Status of The Indian SRS Indus-2
NASA Astrophysics Data System (ADS)
Sahni, V. C.
2009-07-01
Raja Ramanna Centre for Advanced Technology (RRCAT, formerly called Centre for Advanced Technology) is a prime R&D laboratory of Indian Department of Atomic Energy devoted to developing technologies related to accelerators and lasers as well as their applications. RRCAT is home to 2 synchrotron radiation sources (SRS): Indus-1 (a 100 mA, 450 MeV storage ring) & Indus-2 (a 2.5 GeV booster cum storage ring designed for a current of up to 300 mA), sharing a common injector system, comprising of 20 MeV microtron & 450-700 MeV range booster synchrotron. Most of the accelerator hardware has been built indigenously. Normally beam is injected into Indus-2 (and accumulated) at 550 MeV, and ramped to 2 or 2.5 GeV depending on the user needs. At present we have permission from Atomic Energy Regulatory Board (Indian agency charged with radiation protection responsibility in the country) to operate Indus-2 at 2.5 GeV with up to 50 mA & in the next stage we will get authorization to go up to 100 mA. Currently 5 beam lines on Indus-1 and 3 on Indus-2 are operational and work is going on 4 more beam lines on Indus-2 & is progressing well. The 3 completed beam lines on Indus-2 are: high resolution XRD, position sensitive detector based multi channel EXAFS (Extended X-ray Absorption Fine Structure) and EDXRD (Energy Dispersive X-ray Diffraction). The paper gives an overview of how the SRS program at RRCAT has evolved over the years, where we stand today and also some of our future plans.
Deutsch, Morris; Ruggles, F.H.
1978-01-01
During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.
Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala
2018-04-04
The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.
NASA Astrophysics Data System (ADS)
Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.
2012-01-01
We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.
Intensified summer monsoon and the urbanization of Indus Civilization in northwest India.
Dixit, Yama; Hodell, David A; Giesche, Alena; Tandon, Sampat K; Gázquez, Fernando; Saini, Hari S; Skinner, Luke C; Mujtaba, Syed A I; Pawar, Vikas; Singh, Ravindra N; Petrie, Cameron A
2018-03-09
Today the desert margins of northwest India are dry and unable to support large populations, but were densely occupied by the populations of the Indus Civilization during the middle to late Holocene. The hydroclimatic conditions under which Indus urbanization took place, which was marked by a period of expanded settlement into the Thar Desert margins, remains poorly understood. We measured the isotopic values (δ 18 O and δD) of gypsum hydration water in paleolake Karsandi sediments in northern Rajasthan to infer past changes in lake hydrology, which is sensitive to changing amounts of precipitation and evaporation. Our record reveals that relatively wet conditions prevailed at the northern edge of Rajasthan from ~5.1 ± 0.2 ka BP, during the beginning of the agricultural-based Early Harappan phase of the Indus Civilization. Monsoon rainfall intensified further between 5.0 and 4.4 ka BP, during the period when Indus urban centres developed in the western Thar Desert margin and on the plains of Haryana to its north. Drier conditions set in sometime after 4.4 ka BP, and by ~3.9 ka BP an eastward shift of populations had occurred. Our findings provide evidence that climate change was associated with both the expansion and contraction of Indus urbanism along the desert margin in northwest India.
Depositional characteristics of the Indus Group in the India-Asia collision zone, northwest India
NASA Astrophysics Data System (ADS)
Bhattacharya, G.; Robinson, D.; Orme, D. A.; Najman, Y.; Khanolkar, S.
2017-12-01
The Indus Group in northwest India are synorogenic sedimentary rocks deposited within the Indus-Yarlung Suture Zone between 50-6 Ma in an intermontane basin, and record the tectono-depositional history of the Indus basin following the India-Asia plate collision at 60-50 Ma. Controversy surrounds the provenance and timing of deposition of two major Indus Group formations, the Basgo and Temesgam formations. Researchers argue between an Asian or Indian origin and whether these formations are Maastrichtian-Early Eocene or Late Oligocene in age. In the central Ladakh region in northwest India, the Zanskar Gorge bisects the Indus Group. Thus, Zanskar Gorge section is well-studied with measured sections, point counting, illite crystallinity, apatite fission track, Ar-Ar detrital white mica and U-Pb detrital zircon ages. In eastern Ladakh, works on the Indus Group are fewer. The purpose of this study is to document both the Basgo and Temesgam formations in the Indus Group along four sections in eastern Ladakh and, if possible, correlate the results to the Zanskar Gorge section. The four sections are the Domkhar-Skurbuchan, Skinning-Khalsi, Temesgam-Nurla and Likir-Taruche sections. Measured sections, conglomerate clast counts and sandstone point counting analyses assess the facies characteristics and provenance of the Indus Group. The results of these data will be presented. Interpretation of the provenance as it applies to these data will be discussed.
Improved design and in-situ measurements of new beam position monitors for Indus-2
NASA Astrophysics Data System (ADS)
Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.
2018-01-01
Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.
Assessing the feasibility of low temperature XAFS experiments at Indus-2, India: First results
NASA Astrophysics Data System (ADS)
Ramanan, Nitya; Rajput, Parasmani; Jha, S. N.; Lahiri, Debdutta
2015-05-01
In this work, we report installation of displex cryostat XAFS sample holder at XAFS beamline (BL-09) of Indus-2 synchrotron facility, India and make critical assessment of feasibility of low-temperature XAFS experiments in terms of data quality and reproducibility, temperature range, calibration and attainable resolution. We adopted the Debye Model-based calibration method by measuring XAFS of standard Au foil with known Debye temperature (ΘDebye)Autheory = 165 K. The data is of good quality and reproducible with international data. By fitting Debye Waller Factor (σexpt2 (T)), we deduced (ΘDebye)Auexpt = 163 K which implies calibration within 2 K. Error bars for σexpt2 (T) correspond to temperature uncertainty ΔT ≤ 5 K, which defines the temperature resolution for low temperature XAFS experiments. Thus, from both calibration and resolution points-of-view, this work demonstrates the feasibility of low temperature XAFS experiments at BL-09, Indus-2. Feasibility of extending XAFS experiments to lower temperature and unknown samples is discussed.
NASA Astrophysics Data System (ADS)
Staubwasser, M.; Sirocko, F.; Erlenkeuser, H.; Grootes, P. M.; Segl, M.
2003-04-01
Planktonic oxygen isotope ratios from the well-dated laminated sediment core 63KA off the river Indus delta are presented. The record reveals significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable and the largest change of the entire Holocene occurred at 4.2 ka BP. This event is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The remainder of the late Holocene shows drought cycles of approximately 700 years that are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is one fundamental cause behind late Holocene rainfall changes over south Asia.
Singh, Ajit; Thomsen, Kristina J; Sinha, Rajiv; Buylaert, Jan-Pieter; Carter, Andrew; Mark, Darren F; Mason, Philippa J; Densmore, Alexander L; Murray, Andrew S; Jain, Mayank; Paul, Debajyoti; Gupta, Sanjeev
2017-11-28
Urbanism in the Bronze-age Indus Civilisation (~4.6-3.9 thousand years before the present, ka) has been linked to water resources provided by large Himalayan river systems, although the largest concentrations of urban-scale Indus settlements are located far from extant Himalayan rivers. Here we analyse the sedimentary architecture, chronology and provenance of a major palaeochannel associated with many of these settlements. We show that the palaeochannel is a former course of the Sutlej River, the third largest of the present-day Himalayan rivers. Using optically stimulated luminescence dating of sand grains, we demonstrate that flow of the Sutlej in this course terminated considerably earlier than Indus occupation, with diversion to its present course complete shortly after ~8 ka. Indus urban settlements thus developed along an abandoned river valley rather than an active Himalayan river. Confinement of the Sutlej to its present incised course after ~8 ka likely reduced its propensity to re-route frequently thus enabling long-term stability for Indus settlements sited along the relict palaeochannel.
Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Khan, Firdos; Pilz, Jürgen
2015-04-01
The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem. The analyses show that there will be much more water available in future under the considered emission scenarios but in some months there will be scarcity of water. However, by proper management and optimum utilization of the available water, the scarcity of water can be minimized considerably. Finally, a meta-analysis has been performed to present a combined picture of all scenarios considered in this study. One way to avoid water scarcity is to upgrade and install new reservoirs and water storage capacities to reserve the extra water during high river flow in Indus River, which will then be utilized during low river flow. __________________________________________________________________________________ KEY WORDS: Agriculture, Climate Change, Hydro-power, Indus River, Tarbela Reservoir, Upper Indus Basin, Meta-analysis, Hydrological model.
78 FR 16500 - Rolling Bay, LLC and Indus; Transfer of Data
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... contract to perform work for OPP, and access to this information will enable Rolling Bay, LLC and its subcontractor, Indus, to fulfill the obligations of the contract. DATES: Rolling Bay, LLC and its subcontractor... Under Contract No. GS-35F-0072Y, Rolling Bay, LLC and its subcontractor, Indus, will: Capture data that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, Ankur; Bhattachryya, D.
2015-06-24
In this paper implementation of Quick-EXAFS data acquisition facility at the Energy Scanning EXAFS beamline(BL-09) at INDUS-2 synchrotron source, Indore is presented. By adopting a continuous-scan mode in the Double Crystal monochromator (DCM), a high signal-to-noise ratio is maintained and the acquisition time is reduced to few seconds. The quality of spectra and repeatability is checked by measuring standards. The present mode of data acquisition would enable EXAFS measurement for in-situ studies even in fluorescence mode.
Valentine, Benjamin; Kamenov, George D.; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John
2015-01-01
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people’s movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape. PMID:25923705
Valentine, Benjamin; Kamenov, George D; Kenoyer, Jonathan Mark; Shinde, Vasant; Mushrif-Tripathy, Veena; Otarola-Castillo, Erik; Krigbaum, John
2015-01-01
Just as modern nation-states struggle to manage the cultural and economic impacts of migration, ancient civilizations dealt with similar external pressures and set policies to regulate people's movements. In one of the earliest urban societies, the Indus Civilization, mechanisms linking city populations to hinterland groups remain enigmatic in the absence of written documents. However, isotopic data from human tooth enamel associated with Harappa Phase (2600-1900 BC) cemetery burials at Harappa (Pakistan) and Farmana (India) provide individual biogeochemical life histories of migration. Strontium and lead isotope ratios allow us to reinterpret the Indus tradition of cemetery inhumation as part of a specific and highly regulated institution of migration. Intra-individual isotopic shifts are consistent with immigration from resource-rich hinterlands during childhood. Furthermore, mortuary populations formed over hundreds of years and composed almost entirely of first-generation immigrants suggest that inhumation was the final step in a process linking certain urban Indus communities to diverse hinterland groups. Additional multi disciplinary analyses are warranted to confirm inferred patterns of Indus mobility, but the available isotopic data suggest that efforts to classify and regulate human movement in the ancient Indus region likely helped structure socioeconomic integration across an ethnically diverse landscape.
East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam
2015-01-01
Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.
Hazardous impact of arsenic on tissues of same fish species collected from two ecosystem.
Shah, Abdul Qadir; Kazi, Tasneem Gul; Arain, Mohammad Balal; Baig, Jameel Ahmed; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Khan, Sumaira; Jamali, Mohammad Khan
2009-08-15
The purpose of this paper is to develop a database of fish tissues and to evaluate concentration of arsenic (As) in five tissues of fish species collected from Manchar Lake Pakistan and to compare concentration of As in fish tissues of same fish species collected from the Indus River, Pakistan. A sensitive and precise, hydride generation atomic absorption spectrometry (HG AAS) method is presented for the determination of total Arsenic (As). Microwave acid-assisted digestion (MAD) procedure based on the mixture HNO(3)/H(2)O(2) was evaluated. The method was successfully validated against CRM DORM-2 (dogfish muscle). Quantitative As recovery in CRM (DORM-2) was obtained and no statistical differences were found at 95% level by applying the t-test. The limit of detection (LOD) and limit of quantitation (LOQ), for As were established as 0.022 and 0.063 microg g(-1), respectively. The results of this study indicated that As concentration in fish tissues from the Indus River are generally lower than in tissues of fishes from Manchar Lake. Arsenic concentrations in fish tissues of Indus River are although above the respective human health-based concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maynard, J.B.; Ritger, S.D.; Sutton, S.J.
1991-03-01
Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archeanmore » Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.« less
Braulik, Gill T.; Arshad, Masood; Noureen, Uzma; Northridge, Simon P.
2014-01-01
Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270
Braulik, Gill T; Arshad, Masood; Noureen, Uzma; Northridge, Simon P
2014-01-01
Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.
Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system
NASA Astrophysics Data System (ADS)
Sharma, Anupam; Kumar, Kamlesh; Laskar, Amzad; Singh, Sunil Kumar; Mehta, Pankaj
2017-05-01
Understanding the sources and compositional characteristics of waters and sediments in the Indus River system is extremely important as its water availability is one of the primary factors for sustenance of the irrigation activities and the socioeconomic status of a very densely populated region of the world. Here we used stable isotopic compositions (δD and δ18O) and strontium isotopic ratio (87Sr/86Sr) in the Indus River water, its tributaries and its small streams (nallahs) in the Indian territory to understand the regional hydrology, water sources, and catchment processes (evaporation, transpiration, recycling, and mixing). The δ18O values in the Indus River system (IRS) ranges from - 16.9‰ to - 12.5‰ and δD from - 122.8‰ to - 88.5‰. The Indus River and its major tributaries (such as the Zanskar, Nubra and Shyok rivers) are characterized by relatively lower δ18O values, whereas TangTse and other small streams contributing to the Indus are relatively enriched in 18O. The local meteoric water line for the IRS was found to be δD = 7.87 × δ18O + 11.41, which is similar to the Global Meteoric Water Line (GMWL) indicating meteoric origin of the water and insignificant secondary evaporation in the catchment. The Deuterium excess (d-excess) in the IRS varies between 6.5‰ and 14.9‰ with an average of 11.7‰, which is mostly higher than the long-term average for the Indian summer monsoon ( 8‰). The higher d-excess value is because of the contribution of moisture from westerlies; a simple mass balance shows 26% water in the main Indus channel is contributed by the westerlies originated from the Mediterranean Sea. The Sr isotope ratio in IRS varies between 0.70515 and 0.71291; wherein the Indus, and its tributary rivers Shyok and Nubra, are characterized by relatively high Sr isotope ratios (avg. 0.71086-0.71243) compared to the Zanskar and TangTse tributaries (Sr 0.709) because of the variation in silicate rock weathering component and carbonate rock weathering component ratios respectively.
A Markov model of the Indus script
Rao, Rajesh P. N.; Yadav, Nisha; Vahia, Mayank N.; Joglekar, Hrishikesh; Adhikari, R.; Mahadevan, Iravatham
2009-01-01
Although no historical information exists about the Indus civilization (flourished ca. 2600–1900 B.C.), archaeologists have uncovered about 3,800 short samples of a script that was used throughout the civilization. The script remains undeciphered, despite a large number of attempts and claimed decipherments over the past 80 years. Here, we propose the use of probabilistic models to analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, syntactic patterns that could point the way to eventual decipherment. We illustrate the approach using a simple Markov chain model to capture sequential dependencies between signs in the Indus script. The trained model allows new sample texts to be generated, revealing recurring patterns of signs that could potentially form functional subunits of a possible underlying language. The model also provides a quantitative way of testing whether a particular string belongs to the putative language as captured by the Markov model. Application of this test to Indus seals found in Mesopotamia and other sites in West Asia reveals that the script may have been used to express different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs on damaged objects can be filled in with most likely predictions from the model. Taken together, our results indicate that the Indus script exhibits rich synactic structure and the ability to represent diverse content. both of which are suggestive of a linguistic writing system rather than a nonlinguistic symbol system. PMID:19666571
NASA Astrophysics Data System (ADS)
Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.
2016-04-01
Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.
Statistical Analysis of the Indus Script Using n-Grams
Yadav, Nisha; Joglekar, Hrishikesh; Rao, Rajesh P. N.; Vahia, Mayank N.; Adhikari, Ronojoy; Mahadevan, Iravatham
2010-01-01
The Indus script is one of the major undeciphered scripts of the ancient world. The small size of the corpus, the absence of bilingual texts, and the lack of definite knowledge of the underlying language has frustrated efforts at decipherment since the discovery of the remains of the Indus civilization. Building on previous statistical approaches, we apply the tools of statistical language processing, specifically n-gram Markov chains, to analyze the syntax of the Indus script. We find that unigrams follow a Zipf-Mandelbrot distribution. Text beginner and ender distributions are unequal, providing internal evidence for syntax. We see clear evidence of strong bigram correlations and extract significant pairs and triplets using a log-likelihood measure of association. Highly frequent pairs and triplets are not always highly significant. The model performance is evaluated using information-theoretic measures and cross-validation. The model can restore doubtfully read texts with an accuracy of about 75%. We find that a quadrigram Markov chain saturates information theoretic measures against a held-out corpus. Our work forms the basis for the development of a stochastic grammar which may be used to explore the syntax of the Indus script in greater detail. PMID:20333254
NASA Astrophysics Data System (ADS)
Ijaz, Muhammad Wajid; Mahar, Rasool Bux; Siyal, Altaf Ali; Anjum, Muhammad Naveed
2018-01-01
Sea level rise (SLR) in response to looming climate change is being considered as a major impediment to coastal areas. Acute wave activities and tidal propagations of semi-diurnal to mixed type are impairing the morphology of the Indus Delta in Pakistan. In this study a synthetic approach has been adopted using multi sensor satellite and ground data in order to integrate the individual effect of topography, oceanic activities and vegetative canopy for deduction of a synergic impact over the morphology of the Indus Delta creeks system from 1972 to 2017. Geomorphologic anomalies in the planform of fourteen major creeks were explored. Spatiotemporal variations suggested that a substantial amount of the delta alluvium had been engulfed by the Arabian Sea. On average, the creeks located on the right side of the Indus River were relatively less wide (3.9 km) than those of on the left side (5.2 km). Zonal statistics calculated with topographic position index (TPI) enabled to understand the tide induced inundation extents. The mangrove canopy on the right side was found greater, which is why tidal basins on that side experienced less erosive activities. Thus, it could be maintained that the coastal sedimentary processes may be monitored effectively with the remotely sensed data and temporal pattern of changes can be quantified for future planning and mitigation of adverse effects.
Indus River above Hyderabad photographed during MA-9 flight
1963-05-16
S63-06455 (15-16 May 1963) --- Indus River above Hyderabad, photographed from the Mercury-Atlas 9 (MA-9) capsule by astronaut L. Gordon Cooper Jr., during his 22-orbit MA-9 spaceflight. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.
2017-12-01
Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.
Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem
2015-06-01
Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of undiscovered oil and gas resources in the Lower Indus Basin, Pakistan, 2017
Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Finn, Thomas M.; Mercier, Tracey J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phuong A.; Hawkins, Sarah J.; Leathers-Miller, Heidi M.
2017-09-19
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 164 million barrels of oil and 24.6 trillion cubic feet of gas in the Lower Indus Basin, Pakistan.
Recchia, Gabriel L; Louwerse, Max M
2016-11-01
Computational techniques comparing co-occurrences of city names in texts allow the relative longitudes and latitudes of cities to be estimated algorithmically. However, these techniques have not been applied to estimate the provenance of artifacts with unknown origins. Here, we estimate the geographic origin of artifacts from the Indus Valley Civilization, applying methods commonly used in cognitive science to the Indus script. We show that these methods can accurately predict the relative locations of archeological sites on the basis of artifacts of known provenance, and we further apply these techniques to determine the most probable excavation sites of four sealings of unknown provenance. These findings suggest that inscription statistics reflect historical interactions among locations in the Indus Valley region, and they illustrate how computational methods can help localize inscribed archeological artifacts of unknown origin. The success of this method offers opportunities for the cognitive sciences in general and for computational anthropology specifically. Copyright © 2015 Cognitive Science Society, Inc.
Monitoring Environmental Impacts on Mangrove Ecosystem in the Indus Delta of Pakistan
NASA Astrophysics Data System (ADS)
Siddiqui, Mehrun-Nisa
Monitoring Environmental Impacts on Mangrove Ecosystem in the Indus Delta of Pakistan The mangrove forests growing in intertidal region along the tropical coastlines form a unique ecosystem with rich floral species and marine resources. In Pakistan, large mangrove forests are found all along the muddy coast of Sindh province at Indus Deltaic region. These mangroves are threatened by a variety of environmental pollution, like: dumping of untreated industrial and urban waste, sewage water; hazardous chemical released during ship breaking, oil spills, mangroves cutting, over fishing, scarcity of fresh water, seawater intrusion and unplanned urban development, etc. Dams and barrages, constructed on the mighty Indus River have reduced the supply of freshwater into the delta and consequently, seawater intruding into the riverine tract. The Tidal Link, constructed in 1995 to drain the agriculture effluents of cultivated areas of Sindh to sea, has also greatly damaged the ecology of the area. This study is based on integrated use of RS & GIS techniques for monitoring environmental impacts on the mangroves ecosystem of Indus Delta, for management and planning of this coastal ecosystem. Temporal satellite remote sensing (SRS) data acquired between 1976 to 2005 have been analysed using image processing and GIS techniques and coastal landuse maps representing coverage of the deltaic region have been prepared, which enabled to monitor dynamic and geomorphological changes occurred in the area. The tidal boundaries derived from temporal SRS data have been integrated to understand the coastal processes and their impact on mangroves ecosystem, and on tidal / intertidal zones. From the analysis, it was observed that the surface salt accumulation and dryness in the deltaic region and waterlogging & salinity in inland areas have been increased over the last 30 years, indicate the intrusion of seawater in groundwater aquifers and reduction in over all biomass in the area. This study demonstrated that the temporal SRS data used in this study are found suitable for monitoring environmental impacts on mangrove ecosystem and in identification of dynamic changes taking place in the Indus Delta of Pakistan. Key Words: Indus Delta, mangroves, ecosystem, temporal SRS data, environmental pollution, environmental impacts, seawater intrusion, coastal process, waterlogging & salinity
Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India
NASA Astrophysics Data System (ADS)
Searle, M. P.; Pickering, K. T.; Cooper, D. J. W.
1990-03-01
Collision of the Indian Plate with the Karakorum Plate-Lhasa Block during the Eocene (ca. 55-50 Ma) created predominantly a S- or SW-verging thrust culmination across the Himalaya. During the late Tertiary, two molasse basins existed — the Siwalik Bain, formed in the late Miocene to Present on the Indian foreland south of the Himalaya, and the mid-Eocene to late Miocene Indus Basin along the Indus Suture Zone north of the High Himalaya. The Indus Basin is approximately 2000 km long, extending eastwards from Ladakh across South Tibet. A balanced cross-section along the Zanskar River shows a minimum 36 km shortening in the Eocene-?late Miocene molasse, and suggests that the minimum basin width was approximately 60 km in Ladakh. More than 2000 m of post-Eocene alluvial fan, fluvial and fluvio-lacustrine sediments accumulated in the Ladakh sector with petrographies suggesting derivation mainly from the deeply dissected and uplifted northern granodioritic Ladakh batholith (Aptian-Eocene), with only minor amounts of debris derived from the deformed southern Tethyan passive margin. Palaeocurrents show predominant E-W, axis-parallel, sediment transport, with subordinate lateral input paths being preserved. The Indus molasse basin is deformed by numerous, post-Eocene, N-directed backthrusts, many of which cut the entire stratigraphy and, therefore, were active at least into late Tertiary times.
Entropic evidence for linguistic structure in the Indus script.
Rao, Rajesh P N; Yadav, Nisha; Vahia, Mayank N; Joglekar, Hrishikesh; Adhikari, R; Mahadevan, Iravatham
2009-05-29
The script of the ancient Indus civilization remains undeciphered. The hypothesis that the script encodes language has recently been questioned. Here, we present evidence for the linguistic hypothesis by showing that the script's conditional entropy is closer to those of natural languages than various types of nonlinguistic systems.
Makran Mountain Range, Indus River Valley, Pakistan, India
1984-10-13
41G-120-040 (5-13 Oct. 1984) --- Pakistan, featuring the city of Karachi, the Makran mountain range, the mouth of the Indus River and the North Arabian Sea were photographed with a medium format camera aboard the space shuttle Challenger during the 41-G mission. Photo credit: NASA
Holocene South Asian Monsoon Climate Change - Potential Mechanisms and Effects on Past Civilizations
NASA Astrophysics Data System (ADS)
Staubwasser, M.; Sirocko, F.; Grootes, P. M.; Erlenkeuser, H.; Segl, M.
2002-12-01
Planktonic oxygen isotope ratios from the laminated sediment core 63KA off the river Indus delta dated with 80 AMS radiocarbon ages reveal significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable, and shows non-periodic cycles in the multi-centennial frequency band. The largest change of the entire Holocene occurred at 4.2 ka BP and is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The late Holocene cycles in South Asia, which most likely represent drought cycles, vary between 250 and 800 years and are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is the fundamental cause behind late Holocene rainfall changes at least over south Asia.
ERIC Educational Resources Information Center
Recchia, Gabriel L.; Louwerse, Max M.
2016-01-01
Computational techniques comparing co-occurrences of city names in texts allow the relative longitudes and latitudes of cities to be estimated algorithmically. However, these techniques have not been applied to estimate the provenance of artifacts with unknown origins. Here, we estimate the geographic origin of artifacts from the Indus Valley…
Harappans and Aryans: Old and New Perspectives of Ancient Indian History.
