(p) is about 170 kA, loop voltage V(loop)=2-3 V, toroidal field B(T)=1.9 T, and Z(eff)=3-4). It is observed that an improved confinement mode characterized by D(alpha) line emissions drops and the line-averaged density increase is triggered in the stationary MARFE discharges. The mode is not a symmetric "detachment" state, because the quasi-steady-state poloidally asymmetric radiation (e.g., C III line emissions) still exists. This phenomenon has not been predicted by the current MARFE theory.

  17. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  18. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that themore » necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.« less

  19. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55,more » 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.« less

  20. Field-Aligned Current Systems at Mercury

    NASA Astrophysics Data System (ADS)

    Heyner, Daniel; Exner, Willi

    2017-04-01

    Mercury exhibits a very dynamic magnetosphere, which is partially due to strong dayside reconnection and fast magnetospheric convection. It has been shown that dayside reconnection occurs even on low magnetic shear angles across the magnetopause. This drives quasi-steady region 1 field-aligned currents (FAC) that are observable in in-situ MESSENGER data. Here, the structure of the Hermean FAC-system is discussed and compared to the terrestrial counterpart. Due to the lack of a significant ionosphere at Mercury, it has to be examined how much of the poloidal FAC is reflected back to the magnetosphere, closed via toroidal currents in the planetary interior or via Pedersen currents in the tenuous exosphere. This investigation gives insights into the planetary conductivity structure as well as the exospheric plasma densities. Furthermore, it will be examined how much the only partially developed ring current at Mercury produces possible region 2 FAC signatures. We conclude with requirements to simulations that are needed to forecast the FAC structure on the southern hemisphere that will be closely studied with the upcoming BepiColombo mission.

  1. Introduction

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Briggs*, Richard J.

    The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.

  2. Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.

    2011-01-01

    A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.

  3. Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Balla, Joseph V.

    2010-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.

  4. Design optimization of high frequency transformer with controlled leakage inductance for current fed dual active bridge converter

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung

    2018-05-01

    Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.

  5. Circuit analysis on the inductance evolution based on electrical signal from various type plasma focus device

    NASA Astrophysics Data System (ADS)

    Mohamad, Saiful Najmee; Ismail, Fairuz Diana; Noorden, Ahmad Fakhrurrazi Ahmad; Haider, Zuhaib; Ali, Jalil

    2017-03-01

    Numerous configurations of plasma focus devices (PFD) have been introduced around the globe. The distinct electrode configuration of the PFD will give out different inductance profile. A circuit analysis has been done to study on the significant difference between the inductance evolution in a coaxial discharge based on various published results of PFD. The discharge current signal, tube voltage and current derivative of the particular shots from distinct PFD was digitized and analyze. The investigation was piloted for three different types of PFD. It was observed that there is a significant difference for the normalize inductance profile during the discharge between the individual PFD with different electrode configuration. The depletion of the radial start current with the normalised inductance development for Mather type (PF-1000) is found to be 25.9% from static discharge. The current depletion continues to drop 1.1% and 1.3% more for a Spherical type (PNK-13) and Filippov type (PF-3) respectively.

  6. ACOG Committee Opinion no. 597: Committee on Obstetric Practice: Labor induction or augmentation and autism.

    PubMed

    2014-05-01

    Functional oxytocin deficiency and a faulty oxytocin signaling pathway have been observed in conjunction with autism spectrum disorder (ASD). Because exogenous synthetic oxytocin commonly is administered for labor induction and augmentation, some have hypothesized that synthetic oxytocin used for these purposes may alter fetal oxytocin receptors and predispose exposed offspring to ASD. However, current evidence does not identify a causal relationship between labor induction or augmentation in general, or oxytocin labor induction specifically, and autism or ASD. Recognizing the limitations of available study design, conflicting data, and the potential consequences of limiting labor induction and augmentation, the Committee on Obstetric Practice recommends against a change in current guidance regarding counseling and indications for and methods of labor induction and augmentation.

  7. Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.

    2015-11-01

    Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.

  8. The FAST (FRC Acceleration Space Thruster) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  9. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  10. Toroidal modeling of the n = 1 intrinsic error field correction experiments in EAST

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Liu, Yueqiang; Sun, Youwen; Wang, Huihui; Gu, Shuai; Jia, Manni; Li, Li; Liu, Yue; Wang, Zhirui; Zhou, Lina

    2018-05-01

    The m/n = 2/1 resonant vacuum error field (EF) in the EAST tokamak experiments, inferred from the compass coil current amplitude and phase scan for mode locking, was found to depend on the parity between the upper and lower rows of the EF correction (EFC) coils (Wang et al 2016 Nucl. Fusion 56 066011). Here m and n are the poloidal and toroidal harmonic numbers in a torus, respectively. This experimental observation implies that the compass scan results cannot be simply interpreted as reflecting the true intrinsic EF. This work aims at understanding this puzzle, based on toroidal modeling of the EFC plasma discharge in EAST using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681). By varying the amplitude and phase of the assumed n = 1 intrinsic vacuum EF with different poloidal spectra, and by computing the plasma response to the assumed EF, the compass scan predicted 2/1 EF, based on minimizing the computed resonant electromagnetic torque, can be made to match well with that of the EFC experiments using both even and odd parity coils. Moreover, the compass scan predicted vacuum EFs are found to be significantly differing from the true intrinsic EF used as input to the MARS-F code. While the puzzling result remains to be fully resolved, the results from this study offer an improved understanding of the EFC experiments and the compass scan technique for determining the intrinsic resonant EF.

  11. Sensitivity of wave propagation in the LHRF to initial poloidal position in finite-aspect-ratio toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Larson, J. J.; Pinsker, R. I.; Bonoli, P. T.; Porkolab, M.

    2017-10-01

    The important effect of varying the initial poloidal wave-launching location to the core accessibility of lower hybrid slow waves in a torus of finite aspect ratio has been understood for many years. Since the qualitative properties of the wave propagation of the other branch in this regime, known as the `whistler', `helicon' or simply the `fast wave', are similar in some ways to those of the slow wave, we expect a dependence on launch position for this wave also. We study this problem for both slow and fast waves, first with simplified analytic models and then using the ray-tracing code GENRAY for realistic plasma equilibria. We assess the prospects of inside, top, bottom or conventional outside launch of waves on each of the two branches. Although the slow wave has been the focus of research for LHRF heating and current drive in the past, the fast wave will play a major role in burning plasmas beyond ITER where Te(0) = 10-20 keV. The stronger electron Landau damping of the slow wave will restrict the power deposition to the outer third of the plasma, while the fast wave's weaker damping allows the wave to penetrate to the hot plasma core before depositing its power. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698 and DE-FG02-91-ER54109.

  12. Three dimensional nonlinear simulations of edge localized modes on the EAST tokamak using BOUT++ code

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Xu, X. Q.; Gao, X.; Xia, T. Y.; Joseph, I.; Meyer, W. H.; Liu, S. C.; Xu, G. S.; Shao, L. M.; Ding, S. Y.; Li, G. Q.; Li, J. G.

    2014-09-01

    Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.

  13. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  14. The snowflake divertor

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-01

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.

  15. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  16. Reynolds stress of localized toroidal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at {pi}/2 (or -{pi}/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stressmore » (a possible source of poloidal flow) can be significant.« less

  17. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOEpatents

    Amey, David L.; Degner, Michael W.

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  18. Inductive ion acceleration and heating in picket fence geometry: Theory and simulations

    NASA Astrophysics Data System (ADS)

    Leboeuf, J. N.; Dawson, J. M.; Ratliff, S. T.; Rhodes, M.; Luhmann, N. C., Jr.

    1982-11-01

    Particle simulations and analytic theory confirm the experimental observation of preferential ion acceleration and heating by an inductive electric field Edc in picket-fence geometry. The ions which are unmagnetized over most of the current channel are freely accelerated by the inductive field; the magnetized electrons are tied to the field lines and do not run away as long as the binding ev×B/c force is greater than the detrapping inductive force eEdc. Consequently, most of the current is carried by the ions which are also Ohmically heated.

  19. Capacitively-coupled inductive sensors for measurements of pulsed currents and pulsed magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, C.A.

    In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.

  20. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  1. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  2. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  3. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  4. Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.

    PubMed

    Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B

    2012-06-01

    This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.

  5. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.