ERIC Educational Resources Information Center
Manian, Padma
1998-01-01
Examines how nine world history texts treat the Harappan (Indus) civilization and the Aryans in ancient India. Analyzes the pioneering scholars of Indian studies, exploring the development of ideas about ancient Indian history. Discusses the ideas of recent scholars about the Aryan invasion theory, the Indus civilization, and the Vedas. (CMK)
NASA Astrophysics Data System (ADS)
Limmer, David R.; Henstock, Timothy J.; Giosan, Liviu; Ponton, Camilo; Tabrez, Ali R.; Macdonald, David I. M.; Clift, Peter D.
2012-09-01
We present results from the first high-resolution seismic reflection survey of the inner Western Indus Shelf, and Indus Delta, Arabian Sea. The results show major regional differences in sedimentation across the shelf from east to west, as well as north to south, both since the Last Glacial Maximum (~20 ka) and over longer time scales. We identify 10 major regional reflectors, interpreted as representing sea level lowstands. Strong compressive folding is observed underlying a reflector we have called Horizon 6 in the north-western shelf, probably compression associated with the transpressional deformation of the Murray Ridge plate boundary. Downslope profiles show a series of well developed clinoforms, principally at the shelf edge, indicating significant preservation of large packages of sediment during lowstands. These clinoforms have developed close to zones of deformation, suggesting that subsidence is a factor in controlling sedimentation and consequently erosion of the Indus Shelf. These clinoforms fan out from dome features (tectonic anticlines) mostly located close to the modern shoreline.
Are Deltaic Subaqueous Clinothems One-Highstand Affairs?
NASA Astrophysics Data System (ADS)
Giosan, L.; Clift, P.; Henstock, T.; Ponton, C.; Limmer, D. R.
2009-12-01
Clinothems are basic building blocks of continental shelves, whether modern or ancient. In many cases large delta-building rivers directly construct subaqueous clinothems on the shelf that are offset offshore from the delta coast. Assuming that the sediment flux to the shelf and the sediment redistributing processes are suitable for subaqueous clinothem development, the evolution of any subaqueous clinothems depends primarily on the availability of accommodation space. As the eustatic sea level varies with the volume of global ice, one primary mechanism of creating accommodation space on shelves is erosion during lowstands. We discuss here possible mechanisms for clinothems to survive erosion during lowstands by examining new data from the Indus delta shelf offshore Pakistan. Theoretical considerations based on estimates of the relative importance of wave energy vs. fluvial sediment delivery suggest that the Indus delta should develop a mid-shelf subaqueous clinothem. Instead, the Indus shelf exhibits a compound clinoform morphology. A shallow delta front clinoform extends along the entire delta coast from the shoreline to the 10-25 m water depth. New seismic data confirm that a mid-shelf clinothem developed between 30 and 90 m water depth extending over 100 km offshore east of the Indus canyon but less than 30 km west of the canyon. The advanced position of the eastern mid-shelf clinothem might reflect either a prolonged sediment delivery from the Indus River in that area compared to the shelf west of the canyon or the presence of a relict pre-Holocene mid-shelf delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar; Kane, S. R.; Khooha, Ajay
2015-05-15
A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less
Indus-2 X-ray lithography beamline for X-ray optics and material science applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in
2014-04-24
X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less
2014-01-01
INDUS-EM is India’s only level one conference imparting and exchanging quality knowledge in acute care. Specifically, in general and specialized emergency care and training in trauma, burns, cardiac, stroke, environmental and disaster medicine. It provides a series of exchanges regarding academic development and implementation of training tools related to developing future academic faculty and residents in Emergency Medicine in India. The INDUS-EM leadership and board of directors invited scholars from multiple institutions to participate in this advanced educational symposium that was held in Thrissur, Kerala in October 2013. PMID:24884923
Swaroop, Mamta; Galwankar, Sagar C; Stawicki, Stanislaw P A; Balakrishnan, Jayaraj M; Worlton, Tamara; Tripathi, Ravi S; Bahner, David P; Bhoi, Sanjeev; Kaide, Colin; Papadimos, Thomas J
2014-05-06
INDUS-EM is India's only level one conference imparting and exchanging quality knowledge in acute care. Specifically, in general and specialized emergency care and training in trauma, burns, cardiac, stroke, environmental and disaster medicine. It provides a series of exchanges regarding academic development and implementation of training tools related to developing future academic faculty and residents in Emergency Medicine in India. The INDUS-EM leadership and board of directors invited scholars from multiple institutions to participate in this advanced educational symposium that was held in Thrissur, Kerala in October 2013.
NASA Astrophysics Data System (ADS)
Khan, Firdos; Pilz, Jürgen
2014-05-01
Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some months over different years. There are no chances of overtopping of the dam during the 2020s and the 2050s under A2 and B2 scenarios. _______________________________________________________________________________KEY WORDS: Climate Model, Climate Change, Hydrological Model, Climate Change Scenarios, Tarbela Reservoir, Inflow, Outflow, Evaporation, Indus River, Calibration, Bias Correction.
Lancelotti, Carla
2018-01-01
Ancient civilisations depended heavily on natural fuel resources for a wide array of activities, and this had an impact on such resources that can be traced in the archaeological record. At its urban apex, the populations of the Indus Civilisation (2600-1900 BC) produced a wide range of objects and crafts, several of which involved highly specialised pyrotechnology. In the wake of increasing aridity and a period of weakened monsoon rainfall that affected South Asia from 2100 BC, these activities potentially put pressure on the natural resource base that may have had to be counterbalanced by differentiation in fuel use. The combined analysis of archaeobotanical and geoarchaeological remains from four Indus urban phase archaeological sites, has enable an assessment of the mechanisms through which people exploited wood, and diversified their fuel resources to adapt to the arid to semi-arid environments in which they lived. The combined use of local wood species with alternative fuels, such as dung and crop-processing leftovers, are evidence for resilient socio-ecological practices during the 700 years of Indus urbanism and perhaps beyond.
2018-01-01
Ancient civilisations depended heavily on natural fuel resources for a wide array of activities, and this had an impact on such resources that can be traced in the archaeological record. At its urban apex, the populations of the Indus Civilisation (2600–1900 BC) produced a wide range of objects and crafts, several of which involved highly specialised pyrotechnology. In the wake of increasing aridity and a period of weakened monsoon rainfall that affected South Asia from 2100 BC, these activities potentially put pressure on the natural resource base that may have had to be counterbalanced by differentiation in fuel use. The combined analysis of archaeobotanical and geoarchaeological remains from four Indus urban phase archaeological sites, has enable an assessment of the mechanisms through which people exploited wood, and diversified their fuel resources to adapt to the arid to semi-arid environments in which they lived. The combined use of local wood species with alternative fuels, such as dung and crop-processing leftovers, are evidence for resilient socio-ecological practices during the 700 years of Indus urbanism and perhaps beyond. PMID:29513672
NASA Astrophysics Data System (ADS)
Das, S.; Basu, A. R.
2017-12-01
Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.
Are equilibrium multichannel networks predictable? The case of the regulated Indus River, Pakistan
NASA Astrophysics Data System (ADS)
Carling, P. A.; Trieu, H.; Hornby, D. D.; Huang, He Qing; Darby, S. E.; Sear, D. A.; Hutton, C.; Hill, C.; Ali, Z.; Ahmed, A.; Iqbal, I.; Hussain, Z.
2018-02-01
Arguably, the current planform behaviour of the Indus River is broadly predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264-km-long multiple-channel reach. Remote sensing imagery, encompassing major floods in 2007 and 2010, shows that the Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the annual monsoon. Thus, the network structure, if not detailed planform, remains stable even for the record 2010 flood (27,100 m3 s- 1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6000 m3 s- 1 ( 80% of mean annual flood). The Maximum Flow Efficiency (MFE) principle demonstrates that the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3 s- 1. Rather, the network is in near-equilibrium with the mean annual flood (7530 m3 s- 1). The MFE principle indicates that stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the timescale for network adjustment is much longer than the timescale of the monsoon hydrograph, with the annual excess water being stored on floodplains rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.
Landform Evolution of the Zanskar Valley, Ladakh Himalaya.
NASA Astrophysics Data System (ADS)
Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.
2017-12-01
Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes
Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994
Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.
Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P
2016-01-01
The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.
Are Equilibrium Multichannel Networks Predictable? the Case of the Indus River, Pakistan
NASA Astrophysics Data System (ADS)
Darby, S. E.; Carling, P. A.
2017-12-01
Focusing on the specific case of the Indus River, we argue that the equilibrium planform network structure of large, multi-channel, rivers is predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264 km long multiple-channel reach. Remote sensing imagery, including a period of time that encompasses the occurrence of major floods in 2007 and 2010, shows that Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the monsoon. We show that the network structure, if not detailed planform, remains stable, even for the record 2010 flood (27,100 m3s-1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6,000 m3s-1 ( 80% of mean annual flow). Maximum Flow Efficiency (MFE) principle demonstrates the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3s-1. Rather, the network is in near-equilibrium with the mean annual flood (7,530 m3s-1). MFE principle indicates stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the time-scale for network adjustment is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored on floodplains, rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.
NASA Technical Reports Server (NTRS)
Rango, A.; Salomonson, V. V.; Foster, J. L.
1975-01-01
Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.
Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.
Rabbani, Unaib; Mahar, Gohar; Siddique, Azhar; Fatmi, Zafar
2017-02-01
The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.
Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley
Podgorski, Joel E.; Eqani, Syed Ali Musstjab Akber Shah; Khanam, Tasawar; Ullah, Rizwan; Shen, Heqing; Berg, Michael
2017-01-01
Arsenic-contaminated aquifers are currently estimated to affect ~150 million people around the world. However, the full extent of the problem remains elusive. This is also the case in Pakistan, where previous studies focused on isolated areas. Using a new data set of nearly 1200 groundwater quality samples throughout Pakistan, we have created state-of-the-art hazard and risk maps of arsenic-contaminated groundwater for thresholds of 10 and 50 μg/liter. Logistic regression analysis was used with 1000 iterations, where surface slope, geology, and soil parameters were major predictor variables. The hazard model indicates that much of the Indus Plain is likely to have elevated arsenic concentrations, although the rest of the country is mostly safe. Unlike other arsenic-contaminated areas of Asia, the arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, resulting from alkaline topsoil and extensive irrigation of unconfined aquifers, although pockets of reductive dissolution are also present. We estimate that approximately 50 million to 60 million people use groundwater within the area at risk, with hot spots around Lahore and Hyderabad. This number is alarmingly high and demonstrates the urgent need for verification and testing of all drinking water wells in the Indus Plain, followed by appropriate mitigation measures. PMID:28845451
Beam based alignment and its relevance in Indus-2.
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M L; Agrawal, R K; Yadav, S; Ghodke, A D
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
Beam based alignment and its relevance in Indus-2
NASA Astrophysics Data System (ADS)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.; Agrawal, R. K.; Yadav, S.; Ghodke, A. D.
2015-09-01
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers that the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.
An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.
Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel
2016-04-01
Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Makran Mountain Range, Indus River Valley, Pakistan, India
NASA Technical Reports Server (NTRS)
1984-01-01
The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.
Trends in annual minimum exposed snow and ice cover in High Mountain Asia from MODIS
NASA Astrophysics Data System (ADS)
Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Racoviteanu, Adina; Armstrong, Richard; Dozier, Jeff
2016-04-01
Though a relatively short record on climatological scales, data from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000-2014 can be used to evaluate changes in the cryosphere and provide a robust baseline for future observations from space. We use the MODIS Snow Covered Area and Grain size (MODSCAG) algorithm, based on spectral mixture analysis, to estimate daily fractional snow and ice cover and the MODICE Persistent Ice (MODICE) algorithm to estimate the annual minimum snow and ice fraction (fSCA) for each year from 2000 to 2014 in High Mountain Asia. We have found that MODSCAG performs better than other algorithms, such as the Normalized Difference Index (NDSI), at detecting snow. We use MODICE because it minimizes false positives (compared to maximum extents), for example, when bright soils or clouds are incorrectly classified as snow, a common problem with optical satellite snow mapping. We analyze changes in area using the annual MODICE maps of minimum snow and ice cover for over 15,000 individual glaciers as defined by the Randolph Glacier Inventory (RGI) Version 5, focusing on the Amu Darya, Syr Darya, Upper Indus, Ganges, and Brahmaputra River basins. For each glacier with an area of at least 1 km2 as defined by RGI, we sum the total minimum snow and ice covered area for each year from 2000 to 2014 and estimate the trends in area loss or gain. We find the largest loss in annual minimum snow and ice extent for 2000-2014 in the Brahmaputra and Ganges with 57% and 40%, respectively, of analyzed glaciers with significant losses (p-value<0.05). In the Upper Indus River basin, we see both gains and losses in minimum snow and ice extent, but more glaciers with losses than gains. Our analysis shows that a smaller proportion of glaciers in the Amu Darya and Syr Darya are experiencing significant changes in minimum snow and ice extent (3.5% and 12.2%), possibly because more of the glaciers in this region are smaller than 1 km2 than in the Indus, Ganges, and Brahmaputra making analysis from MODIS (pixel area ~0.25 km2) difficult. Overall, we see 23% of the glaciers in the 5 river basins with significant trends (in either direction). We relate these changes in area to topography and climate to understand the driving processes related to these changes. In addition to annual minimum snow and ice cover, the MODICE algorithm also provides the date of minimum fSCA for each pixel. To determine whether the surface was snow or ice we use the date of minimum fSCA from MODICE to index daily maps of snow on ice (SOI), or exposed glacier ice (EGI) and systematically derive an equilibrium line altitude (ELA) for each year from 2000-2014. We test this new algorithm in the Upper Indus basin and produce annual estimates of ELA. For the Upper Indus basin we are deriving annual ELAs that range from 5350 m to 5450 m which is slightly higher than published values of 5200 m for this region.
Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.
2013-08-15
Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less
NASA Astrophysics Data System (ADS)
Durcan, Julie; Thomas, David; Pawar, Vikas; Gupta, Sanjeev; Petrie, Cameron; Singh, Ravindra
2016-04-01
The area around the ephemeral Ghaggar-Hakra River system in India and Pakistan is associated with a dense concentration of Indus Civilisation archaeological sites. Giosan et al. (2012) have suggested that a decline, and ultimately cessation, of flow in this river system in response to the weakening of the Asian Monsoon was influential in the collapse of the Indus Civilisation around 4,000 years ago and palaeoclimatic studies in the region (e.g. Berkelhammer et al., 2012; Dixit et al., 2014; Leipe et al., 2014) have shown abrupt drying events during the mid-Holocene, which are superimposed onto a longer-term insolation driven decline in Asian Monsoon intensity. Further work is required to understand the dynamics of this river system during the Holocene and to assess the importance of changing landscape dynamics, as well as climatic variability, in the decline of the Indus Civilisation. This paper presents optically stimulated luminescence (OSL) dates from palaeochannel sediments and associated dune deposits in the Ghaggar-Hakra river system in Northwest India, with the aim of understanding late Quaternary geomorphological and palaeoenvironmental change. Reconstructing palaeoenvironmental variability will allow a comparison between the documented archaeological record of the Indus Civilisation and an absolute chronology of regional landscape dynamism. This comparison will also allow an insight into whether the mid-Holocene collapse and/or transformation of the Indus Civilisation can be correlated with geomorphological and/or climatic variability. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F.S.R., and Yoshimura, K., 2012, An abrupt shift in the Indian monsoon 4000 years ago, in Giosan, L., Fuller, D.Q., Nicoll, K., Flad, R.K. and Clift P.D. (eds.), Climates, landscapes, and civilizations. American Geophysical Union Geophysical Monograph, 198, 75-87. Dixit, Y., Hodell, D.A. and Petrie, C.A., 2012. Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology, 42, 339-342. Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., Duller, G.A.T., Tabrez, A.R., Gangal, K., Adhikari, R., Alizai, A., Filip, F., Vanlaningham, S. and Syvitski, J.P.M., 2012. Fluvial landscapes of the Harappan civilization Proceedings of the National Academy of Sciences, 109 (26), E1688-E1694 Leipe, C., Demske, D., Tarasov, P.E. and HIMPAC Project Members, 2014. A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quaternary International, 348, 93-112.
Beam based alignment and its relevance in Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Saroj Kumar; Husain, Riyasat; Gandhi, M. L.
2015-09-15
Initially in the Indus-2 storage ring, the closed orbit distortion (COD) could be best corrected to 1.3 mm rms in the horizontal and 0.43 mm rms in the vertical plane. The strength of the corrector magnets required high values for COD correction. This revealed that offsets in COD readout by the beam position monitors (BPMs) played a role in not achieving a rms COD lower than the above value. Thus, the offset between the electrical center of BPMs and the magnetic center of the nearest quadrupole magnet could be estimated using the beam based alignment (BBA) method. It prefers thatmore » the quadrupole magnet is able to be controlled individually and active shunt power supply (ASPS) system was designed for this purpose that works efficiently. This paper describes the methodology of BBA, topology of ASPS and its performance, and COD minimization using the measured BPM offsets. After BBA, the COD could be reduced to 0.45 mm rms and 0.2 mm rms in horizontal and vertical planes, respectively.« less
Expedient Repair Materials for Roadway Pavements
2005-03-01
SILSPEC 900 PNS Patch/spall SSI Const. & Indus. Elastomeric conc. Matls Sikadur 22 Lo-Mod Sika Corp. Epoxy polymer concrete SikaTop 123 Plus Thin...patch Sika 2-component, polymer- 15 min modified Sikaset Roadway Patch Patch/spall Sika 1-comp. with high 15-25 min (15 min) (2000) alumina cement (not
Habitat use by a freshwater dolphin in the low-water season
Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard
2012-01-01
1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.
NASA Astrophysics Data System (ADS)
Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali
2010-05-01
In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene. The sediments are further analysed using the environmental magnetic proxies NRM, ARM and IRM to fully understand the mineral magnetic variations and to quantify hematite and goethite contributions. This work plays an integral part of a larger scale palaeoenvironmental project on Indus Canyon sediments.
Hood, J.W.; Khan, Lutfe Ali; Jawaid, Khalid
1970-01-01
Dera Ismail (D.I.) Khan District contains an area of 3,450 square miles between the right bank of the Indus River and the Sulaiman Range in westcentral West Pakistan. Agriculture is the principal source of income in the District, but only a small part of the arable land is fully utilized. The region is semiarid and has an average annual rainfall of about 9 inches and a potential evapotranspirational rate of eight to nine times the annual rainfall. Thus, rainfall alone is not adequate for high-intensity cropping. Irrigation is practiced near the Indus River; the Paharpur Canal is used, as well as the traditional inundation method. Elsewhere in the District, adequate water is supplied to local areas by karezes, perennial streams from the mountains, and some recently installed tubewells (see 'Glossary'). Further development of ground-water supplies would permit a more effective utilization of most of the presently tilled land and would allow additional land to be farmed. D.I. Khan District is primarily an alluvial plain that slopes from the mountain ranges in the northern and western parts of the District toward the Indus River. Rocks in the bordering mountains are of Paleozoic to early or middle Pleistocene age. The unconsolidated rocks of the plain, of middle (?) Pleistocene to Holocene (Recent) age, consist of piedmont deposits derived from the hills to the north and west and of alluvium laid down by the Indus River. These deposits interfinger in a transitional zone about 8 to 12 miles west of the river. Lithologic and structural features indicate that the unconsolidated rocks possibly may be divided into broad units. The investigations in D.I. Khan District have revealed two main areas of potential ground-water development based on considerations of both permeability and chemical quality of the ground water: 1. A belt about 10 miles wide parallels the Indus River from the Khisor Range southward to the area immediately south of D.I. Khan town. In this belt, the material penetrated by test holes and tubewells consists predominantly of sand, which in tubewells can yield from 2 to 3 cfs (cubic feet per second) of water with only moderate drawdown. Also in this belt, ground water of good chemical quality extends to depths of 1,000 feet or more. 2. The area from the mouth of the Gumal River gorge to the vicinity of Kot Azam contains sand and gravel strata that may yield from 1 to 3 cfs of water, which contains 500 to 1,500 ppm (parts per million) of total dissolved solids. Other marginal parts of the District also contain water of good chemical quality, but developmental prospects are somewhat poorer because of greater depths to water, lower permeabilities, or greater depths to aquifers, all of which would require greater costs in the tubewell installations. The stratification or zoning of water of different chemical qualities to some extent governs the local availability of useful water. Generally, the ground water of poorest quality is found in the shallow zone, and quality improves with depth. The central part of the District, in a belt reaching from the vicinity of Tank southward to the Indus River near Dera Ghfizi Khan District, contains highly mineralized water and few aquifers. The mineralization of water in this belt is due primarily to large concentrations of sodium and sulfate and thus differs from the main part of the Punjab region where highly mineralized waters are generally chloride waters. Radical changes in water quality, both horizontally and vertically, are common in the District. Changes in chemical quality of water from large-capacity wells near areas of highly mineralized water are taking place, and further changes may be expected as withdrawals continue and increase in magnitude. Under present conditions, surface-water supplies are fully utilized, and ground water is the largest supply available for development-other than that from the Indus River.
Anatomy of success in oil and gas exploration in Pakistan, 1915--94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadri, V.N.; Quadri, S.M.G.J.
1996-05-13
Pakistan, flanked by Iran, Afghanistan, China, and India, is the size of Texas and Louisiana combined. The Indus and Baluchistan basins cover 80% of Pakistan`s total area. The country also has 230,000 sq km of marine Exclusive Economic Zone. The law regarding E and P activity was promulgated in 1986, replacing the previous Petroleum (Production) Rules of 1949. As a result of the new Petroleum Policy implemented in March 1994 and streamlining of the bid review and award process, acreage leased including reconnaissance during 1994 was 355,541 sq km onshore and 120,640 sq km offshore, with the number of operatingmore » groups also a record high of 46. Although complex and disturbed as a result of collision tectonics, Pakistan`s geology is as fascinating as the surface geomorphology, from the complex compressional thrusted to the relatively simple extensional rifted, salt related to transform fault associated, the reefs, too, all impressive traps for petroleum, at times almost textbook examples. However, domestic oil production at yearend 1994 was about 53,251 b/d of oil and 1.7 bcfd of gas. Oil and gas have been found in the Potwar/Upper Indus basin and Lower Indus basin, and mainly gas with one gas/condensate discovery in the Sulaiman/Middle Indus basin. This article attempts to present brief case history outlines of typical, significant oil and gas discoveries of Pakistan 1915--94 with respect to the two main productive basins, their source and reservoir sequences, in order to determine the anatomy of success in exploration in Pakistan.« less
Wandrey, C.J.; Law, B.E.; Shah, Haider Ali
2004-01-01
Geochemical analyses of rock samples and produced oil and gas in the Indus Basin have shown that the bulk of the hydrocarbons produced in the Indus Basin are derived from the Lower Cretaceous Sembar Formation and equivalent rocks. The source rocks of the Sembar are composed of shales that were deposited in shallow marine environments, are of mixed type-II and type-III kerogen, with total organic carbon (TOC) content ranging from less than 0.5 percent to more than 3.5 percent; the average TOC of the Sembar is about 1.4 percent. Vitrinite reflectance (Ro) values range from immature (1.35 percent Ro). Thermal generation of hydrocarbons in the Sembar Formation began 65 to 40 million years ago, (Mya) during Paleocene to Oligocene time. Hydrocarbon expulsion, migration, and entrapment are interpreted to have occurred mainly 50 to 15 Mya, during Eocene to Miocene time, prior to and contemporaneously with the development of structural traps in Upper Cretaceous and Tertiary reservoirs. The principal reservoirs in the Sembar-Goru/Ghazij Composite Total Petroleum System are Upper Cretaceous through Eocene sandstones and limestones.
The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...
The Shock and Vibration Digest, Volume 18, Number 2
1986-02-01
Bounce Response of Canadian 71. McMunn, J.C., "Multi-Parameter Optimum MAGLEV Vehicle under Guideway Excitation. . Damping in Linear Dynamical Systems...Northeast Corridor High-Speed Test Cars," J. "Suspension Bounce Response of Canadian L’,-*’-.-" Engrg. Indus., Trans. ASME, 91B (3), pp 897-907 MAGLEV
Surface and interface analysis of nanomaterials at microfocus beamline (BL-16) of Indus-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar, E-mail: rnrrsgangadhar@gmail.com; Tiwari, M. K., E-mail: mktiwati@rrcat.gov.in; Homi Bhabha National Institute, RRCAT
2016-05-06
Analysis of chemical nature and electronic structure at the interface of a thin film medium is important in many technological applications as well as to understand overall efficiency of a thin film device. Synchrotron radiation based x-ray spectroscopy is a promising technique to study interface nature of the nanomaterials with atomic resolutions. A combined x-ray reflectivity and grazing incidence x-ray fluorescence measurement facility has been recently constructed at the BL-16 microfocus beamline of Indus-2 synchrotron facility to accomplish surface-interface microstructural characterization of thin layered materials. It is also possible to analyze contaminates or adsorbed ad-atoms on the surface of themore » thin nanostructure materials. The BL-16 beamline also provides an attractive platform to perform a variety of analytical research activities especially in the field of micro x-ray fluorescence and ultra-trace elements analysis using Synchrotron radiation. We describe various salient features of the BL-16 reflectometer experimental station and the detailed description of its capabilities through the measured results, obtained for various thin layered nanomaterials.« less
NASA Astrophysics Data System (ADS)
Limmer, D. R.; Clift, P. D.; Koehler, C.; Giosan, L.; Ponton, C.; Henstock, T.; Tabrez, A.
2010-12-01
Source to sink processes in large fluvial systems are complicated by large transport distances and the potential to store and rework material on route to the submarine fan. We target the Indus river system and assess how climate change since the Last Glacial Maximum (LGM) may have affected the storage and deposition of sediment in the nearshore shelf setting. While sediment reworking within the floodplain appears to have been strong during the Holocene, it is unclear whether this can be observed in the deep sea or in the submarine delta. We present a multi-proxy record of mineralogical and geochemical change from two cores obtained from the Indus Shelf during Winter 2008/9, one located close to the modern river and one located in the north-west shelf. Results show a strong contrast in the geochemistry, reflectance spectroscopy and clay mineralogy between Holocene sediments from the two cores. We propose that these differences are caused by both local variations in sediment source and transport mechanisms. Trends common in both cores could be related to climatic processes, such as low values in the chemical alteration index (CIA) and low 87Sr/86Sr that rise between 11 and 8ka suggests more intense chemical weathering at that time. This period coincides with presumed warmer, wet conditions and a stronger summer monsoon. A small decline in chemical weathering after 8ka could be caused by an apparent weakening of the monsoon since that time. These data suggest that sediment weathered in the floodplains is transported quickly to the submarine delta during the Holocene, but that this material has not yet been re-deposited into the deep water via the Indus Canyon.
Sediment Buffering and Transport in the Holocene Indus River System
NASA Astrophysics Data System (ADS)
Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.
2009-12-01
Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.
NASA Astrophysics Data System (ADS)
Bhattacharya, G.; Robinson, D. M.; Orme, D. A.; Olree, E.; Bosu, S.
2016-12-01
Detritus from the India-Asia collision and subsequent Cenozoic tectonic events is preserved in sedimentary basins along the 2500 km long Indus-Yarlung Suture Zone (IYSZ) in India and Tibet. In northwest India, these Eocene-Miocene synorogenic sedimentary rocks are preserved in the Tar and Indus Groups. We use (U-Th)/He dating of detrital zircons from units within these sedimentary basins, including the Temesgam Formation at Temesgam, the Lower Nimu Formation and the Sumdo Formation in the Zanskar Gorge, and the Artsa Formation and the Miru Formation in the Upshi-Lato region. These analyses indicate a phase of rapid exhumation from 19-8 Ma. Possible explanations for these data include a combination of tectonic events and the influence of climate. Regional back-thrusting initiated at 20 Ma along the Great Counter Thrust, which buried the IYSZ footwall with the Lamayuru slope deposits of the Indian passive margin. In south Tibet, previous studies identify underthrusting of the Indian plate as a key factor for basin exhumation in the IYSZ, which may also be a driver in northwest India. The flow of the paleo-Indus river through the IYSZ in Early Miocene time might have been triggered by the onset of Asian monsoon at 24 Ma and its intensification between 18-10 Ma. Our data demonstrate a phase of rapid exhumation in northwest India from 19-8 Ma, which may be linked to all of these tectonic and climate influences. Data in this study are similar to the data of Carrapa et al. (2014) from south Tibet that show peak exhumation at 17 Ma, and suggest that a regional cooling episode, driven by tectonics and climate, might have prevailed in the Miocene along the IYSZ.
Earth observations taken during STS-83 mission
2016-08-12
STS083-747-052 (4-8 April 1997) --- Sunglint on the Indus River, Sukkar, and Rohri, Pakistan. Sukkar city (27.42 north 68.52 east), Sindh province, southeastern Pakistan lies on the west bank of the Indus River, connected with Rohri on the opposite bank by a cantilever bridge. Midstream between the two cities is the strategic island fortress of Bukkur. The old town contains many historic tombs and mosques, including the Mir Ma'sum Shah Minaret (c. AD 1607). An industrial and trade center, it has biscuit, cigarette, oil, lime, and cement factories, and cotton, silk, thread, and flour mills; boat building is also significant. The surrounding region is a vast alluvial plain broken only occasionally by low limestone hills. A portion of the Thar Desert is reaching from the south to Rohri. The Sukkur Barrage, highlighted by the sunglint, was completed in 1932. Nearly 1 mile (1.6 kilometers) long it crosses the Indus River 3 miles (4.8 kilometers) below Sukkur Gorge and feeds irrigation canals. The canals originating from it serve a cultivable area of about five million acres of land producing both food and cash crops, such as wheat, cotton, rice, oilseed, and fruit cultivation.
A peaceful realm? Trauma and social differentiation at Harappa.
Robbins Schug, Gwen; Gray, Kelsey; Mushrif-Tripathy, V; Sankhyan, A R
Thousands of settlements stippled the third millennium B.C. landscape of Pakistan and northwest India. These communities maintained an extensive exchange network that spanned West and South Asia. They shared remarkably consistent symbolic and ideological systems despite a vast territory, including an undeciphered script, standardized weights, measures, sanitation and subsistence systems, and settlement planning. The city of Harappa (3300-1300B.C.) sits at the center of this Indus River Valley Civilization. The relatively large skeletal collection from Harappa offers an opportunity to examine biocultural aspects of urban life and its decline in South Asian prehistory. This paper compares evidence for cranial trauma among burial populations at Harappa through time to assess the hypothesis that Indus state formation occurred as a peaceful heterarchy. The prevalence and patterning of cranial injuries, combined with striking differences in mortuary treatment and demography among the three burial areas indicate interpersonal violence in Harappan society was structured along lines of gender and community membership. The results support a relationship at Harappa among urbanization, access to resources, social differentiation, and risk of interpersonal violence. Further, the results contradict the dehumanizing, unrealistic myth of the Indus Civilization as an exceptionally peaceful prehistoric urban civilization. Copyright © 2012 Elsevier Inc. All rights reserved.
Glacier and snow hydrology investigation in the Upper Indus Basin using Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
Jouvet, G.; Stastny, T.; Oettershagen, P.; Hugentobler, M.; Mantel, T.; Melzer, A.; Weidmann, Y.; Funk, M.; Siegwart, R.; Lund, J.; Forster, R. R.; Burgess, E. W.
2017-12-01
The flows of the Indus River are a vital resource for food security, ecosystem services, hydropower and economy for China, India and Pakistan. Glaciers of the Karakoram Mountains are the largest drivers of discharge in the Upper Indus Basin, and combined with snowmelt constitute the majority of runoff. While recently verified in near balance, the glaciers of the Karakoram exhibit substantial variation both spatially and temporally. Complex climatology, coupled with the challenges of field study in this rugged range, illicit notable uncertainties in observation and prediction of glacial status. Satellite-borne radar sensors acquire imagery regardless of cloud cover or time of day, and offer unique insights into physical processes due to their wavelength. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track transient snow lines on glaciers of the Shigar watershed throughout multiple ablation seasons, and discuss the utility of this information in relation to snow and glacier mass balance. As the Sentinel-1 sensor ascending and descending passes capture morning and evening imagery in this region, diurnal radar variations will also be explored as indicators of melt-refreeze cycles and their correlation with peak runoff.
Foraminiferal stratigraphy of Ranikot (Paleocene) of Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kureshy, A.A.
1983-03-01
The sedimentary deposits of Pakistan are divided into three distinct basins: the Lower Indus basin, the Upper Indus basin, and the Baluchistan basin. The Lower Indus basin is further divided into two parts; the northern part is the Sulaiman Province, and the southern part is known as Kirthar Province. The tertiary stratigraphy of Kirthar Province is conspicuous for its characteristic lithostratigraphic units. The Paleocene deposits of Kirthar Province are designated as Ranikot Group. The Ranikot Group was divided by Cheema et al in 1977 into three distinct lithostratigraphic units: the Khadro formation (Cardita beaumonti beds), Bara formation (Lower Ranikot), andmore » Lakhra formation (Upper Ranikot). The Khadro and Lakhra formations are marine, characterized by foraminiferal assemblages. The characteristic planktonic forms are: Globigerina triloculinoides Plummer, Globorotalia pseudobulloids (Plummer), G. compressa (Plummer), G. valascoensis (Cushman), and G. pseudomenardii Bolli. The diagnostic forms of larger foraminifera are: Nummulites nuttalli Davies, Miscellanea (d'Archiac and Haime), Kathina major Smout, and Lockartia conditii (Nuttall). The planktonic foraminifera were assigned to Globorotali trinidadensis, G. pseudomenardii, and G. velasoensis zones of Kureshy in 1977, and larger foraminifera were assigned to Nummulities nuttalli zones of Kureshy in 1978.« less
NASA Astrophysics Data System (ADS)
Hamidullah, S.; Tariq, S.; Shah, M. T.; Bishop, M. P.; Kamp, U.; Olsenholler, J.
2002-05-01
Baseline for Monitoring Water Resources Along Kabul and Indus Rivers of Pakistan for Potential Terrorist Contamination Terrorism has temporarily constrained the dynamism of the world it was enjoying before September 11, 2001, but also has opened avenues for people of all ethnicities, creeds, and professions to join hands in combating it. Scientific efforts to combat terrorism are likely to lead to better use of existing scientific knowledge as well as to discoveries that will increase world organization, interconnectivity, and peace promotion. Afghanistan and surrounding regions are major focal points for current anti-terrorist activities of the USA and its allies, including Pakistan. The United States, Pakistan, and Afghanistan have shared many similar political objectives, as well as differences, in cold war and post-cold-war eras, reflected by variable provisions of material aid. It is well recognized that understanding Afghanistan requires comprehension of the Pakistan situation as well, especially for common resources. Water is paramount because it is absolutely vital, but can be contaminated by internal or cross-border terrorism. The Kabul and Indus rivers originate in the Hindu Kush - Himalaya ranges. The Kabul River flows from Afghanistan into Pakistan, and after irrigating Peshawar basin, joins the Indus. The Indus, after its origin in Tibet and flow through the Indian Himalaya, enters Pakistan and flows south as the irrigation lifeblood of the country. Any terroristic addition of radioactive nuclides or contaminants to either river could dramatically impact the dependent riverine ecologies. Monitoring cells thus need to be established at locations in Afghanistan and Pakistan to assess base-line river variances for possible future contamination by terrorists. This paper presents a general view and the physical and chemical parameters of parts of the two rivers, and of the surrounding underground water in Peshawar Basin, including pH, conductivity, total dissolved solids, major elements, trace elements, heavy metals and oxygen isotopes. Data are mostly within allowed limits of US-EPA for surface and underground water. Oxygen isotopes confirm the dangers of contamination from the Kabul River to underground water. Heavy metals were determined through spectrophotometery, however, modern geophysical methods are cheaper and quicker and can be applied at monitoring stations. With Kabul river and its surroundings as examples, similar theory and practice can be applied to rivers within the United States and other parts of the world.
How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs
NASA Astrophysics Data System (ADS)
Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Mukhopadhyay, Biswajit
2014-02-01
Extraction of watershed areas from Digital Elevation Models (DEMs) is increasingly required in a variety of environmental analyses. It is facilitated by the availability of DEMs based on remotely sensed data, and by Geographical Information System (GIS) software. However, accurate delineation depends on the quality of the DEM and the methodology adopted. This paper considers automated and supervised delineation in a case study of the Upper Indus Basin (UIB), Pakistan, for which published estimates of the basin area show significant disagreement, ranging from 166,000 to 266,000 km2. Automated delineation used ArcGIS Archydro and hydrology tools applied to three good quality DEMs (two from SRTM data with 90m resolution, and one from 30m resolution ASTER data). Automatic delineation defined a basin area of c.440,000 km2 for the UIB, but included a large area of internal drainage in the western Tibetan Plateau. It is shown that discrepancies between different estimates reflect differences in the initial extent of the DEM used for watershed delineation, and the unchecked effect of iterative pit-filling of the DEM (going beyond the filling of erroneous pixels to filling entire closed basins). For the UIB we have identified critical points where spurious addition of catchment area has arisen, and use Google Earth to examine the geomorphology adjacent to these points, and also examine the basin boundary data provided by the HydroSHEDS database. We show that the Pangong Tso watershed and some other areas in the western Tibetan plateau are not part of the UIB, but are areas of internal drainage. Our best estimate of the area of the Upper Indus Basin (at Besham Qila) is 164,867 km2 based on the SRTM DEM, and 164,853 km2 using the ASTER DEM). This matches the catchment area measured by WAPDA SWHP. An important lesson from this investigation is that one should not rely on automated delineation, as iterative pit-filling can produce spurious drainage networks and basins, when there are areas of internal drainage nearby.
Drought Characteristics Based on the Retrieved Paleoprecipitation in Indus and Ganges River Basins
NASA Astrophysics Data System (ADS)
Davtalabsabet, R.; Wang, D.; Zhu, T.; Ringler, C.
2014-12-01
Indus and Ganges River basins (IGRB), which cover the major parts of India, Nepal, Bangladesh and Pakistan, are considered as the most important socio-economic regions in South Asia. IGRB support the food security of hundreds of millions people in South Asia. The food production in IGRB strictly relies on the magnitude and spatiotemporal pattern of monsoon precipitation. Due to severe drought during the last decades and food production failure in IGRB, several studies have focused on understanding the main drivers for south Asia monsoon failures and drought characteristics based on the historical data. However, the period of available historical data is not enough to address the full characteristic of drought under a changing climate. In this study, an inverse Palmer Drought Severity Index (PDSI) model is developed to retrieve the paleoprecipitation back to 700 years in the region, taking the inputs of available soil water capacity, temperature, and previous reconstructed PDSI based on tree-ring analysis at 2.5 degree resolution. Based on the retrieved paleoprecipitation, drought frequency and intensity are quantified for two periods of 1300-1899 (the reconstruction period) and 1900-2010 (the instrumental period). Previous studies have shown that in IGRB, a severe drought occurs when the annual precipitation deficit, compared with the long-term average precipitation, is greater than 10%. Climatic drought frequency is calculated as the percentage of years with predefined severe droughts. Drought intensity is defined as the average precipitation deficit during all of the years identified as severe droughts. Results show that the drought frequency, as well as the spatial extent, has significantly increased from the reconstruction period to the instrumental period. The drought frequency in the Indus River basin is higher than that in the Ganges River basin. Several mega-droughts are identified during the reconstruction period.
Borehole Shear Device Phase II Development.
1982-02-01
FIGURE 8 ITEM QUANTITY DESCRIPTION B1 1 Torque/Normal Load Transducer - First Extension Coupling. B2 1 Torque/Normal Load Transducer - Gauge Tube. B3 I...235, type RFN 7012. Supplier - Ringfeder Limited, Forum Drive, Midland Indus- trial Estate, Rugby , Warwickshire CV21 iNT, UK. FB 1 Expanding Friction...Midland Industrial Estate, Rugby , Warwickshire CV21 INT, UK. GF 2 Deep Groove Ball Bearing (upper support bearing), 80 x 100 x 10. Supplier - SKF ref
Pakistan and Water: New Pressures on Global Security and Human Health
2011-01-01
The Indus River is the major source of water for the more than 180 million people of Pakistan. A rapidly increasing population over the past 60 years has created new pressures on water that was once a plentiful resource for the health and development of the country. Rising tensions between India and Pakistan, which share the Indus flow, may lead to violent confrontation in an already volatile part of the globe. The recent flooding, which affected more than 20 million people, drew attention to poor management of the rivers of Pakistan. Public health has the scientific knowledge and professional capacity to help develop water management practices that could improve population health in Pakistan. PMID:21421956
Indus basin off Pakistan contains few wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadri, V.N.; Quadri, S.M.G.J.
1997-06-16
The U.N. Conference on the Law of the Sea reaffirmed sovereignty of nations over 22 km of territorial sea, a 370 km Exclusive Economic Zone (EEZ), and rights over the continental shelf to at least 370 km and out to 648 km or beyond under specified conditions. With a coast line of about 990 km, the EEZ for Pakistan extends over an area almost 240,000 sq km, or 40% of the land sedimentary area, in which two distinct geological provinces, and the Indus Offshore and the Makran offshore, have been defined. The paper discusses the tectonics, structure, exploration history, andmore » play types offshore Pakistan. Data show a potential for both oil and gas.« less
NASA Astrophysics Data System (ADS)
Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr
2018-01-01
This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.
NASA Astrophysics Data System (ADS)
Siddiqui, M.; Ali, Z.
Deforestation / depletion in forest area threaten the sustainability of agricultural production systems and en-danger the economy of the country. Every year extensive areas of arable agricultural and forestlands are degraded and turned into wastelands, due to natural causes or human interventions. There are several causes of deforestation, such as expansion in agricultural area, urban development, forest fires, commercial logging, illicit cutting, grazing, constructions of dams / reservoirs and barrages, com munication links, etc. Depletion in forest cover, therefore, has an important impact on socio - economic development and ecological balance. High population growth rate in Pakistan is one of the main causes for the rapid deterioration of physical environment and natural resource base. In view of this, it is felt necessary to carryout land -u s e studies focusing on strategies for mapping the past and present conditions and extent of forests and rangelands using Satellite Remote Sensing (SRS) data and GIS t echnology. The SRS and GIS technology provides a possible means of monitoring and mapping changes occurring in natural resources and the environment on a continuing basis. The riverine forests of Sindh mostly grow along the River Indus in the flood plains, spread over an area of 241,000 ha are disappearing very rapidly. Construction of dams / barrages on the upper reaches of the River Indus for hydroelectric power and irrigation works have significantly reduced the discharge of fresh water into the lower Indus basin and as a result, 100,000 acres of forests have disappeared. Furthermore, the heavy floods that occurred in 1978, 1988, 1992 and 1997, altered the course of the River Indus in many places, especially in the lower reaches, this has also damaged the riverine forests of Sindh. An integrated approach involving analysis of SRS data from 1977 to 1998 and GIS technique have been used to evaluate the geographic ex-tent and distribution of the riverine forests of Sindh and to monitor temporal changes in the forest cover between 1977 &1990 and 1990 &1998. The integrated landuse forest cover maps of riverine forest, shows temporal changes in the forest cover between 1977 &1990 and 1990 &1998, as well as in the River Indus course. The digital thematic maps based on SRS data and GIS technology can supplement existing conventional ground based sources of information for monitoring changes in forest cover on a regular basis, which can be helpful for forest resource management and planning and monitoring environmental changes.
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2017-08-01
Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.
Endogenous change: on cooperation and water availability in two ancient societies
NASA Astrophysics Data System (ADS)
Pande, S.; Ertsen, M.
2014-05-01
We propose and test the theory of endogenous change in societal institutions based on historical reconstructions of two ancient civilizations, the Indus and Hohokam, in two water-scarce basins, the Indus Basin in the Indian subcontinent and the lower Colorado Basin in the southwestern United States. In our reconstructions, institutions are approximated by the scale of "cooperation", be it in the form of the extent of trade, sophisticated irrigation networks, a central state or a loosely held state with a common cultural identity. We study changes in institutions brought about by changes in factors like rainfall, population density, and land-use-induced water resource availability, in a proximate manner. These factors either change naturally or are changed by humans; in either case we contend that the changes affect the stability of cooperative structures over time. We relate the quantitative dimensions of water access by ancient populations to the co-evolution of water access and the socioeconomic and sociopolitical organizations. In doing so, we do not claim that water manipulation was the single most significant factor in stimulating social development and complexity - this would be highly reductionist. Nonetheless, we provide a discussion with the aim to enhance our understanding of the complexity of coupled human-hydrological systems. We find that scarcity triggered more complex cooperative arrangements in both Indus and Hohokam societies.
NASA Astrophysics Data System (ADS)
Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.
2017-10-01
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.
Scenario approach for the seasonal forecast of Kharif flows from the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Fraz Ismail, Muhammad; Bogacki, Wolfgang
2018-02-01
Snow and glacial melt runoff are the major sources of water contribution from the high mountainous terrain of the Indus River upstream of the Tarbela reservoir. A reliable forecast of seasonal water availability for the Kharif cropping season (April-September) can pave the way towards better water management and a subsequent boost in the agro-economy of Pakistan. The use of degree-day models in conjunction with satellite-based remote-sensing data for the forecasting of seasonal snow and ice melt runoff has proved to be a suitable approach for data-scarce regions. In the present research, the Snowmelt Runoff Model (SRM) has not only been enhanced by incorporating the glacier (G)
component but also applied for the forecast of seasonal water availability from the Upper Indus Basin (UIB). Excel-based SRM+G takes account of separate degree-day factors for snow and glacier melt processes. All-year simulation runs with SRM+G for the period 2003-2014 result in an average flow component distribution of 53, 21, and 26 % for snow, glacier, and rain, respectively. The UIB has been divided into Upper and Lower parts because of the different climatic conditions in the Tibetan Plateau. The scenario approach for seasonal forecasting, which like the Ensemble Streamflow Prediction method uses historic meteorology as model forcings, has proven to be adequate for long-term water availability forecasts. The accuracy of the forecast with a mean absolute percentage error (MAPE) of 9.5 % could be slightly improved compared to two existing operational forecasts for the UIB, and the bias could be reduced to -2.0 %. However, the association between forecasts and observations as well as the skill in predicting extreme conditions is rather weak for all three models, which motivates further research on the selection of a subset of ensemble members according to forecasted seasonal anomalies.
Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1
NASA Astrophysics Data System (ADS)
Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.
2003-01-01
Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.
NASA Astrophysics Data System (ADS)
Khan, Asif; Naz, Bibi S.; Bowling, Laura C.
2015-02-01
The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priya, P.; Krishnan, R.; Mujumdar, Milind
Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June to September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basinmore » have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.« less
Spatial quantification of groundwater abstraction in the irrigated Indus basin.
Cheema, M J M; Immerzeel, W W; Bastiaanssen, W G M
2014-01-01
Groundwater abstraction and depletion were assessed at a 1-km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process-based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash-Sutcliffe criterion (0.52 to 0.93), bias (-17.3% to -0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km³ (262 mm) of groundwater was abstracted in the Indus Basin while 31 km³ (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability. © 2013, National Ground Water Association.
Paleofloods records in Himalaya
NASA Astrophysics Data System (ADS)
Srivastava, P.; Kumar, A.; Chaudhary, S.; Meena, N.; Sundriyal, Y. P.; Rawat, S.; Rana, N.; Perumal, R. J.; Bisht, P.; Sharma, D.; Agnihotri, R.; Bagri, D. S.; Juyal, N.; Wasson, R. J.; Ziegler, A. D.
2017-05-01
We use paleoflood deposits to reconstruct a record of past floods for the Alaknanda-Mandakini Rivers (Garhwal Himalaya), the Indus River (Ladakh, NW Himalaya) and the Brahmaputra River (NE Himalaya). The deposits are characterized by sand-silt couplets, massive sand beds, and from debris flow sediment. The chronology of paleoflood deposits, established by Optically Stimulated Luminescence (OSL) and 14C AMS dating techniques, indicates the following: (i) The Alaknanda-Mandakini Rivers experienced large floods during the wet and warm Medieval Climate Anomaly (MCA); (ii) the Indus River experienced at least 14 large floods during the Holocene climatic optimum, when flood discharges were likely an order of magnitude higher than those of modern floods; and (iii) the Brahmaputra River experienced a megaflood between 8 and 6 ka. Magnetic susceptibility of flood sediments indicates that 10 out of 14 floods on the Indus River originated in the catchments draining the Ladakh Batholith, indicating the potential role of glacial lake outbursts (GLOFs) and/or landslide lake outbursts (LLOFs) in compounding flood magnitudes. Pollen recovered from debris flow deposits located in the headwaters of the Mandakini River showed the presence of warmth-loving trees and marshy taxa, thereby corroborating the finding that floods occurred during relatively warm periods. Collectively, our new data indicate that floods in the Himalaya largely occur during warm and wet climatic phases. Further, the evidence supports the notion that the Indian Summer Monsoon front may have penetrated into the Ladakh area during the Holocene climatic optimum.
The Shock and Vibration Digest. Volume 15, Number 9
1983-09-01
of Exciting Energy Supply E. Marui , S. Ema, and S. Kato Gifu Univ., 1-1 Yanagido, Gifu-shi, 501-11, Japan, J. Engrg. Indus., Trans. ASME, 105 (2), pp...Vibration of Lathe Tools. Part 1: General Modal Methods in Continuous Bridge Deck Statics * Characteristics of Chatter Vibration A.G. Zechini E. Marui , S...1758 Pombo, J.L ............. 1901 Kato, S........... 1711, 1712 Mark, W.D.............. 1702 Popov, M.M.. 1859 * Kaufman, A ............. 1769 Marui , E
NASA Astrophysics Data System (ADS)
Khan, S. D.; Stern, R. J.; Manton, M. I.; Copeland, P.; Kimura, J. I.; Khan, M. A.