    2006-07-15

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  6. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  7. Turbulence studies with means of reflectometry at TEXTOR

    NASA Astrophysics Data System (ADS)

    Krämer-Flecken, A.; Dreval, V.; Soldatov, S.; Rogister, A.; Vershkov, V.; TEXTOR-team

    2004-11-01

    At TEXTOR, an O-mode heterodyne reflectometer system is installed and operated for the measurement of plasma density fluctuations and turbulence investigations. With two antenna arrays in the equatorial and top positions having two and three horn antennae, respectively, poloidal correlations are investigated under different plasma scenarios. From the amplitude, cross-phase and coherency spectrum, differences in the ohmic and auxiliary heated discharges are investigated. Furthermore the dynamic behaviour of the turbulence is studied in the SOC-IOC transition and in the precursor phase of a disruption. For the latter an increased integrated power spectral density was observed at the X-point of the mode compared with the O-point. Stationary m = 2 mode activity is observed for the first time at TEXTOR by reflectometry. The fluctuation level is calculated for different conditions and rises significantly increasing heating power which is consistent with the L-mode confinement degradation. Correlation measurements yield the measured phase delays which are used to calculate the poloidal phase velocity perpendicular to the magnetic field. In ohmic plasmas the turbulence rotates like a 'rigid body' with constant angular velocity inside the q = 2 surface. The rigid body rotation is broken up during tangential neutral beam injection. From the deduced poloidal wavenumber of the turbulence, most likely ion temperature gradient modes are the driving mechanism of the turbulence.

  8. Role of poloidal flows on the particle confinement time in a simple toroidal device : an experimental study

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel

    2017-10-01

    In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.

  9. Implementation of non-axisymmetric mesh system in the gyrokinetic PIC code (XGC) for Stellarators

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Hager, Robert; Cole, Micheal; Chang, Choong-Seock; Lazerson, Samuel; Ku, Seung-Hoe; Ishiguro, Seiji

    2017-10-01

    Gyrokinetic simulation is a powerful tool to investigate turbulent and neoclassical transports based on the first-principles of plasma kinetics. The gyrokinetic PIC code XGC has been developed for integrated simulations that cover the entire region of Tokamaks. Complicated field line and boundary structures should be taken into account to demonstrate edge plasma dynamics under the influence of X-point and vessel components. XGC employs gyrokinetic Poisson solver on unstructured triangle mesh to deal with this difficulty. We introduce numerical schemes newly developed for XGC simulation in non-axisymmetric Stellarator geometry. Triangle meshes in each poloidal plane are defined by PEST poloidal angle in the VMEC equilibrium so that they have the same regular structure in the straight field line coordinate. Electric charge of marker particle is distributed to the triangles specified by the field-following projection to the neighbor poloidal planes. 3D spline interpolation in a cylindrical mesh is also used to obtain equilibrium magnetic field at the particle position. These schemes capture the anisotropic plasma dynamics and resulting potential structure with high accuracy. The triangle meshes can smoothly connect to unstructured meshes in the edge region. We will present the validation test in the core region of Large Helical Device and discuss about future challenges toward edge simulations.

  10. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    NASA Astrophysics Data System (ADS)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0

  11. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  12. Toroidal plasma response based ELM control coil design for EU DEMO

    NASA Astrophysics Data System (ADS)

    Zhou, Lina; Liu, Yueqiang; Wenninger, Ronald; Liu, Yue; Wang, Shuo; Yang, Xu

    2018-07-01

    Magnetic coil design study is carried out, for the purpose of mitigating or suppressing the edge localized modes (ELMs) in a EU DEMO reference scenario. The coil design, including both the coil geometry and the coil current requirement, is based on criteria derived from the linear, full toroidal plasma response computed by the MARS-F code (Liu et al 2000 Phys. Plasma 7 3681). With a single midplane row of coils, a coil size covering about 30°–50° poloidal angle of the torus is found to be optimal for ELM control using the n  >  2 resonant magnetic perturbation (RMP) field (n is the toroidal mode number). For off-midplane coils, the coils’ poloidal location, as well as the relative toroidal phase (coil phasing) between the upper and lower rows of coils, also sensitively affects the ELM control according to the specified criteria. Assuming that the optimal coil phasing can always be straightforwardly implemented, following a simple analytic model derived from toroidal computations, it is better to place the two off-midplane rows of coils near the midplane, in order to maximize the resonant field amplitude and to have larger effects on ELMs. With the same coil current, the ex-vessel coils can be made as effective as the in-vessel coils, at the expense of increasing the ex-vessel coils’ size. This is however possible only for low-n (n  =  1–3) RMP fields. With these low-n fields, and assuming 300 kAt maximal coil current, the computed plasma displacement near the X-point can meet the 10 mm level, which we use as the conservative indicator for achieving ELM mitigation in EU DEMO. The risk of partial control coil failure in EU DEMO is also assessed based on toroidal modeling, indicating that the large n  =  1 sideband due to coil failure may need to be corrected, if the nominal n  >  1 coil configurations are used for ELM control in EU DEMO.

  13. Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector

    NASA Astrophysics Data System (ADS)

    Shishido, Hiroaki; Yamaguchi, Hiroyuki; Miki, Yuya; Miyajima, Shigeyuki; Oikawa, Kenichi; Harada, Masahide; Hidaka, Mutsuo; Oku, Takayuki; Arai, Masatoshi; Fujimaki, Akira; Ishida, Takekazu

    2017-09-01

    We demonstrate neutron detection using a solid-state 3He-free superconducting current-biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line and 10B neutron absorption layer. The CB-KID is based on the transient process of kinetic inductance of Cooper pairs induced by the nuclear reaction between 10B and neutrons. Therefore, the CB-KID can be operated in a wide superconducting region in the bias current-temperature diagram, as demonstrated in this paper. The transient change of the kinetic inductance induces the electromagnetic wave pulse under a DC bias current. The signal propagates along the meander line toward both sides with opposite polarity, where the signal polarity is dominated by the bias current direction. The full width at half maximum of the signals remains on the order of a few tens of ns, which confirms the high-speed operation of our detectors. We determine the neutron incident position within 1.3 mm accuracy in one dimension using the multichannel CB-KIDs.

  14. Analysis of Alfven eigenmode destabilization in DIII-D high poloidal β discharges using a Landau closure model

    NASA Astrophysics Data System (ADS)

    Varela, J.; Spong, D. A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A. M.; Qian, J. P.; Holcomb, C. T.; Hyatt, A. W.; Ferron, J. R.; Collins, C. S.; Ren, Q. L.; McClenaghan, J.; Guo, W.

    2018-07-01

    Alfvén eigenmodes are destabilized at the DIII-D pedestal during transient beta drops in high poloidal β discharges with internal transport barriers (ITBs), driven by n  =  1 external kink modes, leading to energetic particle losses. There are two different scenarios in the thermal β recovery phase: with bifurcation (two instability branches with different frequencies) or without bifurcation (single instability branch). We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics, to study the properties of the instabilities observed in the DIII-D high poloidal β discharges and identify the conditions to trigger the bifurcation. The simulations suggest that instabilities with lower frequency in the bifurcation case are ballooning modes driven at the plasma pedestal, while the instability branch with higher frequencies are low n (n  <  4) toroidal Alfvén eigenmodes nearby the pedestal. The reverse shear region between the middle and plasma periphery in the non-bifurcated case avoids the excitation of ballooning modes at the pedestal, although toroidal Alfvén eigenmodes and reverse shear Alfvén eigenmodes are unstable in the reverse shear region. The n  =  1 and n  =  2 Alfvén eigenmode activity can be suppressed or minimized if the neutral beam injector (NBI) intensity is lower than the experimental value (). In addition, if the beam energy or neutral beam injector voltage is lower than in the experiment (), the resonance between beam and thermal plasma is weaker. The and 6 AE activity can not be fully suppressed, although the growth rate and frequency is smaller for an optimized neutral beam injector operation regime. In conclusion, AE activity in high poloidal β discharges can be minimized for optimized NBI operation regimes.

  15. Operational Characteristics and Plasma Measurements in a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Best, S.; Rose, M. F.; Miller, R.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In this paper, we present measurements aimed at quantifying the thruster's overall operational characteristics and providing additional insight into the nature of operation. Measurements of the terminal current and voltage characteristics during the pulse help quantify the output of the pulsed power train driving the acceleration coil. A fast ionization gauge is used to measure the evolution of the neutral gas distribution in the accelerator prior to a pulse. The preionization process is diagnosed by monitoring light emission from the gas using a photodiode, and a time-resolved global view of the evolving, accelerating current sheet is obtained using a fast-framing camera. Local plasma and field measurements are obtained using an array of intrusive probes. The local induced magnetic field and azimuthal current density are measured using B-dot probes and mini-Rogowski coils, respectively. Direct probing of the number density and electron temperature is performed using a triple probe.