2004-11-01
This paper presents new geochemical and geochronology data for the Teru Volcanic Formation (previously known as the Shamran Volcanics) exposed west of Gilgit in the Kohistan terrane of the Pakistani Himalayas. The Teru Volcanic Formation ranges from basalt through andesite to rhyolite and has subalkaline and midalkaline affinities. Trace-element compositions and isotopic characteristics suggest these magmas were formed in a subduction zone setting; isotopic studies also support this conclusion. It is suggested that these lavas originated from a depleted mantle source, which experienced contamination by variable subduction components. Model mixing calculations using 87Sr/ 86Sr and 143Nd/ 144Nd data suggest that addition of 0.2-0.6% of Indus margin sediments and/or 2-4% of fluids derived from Indus margin sediment can generate the compositional variation of the Teru Volcanic Formation. Two samples from the Teru Volcanic Formation yielded 40Ar/ 39Ar ages of 43.8+0.5 and 32.5+0.4 Ma. These ages make the volcanic rocks of the Teru Volcanic Formation the youngest reported in the Kohistan terrane. These volcanic rocks unconformably overly the Shunji Pluton, which has a 65 Ma Rb-Sr whole-rock isochron age. The results of this research suggest that subduction-related volcanism was active until 33 Ma in the India-Asia collision zone.
1988-12-22
3,517,400,000,000 yen in fiscal 1987 and grew to 3,700,300,000,000 yen in fiscal 1988, a 5.2 percent increase over the budget, and fiscal 1989’s budget has...been set at 3,927,300,000,000 yen , 6.1 percent higher than the budget. What should be pointed out is that Japan’s so called military budget does...with the SDF Agency in 1986 was worth 291.4 billion yen , an increase of 16.2 percent over the previous year; Kawasaki Heavy Indus- try Corporation’s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.
Growth of CuO nanowires by annealing method has been studied in-situ by grazing incidence Energy Dispersive X-ray Diffraction (EDXRD) technique on Indus-2. It was observed that Cu slowly oxidized to Cu{sub 2}O and finally to CuO. The data was taken as a function of time at two annealing temperatures 500 Degree-Sign C where nanowires form and 300 Degree-Sign C where nanowires don't form. We found that the strain in the CuO layer may be a principal factor for the spontaneous growth of nanowires in annealing method.
Hazard Analysis Guidelines for Transit Projects
DOT National Transportation Integrated Search
2000-01-01
These hazard analysis guidelines discuss safety critical systems and subsystems, types of hazard analyses, when hazard analyses should be performed, and the hazard analysis philosophy. These guidelines are published by FTA to assist the transit indus...
ASTER Maps Continued Pakistan Flooding
2010-09-07
On Sept. 3, 2010, when NASA Terra spacecraft captured this image strip over the Indus River in Pakistan, severe flooding was still causing a major humanitarian crisis in Pakistan. The city of Hyderabad is near the middle of the image.
Big data : opportunities and challenges in asset management : final report.
DOT National Transportation Integrated Search
2016-08-01
State Departments of Transportation and other transportation agencies collect vast quantities of data but managing, accessing and sharing data has been problematic and well documented. This project reviewed the similar challenges faced by other indus...
1988-03-04
be produced. However, all writers are writers of the times. Shakespeare wrote about history. But through historical dramas, he reflected the ideas...indus- trial and mining enterprises, natural reserves, and other enterprises and establishments, as well as hamlets and collective economic
Nimbus hydrological observations over the watersheds of the Niger and Indus rivers
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Macleod, N. H.
1972-01-01
As a result of studying the Nimbus imagery over these two watersheds, it is felt that a perspective and understanding of the large scale hydrological processes and their interrelationship has been obtained which could be obtained by no other means in so short a time. In the case of the Niger River a much better appreciation of the flooding process has been obtained along with the role of the Inland Delta in this process. Obviously a knowledge of the spatial and temporal distribution of the snow-melt process in the Indus River watershed is now available that was obtained with minimal effort, as compared to the effort and time that would be required using conventional methods. It seems clear that even the low resolution data easily available from meteorological satellites can be a valuable source of information in the better management of the water resources in these regions.
Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake
Parsons, T.; Yeats, R.S.; Yagi, Y.; Hussain, A.
2006-01-01
We calculated static stress changes from the devastating M = 7.6 earthquake that shook Kashmir on 8 October, 2005. We mapped Coulomb stress change on target fault planes oriented by assuming a regional compressional stress regime with greatest principal stress directed orthogonally to the mainshock strike. We tested calculation sensitivity by varying assumed stress orientations, target-fault friction, and depth. Our results showed no impact on the active Salt Range thrust southwest of the rupture. Active faults north of the Main Boundary thrust near Peshawar fall in a calculated stress-decreased zone, as does the Raikot fault zone to the northeast. We calculated increased stress near the rupture where most aftershocks occurred. The greatest increase to seismic hazard is in the Indus-Kohistan seismic zone near the Indus River northwest of the rupture termination, and southeast of the rupture termination near the Kashmir basin.
KAPSE Interface Team (KIT) Public Report. Volume 8, Part 2
1989-10-01
impierenetations, for the indus- library’, is rmguired to augmnent tne machne trial and c="mer’,jal (non-Government) independent portion cf C with sufficient market ...a nuxnbc;- 6.1 Kernel Impleuneutatlon ofdefetrred iterns. Thcese include: ofThe onlN project under way which is in this Database Schemna and Entity...710 I U - Ada is expected to become widely accepted in the RiD community. The approach is also Justift.id by the fact that market pressurms will
Identification of new deep sea sinuous channels in the eastern Arabian Sea.
Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D
2016-01-01
Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.
Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin
NASA Astrophysics Data System (ADS)
Huang, L.; Sabo, J. L.
2017-12-01
Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.
Infection, disease, and biosocial processes at the end of the Indus Civilization.
Robbins Schug, Gwen; Blevins, K Elaine; Cox, Brett; Gray, Kelsey; Mushrif-Tripathy, V
2013-01-01
In the third millennium B.C., the Indus Civilization flourished in northwest India and Pakistan. The late mature phase (2200-1900 B.C.) was characterized by long-distance exchange networks, planned urban settlements, sanitation facilities, standardized weights and measures, and a sphere of influence over 1,000,000 square kilometers of territory. Recent paleoclimate reconstructions from the Beas River Valley demonstrate hydro-climatic stress due to a weakened monsoon system may have impacted urban centers like Harappa by the end of the third millennium B.C. the impact of environmental change was compounded by concurrent disruptions to the regional interaction sphere. Climate, economic, and social changes contributed to the disintegration of this civilization after 1900 B.C. We assess evidence for paleopathology to infer the biological consequences of climate change and socio-economic disruption in the post-urban period at Harappa, one of the largest urban centers in the Indus Civilization. Bioarchaeological evidence demonstrates the prevalence of infection and infectious disease increased through time. Furthermore, the risk for infection and disease was uneven among burial communities. Corresponding mortuary differences suggest that socially and economically marginalized communities were most vulnerable in the context of climate uncertainty at Harappa. Combined with prior evidence for increasing levels of interpersonal violence, our data support a growing pathology of power at Harappa after 2000 B.C. Observations of the intersection between climate change and social processes in proto-historic cities offer valuable lessons about vulnerability, insecurity, and the long-term consequences of short-term strategies for coping with climate change.
Infection, Disease, and Biosocial Processes at the End of the Indus Civilization
Robbins Schug, Gwen; Blevins, K. Elaine; Cox, Brett; Gray, Kelsey; Mushrif-Tripathy, V.
2013-01-01
In the third millennium B.C., the Indus Civilization flourished in northwest India and Pakistan. The late mature phase (2200-1900 B.C.) was characterized by long-distance exchange networks, planned urban settlements, sanitation facilities, standardized weights and measures, and a sphere of influence over 1,000,000 square kilometers of territory. Recent paleoclimate reconstructions from the Beas River Valley demonstrate hydro-climatic stress due to a weakened monsoon system may have impacted urban centers like Harappa by the end of the third millennium B.C. the impact of environmental change was compounded by concurrent disruptions to the regional interaction sphere. Climate, economic, and social changes contributed to the disintegration of this civilization after 1900 B.C. We assess evidence for paleopathology to infer the biological consequences of climate change and socio-economic disruption in the post-urban period at Harappa, one of the largest urban centers in the Indus Civilization. Bioarchaeological evidence demonstrates the prevalence of infection and infectious disease increased through time. Furthermore, the risk for infection and disease was uneven among burial communities. Corresponding mortuary differences suggest that socially and economically marginalized communities were most vulnerable in the context of climate uncertainty at Harappa. Combined with prior evidence for increasing levels of interpersonal violence, our data support a growing pathology of power at Harappa after 2000 B.C. Observations of the intersection between climate change and social processes in proto-historic cities offer valuable lessons about vulnerability, insecurity, and the long-term consequences of short-term strategies for coping with climate change. PMID:24358372
Evaluation of Geomorphic Changes, Using Landsat Data and its Impact on Coastal Community
NASA Astrophysics Data System (ADS)
Mahar, G. A.
2017-12-01
temporal study with the help of landsat satellite image has been carried out to assess the degree of the geomorphic degradation of different deltaic features and its consequent impact on the demography and socioeconomics of the people. Interactive correlation of the present analyses of the Indus water-flow in relation to the manmade water divergent structures reveals that the massive water divergence to upstream areas by depleting water availability into the downstream areas have caused severe imbalance in the equilibrium between the fluvial and marine hydrodynamics. The dominance of the marine hydrodynamic conditions have caused irreversible damage to the physical environment due to the rapid landward sea invasion. Based on the results of the present study it has been identified that i) the coastline is rapidly retreating; ii) individual creeks and the creeks' network are enlarging by the erosional phenomenon laterally as well as longitudinally; iii) tidally influenced areas are rapidly expanding; iv) overall area of the deltaic lakes is reducing but the frequency of the lakes occurrences is increasing; v) the course and the thalweg of the Indus river is widening seaward and narrowing landward; vi) populated areas along the coastline have been evacuated due to the massive seawater intrusions; vii) agricultural and fishing activities are tremendously declining and viii) food productivity per acre is decreasing. Moreover, it is also revealed that i) the shelf slope is steeping and retreating faster and ii) geometry of the Indus canyon is also rapidly changing. This phenomenon has affected the socio-economic of the coastal community and from many place force them to move from their native places.
Agricultural Export Transportation Handbook (Agricultural Handbook 700)
DOT National Transportation Integrated Search
2004-02-01
This handbook looks at the transportation portion of the export process, that is, how to physically move agricultural products overseas with a focus on shipping high-value or value-added agricultural products, and provides a compilation of best indus...
Sea-level responses to sediment transport over the last ice age cycle
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2013-12-01
Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Zhou, P.; Clift, P. D.; Murray, R. W.; Blusztajn, J.; Ireland, T. J.; Feakins, S. J.; Liddy, H.
2017-12-01
The Asian monsoon is the dominant climatic phenomena in Southwest Asia and as the primary source of moisture is one of the major controls over the processes of chemical weathering, especially in the Himalayan foreland basin. The sedimentary records of the eastern Arabian Sea mostly reflect the evolving erosion and chemical weathering processes in the source mountains and foreland basin, with limited input from peninsular India. Analysis of the geochemistry of sediments from International Ocean Discovery Program (IODP) Sites U1456 and U1457 allow us to investigate how chemical weathering may relate to evolving environments and the intensity of the precipitation in the Indus catchment since 11 Ma. We employed X-ray diffraction methods to quantify clay mineral assemblages from the core samples of these two sites. kaolinite/(chlorite+illite) and illite crystallinity show a general long-term trend towards less chemical weathering from 10 Ma to 5 Ma. Meanwhile, the high-resolution hematite/goethite records were acquired from visible diffuse reflectance spectrophotometry from both Sites U1457 and U1456 show a general increase in hematite/goethite, This may represent a long-term drying of the climate and/or an increase in seasonality since 10 Ma, consistent with the long-term trend in carbon isotope values known from the Siwalik Group of the Himalayan foreland. In particular, there is an increase in the relative portion of hematite starting at 8.2 Ma with a subsequent decrease at 6.7 Ma, and a further notable increase after 5.7 Ma. Bulk sediment geochemistry allows us to calculate the Chemical Index of Alteration (CIA) as well other geochemical indices such as K/Al. Both these proxies indicate a strong decrease in chemical weathering intensity at 8.2 Ma, followed by a rapid increase in the degree of alteration after 7.8 Ma followed by a gradual decrease until 6.6 Ma. In general, drier/more seasonal conditions are associated with less chemical weathering over this critical transition. Sedimentary provenance does not drive the variations in weathering indices across most of the record. We therefore interpret the degree of chemical weathering in the floodplains of the Indus River as a record of changing monsoon precipitation (amount and seasonality) within the Indus catchment.
NASA Astrophysics Data System (ADS)
Jonell, Tara; Clift, Peter; Carter, Andrew; Böning, Philipp; Wittmann, Hella
2016-04-01
Summer monsoon precipitation strongly controls erosion and sediment storage in the frontal Himalaya but the relationship between monsoonal variability and erosion is less well-constrained beyond the High Himalayan topographic divide in the rain shadow. Here we establish a Quaternary erosional history for a rain shadow tributary of the upper Indus River system, the Zanskar River, by applying several sediment provenance techniques to modern and dated terrace river sediments. We evaluate if there are temporal links between sediment storage and moisture supply to the rain shadow and if regions like the Zanskar River basin play a significant role in controlling total sediment flux to the Indus River. We compile bulk sediment petrography and Sr and Nd isotope geochemistry, detrital U-Pb zircon and apatite fission track dating with in-situ 10Be cosmogenic radionuclide techniques to identify patterns of erosion and sediment production across Zanskar. Bulk petrography, Sr and Nd isotope geochemistry, and U-Pb detrital zircon spectra of modern and older terrace sediments indicate high rates of erosion along the Greater Himalaya in the Zanskar River basin. We find that the wettest and most glaciated subcatchment dominates the bulk sediment provenance signal, with only moderate input from other tributaries, and that other basin parameters cannot explain our observations. Catchment-averaged in-situ 10Be cosmogenic nuclide concentrations of modern sediments indicate erosion rates up to ˜1.2 mm y-1 but show strong dilution attributed to glacial sediment recycling into the modern river, suggesting rates nearer 0.4-0.6 mm•y-1. These rates are consistent with longer-term rates of incision (0.3-0.7 mm•y-1) calculated from detrital apatite fission track ages, and incision rates inferred from Late Glacial and Holocene terraces near the Zanskar-Indus confluence. Our findings suggest that sediment production in glaciated Himalayan rain shadow environments like Zanskar is largely controlled by internal glacial fluctuations coupled with periodic dissection and reworking of terrace material during strong monsoonal precipitation phases.
NASA Astrophysics Data System (ADS)
Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.
2011-04-01
In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.
NASA Astrophysics Data System (ADS)
Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.
2011-07-01
In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the model for nearby catchments discussed. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged high altitude areas, and to project forward their hydrological behavior pending climate change.
Spatiotemporal variations of radar glacier zones in the Karakoram Mountains
NASA Astrophysics Data System (ADS)
Lund, Jewell
2017-04-01
Glaciers of the Karakoram Mountains are important climate indicators for densely populated South Central Asia. Glacial meltwater is a significant source of runoff in the Indus River Basin, upon which 60 million people rely for food security, economy and hydropower in Pakistan and India. Contrary to worldwide and also Himalayan trends, Karakoram glaciers have recently been verified in near balance, with some glaciers even gaining mass or surging. This 'Karakoram anomaly' is of interest, and many hypotheses exist for its causes. Complex climatology, coupled with the challenges of field study in this region, illicit notable uncertainties both in observation and prediction of glacial status. Constraining spatiotemporal variations in glacial mass balance will elucidate the extent and possible longevity of this anomaly, and its implications for water resources, as climate continues to change. Depending on snowpack conditions during image acquisition, different snow and ice zones on a glacier are identifiable in synthetic aperture radar (SAR) images. The identification and monitoring of radar glacier zones over time can provide indicators of relative glacial mass balance to compliment field studies in a region with sparse field measurement. We will present spatiotemporal evolution of basic radar glacier zones such as wet snow, bare ice, percolation, and firn for glaciers feeding into the Upper Indus Basin. We will incorporate both ascending and descending passes of Sentinel-1 series C -band sensors, and possibly ALOS-2 PALSAR-2 L-band images. We may also explore the impacts of these variations on timing and intensity of runoff.
Pokharia, Anil K; Agnihotri, Rajesh; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R N; Negi, Bipin Chandra
2017-01-01
Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.
Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves
NASA Astrophysics Data System (ADS)
Singh, Arun; Eken, Tuna; Mohanty, Debasis D.; Saikia, Dipankar; Singh, Chandrani; Ravi Kumar, M.
2016-01-01
This study presents a total of 12008 shear wave splitting measurements obtained using the reference-station technique applied to direct S-waves from 106 earthquakes recorded at 143 seismic stations of the Hi-CLIMB seismic network. The results reveal significant anisotropy in regions of southern Tibet where null or negligible anisotropy has been hitherto reported from SK(K)S measurements. While the individual fast polarization direction (FPD) at each station are found to be consistent, the splitting time delays (TDs) exhibit deviations particularly at stations located south of the Indus-Tsangpo Suture Zone. The fast polarization directions (FPDs) are oriented (a) NE-SW to E-W to the south of the Indus-Tsangpo Suture Zone (b) NE-SW to ENE-SSW between Bangong-Nujiang Suture Zone and the Indus-Tsangpo Suture Zone (ITSZ) and (c) E-W to the extreme north of the profile. The splitting time delays (δt) vary between 0.45 and 1.3 s south of the ITSZ (<30°N latitude), while they range from 0.9 to 1.4 s north of it. The overall trends are similar to SKS/SKKS results. However, the differences may be due to the not so near vertical paths of direct S waves which may sample the anisotropy in a different way in comparison to SKS waves, or insufficient number of SKS observations. The significant anisotropy (∼ 0.8 s) observed beneath Himalaya reveals a complex deformation pattern in the region and can be best explained by the combined effects of deformation related to shear at the base of the lithosphere and subduction related flows with possible contributions from the crust. Additional measurements obtained using direct S-waves provide new constraints in regions with complex anisotropy.
The A-10 Thunderbolt as an Organic Army Asset
1991-06-07
whether report isinterim, final, etc. If Statements on Technical applicable, enter indusive report dates (e.g. 10 Documents." Jun 87 - 30 Jun 88). DOE See...delivered in 1984.31 At present, nearly 650 A-10’s remain in the Air Force inventory. 3 2 As of 30 Septem- ber 1989, the average age of the 447 A-10’s in...designed solely as an armor-defeating CAS aircraft. The aircraft was built around the General Electric GAU-8/A "Avenger," 30 millimeter cannon. The cannon
2003-01-01
indexes or small groups of forex series. Although I use a shorter time period – five years for the work on technical analysis and machine learning, only...products. (“Indus International to Provide Transocean Sedco Forex With Robust Enterprise Asset Management Solution”, IINT, 3/7/2001) – Industry Group
Hydrological modeling of upper Indus Basin and assessment of deltaic ecology
USDA-ARS?s Scientific Manuscript database
Managing water resources is mostly required at watershed scale where the complex hydrology processes and interactions linking land surface, climatic factors and human activities can be studied. Geographical Information System based watershed model; Soil and Water Assessment Tool (SWAT) is applied f...
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.
2011-01-01
A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.
India-Pakistan Border at Night
2017-12-08
An astronaut aboard the International Space Station took this nighttime panorama while looking north across Pakistan’s Indus River valley. The port city of Karachi is the bright cluster of lights facing the Arabian Sea, which appears completely black. City lights and the dark color of dense agriculture closely track with the great curves of the Indus valley. For scale, the distance from Karachi to the foothills of the Himalaya Mountains is 1,160 kilometers (720 miles). This photograph shows one of the few places on Earth where an international boundary can be seen at night. The winding border between Pakistan and India is lit by security lights that have a distinct orange tone. Astronaut photograph ISS045-E-27869 was acquired on September 23, 2015, with a Nikon D4 digital camera using a 28 millimeter lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. via NASA Earth Observatory Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86725&eocn...
Seismic hazard evaluation of the Oman India pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K.W.; Thenhaus, P.C.; Mullee, J.E.
1996-12-31
The proposed Oman India pipeline will traverse approximately 1,135 km of the northern Arabian Sea floor and adjacent continental shelves at depths of over 3 km on its route from Ra`s al Jifan, Oman, to Rapar Gadhwali, India. The western part of the route crosses active faults that form the transform boundary between the Arabian and Indian tectonic plates. The eastern terminus of the route lies in the vicinity of the great (M {approximately} 8) 1829 Kutch, India earthquake. A probabilistic seismic hazard analysis was used to estimate the values of peak ground acceleration (PGA) with return periods of 200,more » 500 and 1,000 years at selected locations along the pipeline route and the submarine Indus Canyon -- a possible source of large turbidity flows. The results defined the ground-shaking hazard along the pipeline route and Indus Canyon for evaluation of risks to the pipeline from potential earthquake-induced geologic hazards such as liquefaction, slope instability, and turbidity flows. 44 refs.« less
Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering
2014-04-01
Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.
Submission of nucleotide sequence clostridium perfringens NetB toxin to genbank database
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens can cause gas gangrene and food poisoning in humans and causes several enterot-oxemic diseases in animals including avian necrotic enteritis. This disease affects all chicken producing countries worldwide and is a considerable burden on the commercial chicken production indus...
DOT National Transportation Integrated Search
2004-09-01
This report profiles the motor carrier industry and its significant operating segments. It is one of a series of reports analyzing various aspects of the motor carrier industry. Other reports in the series focus on the safety performance of the indus...
The Indus basin in the framework of current and future water resources management
NASA Astrophysics Data System (ADS)
Laghari, A. N.; Vanham, D.; Rauch, W.
2012-04-01
The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use planning and soil conservation as well as flood management, with a focus on the reduction of erosion and resulting sedimentation as well as the restoration of ecosystem services like wetlands and natural floodplains. Water demand management options include: (1) the management of conjunctive use of surface and groundwater; as well as (2) the rehabilitation and modernization of existing infrastructure. Other demand management options are: (3) the increase of water productivity for agriculture; (4) crop planning and diversification including the critical assessment of agricultural export, especially (basmati) rice; (5) economic instruments and (6) changing food demand patterns and limiting post-harvest losses.
X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.
2017-05-01
Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.
Laghari, Muhammad Younis; Lashari, Punhal; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Xin, Baoping; Sun, Xiaowen; Zhang, Yan
2016-01-01
Complete mitochondrial genome of fresh water giant catfish, Wallago attu, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome. The complete mitogenome was 15,639 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 31.17% A, 28.15% C, 15.55% G and 25.12% T. The complete mitochondrial genome of catfish, W. attu, provides the fundamental tools for genetic breeding.
1979-10-01
Although bottlenecks have been discussed thus far in an indus- trial or microeconomic sense, national bottlenecks are possible too, with...Texas Division of Disaster Emergency Services, 1978. JThis workbook provides a detailed format for a multi-meeting workshop to enable local (city/council
Current Scenario of Ceramic Engineering Education in India
ERIC Educational Resources Information Center
Srivastava, Aaditya Ranjan; Bajpai, Shrish; Khare, Sushant
2018-01-01
Historical overview of ceramic development has been provided in the paper. It has been stated that the trail of ceramics has been rooted in Indus valley civilization. Advancement of materials leads to afflux of development in the fields of science and technology. Present paper deals with the realm of Ceramic Engineering, mainly focuses on…
Proceeding of the 2014 sorghum improvement conference of north america (SICNA)
USDA-ARS?s Scientific Manuscript database
The 2014 Sorghum Improvement Conference of North America (SICNA 2014) meeting was held at the Texas A&M AgriLife Research and Extension Center , Agnes, Corpus Christi, TX on June 25-27, 2014. The meeting was attended by about 80 participants representing a diverse cross section of the sorghum indus...
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M. K.; Mittal, Raj
2014-02-01
M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac-Hartree-Slater (DHS) and Dirac-Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree-Slater (NRHS), DF and DHS values for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays.
Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin
NASA Astrophysics Data System (ADS)
Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.
2012-11-01
The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.
Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?
NASA Astrophysics Data System (ADS)
Jutla, A.; Sen, S.
2015-12-01
Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi-sensor satellite data and model products on computation of free usable water and associated uncertainty for rainfed agriculture.
Pokharia, Anil K.; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R. N.; Negi, Bipin Chandra
2017-01-01
Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600–3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to ‘drought-resistant’ millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase. PMID:28985232
Himalayan uplift and osmium isotopes in oceans and rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, M.; Wasserburg, G.J.; Hofmann, A.W.
1999-12-01
Previous studies have shown that {sup 187}Os/{sup 188}Os in seawater has become increasingly radiogenic over the last 409 Ma in a manner analogous to strontium. This rapid rise in the marine {sup 187}Os/{sup 188}Os over the last 17 Ma has been attributed to an increase in the bulk silicate weathering rates resulting from the rise of the Himalayas and/or selective weathering and erosion of highly radiogenic organic rich ancient sediments. The key test of this hypothesis is the {sup 187}Os/{sup 188}Os and the total osmium concentration of the Himalayan rivers. The authors report the concentration and isotopic composition of osmiummore » in the Ganges, the Brahmaputra, and the Indus rivers. The {sup 187}Os/{sup 188}Os of the Ganges close to its source (at Kaudiyal) is 2.65 and [Os] = 45 fM/kg. A second sample of the lower reaches of the Ganges at Patna gives {sup 187}Os/{sup 188}Os = 1.59 and [Os] = 171 fM/kg. The {sup 187}Os/{sup 188}Os of the Brahmaputra at Guwahati is 1.07 and [Os] = 52 fM/kg. A sample of the Indus (Besham) has a {sup 187}Os/{sup 188}Os of 1.2 and [Os] = 59 fM/kg. The authors infer that the Himalayas do not provide either a high flow of osmium of a highly radiogenic osmium component to the oceans. The overall trend for osmium and strontium could be explained by a regularly increasing input of global continental weathering sources but the Himalayas themselves appear not to be the dominant source.« less
NASA Astrophysics Data System (ADS)
Hasson, Shabeh ul; Pascale, Salvatore; Lucarini, Valerio; Böhner, Jürgen
2016-11-01
We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope - a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) - a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy - RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal hydroclimatology poses some caveats on their ability to represent correctly the climate change signal. Nevertheless, considering the majority-model agreement as a measure of robustness for the qualitative scale projected future changes, we find a slightly delayed onset, and a general increase in the RFA slope and in the extent of precipitation concentration (RE) for MPR. Overall, a modest inter-model agreement suggests an increase in the seasonality of MPR and a less intermittent WPR for all basins and for most of the study domain. The SI-based indicator of change in the monsoonal domain suggests its extension westward over northwest India and Pakistan and northward over China. These findings have serious implications for the food and water security of the region in the future.
NASA Astrophysics Data System (ADS)
Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh
2018-03-01
Assessment of future water availability from the Himalayan watersheds of Indus Basin (Jhelum, Kabul and upper Indus basin—UIB) is a growing concern for safeguarding the sustainable socioeconomic wellbeing downstream. This requires, before all, robust climate change information from the present-day state-of-the-art climate models. However, the robustness of climate change projections highly depends upon the fidelity of climate modeling experiments. Hence, this study assesses the fidelity of seven dynamically refined (0.44° ) experiments, performed under the framework of the coordinated regional climate downscaling experiment for South Asia (CX-SA), and additionally, their six coarse-resolution driving datasets participating in the coupled model intercomparison project phase 5 (CMIP5). We assess fidelity in terms of reproducibility of the observed climatology of temperature and precipitation, and the seasonality of the latter for the historical period (1971-2005). Based on the model fidelity results, we further assess the robustness or uncertainty of the far future climate (2061-2095), as projected under the extreme-end warming scenario of the representative concentration pathway (RCP) 8.5. Our results show that the CX-SA and their driving CMIP5 experiments consistently feature low fidelity in terms of the chosen skill metrics, suggesting substantial cold (6-10 ° C) and wet (up to 80%) biases and underestimation of observed precipitation seasonality. Surprisingly, the CX-SA are unable to outperform their driving datasets. Further, the biases of CX-SA and of their driving CMIP5 datasets are higher in magnitude than their projected changes under RCP8.5—and hence under less extreme RCPs—by the end of 21st century, indicating uncertain future climates for the Indus Basin watersheds. Higher inter-dataset disagreements of both CMIP5 and CX-SA for their simulated historical precipitation and for its projected changes reinforce uncertain future wet/dry conditions whereas the CMIP5 projected warming is less robust owing to higher historical period uncertainty. Interestingly, a better agreement among those CX-SA experiments that have been obtained through downscaling different CMIP5 experiments with the same regional climate model (RCM) indicates the RCMs' ability of modulating the influence of lateral boundary conditions over a large domain. These findings, instead of suggesting the usual skill-based identification of 'reasonable' global or regional low fidelity experiments, rather emphasize on a paradigm shift towards improving their fidelity by exploiting the potential of meso-to-local scale climate models—preferably of those that can solely resolve global-to-local scale climatic processes—in terms of microphysics, resolution and explicitly resolved convections. Additionally, an extensive monitoring of the nival regime within the Himalayan watersheds will reduce the observational uncertainty, allowing for a more robust fidelity assessment of the climate modeling experiments.
1991-07-23
production costs will appear, that is, not consider the volume- increse factors of the export the additional expenses in production required for...differentiation, the differentiation ship entrepreneurs "). Naturally the stability of these new between the cities and the countryside being locked in...Those indus- operated enterprises, and entrepreneurs . The behavior of tries, groups, or individuals who fall under market distri- these people is
1987-10-29
nonferrous ores in quarries and underground; Installations for desulfurization , cleaning, and dry- ing of gas , turbocompressors for methane gas ; Mining...Products Exportation Bucharest Minis- "Indus- try of trial- Foreign Drilling installations and equipment for oil and gas ; export- Trade...equipment; try of Refineries, complex installations, parts, and equip- the ment for the oil- and gas -refining industry; Heavy Factories, complex
Diffraction enhance x-ray imaging for quantitative phase contrast studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.
2016-05-23
Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.
An Analysis of Total Quality Management in Aeronautical Systems Division
1991-09-01
Annual Review ..... ......... . 3-51 Disease 4: Mobility of Top Management ................... .3-52 Disease 5: Running a Company on Visible Figures...range Planning .................... 5-4 Merit Rating Systems and Annual Evaluation of Performance .. ..... ........... 5-4 Mobility of Management...generations of careful quality-conscious buyers. The indus- trial engine ran on the talents of designers, packagers, and advertisers . Turning out new
Storyline and design: how civic stewardship shapes urban design in New York City
Erika S. Svendsen
2013-01-01
Our interest in reshaping the natural world to enhance human life can be traced back thousands of years to the earliest urban civilizations. From irrigation projects of the Indus Valley to the Roman aqueducts to designing integrated systems of landscaped parks and stream valleys, humans have sought to harness the capacity of nature to advance public well-being,...
Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin
NASA Astrophysics Data System (ADS)
Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib
2017-11-01
Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.
Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem
2015-09-01
Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data
NASA Astrophysics Data System (ADS)
Minshull, T. A.; Edwards, R. A.; Flueh, E. R.
2015-07-01
The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.
The record of India-Asia collision preserved in Tethyan ocean basin sediments.
NASA Astrophysics Data System (ADS)
Najman, Yani; Jenks, Dan; Godin, Laurent; Boudagher-Fadel, Marcelle; Bown, Paul; Horstwood, Matt; Garzanti, Eduardo; Bracialli, Laura; Millar, Ian
2015-04-01
The timing of India-Asia collision is critical to the understanding of crustal deformation processes, since, for example, it impacts on calculations regarding the amount of convergence that needs to be accommodated by various mechanisms. In this research we use sediments originally deposited in the Tethyan ocean basin and now preserved in the Himalayan orogeny to constrain the timing of collision. In the NW Himalaya, a number of workers have proposed a ca 55-50 Ma age for collision along the Indus suture zone which separates India from the Kohistan-Ladakh Intraoceanic Island arc (KLA) to the north. This is based on a number of factors including the age of youngest marine sediments in the Indus suture (e.g. Green et al. 2008), age of eclogites indicative of onset of Indian continental subduction (e.g. de Sigoyer et al. 2000), and first evidence of detritus from north of the suture zone deposited on the Indian plate (e.g. Clift et al. 2002). Such evidence can be interpreted as documenting the age of India-Asia collision if one takes the KLA to have collided with the Asian plate prior to its collision with India (e.g. Petterson 2010 and refs therein). However, an increasing number of workers propose that the KLA collided with Asia subsequent to its earlier collision with India, dated variously at 85 Ma (Chatterjee et al. 2013), 61 Ma (Khan et al. 2009) and 50 Ma (Bouilhol et al. 2013). This, plus the questioning of earlier provenance work (Clift et al. 2002) regarding the validity of their data for constraining timing of earliest arrival of material north of the suture deposited on the Indian plate (Henderson et al. 2011) suggests that the time is right for a reappraisal of this topic. We use a provenance-based approach here, using combined U-Pb and Hf on detrital zircons from Tethyan ocean basin sediments, along with petrography and biostratigraphy, to identify first arrival of material from north of the Indian plate to arrive on the Indian continent, to constrain the time of collision. With the recent discovery that the Indus Group sediments in the suture zone cannot be used for this purpose as previously proposed (Henderson et al. 2011) we turn to the 54 Ma Kong and Chulung La Formation youngest Tethyan sediments on the Indian margin (Garzanti et al. 1987) to investigate whether we can identify such material, and whether it be Spong arc (Fuchs and Willems 1990), KLA or Trans-Himalayan derived, thus determining what collided with India and when. References Bouilhol P, Jagoutz O, Hanchar JM, Dudas FO. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth and Planetary Science Letters 366, 163-175. Chatterjee S, Goswami A, Scotese CR. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research 23, 238-267. Clift P, Carter A, Krol M, Kirby E. 2002. Constraints on India-Eurasia collision in the Arabian sea region taken from the Indus Group, Ladakh Himalaya, India. The tectonic and climatic evolution of the Arabian Sea region Geological Society of London Special Publication 195, 97-116. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G. 2000. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28, 487-490. Fuchs G, Willems H. 1990. The final stages of sedimentation in the Tethyan zone of Zanskar and their geodynamic significance (Ladakh - Himalaya). Jahrbuche Geologische Bundenstalt 133: 259-273. Garzanti E, Baud A, Mascle G. 1987. Sedimentary Record of the Northward Flight of India and Its Collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta 1, 297-312. Green OR, Searle MP, Corfield RI, Corfield RM. 2008. Cretaceous-tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (northwest India). J Geol 116: 331-353. Henderson AL, Najman Y, Parrish R, Mark D, Foster GL. 2011. Constraints to the timing of India-Eurasia collision; a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth Science Reviews 106, 265-292. Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L. 2009. Did the Kohistan-Ladakh island arc collide first with India? Geological Society of America Bulletin 121, 366-384. Petterson MG. 2010. A review of the geology and tectonics of the Kohistan island arc, north Pakistan. in The Evolving Continents: Understanding Processes of Continental Growth (eds. TM Kusky, M-G Zhai, W Xiao), pp. 287-327. Journal of the Geological society of London Special publication.
Mundorff, Maurice John; Carrigan, P.H.; Steele, T.D.; Randall, A.D.
1976-01-01
This report summarizes the observations and findings of a team of four specialists from the U.S. Geological Survey assigned to Pakistan under the auspices of the U.S. Agency for International Development during May to August 1972 for a hydrologic evaluation of Salinity Control and Reclamation Projects in the Indus Plain Individual members of the team undertook comprehensive studies related to climatology, surface-water hydrology, and the canal system; streamflow and sediment yields of the rivers; computer applications to hydrologic data; aquifer characteristics; hydrologic evaluation of Salinity Control and Reclamation Projects (SCARPs); tubewell performance; hydrology of shallow versus deep tubewells; well and well-screen design in the Indus Plain; evaluation of observed and anticipated trends in both private and public tubewell development; evaluation of water-quality programs, data analysis, and records, and computer coding of special water-quality data; and evaluation of water-level data, well discharge and specific-capacity tests and aquifer tests. The reclamation program, by pumping from tubewells, has been notably successful in lowering the water table, in providing supplemental water for irrigation and for leaching of salinized soils, and in improving crop production. Some changes in water quality have been observed in SCARP-I and the Mona Scheme of SCARP-II, but these have not as yet (1972) significantly affected the utility of the water for irrigation. Problems associated with reclamation include control of deterioration in performance of tubewells and their rehabilitation, local brackish or saline-water encroachment, and maintenance of a favorable salt balance in the ground-water system. Rapid and as yet (1972) unregulated growth of shallow private tubewell development in the past decade has introduced complicating factors to the reclamation planning of the early 1960's which had emphasized public tubewell development through the SCARP program. In comparing shallow (0-200 feet) with deep (200-400 feet} tubewell development, it is concluded that long-term response of the water table is the same, whether many shallow wells of small capacity or fewer deeper wells of large capacity pump the same total volume of water in the same area. Moreover, it is concluded that there is no definite advantage for either type of pumping regime with respect to water quality. Utilization of the Punjab aquifer could be greatly enhanced by recharge of high-quality water diverted from the Chenab and Jhelum Rivers to the Ravi and Sutlej Rivers by way of the link and irrigation canals during periods of surplus flow. Recharge to the aquifer could also be improved by diversion of high-quality water from the Chenab and the Jhelum to natural nalas and other surface drainageways during periods of surplus flow. Such recharge would be of much better quality than water leaching downward from irrigated fields. Continued monitoring of the hydrologic system and research on problems engendered by reclamation are essential to the viability of the SCARP program and related water-resources development in the Indus River Basin.
Soviet Economic Growth: 1928-1985
1988-05-01
com- munications systems has little taste for the information revolution 81 (Colton, 1986, p. 170; on the general theme see also Graham, 1984 , pp. 129...much less successful. George Orwell and others viewed the development of modern com- munications and information technologies as the ultimate weapon...Bolshevik Revolution of 1917, the Soviet Union has transformed itself from an undeveloped economy into a modern indus- trial state with a GNP second
JPRS Report, Science & Technology. Europe: Economic Competitiveness
1991-08-09
cost . Under the current funding scheme, support is only available through a system of reimbursable interest-free loans. With the currently proposed... system , basic indus- trial research will henceforth be financed by subsidies (of up to 50 percent of gross costs ). Small- and medium- sized...extremely cost -effective installations. • To market the MD110 as a foundation for office automation facilities. • To target very large system
Strategic Resources and National Security: An Initial Assessment
1975-04-01
Stanford Research Institute 333 Raveuswood Avenue Menio Park CA 9A025 11. CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (IRRO...greatest mineral indus- try—being the leader in such important commodities as oil, natural gas , copper, cement, sand and gravel, stone, lead and...troublesome rationing program that, after several collapses and agency shakeups. became part of the Controlled Materials Plan of the War
Climate Change, National Security, and the Quadrennial Defense Review. Avoiding the Perfect Storm
2008-01-01
consequently, higher ocean water temperatures are increasing the occurrence of coral bleaching and coral reef die-offs.57 The IPCC concludes that...unprecedented combination of climate change, associated disturbances (e.g., flooding, drought, wildfire, in- sects, ocean acidification ), and other global...instance, the disintegration of saltwater fishing indus- tries due to ocean acidification could spark inter- and intrastate conflict as numerous
The Problem of Soviet Vulnerabilities
1977-12-30
In addition to natural resources and indus- trial capacity, he identifies geographic environment , military preparedness, population, national...examined. Once having "gotten inside their skin," we should try to see them and their environment as they do and to understand how they define success...ideologies as less and less relevant in an increasingly technological environment . Further, it would seem that among those Western thinkers for whom
ISSUE PAPER: Russia and the Information Revolution
2002-01-01
Russian entrepreneurs and firms over- come their country’s historic isolation from international SOMETHING TO WORK WITH markets . Today, financial...analysts and traders in Moscow monitor international markets in real time and watch for Despite these shortfalls, Russia does have basic the latest...indus- exchange to promote Russian metals sales on international try was a government monopoly and its poor service was markets . Other exchanges have
Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan
NASA Astrophysics Data System (ADS)
Aslam, K.; Khan, M.; Liu, Y.; Farid, A.
2017-12-01
The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.
NASA Astrophysics Data System (ADS)
Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai
2014-11-01
Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and climate applications at regional scale.
NASA Astrophysics Data System (ADS)
Johnson, E. S.; Rupper, S.; Steenburgh, W. J.; Strong, C.; Kochanski, A.
2017-12-01
Climate model outputs are often used as inputs to glacier energy and mass balance models, which are essential glaciological tools for testing glacier sensitivity, providing mass balance estimates in regions with little glaciological data, and providing a means to model future changes. Climate model outputs, however, are sensitive to the choice of physical parameterizations, such as those for cloud microphysics, land-surface schemes, surface layer options, etc. Furthermore, glacier mass balance (MB) estimates that use these climate model outputs as inputs are likely sensitive to the specific parameterization schemes, but this sensitivity has not been carefully assessed. Here we evaluate the sensitivity of glacier MB estimates across the Indus Basin to the selection of cloud microphysics parameterizations in the Weather Research and Forecasting Model (WRF). Cloud microphysics parameterizations differ in how they specify the size distributions of hydrometeors, the rate of graupel and snow production, their fall speed assumptions, the rates at which they convert from one hydrometeor type to the other, etc. While glacier MB estimates are likely sensitive to other parameterizations in WRF, our preliminary results suggest that glacier MB is highly sensitive to the timing, frequency, and amount of snowfall, which is influenced by the cloud microphysics parameterization. To this end, the Indus Basin is an ideal study site, as it has both westerly (winter) and monsoonal (summer) precipitation influences, is a data-sparse region (so models are critical), and still has lingering questions as to glacier importance for local and regional resources. WRF is run at a 4 km grid scale using two commonly used parameterizations: the Thompson scheme and the Goddard scheme. On average, these parameterizations result in minimal differences in annual precipitation. However, localized regions exhibit differences in precipitation of up to 3 m w.e. a-1. The different schemes also impact the radiative budgets over the glacierized areas. Our results show that glacier MB estimates can differ by up to 45% depending on the chosen cloud microphysics scheme. These findings highlight the need to better account for uncertainties in meteorological inputs into glacier energy and mass balance models.
NASA Astrophysics Data System (ADS)
Sorí, Rogert; Nieto, Raquel; Drumond, Anita; Vicente-Serrano, Sergio M.; Gimeno, Luis
2017-12-01
The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000 hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November-April) and the monsoonal precipitation regime (MPR) (May-October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E - P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
Genomic Epidemiology of Vibrio cholerae O1 Associated with Floods, Pakistan, 2010
Shah, Muhammad Ali; Mutreja, Ankur; Thomson, Nicholas; Baker, Stephen; Parkhill, Julian; Dougan, Gordon; Bokhari, Habib
2014-01-01
In August 2010, Pakistan experienced major floods and a subsequent cholera epidemic. To clarify the population dynamics and transmission of Vibrio cholerae in Pakistan, we sequenced the genomes of all V. cholerae O1 El Tor isolates and compared the sequences to a global collection of 146 V. cholerae strains. Within the global phylogeny, all isolates from Pakistan formed 2 new subclades (PSC-1 and PSC-2), lying in the third transmission wave of the seventh-pandemic lineage that could be distinguished by signature deletions and their antimicrobial susceptibilities. Geographically, PSC-1 isolates originated from the coast, whereas PSC-2 isolates originated from inland areas flooded by the Indus River. Single-nucleotide polymorphism accumulation analysis correlated river flow direction with the spread of PSC-2. We found at least 2 sources of cholera in Pakistan during the 2010 epidemic and illustrate the value of a global genomic data bank in contextualizing cholera outbreaks. PMID:24378019
Genomic epidemiology of Vibrio cholerae O1 associated with floods, Pakistan, 2010.
Shah, Muhammad Ali; Mutreja, Ankur; Thomson, Nicholas; Baker, Stephen; Parkhill, Julian; Dougan, Gordon; Bokhari, Habib; Wren, Brendan W
2014-01-01
In August 2010, Pakistan experienced major floods and a subsequent cholera epidemic. To clarify the population dynamics and transmission of Vibrio cholerae in Pakistan, we sequenced the genomes of all V. cholerae O1 El Tor isolates and compared the sequences to a global collection of 146 V. cholerae strains. Within the global phylogeny, all isolates from Pakistan formed 2 new subclades (PSC-1 and PSC-2), lying in the third transmission wave of the seventh-pandemic lineage that could be distinguished by signature deletions and their antimicrobial susceptibilities. Geographically, PSC-1 isolates originated from the coast, whereas PSC-2 isolates originated from inland areas flooded by the Indus River. Single-nucleotide polymorphism accumulation analysis correlated river flow direction with the spread of PSC-2. We found at least 2 sources of cholera in Pakistan during the 2010 epidemic and illustrate the value of a global genomic data bank in contextualizing cholera outbreaks.
Sengupta, Sanghamitra; Zhivotovsky, Lev A.; King, Roy; Mehdi, S. Q.; Edmonds, Christopher A.; Chow, Cheryl-Emiliane T.; Lin, Alice A.; Mitra, Mitashree; Sil, Samir K.; Ramesh, A.; Usha Rani, M. V.; Thakur, Chitra M.; Cavalli-Sforza, L. Luca; Majumder, Partha P.; Underhill, Peter A.
2006-01-01
Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000–15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era—not Indo-European—expansions have shaped the distinctive South Asian Y-chromosome landscape. PMID:16400607
Zaidi, Farrah; Fatima, Syeda Hira; Khisroon, Muhammad; Gul, Ayesha
2016-10-01
North West Pakistan (NWP) is characterized by four eco-zones: Northern Montane Region, North Western Hills, Submontane Region and Indus Plains. Present study identified 1037 cases of traumatic myiasis in the region during 2012-2015. Screw worm larvae were classified as 12 species: Chrysomya bezziana (Villeneuve), Chryomya megacephala (Fabricius), Chrysomya rufifacies (Macquart), Lucilia cuprina (Wiedemann), Lucilia sericata (Meigen), Lucilia illustris (Meigen), Lucilia porphyrina (Walker), Hemipyrellia ligguriens (Wiedemann), Calliphora vicina (Robineau-Desvoidy), Wohlfahrtia magnifica (Schiner), Sarcophaga crassipalpalis (Macquart), Sarchophaga species. Among these C. bezziana, L. cuprina and W. magnifica with approximately 882 case reports were the principal agents of traumatic myiasis. The species W. magnifica is a first report from Pakistan. In order to investigate spatial distribution of these dominant species we used MaxEnt niche model. Our results revealed a well-established occurrence of C. bezziana and L. cuprina in the four eco-regions while W. magnifica is currently contained in the Submontane Region. Several hot spot areas of infestation were detected all characterized by high human population density showing synanthropic nature of these species. Wohlfahrtia magnifica was excluded from Northern Montane Region with severe winters and Southern Indus Plains with harsh summers revealing that invasive species are initially sensitive to extreme of temperatures. Presence of L. cuprina in the wet areas of North Humid Belt (Maximum annual precipitation: 1641mm) depicted a moisture preference of the species. In perspective of changing climate and future predictions of severe events such as droughts and flooding in NWP, W. magnifica can potentially alter the species composition. Considering these findings in an eco-geographically dynamic region of Pakistan we predict that two factors (1) Growing human population (2) Climatic conditions, equally contribute to range shift of synanthropic species. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aziz, Omer; Hussain, Tahir; Ullah, Matee; Bhatti, Asher Samuel; Ali, Aamir
2018-02-01
The exploration and production of unconventional resources has increased significantly over the past few years around the globe to fulfill growing energy demands. Hydrocarbon potential of these unconventional petroleum systems depends on the presence of significant organic matter; their thermal maturity and the quality of present hydrocarbons i.e. gas or oil shale. In this work, we present a workflow for estimating Total Organic Content (TOC) from seismic reflection data. To achieve the objective of this study, we have chosen a classic potential candidate for exploration of unconventional reserves, the shale of the Sembar Formation, Lower Indus Basin, Pakistan. Our method includes the estimation of TOC from the well data using the Passey's ΔlogR and Schwarzkofp's methods. From seismic data, maps of Relative Acoustic Impedance (RAI) are extracted at maximum and minimum TOC zones within the Sembar Formation. A geostatistical trend with good correlation coefficient (R2) for cross-plots between TOC and RAI at well locations is used for estimation of seismic based TOC at the reservoir scale. Our results suggest a good calibration of TOC values from seismic at well locations. The estimated TOC values range from 1 to 4% showing that the shale of the Sembar Formation lies in the range of good to excellent unconventional oil/gas play within the context of TOC. This methodology of source rock evaluation provides a spatial distribution of TOC at the reservoir scale as compared to the conventional distribution generated from samples collected over sparse wells. The approach presented in this work has wider applications for source rock evaluation in other similar petroliferous basins worldwide.
Islamism and Radicalism in the Maldives
2011-12-01
traffic in ancient times. Numerous commercial vessels sailed these waters on their journeys to the Far East, as well as fishermen from the coastal areas...races of ancient civilizations such as Mesopotamia and Indus, revered the sun. They claimed to be descendants of the sun and considered it their...Romero-Frias, The Maldive Islanders: A Study of the Popular Culture of an Ancient Ocean Kingdom (Barcelona: Nova Ethnographica Indica, 1999). This is
The Shock and Vibration Digest. Volume 14, Number 7
1982-07-01
Yang, ed., pp 93-107, 13 figs, 4 refs Key Words: Tube arrays. Heat exchangers . Wind tunnel testing . Critical speeds. Fluid-induced excitation...the Eighties," Proc. Const. Indus. Res. Inform. Assoc. Conf., Lon- don, UK (Nov 1980). 38 BOOK REVIEWS FLOW-INDUCED HEAT EXCHANGER TUBE...1980 Heat exchanger problems caused by flow-induced vibration are of concern to designers and operators of heat exchangers . Flow-induced vibration
Secure Database Management Study.
1978-12-01
covers cases Involving indus- trial economics (e.g., Industrial spies) and commercial finances (e.g., fraud). Priv¢j--Protection of date about people...California, Berke - lay [STONM76aI. * The approach to protection taken in INGRE (STOM74| has attracted a lot of Interest* Queries, in a high level query...Material Command Support Activity (NMCSA), and another DoD agency, Cullinane Corporation developed a prototype version of the IDS database system on a
NASA Astrophysics Data System (ADS)
Pangaluru, K.; Velicogna, I.; Ciraci, E.; Mohajerani, Y.