  16. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  17. Beam-return current systems in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Sudan, R. N.

    1984-01-01

    It is demonstrated that the common assumption made in solar flare beam transport theory that the beam-accompanied return current is purely electrostatically driven is incorrect, and that the return current is both electrostatically and inductively driven, in accordance with Lenz's law, with the inductive effects dominating for times greater than a few plasma periods. In addition, it is shown that a beam can only exist in a solar plasma for a finite time which is much smaller than the inductive return current dissipation time. The importance of accounting for the role of the acceleration mechanism in forming the beam is discussed. In addition, the role of return current driven anomalous resistivity and its subsequent anomalous Joule heating during the flare process is elucidated.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yalong; Jones, Edward A.; Wang, Fred

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  19. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX device is currently undergoing initial testing and preliminary experimental results are presented.

  20. Investigation on the Characteristics of Pellet Ablation in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Sato, K. N.; Sakakita, H.; Fujita, H.

    2003-06-01

    Characteristics of a cloud ablated from an ice pellet has been investigated in detail in the JIPP T-IIU tokamak plasma by utilizing a new scheme of pellet injection system, "the injection-angle controllable system". A long "helical tail" of ablation light has been observed using CCD cameras and a high speed framing photograph in the case of on-axis and off-axis injection with the injection angle smaller than a certain value. The direction of the helical tail is found to be independent to that of the total magnetic field lines of the torus. From the experiments with the combination of two toroildal filed directions and two plasma current directions, it is considered that the tail seems to rotate, in most cases, to the electron diamagnetic direction poloidally, and to the opposite to the plasma current direction toroidally. Consideration on various cross sections including charge exchange, ionization and elastic collisions leads us to the conclusion that the tail-shaped phenomena may come from the situation of charge exchange equilibrium of hydrogen ions and neutrals at extremely high density regime in the cloud. The relation of ablation behavior with plasma potential and rotation has also been studied. Potential measurements of pellet-injected plasmas using heavy ion beam probe (HIBP) method were carried out for the first time. In the case of an injection angle to be anti-parallel to the electron diamagnetic direction in the poloidal plane, the result shows that the direction of potential change is negative, and consequently the potential after the injection should be negative because it has been measured to be negative in usual ohmic plasmas without pellet injection. Thus, the direction of the "tail" structure seems to be consistent to that of the plasma potential measured, if it is considered that tail structure may be caused by the effect of the plasma potential and the rotation.

  1. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  2. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.

  3. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  4. Control of plasma profiles and stability through localised Electron Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Merkulov, Oleksiy

    2006-06-01

    The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the outcome of the model. The observations are complicated by the unavoidable presence of concurrent heating, which also affects the sawtooth period. The effects of additional heating have been separated from the effects of current drive by normalising the sawtooth period, as a function of the power deposition radius, to a case with heating only. The results are in qualitative agreement with the predictions of the theory and confirm that the shear around the q=1 surface determines the moment of the sawtooth crash. The next topic addresses the current diffusion in the presence of the ECCD. It is known that the synergy between non-inductively driven current and the ohmic current can affect the current penetration. However, the standard method of calculations, which assumes neoclassical plasma resistivity, cannot describe the synergistic effects. We propose a model which combines a Fokker-Planck code and magnetic diffusion calculation in a self-consistent manner; where the plasma resistivity is approximated from the Fokker-Planck code at every time step. In this way the parallel electric field is no longer a constant input profile for the Fokker-Planck code, but is a result of calculations of the magnetic diffusion. This model allowed us to identify situations where the synergy between the driven and the ohmic currents becomes significant and affects the current penetration. Both the ECCD power and the electron density have been varied over a wide range of parameters, thus changing the well known non-linearity criterion for ECCD after Harvey. This criterion indicates the non-linear behaviour of the current drive efficiency and also appears to be a good predictor for the synergistic effects. The results are compared with the standard method of calculations which were supplied by the ASTRA transport code. The standard method and the Fokker-Planck code with the self-consistent electric field show similar results in the absence of the synergy and therefore for low values of the Harvey parameter. For co-ECCD and high values of the Harvey parameter substantial synergy between ECCD and the ohmic current is observed and leads to the generation of a large population of suprathermal electrons and slows down the current penetration. The synergy between counter-ECCD and the inductive current results in a decrease of the total driven current and a much smaller population of suprathermal electrons. Another plasma stability problem has been studied during the current ramp-up phase. Quiet and MHD free current ramp-up is a necessary requirement for a long and efficient flat-top phase. The current penetration in the plasma scenarios with various plasma ramp-up rates has been modelled with the ASTRA transport code. It is shown that in the absence of MHD activity the predictions of the ASTRA code are in a agreement with the experimental results.

  5. Developing physics basis for the snowflake divertor in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Ryutov, D. D.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.; Watkins, J.

    2018-03-01

    Recent DIII-D results demonstrate that the snowflake (SF) divertor geometry (see standard divertor) enables significant manipulation of divertor heat transport for heat spreading and reduction in attached and radiative divertor regimes, between and during edge localized modes (ELMs), while maintaining good H-mode confinement. Snowflake divertor configurations have been realized in the DIII-D tokamak for several seconds in H-mode discharges with heating power P_NBI ≤slant 4 -5 MW and a range of plasma currents I_p=0.8-1.2 MA. In this work, inter-ELM transport and radiative SF divertor properties are studied. Significant impact of geometric properties on SOL and divertor plasma parameters, including increased poloidal magnetic flux expansion, divertor magnetic field line length and divertor volume, is confirmed. In the SF-minus configuration, heat deposition is affected by the geometry, and peak divertor heat fluxes are significantly reduced. In the SF-plus and near-exact SF configurations, divertor peak heat flux reduction and outer strike point heat flux profile broadening are observed. Inter-ELM sharing of power and particle fluxes between the main and additional snowflake divertor strike points has been demonstrated. The additional strike points typically receive up to 10-15% of total outer divertor power. Measurements of electron pressure and poloidal beta βp support the theoretically proposed churning mode that is driven by toroidal curvature and vertical pressure gradient in the weak poloidal field region. A comparison of the 4-4.5 MW NBI-heated H-mode plasmas with radiative SF divertor and the standard radiative divertor (both induced with additional gas puffing) shows a nearly complete power detachment and broader divertor radiated power distribution in the SF, as compared to a partial detachment and peaked localized radiation in the standard divertor. However, insignificant difference in the detachment onset w.r.t. density between the SF and the standard divertor was found. The results complement the initial SF divertor studies conducted in high-power H-mode discharges in the NSTX and DIII-D tokamaks, and, along with snowflake divertor results from TCV and other tokamaks, contribute to the physics basis of the SF divertor as a power exhaust concept for future high power density tokamaks.

  6. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Poli, F. M.; Andre, R. G.; Bertelli, N.; ...

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  7. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  8. The Safety of Aircraft Exposed to Electromagnetic Fields: HIRF Testing of Aircraft Using Direct Current Injection

    DTIC Science & Technology

    2007-06-01

    massive RF power to the antenna feed points without providing an inductive path to earth. Given all the above challenges, and especially the... circuit theory currents are flowing limited by the three parallel 50 ohm resistances and low inductive reactance. This plateaus at eigencurrent...relative to nett TEM cell input power has been calculated: Figure 86 Expected power output from probe, neglecting probe inductance DSTO-RR-0329

  9. Apparatus for characterizing conductivity of materials by measuring the effect of induced shielding currents therein

    DOEpatents

    Doss, James D.

    1991-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  10. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  11. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.

  12. Out on a Limb: The Efficacy of Teacher Induction in Secondary Schools

    ERIC Educational Resources Information Center

    Shockley, Robert; Watlington, Eliah; Felsher, Rivka

    2013-01-01

    This article reports the results of a qualitative meta-analysis study of the research and literature on the efficacy of teacher induction on the retention of high-quality secondary school teachers and challenges current assumptions about the efficacy of induction despite the proliferation of induction programs nationwide. A theoretical model for…

  13. Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics

    DOT National Transportation Integrated Search

    1972-03-01

    A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...

  14. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  15. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  16. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    DOE PAGES

    Halpern, Federico D.; Ricci, Paolo

    2016-12-19

    The narrow power decay-length (λ q), recently found in the scrape-off layer (SOL) of inner wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared E×B poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. As a result, analytical calculations suggest that the IWL λ q is roughlymore » equal to the turbulent correlation length.« less

  17. Representation of magnetic fields in space. [special attention to Geomagnetic fields and Magnetospheric models

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1976-01-01

    Several mathematical methods which are available for the description of magnetic fields in space are reviewed. Examples of the application of such methods are given, with particular emphasis on work related to the geomagnetic field, and their individual properties and associated problems are described. The methods are grouped in five main classes: (1) methods based on the current density, (2) methods using the scalar magnetic potential, (3) toroidal and poloidal components of the field and spherical vector harmonics, (4) Euler potentials, and (5) local expansions of the field near a given reference point. Special attention is devoted to models of the magnetosphere, to the uniqueness of the scalar potential as derived from observed data, and to the L parameter.

  18. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE PAGES

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  19. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  20. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  1. Observation, Identification, and Impact of Multi-Modal Plasma Responses to Applied Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas

    2015-11-01

    Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.

  2. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  3. Transformer-rectifier flux pump using inductive current transfer and thermally controlled Nb(3)Sn cryotrons.

    PubMed

    Atherton, D L; Davies, R

    1979-10-01

    Transformer-rectifier flux pumps using thermally switched Nb(3)Sn cryotrons are being investigated as a loss make-up device for the proposed isochorically operated (sealed) superconducting magnets for the Canadian Maglev vehicle. High currents (1000 A) were obtained in an experimental flux pump using inductive current transfer and operating at 2 Hz.

  4. Fully non-inductive plasma start-up with lower-hybrid waves using the outboard-launch and top-launch antennas on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Tsujii, Naoto; Takase, Yuichi; Ejiri, Akira; Shinya, Takahiro; Yajima, Satoru; Yamazaki, Hibiki; Togashi, Hiro; Moeller, Charles P.; Roidl, Benedikt; Takahashi, Wataru; Toida, Kazuya; Yoshida, Yusuke

    2017-10-01

    Removal of the central solenoid is essential to realize an economical spherical tokamak fusion reactor, but non-inductive plasma start-up is a challenge. On the TST-2 spherical tokamak, non-inductive plasma start-up using lower-hybrid (LH) waves has been investigated. Using the capacitively-coupled combline (CCC) antenna installed at the outboard midplane, fully non-inductive plasma current ramp-up up to a quarter of that of the typical Ohmic discharges has been achieved. Although it was desirable to keep the density low during the plasma current ramp-up to avoid the LH density limit, it was recognized that there was a maximum current density that could be carried by a given electron density. Since the density needed to increase as the plasma current was ramped-up, the achievable plasma current was limited by the maximum operational toroidal field of TST-2. The top-launch CCC antenna was installed to access higher density with up-shift of the parallel index of refraction. Numerical analysis of LH current drive with the outboard-launch and top-launch antennas was performed and the results were qualitatively consistent with the experimental observations.

  5. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Gopal; Choudhuri, Arnab Rai; Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained bymore » putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.« less

  6. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miesch, Mark S.; Dikpati, Mausumi, E-mail: miesch@ucar.edu

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude)more » and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans.« less

  7. Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.

    2013-09-01

    A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.

  8. Non-inductive current drive and transport in high βN plasmas in JET

    NASA Astrophysics Data System (ADS)

    Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors

    2009-05-01

    A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaswamy, B.; Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu

    We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.

  10. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.

  11. Apparatus for characterizing conductivity of materials by measuring the effect of induced shielding currents therein

    DOEpatents

    Doss, J.D.

    1991-05-14

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials is disclosed. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  12. Capacitively-coupled inductive sensor

    DOEpatents

    Ekdahl, Carl A.

    1984-01-01

    A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

  13. Unipolar induction in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1972-01-01

    A theory is described for the production of electric currents in the magnetosphere and for the transfer of energy from the solar wind to the magnetosphere. Assuming that the magnetosheath has ohmic-type conduction properties, it is shown that unipolar induction can energize several current flows, explaining the correlation of the east-west component of the interplanetary magnetic field with polar electric fields and polar magnetic variations. In the tail region, unipolar induction can account for effects correlated with the north-south component of the interplanetary magnetic field.

  14. Interpretation of rotation and momentum transport in the DIII-D edge plasma and comparison with neoclassical theory

    DOE PAGES

    Stacey, Weston M.; Grierson, Brian A.

    2014-05-08

    Here, a low-confinement mode discharge which optimizes the capability of the new main-ion chargeexchange-recombination spectroscopy system on DIII-D to measure deuterium toroidal velocity is interpretted in comparison with the predictions of neoclassical theory, with an emphasis on the plasma edge region. The observed peaking in the deuterium toroidal velocity near the separatrix is shown to be consistent with intrinsic co-rotation due to ion orbit loss. In general, the standard neoclassical toroidal and poloidal momentum transport rates are found to be smaller than those inferred from experiment, but a comparison has not yet been made with the more recent extended neoclassicalmore » theory that calculates the effects of poloidal asymmetries using an elongated flux surface representation.« less

  15. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  16. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  17. Energization of Radiation Belt Electrons by High and Low Azimuthal Mode Number Poloidal Mode ULF Waves

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Brito, T.; Elkington, S. R.; Kress, B. T.; Liang, Y.

    2011-12-01

    CME-shock and CIR-driven geomagnetic storms are characterized by enhanced ULF wave activity in the magnetosphere. This enhanced ULF wave power produces both coherent and diffusive transport and energization, as well as pitch angle modification of radiation belt electrons in drift resonance with azimuthally propagating ULF waves. Recent observations of two CME-driven storms1,2 have suggested that poloidal mode waves with both low and high azimuthal mode number may be efficient at accelerating radiation belt electrons. We extend up to m = 50 the analysis of Ozeke and Mann3 who examined drift resonance for poloidal modes up to m = 40. We calculate radial diffusion coefficients for source population electrons in the 50 -500 keV range, and continued resonance with lower m-numbers at higher energies for ULF waves in the Pc 5, 0.4 - 10 mHz range. We use an analytic model for ULF waves superimposed on a compressed dipole, developed for equatorial plane studies by Elkington et al.4 and extended to 3D by Perry et al.4 Assuming a power spectrum which varies as ω-2, consistent with earlier observations, we find greater efficiency for radial transport and acceleration at lower m number where there is greater power for drift resonance at a given frequency. This assumption is consistent with 3D global MHD simulations using the Lyon-Fedder-Mobarry code which we have carried out for realistic solar wind driving conditions during storms. Coherent interaction with ULF waves can also occur at a rate which exceeds nominal radial diffusion estimates but is slower than prompt injection on a drift time scale. Depending on initial electron drift phase, some electrons are accelerated due to the westward azimuthal electric field Eφ, while others are decelerated by eastward Eφ, decreasing their pitch angle. A subset of trapped electrons are seen to precipitate to the atmosphere in 3D LFM simulations, showing modulation at the coherent poloidal mode ULF wave frequency in both simulations and MINIS balloon observations for the January 21, 2005 CME-driven storm. Thus Pc 5 poloidal mode ULF waves cause competing increase and decrease in relativistic electron flux. The relative efficiencies of both coherent and diffusive processes will be examined. 1Zong et al., JGR, doi:10.1029/2009JA014393, 2009. 2Tan et al., JGR, doi:10.1029/2010JA016226, 2011. 3Ozeke and Mann, JGR, doi:10.1029/2007JA012468, 2008. 4Elkington et al., doi:10.1029/2001JA009202, 2003, 2003. 5Perry et al., doi:10.1029/2004JA010760, 2005.

  18. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  19. Solenoid-free plasma startup in NSTX using transient CHI

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.

    2009-06-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  20. Experimental demonstration of plasma startup by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Nelson, B. A.; Hamp, W. T.; Izzo, V. A.; O'Neill, R. G.; Redd, A. J.; Sieck, P. E.; Smith, R. J.