2017-12-01
The Indus, Ganges and Brahmaputra (IGB) basins supply water for both domestic and agricultural demands, the latter of which is the mainstay of Indian economy. Here, we use high-resolution Asia Refined Analysis (HAR) rainfall datasets to study the spatial and temporal behavior of rainfall over the mountainous areas of the Indus, Ganges and Brahmaputra (IGB) over the period from 2001 to 2014. The validation of High Asia Refined Analysis (HAR) precipitation data is carried out with observational (GPCP, CRU and CPC) and satellite (TRMM_3B43) datasets for the period. We find that the relative differences between the HAR model and the satellite and gauge-based datasets varies between -9% and 67% for the seasonal mean and between 1% and 26% for the annual mean for all basins. The correlation between the HAR model and the observational datasets lies between 0.5 and 0.9 for all seasons. Spatial variations and monthly magnitudes of gridded precipitation trends are calculated by using the Mann-Kendall (MK) test and the Thei-Sen approach (TSA) respectively. We found significant positive trends precipitation grids over the IGB basins in the annual and monsoon season time frames, as opposed to winter and falls seasons.
Muhammad, Said; Tahir Shah, M; Khan, Sardar
2010-10-01
The present study was conducted in Kohistan region, where mafic and ultramafic rocks (Kohistan island arc and Indus suture zone) and metasedimentary rocks (Indian plate) are exposed. Water samples were collected from the springs, streams and Indus river and analyzed for physical parameters, anions, cations and arsenic (As(3+), As(5+) and arsenic total). The water quality in Kohistan region was evaluated by comparing the physio-chemical parameters with permissible limits set by Pakistan environmental protection agency and world health organization. Most of the studied parameters were found within their respective permissible limits. However in some samples, the iron and arsenic concentrations exceeded their permissible limits. For health risk assessment of arsenic, the average daily dose, hazards quotient (HQ) and cancer risk were calculated by using statistical formulas. The values of HQ were found >1 in the samples collected from Jabba, Dubair, while HQ values were <1 in rest of the samples. This level of contamination should have low chronic risk and medium cancer risk when compared with US EPA guidelines. Furthermore, the inter-dependence of physio-chemical parameters and pollution load was also calculated by using multivariate statistical techniques like one-way ANOVA, correlation analysis, regression analysis, cluster analysis and principle component analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Quantifying Density Fluctuations in Volumes of All Shapes and Sizes Using Indirect Umbrella Sampling
NASA Astrophysics Data System (ADS)
Patel, Amish J.; Varilly, Patrick; Chandler, David; Garde, Shekhar
2011-10-01
Water density fluctuations are an important statistical mechanical observable and are related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of its hydrophobicity. These fluctuations can be quantified by calculating the probability, P v ( N), of observing N waters in a probe volume of interest v. When v is large, calculating P v ( N) using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in N) leads to undesirable impulsive forces. Patel et al. (J. Phys. Chem. B 114:1632, 2010) have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain P v ( N) in cuboidal volumes. Here, we present and demonstrate an extension of that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate P v ( N) distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.
Determination of surface morphology of TiO2 nanostructure using synchrotron radiation
NASA Astrophysics Data System (ADS)
Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.
2017-05-01
Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.
NASA Astrophysics Data System (ADS)
Lucarini, Valerio
2017-04-01
We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope — a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) — a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy — RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal hydroclimatology poses some caveats on their ability to represent correctly the climate change signal. Nevertheless, considering the majority-model agreement as a measure of robustness for the qualitative scale projected future changes, we find a slightly delayed onset, and a general increase in the RFA slope and in the extent of precipitation concentration (RE) for MPR. Overall, a modest inter-model agreement suggests an increase in the seasonality of MPR and a less intermittent WPR for all basins and for most of the study domain. The SI-based indicator of change in the monsoonal domain suggests its extension westward over northwest India and Pakistan and northward over China. These findings have serious implications for the food and water security of the region in the future. Reference Ul Hasson, S., Pascale, S., Lucarini, V., & Böhner, J. (2016). Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmospheric Research, 180, 42-63. doi:10.1016/j.atmosres.2016.05.008
Selected Economic Translations on Eastern Europe (184th in the Series)
1960-06-22
binding materials industry, we must first of all es - tablish the construction needs in the field of cement in all places wnere its replacement with lime...progressive industry, and despite the very large capital outlays required, the indus- try always showed tendencies toward modernization of techni- ques ...stone quarry. The. plant laboratory staffs were also expanded to exaggerated dimensions«, They some- ti es employ numbers of people corresponding to
1986-06-24
distinction has to be made between Cavaco Silva and the other party leaders. After Alberto Joao Jardim condemned the PSD’s Rules Committee for the...After Porto (PSD) and Braga (PS), S. Joao da Madeira (CDS), a center of indus- trial development celebrating its new status as a city, will be next. On...Joaquim Aguiar and Joao Carlos Espada, ponder the options: all options. Teresa de Sousa, Sa Carneiro’s former secretary recently arrived from
USDA-ARS?s Scientific Manuscript database
Sea lice are likely the single most economically costly pathogen that has faced the salmon farming industry over the past 40 years. The most recent economic estimates put the annual cost of sea lice at just under $500 million USD in 2006. This is likely an underestimate of the current costs to indus...
1994-05-01
LOGISTICS MANAGEMENT INSTITUTE An Approach for Meeting Customer Standards Under Executive Order 12862 Summary Executive Order 12862, Setting...search Centers all operate and manage wind tunnels for both NASA and indus- try customers . Nonetheless, a separate wind-tunnel process should be...could include the man- ager of the process, selected members of the manager’s staff, a key customer , and a survey expert. The manager and staff would
In Their Own Words: Voices of Jihad
2008-01-01
the tyranny of nature.’ The shrines of such a culture are huge factories and cinemas , chemical laboratories and dance halls and power stations. The...priests of such a worship are bankers and engineers, cinema stars and indus- trialists and aviators. The inevitable result of this state of affairs...weapon.” Based on U.S. and Japanese biological weapons programs from World War II, it showed “how to inject carrier animals, like rats, with the virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rajkumar, E-mail: rkg@rract.gov.in; Modi, Mohammed H.; Lodha, G. S.
Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50–360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the presentmore » study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90–180 Å. The total harmonic contribution increases from 6%–60% in the wavelength range of 150–260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120–360 Å wavelength range.« less
Application of Satellite Data to Develop Wind Potential Model: A Case Study of Pakistan Coastal Belt
NASA Astrophysics Data System (ADS)
Nayyar, Z. A.; Zaigham, N. A.
2010-12-01
Since the independence in 1947, the Pakistan relies on the conventional resources for the generation of electricity. Since the local production of fossil fuel is not sufficient to fulfill the growing need of the country, the major economic burden involves huge import of petroleum products. In such a situation, the renewable energy resources are imperative in view to substantiate the economic burden. Wind energy resource is one of them, which is freely available and environmental friendly in nature. Pakistan is the late starter in the field of wind energy technology mainly because of the unavailability of the baseline wind data. As such, the adequate wind modeling and identification of the potential areas are imperative for the development of wind energy technology in the country. Present research study is carried out, based on the available satellite-collected wind data, to establish the rational wind potential model(s) of lower Indus Plains and Sindh coastal areas of Pakistan. The results of the present study reveals interesting pattern of the wind energy potential demarcating the higher wind energy resource zones and indicating hot spots for the future wind-farm installations. This paper describes the use of available satellite-collected wind data in the demarcation and modeling of wind potential along the lower Indus coastal belt and the methodology could be replicated on other parts of Pakistan and/or other counties.
Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing
2016-06-01
This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endogenous change: on cooperation and water in ancient history
NASA Astrophysics Data System (ADS)
Pande, S.; Ertsen, M.
2013-04-01
We propose and test the theory of endogenous change based on historical reconstructions of two ancient civilizations, Indus and Hohokam, in two water scarce basins, the Indus basin in the Indian subcontinent and the Lower Colorado basin in Southwestern United States. The endogenous institutional change sees changes in institutions as a sequence of equilibria brought about by changes in "quasi-parameters" such as rainfall, population density, soil and land use induced water resource availability. In the historical reconstructions of ancient civilizations, institutions are proximated by the scale of cooperation be it in the form of the extent of trade, sophisticated irrigation network, a centrally planned state or a loosely held state with a common cultural identity. The "quasi-parameters" either change naturally or are changed by humans and the changes affect the stability of cooperative structures over time. However, human influenced changes in the quasi-parameters itself are conditioned on the scale of existing cooperative structures. We thus provide insights into the quantitative dimensions of water access by ancient populations and its co-evolution with the socioeconomic and sociopolitical organization of the human past. We however do not suggest that water manipulation was the single most significant factor in stimulating social development and complexity - clearly this has been shown as highly reductionist, even misleading. The paper cautiously contributes to proximate prediction of hydrological change by attempting to understand the complexity of coupled human-hydrological systems.
Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.
2006-01-01
Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.
Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.
2015-01-01
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541
NASA Astrophysics Data System (ADS)
Métais, Grégoire; Antoine, Pierre-Olivier; Baqri, S. R. Hassan; Crochet, Jean-Yves; De Franceschi, Dario; Marivaux, Laurent; Welcomme, Jean-Loup
2009-02-01
The Oligocene-early Miocene Chitarwata Formation records a critical interval of terrestrial sedimentation that predates the Siwalik deposits on the Potwar Plateau of north-central Pakistan. This Oligocene-early Miocene time interval has long been considered as lacking in the entire Indo-Pakistan region. The Chitarwata Formation is widely exposed in the Sulaiman Range, but has never been described in detail in the Sulaiman Lobe, where the famous fossiliferous strata called 'Bugti Bone Beds' have been known for over a century and half. The Chitarwata Formation represents coastal-delta at the base, and plain and fluvial environments at the top. Lithofacies and sedimentary structures of the Chitarwata Formation in the Bugti area are described in detail, and show a clearly distinct lithologic pattern, different from that reported from the Zinda Pir area. The Chitarwata Formation also records an important transition in the evolution of the drainage systems in the area during the late Paleogene and early Neogene. This transition from the west-flowing paleo-Indus fluvial system to the development of the ancestral Indus drainage system may explain the numerous hiatuses that characterize the Chitarwata Formation. The abundance of fossil mammals from the Chitarwata and overlying Vihowa formation in the Bugti Hills provides critical biochronologic information that sheds new light on biostratigraphic correlation with the Zinda Pir area and for the entire Sulaiman Range.
Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z
2016-01-01
We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.
National Level Assessment of Mangrove Forest Cover in Pakistan
NASA Astrophysics Data System (ADS)
Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.
2011-09-01
Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas. GIS and Remote Sensing based technologies and methods are in use to map forest cover since the last two decades in Pakistan. The national level forest cover studies based upon satellite images include, Forestry Sector Master Plan (FSMP) and National Forest & Range Resources Assessment Study (NFRRAS). In FSMP, the mangrove forest extent was visually determined from Landsat images of 1988 - 1991, and was estimated to be 155,369 ha; whereas, in NFRRAS, Landsat images of 1997 - 2001 were automated processed and the mangroves areas was estimated to be 158,000 ha. To our knowledge, a comprehensive assessment of current mangroves cover of Pakistan has not been made over the last decade, although the mangroves ecosystems have become the focus of intention in context of recent climate change scenarios. This study was conducted to support the informed decision making for sustainable development in coastal areas of Pakistan by providing up-todate mangroves forest cover assessment of Pakistan. Various types of Earth Observation satellite images and processing methods have been tested in relation to mangroves mapping. Most of the studies have applied classical pixel - based approached, there are a few studies which used object - based methods of image analysis to map the mangroves ecosystems. Object - based methods have the advantage of incorporating spatial neighbourhood properties and hierarchical structures into the classification process to produce more accurate surface patterns recognition compared with classical pixel - based approaches. In this research, we applied multi-scale hierarchical approach of object-based methods of image analysis to ALOS - AVNIR-2 images of the year 2008-09 to map the land cover in the mangroves ecosystems of Pakistan. Considering the tide height and phonological effects of vegetation, particularly the algal mats, these data sets were meticulously chosen. Incorporation of multi-scale hierarchical structures made it easy to effectively discriminate among the land cover classes, particularly the mudflats from sparse mangroves, at their respective scales. Results of current image analysis deciphered that the overall mangroves cover of Pakistan is ~ 98,128 ha. Mangroves cover along the Indus Delta is estimated to be 92, 412 ha that is ~94.17 % of the total mangroves area of the country. 1,056 ha of the forest thrive in Sandspit, whilst the remainin 4,660 ha mangroves occurs along the Makran coast in 3 isolated pockets at Miani Hor (4,018 ha), Kalmat Khor (407 ha) and Jiwani (235 ha). Overall accuracy of land cover maps, from 250 ground reference points, was estimated to be 83.2% (kappa value .7301; kappa variance .0029) which was considered acceptable for optical data in a semi-aquatic environment.
How to improve outcome in surgery for Proximal Hypospadias?
Qureshi, Abdul Hafeez; Zaidi, Syed Zafar
2016-02-01
To evaluate the role of subdartos fascial tissue as watertight layer in improving outcome for 2-stage proximal hypospadias surgery. The experimental study was conducted at the Department of Urology, Indus Hospital, Karachi, and comprised an audit of patients with proximal hypospadias who underwent surgery from July 1, 2007, to December 31, 2011. The initial two-stage repair of proximal hypospadias led to a high rate of urethrocutanous fistula formation (Group A), and, thus, a modification was introduced and subdartos facial double layer was applied over the urethral suture line (Group B). The results were compared regarding age, type of hypospadias, graft failure and urethrocutanous fistula in these patients. There were 27 patients in Group A and 16(59.3%) of them ended up having urethrocutanous fistula. Group B had 25 patients and only 2(8%) had fistula formation. The application of dartos facial flap waterproofing layer reduced fistula rate.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.
2010-05-01
The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.
An analytical study of double bend achromat lattice.
Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D
2015-03-01
In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.
Mössbauer spectroscopic study of the test well (DND) located in Jaisalmer Basin of Rajasthan, India
NASA Astrophysics Data System (ADS)
Ganwani, Girish; Meena, Samay Singh; Ram, Sahi; Bhatia, Beena; Tripathi, R. P.
2018-05-01
The Jaisalmer basin represents mainly the westerly dipping flank of Indus shelf. The palynological and geochemical studies have predicted good quality of hydrocarbons in this basin. The cretaceous and Jurassic sediments are believed to contain source rock in this basin. In present preliminary study, Mössbauer spectroscopic investigation has been done on sedimentary samples collected from different depths of upper cretaceous sedimentary sequence of well DND-1 drilled in Jaisalmer basin. The iron is found mainly in carbonate and clay. The relatively small presence of Fe2+ in comparison to Fe3+ in clay is an indication of poor reducing environment in sediments, which can be attributed to poor maturity of source rocks in upper cretaceous sediments of this basin.
Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1
NASA Astrophysics Data System (ADS)
Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.
2018-04-01
In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.
The Afghan National Police: Turning a Counterinsurgency Problem into a Solution
2009-12-01
27 “Special Forces groups are organized in small teams of 12 men — a.k.a. Operational Detachment Alpha (ODA). A typical Green Beret’s Team structure...Human Progress, 98. 162 Akbar S. Ahmed and David M. Hart, Islam in Tribal Societies: From the Atlas to the Indus (London; Boston: Routledge & Kegan ...Boston: Routledge & Kegan Paul, 1984. Al Jazeera. “Taliban Issue Code of Conduct.” Al Jazeera English Central/S. Asia (July 27, 2009), http
Trends in aging and skin care: Ayurvedic concepts
Datta, Hema Sharma; Paramesh, Rangesh
2010-01-01
The association between Ayurveda, anti-aging and cosmeceuticals is gaining importance in the beauty, health and wellness sector. Ayurvedic cosmeceuticals date back to the Indus Valley Civilization. Modern research trends mainly revolve around principles of anti-aging activity described in Ayurveda: Vayasthapana (age defying), Varnya (brighten skin-glow), Sandhaniya (cell regeneration), Vranaropana (healing), Tvachya (nurturing), Shothahara (anti-inflammatory), Tvachagnivardhani (strengthening skin metabolism) and Tvagrasayana (retarding aging). Many rasayana plants such as Emblica officinalis (Amla) and Centella asiatica (Gotukola) are extensively used. PMID:21836797
Modernizing Our Industrial Base: The National Security Challenge of Our Time
2015-08-01
situational awareness tools and applications, au- tonomy and robotics that we need to harness and fully develop for DoD missions . With this type of...to work for the DoD or its industrial base; rather they go to work in the commercial industry for companies such as Facebook, Google and Tesla . This...partnership with industry. The DoD continues talking to indus- try, communicating our vision for the future, to facilitate the best business decisions that
1990-06-01
plants or for the expansion of existing firms. Services, explains that what attracted the company Reprinted with the permission of Area Develop- ment...upgrade the park’s appearance and to expand pany. Mr. Hayworth adds that the company had a water pressure for the plant sprinkler system. 26 difficult time...and Aviation Uses: Office indus- as the permanent staff for the Committee. trial parks or plants have been established at 75 of The EAC works with
Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan
NASA Astrophysics Data System (ADS)
Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.
2017-12-01
Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.
Spatial-altitudinal and temporal variation of Degree Day Factors (DDFs) in the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Khan, Asif; Attaullah, Haleema; Masud, Tabinda; Khan, Mujahid
2017-04-01
Melt contribution from snow and ice in the Hindukush-Karakoram-Himalayan (HKH) region could account for more than 80% of annual river flows in the Upper Indus Basin (UIB). Increase or decrease in precipitation, energy input and glacier reserves can significantly affect water resources of this region. Therefore improved hydrological modelling and accurate future water resources prediction are vital for food production and hydro-power generation for millions of people living downstream, and are intensively needed. In mountain regions Degree Day Factors (DDFs) significantly vary on spatial and altitudinal basis, and are primary inputs of temperature-based hydrological modelling. However previous studies have used different DDFs as calibration parameters without due attention to the physical meaning of the values employed, and these estimates possess significant variability and uncertainty. This study provides estimates of DDFs for various altitudinal zones in the UIB at sub-basin level. Snow, clean ice and ice with debris cover bear different melt rates (or DDFs), therefore areally-averaged DDFs based on snow, clean and debris-covered ice classes in various altitudinal zones have been estimated for all sub-basins of the UIB. Zonal estimates of DDFs in the current study are significantly different from earlier adopted DDFs, hence suggest a revisit of previous hydrological modelling studies. DDFs presented in current study have been validated by using Snowmelt Runoff Model (SRM) in various sub-basins with good Nash Sutcliffe coefficients (R2 > 0.85) and low volumetric errors (Dv<10%). DDFs and methods provided in the current study can be used in future improved hydrological modelling and to provide accurate predictions of future river flows changes. The methodology used for estimation of DDFs is robust, and can be adopted to produce such estimates in other regions of the, particularly in the nearby other HKH basins.
Kanginakudru, Sriramana; Metta, Muralidhar; Jakati, R D; Nagaraju, J
2008-06-10
Domestication of chicken is believed to have occurred in Southeast Asia, especially in Indus valley. However, non-inclusion of Indian red jungle fowl (RJF), Gallus gallus murghi in previous studies has left a big gap in understanding the relationship of this major group of birds. In the present study, we addressed this issue by analyzing 76 Indian birds that included 56 G. g. murghi (RJF), 16 G. g. domesticus (domestic chicken) and 4 G. sonneratii (Grey JF) using both microsatellite markers and mitochondrial D-loop sequences. We also compared the D-loop sequences of Indian birds with those of 779 birds obtained from GenBank. Microsatellite marker analyses of Indian birds indicated an average FST of 0.126 within G. g. murghi, and 0.154 within G. g. domesticus while it was more than 0.2 between the two groups. The microsatellite-based phylogenetic trees showed a clear separation of G. g. domesticus from G. g. murghi, and G. sonneratii. Mitochondrial DNA based mismatch distribution analyses showed a lower Harpending's raggedness index in both G. g. murghi (0.001515) and in Indian G. g. domesticus (0.0149) birds indicating population expansion. When meta analysis of global populations of 855 birds was carried out using median joining haplotype network, 43 Indian birds of G. g. domesticus (19 haplotypes) were distributed throughout the network sharing haplotypes with the RJFs of different origins. Our results suggest that the domestication of chicken has occurred independently in different locations of Asia including India. We found evidence for domestication of Indian birds from G. g. spadiceus and G. g. gallus as well as from G. g. murghi, corroborating multiple domestication of Indian and other domestic chicken. In contrast to the commonly held view that RJF and domestic birds hybridize in nature, the present study shows that G. g. murghi is relatively pure. Further, the study also suggested that the chicken populations have undergone population expansion, especially in the Indus valley.
The Limits of Extrusion in the Western Himalaya
NASA Astrophysics Data System (ADS)
Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.
2014-12-01
Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.
2008-01-01
Background Domestication of chicken is believed to have occurred in Southeast Asia, especially in Indus valley. However, non-inclusion of Indian red jungle fowl (RJF), Gallus gallus murghi in previous studies has left a big gap in understanding the relationship of this major group of birds. In the present study, we addressed this issue by analyzing 76 Indian birds that included 56 G. g. murghi (RJF), 16 G. g. domesticus (domestic chicken) and 4 G. sonneratii (Grey JF) using both microsatellite markers and mitochondrial D-loop sequences. We also compared the D-loop sequences of Indian birds with those of 779 birds obtained from GenBank. Results Microsatellite marker analyses of Indian birds indicated an average FST of 0.126 within G. g. murghi, and 0.154 within G. g. domesticus while it was more than 0.2 between the two groups. The microsatellite-based phylogenetic trees showed a clear separation of G. g. domesticus from G. g. murghi, and G. sonneratii. Mitochondrial DNA based mismatch distribution analyses showed a lower Harpending's raggedness index in both G. g. murghi (0.001515) and in Indian G. g. domesticus (0.0149) birds indicating population expansion. When meta analysis of global populations of 855 birds was carried out using median joining haplotype network, 43 Indian birds of G. g. domesticus (19 haplotypes) were distributed throughout the network sharing haplotypes with the RJFs of different origins. Conclusion Our results suggest that the domestication of chicken has occurred independently in different locations of Asia including India. We found evidence for domestication of Indian birds from G. g. spadiceus and G. g. gallus as well as from G. g. murghi, corroborating multiple domestication of Indian and other domestic chicken. In contrast to the commonly held view that RJF and domestic birds hybridize in nature, the present study shows that G. g. murghi is relatively pure. Further, the study also suggested that the chicken populations have undergone population expansion, especially in the Indus valley. PMID:18544161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatmi, Zafar, E-mail: zafar.fatmi@aku.edu; Azam, Iqbal; Ahmed, Faiza
2009-07-15
A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons {>=}15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographicalmore » distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among {>=}15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m{sup 2}. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further investigations and focal mitigation measures for arsenic may be carried out alongside Indus River.« less
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
Stochastic simulation and decadal prediction of hydroclimate in the Western Himalayas
NASA Astrophysics Data System (ADS)
Robertson, A. W.; Chekroun, M. D.; Cook, E.; D'Arrigo, R.; Ghil, M.; Greene, A. M.; Holsclaw, T.; Kondrashov, D. A.; Lall, U.; Lu, M.; Smyth, P.
2012-12-01
Improved estimates of climate over the next 10 to 50 years are needed for long-term planning in water resource and flood management. However, the task of effectively incorporating the results of climate change research into decision-making face a ``double conflict of scales'': the temporal scales of climate model projections are too long, while their usable spatial scales (global to planetary) are much larger than those needed for actual decision making (at the regional to local level). This work is designed to help tackle this ``double conflict'' in the context of water management over monsoonal Asia, based on dendroclimatic multi-century reconstructions of drought indices and river flows. We identify low-frequency modes of variability with time scales from interannual to interdecadal based on these series, and then generate future scenarios based on (a) empirical model decadal predictions, and (b) stochastic simulations generated with autoregressive models that reproduce the power spectrum of the data. Finally, we consider how such scenarios could be used to develop reservoir optimization models. Results will be presented based on multi-century Upper Indus river discharge reconstructions that exhibit a strong periodicity near 27 years that is shown to yield some retrospective forecasting skill over the 1700-2000 period, at a 15-yr yield time. Stochastic simulations of annual PDSI drought index values over the Upper Indus basin are constructed using Empirical Model Reduction; their power spectra are shown to be quite realistic, with spectral peaks near 5--8 years.
Spatial analysis of precipitation time series over the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad
2018-01-01
The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.
Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes
Korup, Oliver; Montgomery, David R.; Hewitt, Kenneth
2010-01-01
Despite longstanding research on the age and formation of the Tibetan Plateau, the controls on the erosional decay of its margins remain controversial. Pronounced aridity and highly localized rock uplift have traditionally been viewed as limits to the dissection of the plateau by bedrock rivers. Recently, however, glacier dynamics and landsliding have been argued to retard headward fluvial erosion into the plateau interior by forming dams and protective alluvial fill. Here, we report a conspicuous clustering of hundreds of natural dams along the Indus and the Tsangpo Rivers where these cross the Himalayan syntaxes. The Indus is riddled by hundreds of dams composed of debris from catastrophic rock avalanches, forming the largest concentration of giant landslide dams known worldwide, whereas the Tsangpo seems devoid of comparable landslide dams. In contrast, glacial dams such as river-blocking moraines in the headwaters of both rivers are limited to where isolated mountain ranges intersect the regional snowline. We find that to first-order, high local topographic relief along both rivers corresponds to conspicuously different knickzones and differences in the type and potential longevity of these dams. In both syntaxes, glacier and landslide dams act as a negative feedback in response to fluvial dissection of the plateau margins. Natural damming protects bedrock from river incision and delays headward knickpoint migration, thereby helping stabilize the southwestern and southeastern margins of the Tibetan Plateau in concert with the effects of upstream aridity and localized rock uplift. PMID:20212156
Source rock potential in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, H.A.