    2004-05-01

    Experimental results on the transfer of a coaxial-helicity-injection (CHI) produced discharge to inductive operation are reported. CHI assisted plasma startup is more robust than inductive only operation and reduces volt-seconds consumption. After handoff to inductive operation, the initial 100 kA of CHI produced current drops to 50 kA, then ramps up to 180 kA, using only 30 mVs, about 40% higher than that produced by induction alone. Results show that initiation of CHI discharges at lower densities produce higher levels of coupling current. Coupling a CHI produced discharge to induction from a precharged central solenoid has produced record currents of 290 kA using only 52 mWb of central solenoid flux. CHI discharges can also be generated while the central transformer is in the process of being precharged, during which period it induces a negative loop voltage on the CHI discharge. These significant results were obtained on the Helicity Injected Torus-II (HIT-II) [T.R. Jarboe, Fusion Technol. 15, 7 (1989)] spherical torus experiment (major/minor radius of 0.3/0.2 m and elongation of 1.5).

  1. Low-noise magnetometer based on inductance modulation in high-critical-temperature superconductor coil

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Matsuo, Masaaki; Yoshida, Yujiro; Yamashita, Shigeya; Sasayama, Teruyoshi; Yoshida, Takashi

    2018-06-01

    We developed a magnetometer based on inductance modulation of a coil made from a high-critical-temperature superconducting material. The coil inductance was modulated over time via a modulation current applied to a magnetic wire that was inserted into the coil. The magnetic field was then converted into a signal voltage using this time-dependent inductance. The relationship between magnetometer performance and the modulation current conditions was studied. Under appropriate conditions, the magnetometer had responsivity of 885 V/T. The magnetic field noise was 1.3 pT/Hz1/2 in the white noise region and 5.6 pT/Hz1/2 at f = 1 Hz.

  2. Hybrid-secondary uncluttered induction machine

    DOEpatents

    Hsu, John S.

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  3. Studies of Be migration in the JET tokamak using AMS with 10Be marker

    NASA Astrophysics Data System (ADS)

    Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.

    2016-03-01

    The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.

  4. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  5. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  6. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  7. Applying the new HIT results to tokamak and solar plasmas

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Sutherland, Derek; Hossack, Aaron; Nelson, Brian; Morgan, Kyle; Chris, Hansen; Benedett, Thomas; Everson, Chris; Penna, James

    2016-10-01

    Understanding sustainment of stable equilibria with helicity injection in HIT-SI has led to a simple picture of several tokamak features. Perturbations cause a viscous-like force on the current that flattens the λ profile, which sustains and stabilizes the equilibrium. An explanation of the mechanism is based on two properties of stable, ideal, two-fluid, magnetized plasma. First, the electron fluid is frozen to magnetic fields and, therefore, current flow is also magnetic field flow. Second, for a stable equilibrium the structure perpendicular to the flux surface resists deformation. Thus toroidal current is from electrons frozen in nested, rotating resilient flux surfaces. Only symmetric flux surfaces allow free differential current flow. Perturbations cause interference of the flux surfaces. Thus, perturbations cause forces that oppose differential electron rotation and forced differential flow produces a symmetrizing force against perturbations and instability. This mechanism can explain the level of field error that spoils tokamak performance and the rate of poloidal flux loss in argon-induced disruptions in DIII-D. This new understanding has led to an explanation of the source of the solar magnetic fields and the power source for the chromosphere, solar wind and corona. Please place in spheromak and FRC section with other HIT posters.

  8. Power exhaust scenarios and control for projected high-power NSTX-U operation

    NASA Astrophysics Data System (ADS)

    Menard, Jonathan; Gerhardt, S. P.; Myers, C. E.; Reinke, M. L.; Brooks, A.; Mardenfeld, M.; NSTX Upgrade Team

    2017-10-01

    An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations up to 5 seconds. However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor. In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion, increased divertor radiation, and controlled strike-point sweeping. The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model. Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes. Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence will also be discussed. Work supported by DOE contract DE-AC02- 09CH11466.

  9. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de; Ongena, J.; Vervier, M.

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feedingmore » lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.« less

  10. Electromagnetic diagnostic system for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on basic machine operating information and future studies.

  11. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  12. Test of electical resistivity and current diffusion modelling on MAST and JET

    NASA Astrophysics Data System (ADS)

    Keeling, D. L.; Challis, C. D.; Jenkins, I.; Hawkes, N. C.; Lupelli, I.; Michael, C.; de Bock, M. F. M.; the MAST Team; contributors, JET

    2018-01-01

    Experiments have been carried out on the MAST and JET tokamaks intended to compare the electrical resistivity of the plasma with theoretical formulations. The tests consist of obtaining motional stark effect (MSE) measurements in MHD-free plasmas during plasma current ramp-up (JET and MAST), ramp-down (MAST) and in stationary state (JET and MAST). Simulations of these plasmas are then performed in which the current profile evolution is calculated according to the poloidal field diffusion equation (PFDE) with classical or neoclassical resistivity. Synthetic MSE data are produced in the simulations for direct comparison with the experimental data. It is found that the toroidal current profile evolution modelled using neoclassical resistivity did not match the experimental observations on either device during current ramp-up or ramp-down as concluded from comparison of experimental and synthetic MSE profiles. In these phases, use of neoclassical resistivity in the modelling systematically overestimates the rate of current profile evolution. During the stationary state however, the modelled toroidal current profile matched experimental observations to a high degree of accuracy on both devices using neoclassical resistivity. Whilst no solution to the mismatch in the dynamic phases of the plasma is proposed, it is suggested that some physical process other than MHD which is not captured by the simple diffusive model of current profile evolution is responsible.

  13. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  14. Determination of plasma pinch time and effective current radius of double planar wire array implosions from current measurements on a 1-MA linear transformer driver

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.

    2016-10-01

    Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.

  15. Effects of anesthetic agents on in vivo axonal HCN current in normal mice.

    PubMed

    Osaki, Yusuke; Nodera, Hiroyuki; Banzrai, Chimeglkham; Endo, Sachiko; Takayasu, Hirokazu; Mori, Atsuko; Shimatani, Yoshimitsu; Kaji, Ryuji

    2015-10-01

    The objective was to study the in vivo effects of anesthetic agents on peripheral nerve excitability. Normal male mice were anesthetized by either isoflurane inhalation or a combination of medetomidine, midazolam, and butorphanol intraperitoneal injection ("triple agents"). Immediately after induction, the tail sensory nerve action potential was recorded and its excitability was monitored. Under both anesthetic protocols, there was an interval excitability change by long hyperpolarizing currents. There was greater threshold reduction approximately 30min post induction, in comparison to immediately post induction. Other excitability parameters were stable over time. Modeling suggested interval suppression of internodal H conductance or leak current. Anesthetic agents affected responses to long hyperpolarizing currents. Axonal excitability during intraoperative monitoring may be affected by anesthetic agents. Interpretation of interval excitability changes under anesthesia requires caution, especially with long hyperpolarizing currents. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Stable Spheromaks with Profile Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  17. Comparison of Computed and Measured Performance of a Pulsed Inductive Thruster Operating on Argon Propellant

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.

    2012-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.

  18. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  19. Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourshahab, B.; Abdi, M. R.; Sadighzadeh, A.

    2016-07-15

    The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instabilitymore » moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.« less

  20. Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST

    NASA Astrophysics Data System (ADS)

    Bo, SHI; Jinhong, YANG; Cheng, YANG; Desheng, CHENG; Hui, WANG; Hui, ZHANG; Haifei, DENG; Junli, QI; Xianzu, GONG; Weihua, WANG

    2018-07-01

    The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m‑2 flows to the upper divertor target plate and about 6 MW m‑2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.

  1. Black Hole Magnetospheres

    NASA Astrophysics Data System (ADS)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-01

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  2. Study of the radiated energy loss during massive gas injection mitigated disruptions on EAST

    NASA Astrophysics Data System (ADS)

    Duan, Y. M.; Hao, Z. K.; Hu, L. Q.; Wang, L.; Xu, P.; Xu, L. Q.; Zhuang, H. D.; EAST Team

    2015-08-01

    The MGI mitigated disruption experiments were carried out on EAST with a new fast gas controlling valve in 2012. Different amounts of noble gas He or mixed gas of 99% He + 1% Ar are injected into plasma in current flat-top phase and current ramp-down phase separately. The initial results of MGI experiments are described. The MGI system and the radiation measurement system are briefly introduced. The characteristics of radiation distribution and radiation energy loss are analyzed. About 50% of the stored thermal energy Wdia is dissipated by radiation during the entire disruption process and the impurities of C and Li from the PFC play important roles to radiative energy loss. The amount of the gas can affect the pre-TQ phase. Strong poloidal asymmetry of radiation begins to appear in the CQ phase, which is possibly caused by the plasma configuration changes as a result of VDE. No toroidal radiation asymmetry is observed presently.