1991-03-01
Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceousmore » rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.« less
Hydrocarbon potential in Pakistan - A geological perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemal, A.
1991-03-01
Share of petroleum in the energy mix of Pakistan is about 76%. Indigenous oil production meets only one-third of the requirement while the remaining is imported at a high cost. The pinch of soaring crude prices of the late 1970s accelerated the search for new petroleum resources. The last decade saw a notable increase in petroleum exploration as well as production of oil and gas. Pakistan lies along part of the Tertiary convergence zone and straddles the boundaries between Indian, Arabian, and Eurasian plates. It has a large sedimentary area and a proven petroleum potential. The basin evolution along themore » fringe of proto-Indian Ocean and subsequent modifications by continental collision can be correlated with the plate tectonic history. Better understanding of the geological history and the petroleum geodynamics have contributed in the finding of new resources. At the advent of the last decade, application of conceptual geological modeling opened up a new petroleum province in the south. Application of the state-of-the-art technique has made it possible to identify attractive prospects in the geologically complex imbricate zone in the northern province. The vast Indus basin also has the possibilities associated with stratigraphic, reefal, and other subtle trapping mechanisms. Finally, the Baluchistan basin and the continental shelf have only been marginally explored. The prospects for the future seem extremely bright, particularly the unproven Indus delta and the Baluchistan basin, which may drastically change this situation.« less
NASA Astrophysics Data System (ADS)
Mishra, A.; Vibhute, V.; Ninama, S.; Parsai, N.; Jha, S. N.; Sharma, P.
2016-10-01
X-ray absorption fine structure (XAFS) at the K-edge of copper has been studied in some copper (II) complexes with substituted anilines like (2Cl, 4Br, 2NO2, 4NO2 and pure aniline) with o-PDA (orthophenylenediamine) as ligand. The X-ray absorption measurements have been performed at the recently developed BL-8 dispersive EXAFS beam line at 2.5 GeV Indus-2 Synchrotron Source at RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena.The graphical method gives the useful information about bond length and also the environment of the absorbing atom. The theoretical bond lengths of the complexes were calculated by using interactive fitting of EXAFS using fast Fourier inverse transformation (IFEFFIT) method. This method is also called as Fourier transform method. The Lytle, Sayers and Stern method and Levy's method have been used for determination of bond lengths experimentally of the studied complexes. The results of both methods have been compared with theoretical IFEFFIT method.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.
2010-05-01
The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate projections of future water resource availability and variability are urgent insights needed by development planners and infrastructure managers at all levels. Correctly projecting future hydrological conditions depends first and foremost on a thorough understanding of the underlying mechanisms and processes of present hydroclimatology. The vertical and horizontal spatial variations in key climate parameters (temperature, precipitation) govern the contributions of the various elevation zones and subcatchments comprising the UIB. Trends in this complex mountainous region are highly varied by season and parameter. Observed changes here often do not match general global trends or even necessarily those found in neighbouring regions. This study considers data from a variety sources in order to compose the most complete picture possible of the vertical hydroclimatology of the UIB. The study presents the observed climatology and trends for precipitation and temperature from local observations at long-record meteorological stations (Pakistan Meteorological Department). These data are compared to characterisations of additional water cycle parameters (humidity, cloud, snow cover and snow-water-equivalent) derived from local short-record automatic weather stations, the ECMWF ‘ERA' reanalysis projects and satellite based observations (AVHRR, MODIS, etc). The potential implications of the vertical (hypsometric) distribution of these parameters are considered. Interlinkages between observed changes in these parameters and the evolution of large-scale circulation indices (ENSO, NAO, local vorticity) are also investigated. In parallel to these climatological considerations, the study presents the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- including interannual variability as quantified from the available river gauging record. In order to begin to assess potential implications of future climate change on UIB hydrology, key modes of variability in the climate parameters are identified. The study then analyses in detail the corresponding observed anomalies in UIB discharge for years exemplifying these modes. In conclusion, this work postulates potential impacts of changes in the hydrological variability stemming from continuation of estimated present local climatic trends.
Global monthly water scarcity: blue water footprints versus blue water availability.
Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D
2012-01-01
Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.
Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability
Hoekstra, Arjen Y.; Mekonnen, Mesfin M.; Chapagain, Ashok K.; Mathews, Ruth E.; Richter, Brian D.
2012-01-01
Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. PMID:22393438
What Is Next for Mali? The Roots of Conflict and Challenges to Stability
2013-11-01
West Africa began in 1637, when they built a fort at the mouth of the Senegal River and be- gan to explore the interior. By the 1850s, France was...farmer who took up arms and then returned to his fields, Touré kept his word , surprising many of his fellow Malians.65 Touré’s decision to relinquish...killed in Timbuktu.83 These attacks, the first in the city itself, clearly sought to undermine the tourism indus- try. The attacks, part of a
Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark
1993-01-01
The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.
NASA Astrophysics Data System (ADS)
Sinha, Mangalika; Modi, Mohammed H.
2017-10-01
In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.
NASA Astrophysics Data System (ADS)
Shahzad, Khurram; Betzler, Christian; Ahmed, Nadeem; Qayyum, Farrukh; Spezzaferri, Silvia; Qadir, Anwar
2018-03-01
Based on high-resolution seismic and well datasets, this paper examines the evolution and drowning history of a Paleocene-Eocene carbonate platform in the Offshore Indus Basin of Pakistan. This study uses the internal seismic architecture, well log data as well as the microfauna to reconstruct factors that governed the carbonate platform growth and demise. Carbonates dominated by larger benthic foraminifera assemblages permit constraining the ages of the major evolutionary steps and show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigraphy, the carbonate platform edifice is resolved into seven seismic units which in turn are grouped into three packages that reflect its evolution from platform initiation, aggradation with escarpment formation and platform drowning. The carbonate factory initiated as mounds and patches on a Cretaceous-Paleocene volcanic complex. Further, the growth history of the platform includes distinct phases of intraplatform progradation, aggradation, backstepping and partial drownings. The youngest succession as late-stage buildup records a shift from benthic to pelagic deposition and marks the final drowning in the Early Eocene. The depositional trend of the platform, controlled by the continuing thermal subsidence associated with the cooling of volcanic margin lithosphere, was the major contributor of the accommodation space which supported the vertical accumulation of shallow water carbonate succession. Other factors such as eustatic changes and changes in the carbonate producers as a response to the Paleogene climatic perturbations played secondary roles in the development and drowning of these buildups.
Fluvial landscapes of the Harappan civilization.
Giosan, Liviu; Clift, Peter D; Macklin, Mark G; Fuller, Dorian Q; Constantinescu, Stefan; Durcan, Julie A; Stevens, Thomas; Duller, Geoff A T; Tabrez, Ali R; Gangal, Kavita; Adhikari, Ronojoy; Alizai, Anwar; Filip, Florin; VanLaningham, Sam; Syvitski, James P M
2012-06-26
The collapse of the Bronze Age Harappan, one of the earliest urban civilizations, remains an enigma. Urbanism flourished in the western region of the Indo-Gangetic Plain for approximately 600 y, but since approximately 3,900 y ago, the total settled area and settlement sizes declined, many sites were abandoned, and a significant shift in site numbers and density towards the east is recorded. We report morphologic and chronologic evidence indicating that fluvial landscapes in Harappan territory became remarkably stable during the late Holocene as aridification intensified in the region after approximately 5,000 BP. Upstream on the alluvial plain, the large Himalayan rivers in Punjab stopped incising, while downstream, sedimentation slowed on the distinctive mega-fluvial ridge, which the Indus built in Sindh. This fluvial quiescence suggests a gradual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary to earlier assumptions that a large glacier-fed Himalayan river, identified by some with the mythical Sarasvati, watered the Harappan heartland on the interfluve between the Indus and Ganges basins, we show that only monsoonal-fed rivers were active there during the Holocene. As the monsoon weakened, monsoonal rivers gradually dried or became seasonal, affecting habitability along their courses. Hydroclimatic stress increased the vulnerability of agricultural production supporting Harappan urbanism, leading to settlement downsizing, diversification of crops, and a drastic increase in settlements in the moister monsoon regions of the upper Punjab, Haryana, and Uttar Pradesh.
NASA Astrophysics Data System (ADS)
Ismaeel, A.; Zhou, Q.
2018-04-01
Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.
Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz
2017-03-01
Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.
NASA Astrophysics Data System (ADS)
Orr, Elizabeth N.; Owen, Lewis A.; Murari, Madhav K.; Saha, Sourav; Caffee, Marc W.
2017-05-01
The glacial history of three tributary valleys (Namlung, Gopal Kangri and Stok Kangri) of the Stok valley, south of the Indus valley in the northern sector of the Zanskar Range, northern India is characterized using geomorphic mapping and cosmogenic 10Be surface exposure dating. The new glacial chronostratigraphy for the Stok valley is the first for the northern Zanskar Range and provides insights into the spatial variability of glaciation in the Himalayan-Tibetan orogen. This framework facilitates the understanding of the nature and the timing of landscape evolution and paleoenvironmental change in the Himalayan-Tibetan orogen. At least four glacial stages are evident within each of the tributary valleys of Gopal Kangri (MG1-MG4, youngest to oldest) and Stok Kangri (MS1-MS4) that feed into the Stok valley. With the exception of the MG4 glacial advance ( 124 ka) in Gopal Kangri, the Stok valley has preserved evidence of glaciations from 50 ka to the present. Equilibrium-line altitudes and glacier reconstructions for the Stok valley and its tributaries demonstrate that glaciations have become progressively less extensive through time. Former glacier extents of the Stok region are comparable in length with glacial advances during the last glacial cycle in eastern Zanskar and in the southern Ladakh Range to the south and north of the Indus valley, respectively. Landscape evolution in the study area has occurred across numerous glacial-interglacial cycles by a combination of glacial and fluvial processes and is similar to that of the Ladakh Range.
Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan
NASA Astrophysics Data System (ADS)
Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza
2018-02-01
This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.
Wetland Change Detection in Protected and Unprotected Indus Coastal and Inland Delta
NASA Astrophysics Data System (ADS)
Baig, M. H. Ali; Sultan, M.; Riaz Khan, M.; Zhang, L.; Kozlova, M.; Malik, N. Abbas; Wang, S.
2017-09-01
Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan's wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation
NASA Astrophysics Data System (ADS)
Shrivastava, B. D.
2012-05-01
The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.
NASA Astrophysics Data System (ADS)
Sachan, Himanshu Kumar; Kharya, Aditya; Singh, P. Chandra; Rolfo, Franco; Groppo, Chiara; Tiwari, Sameer K.
2017-09-01
The best occurrence of blueschist-facies lithologies in Himalaya is that of the Shergol Ophiolitic Mélange along the Indus suture zone in Ladakh region of north-western India. These lithologies are characterized by well preserved lawsonite-glaucophane-garnet-quartz assemblages. This paper presents for the first time the results of a detailed fluid inclusion study on these lithologies, in order to understand the fluid P-T evolution and its tectonic implications. The blueschist rocks from Shergol Ophiolitic Mélange record metamorphic peak conditions at ∼19 kbar, 470 °C. Several types of fluid inclusions are trapped in quartz and garnet, most of them being two-phase at room temperature. Three types of fluid inclusions have been recognised, basing on microtextures and fluid composition: Type-I are primary two-phase carbonic-aqueous fluid inclusions (VCO2 - LH2O); Type-II are two-phase (LH2O - VH2O) aqueous fluid inclusions, either primary (Type-IIa) or secondary (Type-IIb); Type-III are re-equilibrated fluid inclusions. In the Type-I primary carbonic-aqueous inclusions, H2O is strongly predominant with respect to CO2; the homogenization temperature of CO2 range from -7 to -2 °C. The clathrate melting temperature in such inclusions varies in between +7.1 and +8.6 °C. Type-II two-phase aqueous fluid inclusions show a wide range of salinity, from 7.8-14 wt.% NaCleq (Type-IIa) to 1.65-6.37 wt.% NaCleq (Type-IIb) with accuracy ±0.4 wt.% NaCleq. Type-I and Type-IIa primary fluid inclusions are hosted in peak minerals (garnet and quartz included in garnet), therefore they were likely entrapped at, or near to, peak P-T conditions. The dominantly aqueous fluid of both Type-I and Type-IIa inclusions was most likely produced through metamorphic devolatilization reactions occurring in the subducting slab. Despite their primary nature, the isochores of Type-I and Type-IIa inclusions do not intersect the peak metamorphic conditions of the blueschist mineral assemblage, suggesting that these inclusions stretched or re-equilibrated during nearly isothermal decompression from 19 kbar to 3 kbar or less, at T = 290 °C. This conclusion is further supported by their large variability in shapes and sizes which range from irregular inclusions ('C'/arc shaped, hook shape and satellite type). This decompression stage was followed by nearly isobaric cooling, testified by the occurrence of dendritic networks of decrepitated and 'imploded' fluid inclusions.
Training survey -- educational profile for Hanford HANDI 2000 project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D.
Fluor Daniel Hanford, Inc. (FDH) is currently adopting streamlined business processes through integrated software solutions. Replacing the legacy software (current/replacement systems, attached) also avoids significant maintenance required to resolve Year 2000 issues. This initiative is being referred to as `HANDI 2000`. The software being implemented in the first phase of this project includes Indus International`s PASSPORT Software, Peoplesoft and Primavera P3 Software. The project, which encompasses all the system replacements that will occur, has been named `HANDI 2000.` The PASSPORT applications being implemented are Inventory Management, Purchasing, Contract Management, Accounts Payable, and MSDS (Material Safety Data Sheets).
Reply to Comment on ``Emergence of Complex Societies After Sea Level Stabilized''
NASA Astrophysics Data System (ADS)
Day, John W.; Gunn, Joel D.; Folan, William J.; Yáñez-Arancibia, Alejandro; Horton, Benjamin P.
2007-10-01
Washington [this issue] raised a number of interesting points that serve to clarify the origins of civilizations on continental margins. We linked the initial development of civilizations to coastal margin productivity [Day et al., 2007]. Washington argues that a number of early civilizations were not related to marine productivity, but rather were centered around the exploitation and cultivation of riparian grains. However, we defined coastal margins to include upwellings, estuaries, and lower floodplains affected by coastal water levels. Thus, the Nile, Mesopotamia, Indus, Mississippi, and Yellow societies were influenced by coastal margin productivity.
The River Danube: An Examination of Navigation on the River
NASA Astrophysics Data System (ADS)
Cooper, R. W.
One of the definitions of Navigation that gets little attention in this Institute is (Oxford English Dictionary), and which our French friends call La Navigation. I have always found this subject fascinating, and have previously navigated the Rivers Mekong, Irrawaddy, Hooghly, Indus, Shatt-al-Arab, Savannah and RhMainKanal (RMDK) and the River Danube, a distance of approximately 4000 km. This voyage has only recently become possible with the opening of the connecting RMDK at the end of 1992, but has been made little use of because of the civil war in the former Yugoslavia.
NASA Astrophysics Data System (ADS)
Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.
2014-09-01
Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.
Climate and meltwater changes in the Himalayas: impacts, risk assessment and mitigation
NASA Astrophysics Data System (ADS)
Xiao, C.; Wang, S.; Zhang, D.; Guo, W.; Gao, X.; Guo, X.; Ming, J.
2017-12-01
Regional warming was identified in the whole Himalayas in the past 50 years, with larger warming rate in the last decade. During the same period, precipitation decreased in the most areas of Himalayas. Warming-dry regime of climate resulted in widespread retreating of glaciers. Based on in-situ investigations and mapping of satellite images, we studied glacial changes between 1970's to 2008. It shows that in the north slope of Himalayas, retreating glaciers amount to 25.3% of overall glaciers in Ganges basin, 23.3% in Yarlung Zangbo basin, 29.2% in Indus and 25% in other areas. Glacier areal changes in the southern slope roughly doubled than that of the northern slope. Darkening of glacier surface due to back carbon and other light-absorbing aerosols might have contributed to the strong melting, especially in the southern slope. Using degree-day model (DDM), we estimate that, during 1961-2006, the total mass loses of glaciers in the north slope of Himalayas amounts to 198 km3, equals to approximately 10 m thinning of glaciers. The mass balance is averaged -220mm•a-1 during 2000-2006. Glacier melt water increases in the last 5 decades, contributing to an increasing amount to total river runoff in the Indus, Ganges and Yarlung Zangbo Rivers. Projections of future climate change by Regional Climate Model (ICTP RegCM3) shows continuously warming and drying trends in the most part of Himalayas before 2050, implying continuously retreating of glacier thus depletion of water storage over the Himalayas. Assessment of glacial lake outburst flood (GLOF) disaster risk is completed in the north slope, combined with potential dangerous glacial lakes (PDGL) outburst hazard. The zones at highest risk of GLOF disaster are mainly located in Nyalam, Tingri, Dinggyê, Lhozhag, Kangmar and Zhongba, in the mid-eastern Himalayas. Post-melting season (winter and spring) coincides with strong wind season over valley of Yarlung Zangbo River, blowing sands from exposed river bed to bank and hill foot, where large cultivated and pasture lands exist. An engineering measure is suggested to mitigate such desertification trend.
NASA Astrophysics Data System (ADS)
Lall, U.
2010-12-01
There are always droughts and floods. Sometimes, drought in a region begets a flood. Sometimes floods in a region reliably coincide with a drought in another specific region. In 2010, as floods unfolded simultaneously and sequentially in one region after another of the world, the media has asked whether there is a common cause, pointing the finger at anthropogenic climate change. Will floods end our civilization as climate changes? Or merely erase the Indus Valley civilization yet again? Floods have traditionally been considered the consequence of extreme, random, weather extremes, and much of the prediction effort has focused on near real term meteorological and land surface hydrological forecasting. While very useful, these typically offer a relatively short lead time. Exceptions are floods in large rivers such as the Mississippi, the Indus and the Yangtze that have long transit times to the outlet. Today, climatic aspects of floods, specifically, the spatial structure of fields of droughts and floods, the associated ocean-atmosphere circulation conditions and precursors, as well as the recurrence characteristics of these precursors are beginning to be understood. I offer an early review of how these analyses are emerging, and of examples of selected regions in the world where an empirical flood risk analysis that is climate informed is feasible in both a correlative and a predictive mode. Novel risk management products, that combine organizational planning, infrastructure and financial risk management tools at a variety of institutional and spatial scales are also emerging. Potential global socio-economic impacts of unmitigated concurrent floods/droughts are highlighted. A framework for how these can be applied to effect dynamic risk management and adaptation in a changing world is presented.
Clarke, Frank Eldridge; Barnes, Ivan
1969-01-01
Seepage from rivers and irrigation canals has contributed to waterlogging and soil salinization problems in much of the Indus Plains of West Pakistan. These problems are being overcome in part by tube-well dewatering and deep leaching of salinized soils. The ground waters described here are anaerobic and some are supersaturated with troublesome minerals such as calcium carbonate (calcite) and iron carbonate (siderite). These waters are moderately corrosive to steel. Some wells contain sulfate-reducing bacteria, which catalyze corrosion, and pH-electrode potential relationships favorable to the solution of iron also are rather common. Corrosion is concentrated in the relatively active (anodic) saw slots of water-well filter pipes (screens), where metal loss is least tolerable. Local changes in chemical properties of the water, because of corrosion, apparently cause deposition of calcium carbonate, iron carbonate, and other minerals which clog the filter pipes. In some places well capacities are seriously reduced in very short periods of time. There appears to be no practicable preventive treatment for corrosion and encrustation in these wells. Even chemical sterilization for bacterial control has yielded poor results. Periodic rehabilitation by down-hole blasting or by other effective mechanical or chemical cleaning methods will prolong well life. It may be possible to repair severely damaged well screens by inserting perforated sleeves of plastic or other inert material. The most promising approach to future, well-field development is to use filter pipes of epoxy-resin-bonded fiber glass, stainless steel, or other inert material which minimizes both corrosion and corrosion-catalyzed encrustation. Fiberglass plastic pipe appears to be the most economically practicable construction material at this time and already is being used with promising results.
Samad, Lubna; Iqbal, Mehreen; Tariq, Ahson; Shahzad, Wasif; Khan, Aamir J
2015-01-01
Equitable access to surgical care is necessary for improving global health. We report on the performance, financial sustainability, and policy impact of a free-of-cost multispecialty surgical delivery program in Karachi, Pakistan built upon local private philanthropy. We evaluated trends in surgical service delivery, expenditures, and philanthropic donations from Indus Hospital's first 5 years of operation (2007-2012), projected these over the hospital's current expansion phase, compared these to publicly accessible records of other philanthropic hospitals providing surgical care, and documented the government's evolving policies toward this model. Between 2007 and 2012, Indus Hospital treated 40,012 in-patients free of cost, 33,606 (84 %) of them for surgical procedures. Surgical procedures increased fivefold to 9,478 during 2011-2012 from 1,838 during 2007-2008. Bed occupancy increased to 91 % from 65 % over the same period. External surgical missions accounted for less than 0.5 % of patients served. Ninety-eight percent (98 %) of all philanthropic donations--totaling USD 26.6 million over 2007-2012--were locally generated. Zakat (obligatory annual religious alms in the Islamic faith) constituted 34 % of all donations, followed by unrestricted funds (24 %) and donations-in-kind (24 %), buildings (12 %), grants (5 %), and return on investments (1 %). Overall, donations received between 2007 and 2012 increased sevenfold, with Zakat increasing 12-fold. During 2013-2014, the Government of Pakistan provided land lease and annual operational grants totaling USD 9 million. Local philanthropy can sustain and grow the provision of free, high-quality surgical care in low-income settings, and encourage the development of hybrid government-philanthropic models of surgical care.
Climatic Variation and River Flows in Himalayan Basins Upstream of Large Dams
NASA Astrophysics Data System (ADS)
Eaton, D.; Collins, D. N.
2014-12-01
High specific discharges from Himalayan headwater basins feed major reservoirs generating hydropower and supplying water to irrigation schemes across the Punjab plains of north-west India and Pakistan. Flow arises from seasonal winter snow cover, summer monsoon precipitation and melting glacier ice in varying proportions and differing absolute quantities along west -east axes of the Karakoram and western Himalaya. Discharge records for stations above Tarbela (Indus), Mangla (Jhelum), Marala (Chenab) and Bhakra (Sutlej) dams have been examined for periods between 1920 and 2009, together with precipitation and air temperature data for stations with long records (within the period 1893 to 2013) at elevations between 234 and 3015 m a.s.l. Ice-cover age in the basins above the dams was between 1 and 12 %. Flows in the Sutlej, Chenab and Jhelum reached maxima in the 1950s before declining to the 1970s. Flow in the Chenab and Jhelum increased to 1950s levels in the 1990s, before falling steeply into the 2000s mimicking variations in winter and monsoon precipitation. Discharge in the Indus at Tarbela increased from the 1970s, reaching a maximum in the late 1980s/early 1990s, before declining back to 1970s levels in the 2000s, flow being influenced not only by precipitation fluctuations but also by changes in air temperature affecting glacier melt in headwater basins. Runoff at Bhakra was augmented by flow from the Beas-Sutlej link canal after 1977, but natural flow in the Sutlej above Luhri reduced considerably from the 1990s influenced by declining flows in the relatively dry but large Tibetan portion of the basin area. Large year-to-year fluctuations of reservoir inflows are nonetheless based on significant sustained underlying discharge levels at all four reservoirs.
NASA Astrophysics Data System (ADS)
Greene, Arthur M.; Robertson, Andrew W.
2017-12-01
An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by "western disturbances" propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.
Ancient skeletal evidence for leprosy in India (2000 B.C.).
Robbins, Gwen; Tripathy, V Mushrif; Misra, V N; Mohanty, R K; Shinde, V S; Gray, Kelsey M; Schug, Malcolm D
2009-05-27
Leprosy is a chronic infectious disease caused by Mycobacterium leprae that affects almost 250,000 people worldwide. The timing of first infection, geographic origin, and pattern of transmission of the disease are still under investigation. Comparative genomics research has suggested M. leprae evolved either in East Africa or South Asia during the Late Pleistocene before spreading to Europe and the rest of the World. The earliest widely accepted evidence for leprosy is in Asian texts dated to 600 B.C. We report an analysis of pathological conditions in skeletal remains from the second millennium B.C. in India. A middle aged adult male skeleton demonstrates pathological changes in the rhinomaxillary region, degenerative joint disease, infectious involvement of the tibia (periostitis), and injury to the peripheral skeleton. The presence and patterning of lesions was subject to a process of differential diagnosis for leprosy including treponemal disease, leishmaniasis, tuberculosis, osteomyelitis, and non-specific infection. Results indicate that lepromatous leprosy was present in India by 2000 B.C. This evidence represents the oldest documented skeletal evidence for the disease. Our results indicate that Vedic burial traditions in cases of leprosy were present in northwest India prior to the first millennium B.C. Our results also support translations of early Vedic scriptures as the first textual reference to leprosy. The presence of leprosy in skeletal material dated to the post-urban phase of the Indus Age suggests that if M. leprae evolved in Africa, the disease migrated to India before the Late Holocene, possibly during the third millennium B.C. at a time when there was substantial interaction among the Indus Civilization, Mesopotamia, and Egypt. This evidence should be impetus to look for additional skeletal and molecular evidence of leprosy in India and Africa to confirm the African origin of the disease.