  3. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  4. A model of annular linear induction pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momozaki, Yoichi

    2016-10-27

    The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply.  From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.

  5. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  6. Apparatus for characterizing conductivity of superconducting materials

    DOEpatents

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  7. Passive magnetic bearing for a motor-generator

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2006-07-18

    Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.

  8. Apparatus and method for characterizing conductivity of materials

    DOEpatents

    Doss, J.D.

    1988-04-13

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 8 figs.

  9. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement withmore » the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.« less

  10. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  11. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    PubMed

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  12. Modelling of 13CH4 injection and local carbon deposition at the outer divertor of ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Aho-Mantila, L.; Airila, M. I.; Wischmeier, M.; Krieger, K.; Pugno, R.; Coster, D. P.; Chankin, A. V.; Neu, R.; Rohde, V.

    2009-12-01

    Numerical modelling of 13CH4 injection into the outer divertor plasma of the full tungsten, vertical target of ASDEX Upgrade is presented. The SOLPS5.0 code package is used to calculate a realistic scrape-off layer plasma background corresponding to L-mode discharges in the attached divertor plasma regime. The ERO code is then used for detailed modelling of the hydrocarbon break-up, re-deposition and re-erosion processes. The deposition patterns observed at two different poloidal locations are shown to strongly reflect the cross-field gradients in divertor plasma density and temperature, as well as the local plasma collisionality. Experimental results with forward and reversed BT, accompanied by numerical modelling, also point towards a significant poloidal hydrocarbon E×B drift in the divertor region.

  13. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  14. "Snowflake" divertor configuration in NSTX

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.

    2011-08-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  15. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    PubMed

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  16. Local Turbulence Suppression and Shear Flow Dynamics During qmin-Triggered Internal Transport Barriers on DIII-D

    NASA Astrophysics Data System (ADS)

    Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.

    2008-11-01

    Long-wavelength turbulence (kρi< 1) is locally suppressed simultaneously with a rapid but transient increase in local poloidal flow shear at the appearance of low-order rational qmin surfaces in negative central shear discharges. At these events, reductions in energy transport are observed and Internal Transport Barriers (ITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.

  17. Observation of an edge coherent mode and poloidal flow in the electron cyclotron wave induced high β{sub p} plasma in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Santanu, E-mail: sbanerje@ipr.res.in; Mishra, K.; Zushi, H.

    Fluctuations are measured in the edge and scrape-off layer (SOL) of QUEST using fast visible imaging diagnostic. Electron cyclotron wave injection in the Ohmic plasma features excitation of low frequency coherent fluctuations near the separatrix and enhanced cross-field transport. Plasma shifts from initial high field side limiter bound (inboard limited, IL) towards inboard poloidal null (IPN) configuration with steepening of the density profile at the edge. This may have facilitated the increased edge and SOL fluctuation activities. Observation of the coherent mode, associated plasma flow, and particle out-flux, for the first time in the IPN plasma configuration in a sphericalmore » tokamak may provide further impetus to the edge and SOL turbulence studies in tokamaks.« less

  18. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

    PubMed

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J

    2014-10-17

    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. Copyright © 2014, American Association for the Advancement of Science.

  19. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  20. Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of β-ray induced x-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET

    2017-12-01

    Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.

  1. Numerical simulation of inductive method for determining spatial distribution of critical current density

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Tanaka, A.; Ikuno, S.

    2010-11-01

    The inductive method for measuring the critical current density jC in a high-temperature superconducting (HTS) thin film has been investigated numerically. In order to simulate the method, a non-axisymmetric numerical code has been developed for analyzing the time evolution of the shielding current density. In the code, the governing equation of the shielding current density is spatially discretized with the finite element method and the resulting first-order ordinary differential system is solved by using the 5th-order Runge-Kutta method with an adaptive step-size control algorithm. By using the code, the threshold current IT is evaluated for various positions of a coil. The results of computations show that, near a film edge, the accuracy of the estimating formula for jC is remarkably degraded. Moreover, even the proportional relationship between jC and IT will be lost there. Hence, the critical current density near a film edge cannot be estimated by using the inductive method.

  2. A novel flexible field-aligned coordinate system for tokamak edge plasma simulation

    NASA Astrophysics Data System (ADS)

    Leddy, J.; Dudson, B.; Romanelli, M.; Shanahan, B.; Walkden, N.

    2017-03-01

    Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are "closed" (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma temperature.

  3. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Revet, G.; Khiar, B.

    We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less

  4. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle

    DOE PAGES

    Higginson, D. P.; Revet, G.; Khiar, B.; ...

    2017-02-24

    We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less

  5. Convection in three dimensions with surface plates - Generation of toroidal flow

    NASA Technical Reports Server (NTRS)

    Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.

    1991-01-01

    This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.

  6. Radial vorticity constraint in core flow modeling

    NASA Astrophysics Data System (ADS)

    Asari, S.; Lesur, V.

    2011-11-01

    We present a new method for estimating core surface flows by relaxing the tangentially geostrophic (TG) constraint. Ageostrophic flows are allowed if they are consistent with the radial component of the vorticity equation under assumptions of the magnetostrophic force balance and an insulating mantle. We thus derive a tangentially magnetostrophic (TM) constraint for flows in the spherical harmonic domain and implement it in a least squares inversion of GRIMM-2, a recently proposed core field model, for temporally continuous core flow models (2000.0-2010.0). Comparing the flows calculated using the TG and TM constraints, we show that the number of degrees of freedom for the poloidal flows is notably increased by admitting ageostrophic flows compatible with the TM constraint. We find a significantly improved fit to the GRIMM-2 secular variation (SV) by including zonal poloidal flow in TM flow models. Correlations between the predicted and observed length-of-day variations are equally good under the TG and TM constraints. In addition, we estimate flow models by imposing the TM constraint together with other dynamical constraints: either purely toroidal (PT) flow or helical flow constraint. For the PT case we cannot find any flow which explains the observed SV, while for the helical case the SV can be fitted. The poor compatibility between the TM and PT constraints seems to arise from the absence of zonal poloidal flows. The PT flow assumption is likely to be negated when the radial magnetostrophic vorticity balance is taken into account, even if otherwise consistent with magnetic observations.

  7. Launching of Jets and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.; Livio, Mario

    2001-05-01

    The launching of magnetohydrodynamic outflows from accretion disks is considered. We formulate a model for the local vertical structure of a thin disk threaded by a poloidal magnetic field of dipolar symmetry. The model consists of an optically thick disk matched to an isothermal atmosphere. The disk is supposed to be turbulent and possesses an effective viscosity and an effective magnetic diffusivity. In the atmosphere, if the magnetic field lines are inclined sufficiently to the vertical, a magnetocentrifugal outflow is driven and passes through a slow magnetosonic point close to the surface. We determine how the rate of mass loss varies with the strength and inclination of the magnetic field. In particular, we find that for disks in which the mean poloidal field is sufficiently strong to stabilize the disk against the magnetorotational instability, the mass-loss rate decreases extremely rapidly with increasing field strength and is maximal at an inclination angle of 40°-50°. For turbulent disks with weaker mean fields, the mass-loss rate increases monotonically with increasing strength and inclination of the field, but the solution branch terminates before achieving excessive mass-loss rates. Our results suggest that efficient jet launching occurs for a limited range of field strengths and a limited range of inclination angles in excess of 30°. In addition, we determine the direction and rate of radial migration of the poloidal magnetic flux and discuss whether configurations suitable for jet launching can be maintained against dissipation.

  8. Ebw Assisted Plasma Current Startup in Mast

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Saveliev, Alexander

    2009-04-01

    EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.

  9. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    PubMed

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  10. GEM detector development for tokamak plasma radiation diagnostics: SXR poloidal tomography

    NASA Astrophysics Data System (ADS)

    Chernyshova, Maryna; Malinowski, Karol; Ziółkowski, Adam; Kowalska-Strzeciwilk, Ewa; Czarski, Tomasz; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Wojeński, Andrzej; Kolasiński, Piotr; Krawczyk, Rafał D.

    2015-09-01

    An increased attention to tungsten material is related to a fact that it became a main candidate for the plasma facing material in ITER and future fusion reactor. The proposed work refers to the studies of W influence on the plasma performances by developing new detectors based on Gas Electron Multiplier GEM) technology for tomographic studies of tungsten transport in ITER-oriented tokamaks, e.g. WEST project. It presents current stage of design and developing of cylindrically bent SXR GEM detector construction for horizontal port implementation. Concept to overcome an influence of constraints on vertical port has been also presented. It is expected that the detecting unit under development, when implemented, will add to the safe operation of tokamak bringing creation of sustainable nuclear fusion reactors a step closer.

  11. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less

  12. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  13. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    NASA Astrophysics Data System (ADS)

    Isayama, A.; Suzuki, T.; Hayashi, N.; Ide, S.; Hamamatsu, K.; Fujita, T.; Hosoyama, H.; Kamada, Y.; Nagasaki, K.; Oyama, N.; Ozeki, T.; Sakata, S.; Seki, M.; Sueoka, M.; Takechi, M.; Urano, H.

    2007-09-01

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 was demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.

  14. Magnetic diagnostics for equilibrium reconstructions in the presence of nonaxisymmetric eddy current distributions in tokamaks (invited).

    PubMed

    Berzak, L; Jones, A D; Kaita, R; Kozub, T; Logan, N; Majeski, R; Menard, J; Zakharov, L

    2010-10-01

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  15. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isayama, A.; Suzuki, T.; Hayashi, N.

    2007-09-28

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 wasmore » demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.« less

  16. Experimental setup for the measurement of induction motor cage currents

    NASA Astrophysics Data System (ADS)

    Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro

    2005-04-01

    An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.

  17. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  18. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  19. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  20. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  1. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoi, N.; Hamba, F.; Schmitt, D.

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solvedmore » simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.« less

  2. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  3. Pinch current limitation effect in plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai

    The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.

  4. The seizure, not electricity, is essential in convulsive therapy: the flurothyl experience.

    PubMed

    Fink, Max

    2014-06-01

    For more than 50 years, research in convulsive therapy has been focused on the impact of electricity and seizures on memory and not on brain chemistry or neurophysiology. Brief pulse and ultra-brief pulse currents replaced sinusoidal currents. Electrode placements were varied, energy dosing was altered, and electricity was replaced by magnetic currents. The published experiences and archival records of seizures induced by camphor, pentylenetetrazol, and flurothyl are reviewed and compared with the changes induced by electricity. The clinical efficacy of chemically induced seizures is equal to that of electrical inductions. Seizure durations are longer, and impairment of cognition and memory is less. Electroconvulsive therapy replaced chemical treatments for ease of use, not for greater efficacy or safety. The brain seizure, not the method of induction, is the essential element in the efficacy of convulsive therapy. Seizure induction with chemicals avoids the direct effects of electricity on brain functions with lesser effects on cognition. Reexamination of chemical inductions of seizures as replacements for electricity is encouraged.

  5. ROTRAN 1 - SOLUTION OF EQUATIONS FOR ROTARY TRANSFORMERS

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1994-01-01

    ROTRAN1 is a computer program to calculate the impedance and current gain of a simple transformer. Inputs to the program are primary resistance, primary inductance, secondary (load) resistance, secondary inductance, and mutual inductance. ROTRAN1 was written in BASICA for execution on the IBM PC personal computer. It was written in 1986.

  6. Teacher Mentoring and Induction: The State of the Art and Beyond

    ERIC Educational Resources Information Center

    Portner, Hal, Ed.

    2005-01-01

    One out of every two new teachers will quit teaching within five years; however, studies show that comprehensive induction programs can slash attrition rates in half and dramatically accelerate the professional development of new teachers. This book combines an overview of the current state of induction and mentoring with cutting-edge strategies…

  7. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  8. AC loss modelling and experiment of two types of low-inductance solenoidal coils

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Yuan, Weijia; Zhang, Min; Zhang, Zhenyu; Li, Jianwei; Venuturumilli, Sriharsha; Patel, Jay

    2016-11-01

    Low-inductance solenoidal coils, which usually refer to the nonintersecting type and the braid type, have already been employed to build superconducting fault current limiters because of their fast recovery and low inductance characteristics. However, despite their usage there is still no systematical simulation work concerning the AC loss characteristics of the coils built with 2G high temperature superconducting tapes perhaps because of their complicated structure. In this paper, a new method is proposed to simulate both types of coils with 2D axisymmetric models solved by H formulation. Following the simulation work, AC losses of both types of low inductance solenoidal coils are compared numerically and experimentally, which verify that the model works well in simulating non-inductive coils. Finally, simulation works show that pitch has significant impact to AC loss of both types of coils and the inter-layer separation has different impact to the AC loss of braid type of coil in case of different applied currents. The model provides an effective tool for the design optimisation of SFCLs built with non-inductive solenoidal coils.

  9. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun

    2006-01-01

    The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.

  10. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  11. Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan

    2013-10-01

    The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.

  12. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitivemore » to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.« less

  13. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  14. Dissociation and serenity induction.

    PubMed

    Zoellner, Lori A; Sacks, Matthew B; Foa, Edna B

    2007-09-01

    Dissociation is a common experience during or immediately after a traumatic event; yet, most of the current knowledge regarding dissociation is retrospective in nature. The aim of the present study investigated a non-pharmacological method of dissociative induction with a clinical sample. Participants with PTSD and non-trauma exposed participants were randomly assigned to receive either a dissociative induction, or a serenity induction, based on modified Velten mood induction procedures. Participants receiving the dissociative induction reported higher state-dissociation than those receiving the serenity induction. The PTSD group reported greater state dissociation than the non-trauma exposed group, regardless of induction. State dissociation was related to trait dissociation, PTSD severity, and depression. The present results provide an initial demonstration of the viability for inducing state dissociation in the laboratory with a PTSD sample.

  15. Quasi-symmetry and the nature of radial turbulent transport in quasi-poloidal stellarators

    NASA Astrophysics Data System (ADS)

    Alcuson, J. A.; Reynolds-Barredo, J. M.; Bustos, A.; Sanchez, R.; Tribaldos, V.; Xanthopoulos, P.; Goerler, T.; Newman, D. E.

    2016-10-01

    Quasi-symmetric configurations have a better neoclassical confinement compared to that of standard stellarators. The reduction of the neoclassical viscosity along the direction of quasi-symmetry should facilitate the self-generation of zonal flows and, consequently, the mitigation of turbulent fluctuations and the ensuing radial transport. Therefore, it is expected that quasi-symmetries should also result in better confinement properties regarding radial turbulent transport. In this paper we show that, at least for quasi-poloidal configurations, the influence of quasi-symmetry on radial transport exceeds the expected reduction of fluctuation levels and associated effective transport coefficients, and that the intimate nature of transport itself is affected. In particular, radial turbulent transport becomes increasingly subdiffusive as the degree of quasi-symmetry becomes larger. This behavior is somewhat reminiscent of what has been previously reported in tokamaks with strong radially sheared zonal flows.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, M; Ellis, R; Brooks, N

    A video camera system is described that measures the spatial distribution of visible line emission emitted from the main scrape-off layer (SOL) of plasmas in the DIII-D tokamak. A wide-angle lens installed on an equatorial port and an in-vessel mirror which intercepts part of the lens view provide simultaneous tangential views of the SOL on the low-field and high-field sides of the plasma's equatorial plane. Tomographic reconstruction techniques are used to calculate the 2-D poloidal profiles from the raw data, and 1-D poloidal profiles simulating chordal views of other optical diagnostics from the 2-D profiles. The 2-D profiles can bemore » compared with SOL plasma simulations; the 1-D profiles with measurements from spectroscopic diagnostics. Sample results are presented which elucidate carbon transport in plasmas with toroidally uniform injection of methane and argon transport in disruption mitigation experiments with massive gas jet injection.« less

  17. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Nigg, D. W.; Wheeler, F. J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and the capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.

  18. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and themore » capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.« less

  19. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  20. Poloidal flux profile reconstruction from pointwise measurements via extended Kalman filtering in the DIII-D Tokamak

    DOE PAGES

    Wang, Hexiang; Barton, Justin E.; Schuster, Eugenio

    2015-09-01

    The accuracy of the internal states of a tokamak, which usually cannot be measured directly, is of crucial importance for feedback control of the plasma dynamics. A first-principles-driven plasma response model could provide an estimation of the internal states given the boundary conditions on the magnetic axis and at plasma boundary. However, the estimation would highly depend on initial conditions, which may not always be known, disturbances, and non-modeled dynamics. Here in this work, a closed-loop state observer for the poloidal magnetic flux is proposed based on a very limited set of real-time measurements by following an Extended Kalman Filteringmore » (EKF) approach. Comparisons between estimated and measured magnetic flux profiles are carried out for several discharges in the DIII-D tokamak. The experimental results illustrate the capability of the proposed observer in dealing with incorrect initial conditions and measurement noise.« less

  1. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  2. Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min

    2018-03-01

    A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.

  3. Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto

    2006-01-01

    The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.

  4. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less

  5. Castellated structures for ITER: Differences of impurity deposition and fuel accumulation in the toroidal and poloidal gaps

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Philipps, V.; Wienhold, P.; Krieger, K.; Kirschner, A.; Borodin, D.; Sergienko, G.; Schmitz, O.; Kreter, A.; Samm, U.; Richter, S.; Breuer, U.; Textor Team

    2009-04-01

    Castellation is foreseen for the first wall and divertor area in ITER. The concern of the fuel accumulation and impurity deposition in the gaps of castellated structures calls for dedicated studies. Recently, a tungsten castellated limiter with rectangular and roof-like shaped cells was exposed to the SOL plasmas in TEXTOR. After exposure, roughly two times less fuel was found in the gaps between the shaped cells whereas the difference in carbon deposition was less pronounced. Up to 70 at.% of tungsten was found intermixed in the deposited layers in the gaps. The metal fraction in the deposit decreases rapidly with a depth of the gap. Modeling of carbon deposition in poloidal gaps has provided a qualitative agreement with an experiment. The significant anisotropy of C and D distributions in the toroidal gaps was measured.

  6. Dependence of pedestal properties on plasma parameters

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Na, Y.-S.; Saarelma, S.; Kwon, O.

    2018-01-01

    We have numerically investigated the dependence of pedestal properties such as the pedestal height and the pedestal width on various global parameters using the EURO-DEMO as the reference equilibrium. We have used EPED, a predictive model of the edge pedestal. Among global parameters, we have chosen to vary the triangularity, δ , the elongation, κ , and the poloidal beta, {{β }p} , which have larger effects on the pedestal properties. Improvement of pedestal properties can be achieved for more shaped plasma boundary. However, the increase in the pedestal height and the width with δ saturates around δ ∼ 0.6. Also, the pedestal width saturates and the pedestal temperature starts to decrease for κ >1.9 . Improvement of the pedestal properties due to δ is larger at higher poloidal beta. The pedestal width slightly increases with the electron density at the pedestal top and the effective charge number.

  7. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  8. The dynamo dilemma

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1987-01-01

    The recent determination that the angular velocity Omega of the sun declines downward through the convective zone raises serious questions about the nature of the solar dynamo. The principal qualitative features of the sun are the azimuthal fields that migrate toward the equator in association with an oscillating poloidal field which reverses at about the time of maximum appearance of bipolar magnetic regions. If Omega decreases downward, or is negligible, the horizontal gradient in Omega produces a dynamo with some of these essential characteristics. There is reason to think that the dynamo is confined to the lower half of the convective zone, where alpha has the opposite sign from the usual (alpha of greater than 0 in the northern hemisphere) producing equatorward migration but reversing the sign of the associated poloidal field. Meridional circulation may play an essential role in shaping the dynamo. At the present time it is essential to measure Omega accurately and determine the nature of the meridional circulation.

  9. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  10. Research of vibration control based on current mode piezoelectric shunt damping circuit

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Mao, Qibo

    2017-12-01

    The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.

  11. Why learning and development can lead to poorer recognition memory.

    PubMed

    Hayes, Brett K; Heit, Evan

    2004-08-01

    Current models of inductive reasoning in children and adults assume a central role for categorical knowledge. A recent paper by Sloutsky and Fisher challenges this assumption, showing that children are more likely than adults to rely on perceptual similarity as a basis for induction, and introduces a more direct method for examining the representations activated during induction. This method has the potential to constrain models of induction in novel ways, although there are still important challenges.

  12. A Summary of Research for Educational Leaders on the Induction of Beginning Special Educators

    ERIC Educational Resources Information Center

    Griffin, Cynthia C.

    2010-01-01

    As the percentage of teachers participating in induction programs has increased over the past two decades and new state and federal mandates have been enacted to improve the quality of the teacher workforce, published literature on teacher induction and mentoring has grown. Despite an increasing research base, the current research has been…

  13. Teacher Academy Induction Learning Community: Guiding Teachers through Their Zone of Proximal Development

    ERIC Educational Resources Information Center

    Flores, Belinda Bustos; Hernandez, Arcelia; Garcia, Claudia Trevino; Claeys, Lorena

    2011-01-01

    This is a preliminary analysis of The Academy for Teacher Excellence (ATE) induction support provided through the Teacher Academy Induction Learning Community (TAILC). In response to current US teacher attrition rates, ATE-TAILC's primary objective is to retain teachers in the classroom and provide support to ensure they are fully prepared to meet…

  14. Effect of Cross-Correlation on Geomagnetic Forecast Accuracies

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Wei, Zigang; Tangborn, Andrew

    2011-01-01

    Surface geomagnetic observation can determine up to degree L = 14 time-varying spherical harmonic coefficients of the poloidal magnetic field. Assimilation of these coefficients to numerical dynamo simulation could help us understand better the dynamical processes in the Earth's outer core, and to provide more accurate forecast of geomagnetic secular variations (SV). In our previous assimilation studies, only the poloidal magnetic field in the core is corrected by the observations in the analysis. Unobservable core state variables (the toroidal magnetic field and the core velocity field) are corrected via the dynamical equations of the geodynamo. Our assimilation experiments show that the assimilated core state converges near the CMB, implying that the dynamo state is strongly constrained by surface geomagnetic observations, and is pulled closer to the truth by the data. We are now carrying out an ensemble of assimilation runs with 1000 years of geomagnetic and archeo/paleo magnetic record. In these runs the cross correlation between the toroidal and the poloidal magnetic fields is incorporated into the analysis. This correlation is derived from the physical boundary conditions of the toroidal field at the core-mantle boundary (CMB). The assimilation results are then compared with those of the ensemble runs without the cross-correlation, aiming at understanding two fundamental issues: the effect of the crosscorrelation on (1) the convergence of the core state, and (2) the SV prediction accuracies. The constrained dynamo solutions will provide valuable insights on interpreting the observed SV, e.g. the near-equator magnetic flux patches, the core-mantle interactions, and possibly other geodynamic observables.

  15. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  16. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques.

    PubMed

    Sonnino, Giorgio; Cardinali, Alessandro; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György; Zonca, Fulvio

    2014-03-01

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  17. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  18. Systems and methods for commutating inductor current using a matrix converter

    DOEpatents

    Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun

    2012-10-16

    Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.

  19. Compact antenna for two-dimensional beam scan in the JT-60U electron cyclotron heating/current drive system

    NASA Astrophysics Data System (ADS)

    Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.

    2005-11-01

    A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.

  20. Observation of Electron Bernstein Wave Heating in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Dubois, Ami; Almagri, Abdulgader; Nonn, Paul; McCollam, Karsten; Chapman, Brett; Goetz, John; Forest, Cary

    2016-10-01

    We report the first observation of electron Bernstein wave heating in the MST RFP. Similar to a high density stellarator, the RFP is inaccessible to electromagnetic ECRH. The plasma current and |B|operating range of MST allows a 5.5 GHz RF source (100kW, 4ms pulse) to heat on the fundamental and up to 4th harmonic EC resonances. With an x-ray diagnostic most sensitive to edge electrons located +12 degrees toroidally from the antenna, the measured emission is a strong function of predicted heating inside versus outside the Bt =0 reversal layer of the RFP. Measured during a scan of plasma current, distinct edges in a plot of emissivity versus predicted deposition layer align with the deposition layers crossing of this reversal layer and confirm EBW heating on the fundamental through 4th EC harmonic. Additional confirmation of the absorption location has been demonstrated by using auxiliary poloidal current drive to reduce electron diffusion rates and sweep the location of the Bt =0 surface across a static RF absorption location in RFP discharges. In these discharges EBW enhancement of the 15-40keV x-ray energies has been observed. Work supported by USDOE.

Top