NASA Astrophysics Data System (ADS)
Ahmad, J. A.; Forman, B. A.
2017-12-01
High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.
NASA Astrophysics Data System (ADS)
Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.
2013-04-01
Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.
Marine geology and oceanography of Arabian Sea and coastal Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haq, B.U.; Milliman, J.D.
This volume is a collection of papers presented at the first US-Pakistan workshop in marine science held in Karachi, Pakistan, in November 1982. Of the twenty-four contributions in this book, fourteen cover topics specific to the Arabian Sea-coastal Pakistan region. These include six papers on the geology, tectonics, and petroleum potential of Pakistan, four papers on sedimentary processes in the Indus River delta-fan complex, and four papers on the biological oceanography of the Arabian Sea and coastal Pakistan. The additional ten papers are overviews of shelf sedimentation processes, paleoceanography, the marine nutrient cycle, and physical and chemical oceanography.
Implementation of the fugitive emissions system program: The OxyChem experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, A.
An overview is provided for the Fugitive Emissions System (FES) that has been implemented at Occidental Chemical in conjunction with the computer-based maintenance system called PassPort{reg_sign} developed by Indus Corporation. The goal of PassPort{reg_sign} FES program has been to interface with facilities data, equipment information, work standards and work orders. Along the way, several implementation hurdles had to be overcome before a monitoring and regulatory system could be standardized for the appropriate maintenance, process and environmental groups. This presentation includes step-by-step account of several case studies that developed during the implementation of the FES system.
Constrained multi-objective optimization of storage ring lattices
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2018-03-01
The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.
Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K
2016-01-01
The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Saurabh; Department of Applied Physics & Opto-Electronics, Shri Govindram Seksaria Institute of Technology and Science, Indore 452 003; Gupta, R. K.
2016-05-23
Reflectivity beamline at Indus-1 synchrotron source is used to determine optical constants of a platinum thin film in the soft x-ray wavelength region of 40-200Å by applying Kramers-Kronig (KK) technique on R vs wavelength data. Upto 150Å wavelength region the results of KK analysis are found in good agreement with the Henke’s optical constants and also with those obtained by the angle dependent reflectivity technique. A significant mismatch is observed above 150Å wavelength region which could be due to the presence of higher harmonics in the toroidal grating spectra of the reflectivity beamline.
1989-05-01
s , ope ra to r s and managers. Some a r e i n government --.uniformed o r civilian--and some a re i n indus t ry o r "think-tanks" o r...lan t - -- - Applications. The humah performance pos tu l a t ed during nuclear acc ident manage- ment i a compared t o t h a t i n combat and...confidence in the real system. Hard work, dedication, pride and professionalism are key trademarks of the OPFOR. Simple rules govern operations. i.e
The Sedimentology and Origins of a Giant Mass Transport Deposit: The Nataraja Slide, Arabian Sea
NASA Astrophysics Data System (ADS)
Dailey, S. K.; Clift, P. D.; Kulhanek, D. K.; Calves, G.
2017-12-01
The Nataraja Slide was recently discovered by seismic mapping off the west coast of India in the Arabian Sea. Volumetrically estimated to be 19,000 km3, it is the second largest mass transport deposit known on a passive margin. Understanding how this deposit was emplaced is important to constrain how mass wasting affects the bathymetry of sedimentary basins, as well as the effects triggered by such a large event, including tsunamis. The Nataraja Slide was emplaced at 10.8 Ma as a result of collapse of the western India margin, which traveled 550 km into the basin. The deposit has been cored in two locations by the International Ocean Discovery Program (IODP) Expedition 355, where it is 330 m (Site U1456) and 190 m thick (Site U1457). The presence of various deformation structures and the occurrence of a predominantly reworked calcareous nannofossil assemblages are used to define the top of the deposit. The deposit appears to consist of two units at Site U1456 with 22 m of upper Miocene hemipelagic sediment separating them, suggesting emplacement in two large pulses. At both sites, the mass transport deposit has a coarse carbonate-dominated base, composed of clast-supported breccia overlain by massive calcarenite associated with high-energy current transport, and calcilutite. These strata are overlain by steeply inclined, slumped but otherwise coherent pyritized, siliciclastic mudstones and minor volumes of matrix-supported conglomerates, interpreted as debris flows. Emplacement appears to have eroded significant thicknesses of Indus Fan turbidites at Site U1456, as there is a hiatus that is a minimum of 2.5 m.y. at the base. At Site U1457, the slide directly overlies Paleocene reddish mudstones on the eastern flank of the Laxmi Ridge, which likely diverted the sediment to the south in the Laxmi Basin and away from the main Arabian Sea basin. Bulk sediment Nd and Sr isotope geochemistry show a provenance, similar to those of the Tapti and Narmada rivers in western India, and include entrainment of Indus Fan material particularly in the top of the deposit, and drape. Our study aims to further evaluate the depositional mechanisms and original trigger for the mass wasting event by using petrography to understand the sediment in this upper Miocene mass transport deposit.
NASA Astrophysics Data System (ADS)
Braza, M.; Haproff, P. J.
2016-12-01
The easternmost extension of the Indus-Ysangpo suture (IYS) and Xigaze forearc complex, the Tidding Formation of northeastern India, remains the least-studied sequence representing closure of the Neotethys ocean and syn-tectonic sedimentation. In this study, we present P-T determinations coupled with detrital zircon U-Pb geochronology and detailed geologic mapping to uncover the depositional and metamorphic history of Tidding suture and forearc rocks during Himalayan orogenesis. Four mica schists were sampled from successive NW-SE-striking thrust sheets within the Dibang Valley of Arunachal Pradesh (N.E. India), southwest of the easternmost L. Cretaceous Gangdese batholith. Use of the garnet-muscovite-biotite-plagioclase (GMBP) thermobarometer and Ti-in-biotite thermometer on schist sample PH-1-8-13-26 yield peak conditions of 627 ± 28°C and 10.4 ± 1.1 kbar. Similarly, use of the garnet-biotite Fe-Mg exchange thermometer and garnet-aluminosilicate-silica-plagioclase (GASP) barometer yield 644 ± 50°C and 12 ± 1 kbar for schist sample PH-11-14-15-24 within the same thrust sheet. Both samples contain recrystallized quartz along grain boundaries and garnets contain no significant compositional zoning. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) sampled from the Mayodia klippe records peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the Mayodia klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals metamorphism of IYS rocks occurred at deep crustal levels (>30 km) during northward Neotethys subduction. Suture rocks were subsequently exhumed by orogen-scale N-dipping thrusts during growth of the easternmost Himalayan orogen.
Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D
2014-06-15
While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hassim, M. F. B.; Carrapa, B.; DeCelles, P. G.; Kapp, P. A.; Gehrels, G. E.
2014-12-01
Our detrital geochemical study of modern sand collected from tributaries of the Yarlung River in southern Tibet and the Kali Gandaki River and its tributaries in Nepal shed light on the ages and exhumation histories of source rocks within the Indus-Yarlung Suture (IYS) zone and the Himalayas. Seven sand samples from rivers along the suture zone in southern Tibet between Xigatze to the east and Mt. Kailas to the west were collected for detrital zircon U-Pb geochronologic and Apatite Fission Track (AFT) thermochronologic analyses. Zircon U-Pb ages for all rivers range between 15 and 3568 Ma. Rivers draining the northern side of the suture zone mainly yield ages between 40 and 60 Ma, similar to the age of the Gangdese magmatic arc. Samples from rivers draining the southern side of the suture zone record a Tethyan Himalayan signal characterized by age clusters at 500 Ma and 1050 Ma. Our results indicate that the ages and proportion of U-Pb zircons ages of downstream samples from tributaries of the Yarlung River directly reflect source area ages and relative area of source rock exposure in the catchment basin. Significant age components at 37 - 40 Ma, 47 - 50 Ma, 55 - 58 Ma and 94 - 97 Ma reflect episodicity in Gangdese arc magmatism. Our AFT ages show two main signals at 23-18 Ma and 12 Ma, which are in agreement with accelerated exhumation of the Gangdese batholith during these time intervals. The 23 - 18 Ma signal partly overlaps with deposition of the Kailas Formation along the suture zone and may be related to exhumation due to upper plate extension in southern Tibet in response to Indian slab rollback and/or break-off events. Detrital thermochronology of four sand samples from the Kali Gandaki River and some of its tributaries in Nepal is underway and will provide constraints on the timing of erosion of the central Nepal Himalaya.
Ancient Skeletal Evidence for Leprosy in India (2000 B.C.)
Robbins, Gwen; Tripathy, V. Mushrif; Misra, V. N.; Mohanty, R. K.; Shinde, V. S.; Gray, Kelsey M.; Schug, Malcolm D.
2009-01-01
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae that affects almost 250,000 people worldwide. The timing of first infection, geographic origin, and pattern of transmission of the disease are still under investigation. Comparative genomics research has suggested M. leprae evolved either in East Africa or South Asia during the Late Pleistocene before spreading to Europe and the rest of the World. The earliest widely accepted evidence for leprosy is in Asian texts dated to 600 B.C. Methodology/Principal Findings We report an analysis of pathological conditions in skeletal remains from the second millennium B.C. in India. A middle aged adult male skeleton demonstrates pathological changes in the rhinomaxillary region, degenerative joint disease, infectious involvement of the tibia (periostitis), and injury to the peripheral skeleton. The presence and patterning of lesions was subject to a process of differential diagnosis for leprosy including treponemal disease, leishmaniasis, tuberculosis, osteomyelitis, and non-specific infection. Conclusions/Significance Results indicate that lepromatous leprosy was present in India by 2000 B.C. This evidence represents the oldest documented skeletal evidence for the disease. Our results indicate that Vedic burial traditions in cases of leprosy were present in northwest India prior to the first millennium B.C. Our results also support translations of early Vedic scriptures as the first textual reference to leprosy. The presence of leprosy in skeletal material dated to the post-urban phase of the Indus Age suggests that if M. leprae evolved in Africa, the disease migrated to India before the Late Holocene, possibly during the third millennium B.C. at a time when there was substantial interaction among the Indus Civilization, Mesopotamia, and Egypt. This evidence should be impetus to look for additional skeletal and molecular evidence of leprosy in India and Africa to confirm the African origin of the disease. PMID:19479078
A Review of the Status of the Indian Ocean Humpback Dolphin (Sousa plumbea) in Pakistan.
Kiani, Muhammad Shoaib; Van Waerebeek, Koen
2015-01-01
Limited historical and new information on Indian Ocean humpback dolphins, Sousa plumbea, in Pakistan are reviewed. Although present along most of the coast, S. plumbea concentrates in the mangrove-lined creek system of the Indus Delta (Sindh), Miani Hor (Sonmiani Bay), Kalmat Lagoon, Gwadar and the Dasht River estuary (Gwater Bay, Jiwani). Other areas of distribution comprise the Karachi coast, Kund Malir, Ormara and Pasni. In the Indus Delta, 46 small-boat surveys conducted monthly (minus July and October) in 2005-2009, documented 112 sightings (439 individuals) in major creeks, smaller channels and nearshore waters. Group sizes ranged from 1-35 animals (mean=3.92±4.60). Groups of 1-10 animals composed 91% of total (27.9% single animals). An encounter rate of 0.07-0.17 dolphins km(-1) lacked a significant trend across survey years. A discovery curve remained steep after 87 dolphins were photo-identified, suggesting the population is vastly larger. In Sonmiani Bay, Balochistan, during 9 survey days in 2011-2012, group sizes ranged from 1-68 animals (mean=11.9±13.59; n=36), totalling 428 dolphins. Incidental entanglements, primarily in gillnets, pollution (especially around Karachi), overfishing and the ship breaking industry in Gaddani, pose major threats. Incidental catches occur along the entire Pakistani coast. Of 106 stranded cetaceans, 24.5% were S. plumbea. Directed takes in Balochistan, driven by demand for bait in shark fisheries, have reportedly declined following dwindling shark stocks. Habitat degradation threats include depletion of prey and increased maritime traffic. Domestic sewage and solid waste pollution are predominant on the Balochistan coast, especially at Miani Hor, Kund Malir, Ormara, Kalmat Lagoon, Pasni, Gwadar and Jiwani. An exhaustive habitat assessment combined with appropriate fishery management is the only way to safeguard the future of S. plumbea in Pakistan. © 2015 Elsevier Ltd All rights reserved.
Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin
NASA Astrophysics Data System (ADS)
Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio
2017-05-01
Largely depending on the meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012) and, separately, from six stations of their long-term record (1961-2012). For this, a Mann-Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995-2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961-2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in future. These findings, though constrained by sparse and short observations, largely contribute in understanding the UIB melt runoff dynamics and address the hydroclimatic explanation of the Karakoram Anomaly
.
NASA Astrophysics Data System (ADS)
Rao, M. P.; Cook, E. R.; Cook, B.; Palmer, J. G.; Uriarte, M.; Devineni, N.; Lall, U.; D'Arrigo, R.; Woodhouse, C. A.; Ahmed, M.
2017-12-01
We present tree-ring reconstructions of streamflow at seven gauges in the Upper Indus River watershed over the past five centuries (1452-2008 C.E.) using Hierarchical Bayesian Regression (HBR) with partial pooling of information across gauges. Using HBR with partial pooling we can develop reconstructions for short gauge records with interspersed missing data. This overcomes a common limitation faced when using conventional tree-ring reconstruction methods such as point-by-point regression (PPR) in remote regions in developing countries. Six of these streamflow gauge reconstructions are produced for the first time while a reconstruction at one streamflow gauge has been previously produced using PPR. These new reconstructions are used to characterize long-term flow variability and drought risk in the region. For the one gauge where a prior reconstruction exists, the reconstruction of streamflow by HBR and the more traditional PPR are nearly identical and yield comparable uncertainty estimates and reconstruction skill statistics. These results highlight that tree-ring reconstructions of streamflow are not dependent on the choice of statistical method. We find that streamflow in the region peaks between May-September, and is primarily driven by a combination of winter (January-March) precipitation and summer (May-September) temperature, with summer temperature likely guiding the rate of snow and glacial melt. Our reconstructions indicate that current flow since the 1980s are higher than mean flow for the past five centuries at five out of seven gauges in the watershed. The increased flow is likely driven by enhanced rates of snow and glacial melt and regional wetting over recent decades. These results suggest that while in the near-term streamflow is expected to increase, future water risk in the region will be dependent on changes in snowfall and glacial mass balance due to projected warming.
Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study
Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta
2015-01-01
The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689
The Lakhra Anticline - An Active Structure of Pleistocene to Holocene Age in Southern Pakistan
Outerbridge, William F.; SanFilipo, John R.; Khan, Rafiq Ahmed
2007-01-01
The Lakhra anticline is a breached north-trending structure northwest of Hyderabad in Sindh Province, Pakistan. About 340 meters (m) of Paleocene to Holocene strata have been eroded from the core of the anticline. North-trending normal faults transect the anticline at a low angle, are vertical, and form a set of nested grabens. Lakhra Nala and Siph Nala were formed where antecedent streams eroded the nalas (canyons, gullies, ravines, or watercourses and the streams in them) as the anticline rose. Lakhra Nala flows onto the Indus River flood plain, which is accumulating about 6.1 m of alluvium per 1,000 years. If the anticline rose at an equivalent rate, it started to rise about 60,000 years ago.
A New Simulation Framework for Autonomy in Robotic Missions
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Neukom, Christian
2003-01-01
Autonomy is a key factor in remote robotic exploration and there is significant activity addressing the application of autonomy to remote robots. It has become increasingly important to have simulation tools available to test the autonomy algorithms. While indus1;rial robotics benefits from a variety of high quality simulation tools, researchers developing autonomous software are still dependent primarily on block-world simulations. The Mission Simulation Facility I(MSF) project addresses this shortcoming with a simulation toolkit that will enable developers of autonomous control systems to test their system s performance against a set of integrated, standardized simulations of NASA mission scenarios. MSF provides a distributed architecture that connects the autonomous system to a set of simulated components replacing the robot hardware and its environment.
Sediment provenance in the Laxmi Basin of the Arabian Sea during the last 800 kyrs
NASA Astrophysics Data System (ADS)
Khim, B. K.; Horikawa, K.; Asahara, Y.; Kim, J. E.; Ikehara, M.; Lee, J.
2017-12-01
International Ocean Discovery Program Expedition 355 conducted to drill 1109.4 m penetration at Site U1456 in the Laxmi Basin of the Arabian Sea. Four lithologic units are defined onboard at Site U1456 (Pandey et al., 2016). Unit I is 121 m long, consisting mostly of pelagic carbonates (nannofossil ooze and/or foraminifera-rich nannofossil ooze) interbedded with thin terrigenous (clay, silt, and sand) turbidite layers. The age model of Unit I was determined by the correlation of δ18O fluctuations of planktonic foraminifera (Globigerinoides ruber) to LR04 stacks, estimating 1.2 Ma. A total of 60 samples, collected in the context of magnetic susceptibility (MS) changes at a discrete interval from a composite section (Holes U1456A and U1456C) of Unit I, were analyzed to measure Nd and Sr isotopes of detrital fraction. Based on Nd and Sr isotopes, the sediment provenance in the Laxmi Basin during the last 800 kyrs was traced in response to the monsoon activity between the interglacial and glacial periods. ɛNd and 87Sr/86Sr vary in a range from -12.4 to -8.0 and from 0.712 to 0.727, respectively. The correlation between ɛNd and 87Sr/86Sr is quite linear, indicating that the sediments were provided mainly by two dominant sources. Considering the ɛNd and 87Sr/86Sr end-members of sediment sources (i.e., river sediments), the Tapi River and Narmada River are the main contributors of sediments to Site U1456 with a little influence by the modern Indus River. However, the glacial sediments from the Indus River and the Mahi River may supply an additional fraction, leading to less ɛNd and more 87Sr/86Sr at Site U1456. Judged by the sediment sources, the sediments in the Laxmi Basin are characterized by the mixture of different provenances. In addition, it should be noted that the low ɛNd and high 87Sr/86Sr values coincide largely with high MS and vice versa, irrespectively of the glacial-interglacial change. Thus, rather than the sediment provenances, ɛNd and 87Sr/86Sr values of the detrital fraction in the Laxmi Basin of the Arabian Sea have been more controlled by the sedimentary processes (pelagic, hemi-pelagic and turbidite) and depositional conditions related with the sea level changes in response to the Arabian Sea monsoon activity between the glacial and interglacial periods during the last 800 kyrs.
NASA Technical Reports Server (NTRS)
2002-01-01
Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.
History of teaching anatomy in India: from ancient to modern times.
Jacob, Tony George
2013-01-01
Safe clinical practice is based on a sound knowledge of the structure and function of the human body. Thus, knowledge of anatomy has been an essential tool in the practice of healthcare throughout the ages. The history of anatomy in India traces from the Paleolithic Age to the Indus Valley Civilization, the Vedic Times, the Islamic Dynasties, the modern Colonial Period, and finally to Independent India. The course of the study of anatomy, despite accompanying controversies and periods of latencies, has been fascinating. This review takes the reader through various periods of Indian medicine and the role of anatomy in the field of medical practice. It also provides a peek into the modern system of pedagogy in anatomical sciences in India. Copyright © 2013 American Association of Anatomists.
Sankaran, Pradeep M; Sebastian, Pothalil A
2017-11-16
The South Asian millipede genus Chondromorpha Silvestri, 1897 is diagnosed and its relationship with Parchondromorpha Jeekel, 1980 is established. The species C. atopus (Chamberlin, 1920) and C. indus (Chamberlin, 1920), as well as the subspecies C. kelaarti kelaarti (Humbert, 1865), C. kelaarti longipes (Verhoeff, 1936) and C. kelaarti valparaiensis (Carl, 1932) are recognised as junior synonyms of C. kelaarti (Humbert, 1865), thereby reducing the total number of Chondromorpha spp. in India to four: C. kaimura Turk, 1947, C. kelaarti, C. mammifera Attems, 1936 and C. severini Silvestri, 1897 (the type-species). Two species, C. kelaarti and C. mammifera, are redescribed and illustrated in detail. All four Indian Chondromorpha spp. are keyed, and the known distribution records of C. kelaarti and C. mammifera are mapped.
Fishes and habitat characteristics of the Keya Paha River, South Dakota-Nebraska
Harland, B.; Berry, C.R.
2004-01-01
Fishes were collected in four mainstem reaches and eight tributary reaches in the Keya Paha River basin during May and June 2002. Most reaches were characteristically run habitats with sand substrates and riparian pastures. Data were combined with historical records to construct a basin-wide ichthyofaunal list which comprised 38 species from seven families. Dominant species were sand shiners (Notropis ludibundus; 47%), red shiners (Cyprinella lutrensis; 37%), and brassy minnows (Hybognathus hankinsoni; 8%). Dominant game species were bluegill (Lepomis machrochirus) and channel catfish (Ictalurus punctatus). We found one species previously listed as rare in South Dakota - plains topminnow (Fundulus sciadicus), and four species not previously found in the Keya Paha River - silver chub (Macrhybopsis storeriana), river carpsucker (Carpiodes carpio), northern pike (Esox Indus), yellow perch (Perca flavescens).
Possible origin of photoconductivity in La0.7Ca0.3MnO3
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Choudhary, R. J.; Phase, D. M.
2010-01-01
The effect of photon energy on the density of states near Fermi level of pulsed laser deposited La0.7Ca0.3MnO3 thin film has been studied to investigate the possible origin of change in the conductivity of these manganites upon photon exposure. For this purpose the photoelectron spectroscopy measurements were carried out using CSR beamline (BL-2) on Indus-1 synchrotron radiation source. The valance band spectra were measured at room temperature with photon energy ranging from 40 to 60 eV. We could see huge change in the density of states near Fermi level and this change is observed to be highest at 56 eV which is due to the resonance between Mn 3p to Mn 3d level. Our results suggest that the probability of electron transfer from deep Mn 3p level to Mn 3d-eg level is higher than that of Mn 3d-t2g level. It appears that this transfer of electron from deep Mn level to Mn 3d-eg level not only modifies the density of state near Fermi level but also changes the mobility of electrons by modifying the electron lattice coupling due to presence of Mn+3 Jahn-Teller ion.
Avulsion threshold in a large Himalayan river: the case of the Kosi, India and Nepal
NASA Astrophysics Data System (ADS)
Sinha, R.; Kommula, S.
2010-12-01
Avulsion, the relatively rapid shift of a river to a new course on a lower part of a floodplain, is considered as a major fluvial hazard in large population centers such as the north Bihar plains, eastern India and the adjoining areas of Nepal. This region witnessed one of the most recent avulsions of the Kosi River on 18 August, 2008 when the river shifted by ~120 km eastward. This was perhaps one of the greatest avulsions in a large river in recent years triggered by the breach of the eastern afflux bund at Kusaha in Nepal at a location 12 km upstream of the Kosi barrage and affecting more than 3 million people in Nepal and north Bihar. The trigger for an avulsion largely depends upon the regional channel-floodplain slope relationships and the lowest elevation available in the region. Most of the available assessments of avulsion threshold have therefore been based on the examination of channel slopes- longitudinal and cross-sectional. However, planform dynamics in a sediment-charged river such as the Kosi also plays an important role in pushing the river towards threshold for avulsion. The present study has made use of SRTM DEM, temporal satellite images and maps to compute the avulsion threshold for a ~50 km long reach of the Kosi river after incorporating planform dynamics in a GIS environment. Flow accumulation paths generated from the SRTM data match closely with the zones of high avulsion threshold. Not just that the Kusaha plots in a high avulsion threshold zone, we also identify several critical points where breach (avulsion) can occur in near future. This study assumes global significance keeping in view the most recent flooding in the Indus River in Pakistan. Like the Kusaha breach in Kosi in August 2008, the Indus flood trauma started with the breach of the eastern marginal embankment in the upstream of Taunsa barrage and was apparently triggered by rise of bed level due to excessive sediment load. The mega avulsion of the Kosi on 18th August 2008 which occurred due to a breach in the eastern embankment at Kusaha, Nepal
Understanding the drivers of the future water gap in the Indus-Ganges-Brahmaputra basins
NASA Astrophysics Data System (ADS)
Immerzeel, W. W.; Wijngaard, R. R.; Biemans, H.; Lutz, A. F.
2017-12-01
The Indus, Ganges, and Brahmaputra (IGB) river systems provide water resources for the agricultural, domestic and industrial sectors sustaining the lives of about 700 million people. The region is globally a hotspot for climate change as the headwaters of these rivers are fed by melt water from snow and glaciers, both strongly influenced by temperature change. In addition, the hydrology in the region is determined by the monsoon and its future dynamics as a results of climate change remains very uncertain. Simultaneously, the population is projected to grow rapidly over the coming decades, which in combination with strong economic developments, will likely result in a rapid increase in water demand. In this study we attempt to quantify the future water gap in the IGB and attribute this water gap to climate change and socio-economic growth. For the upstream mountainous parts of the basins we use the SPHY model, which is calibrated based on historical streamflow and glacier mass balance data and forced by the latest CMIP5 future climate model data for RCP4.5 and 8.5. Output of this model feeds into the downstream LPJmL model, which allows assessment of downstream climate change impacts and projected changes in water demand as a result of socio-economic developments. The LPJmL model is run for different combinations of RCPs and Shared Socio Economic Pathways (SSPs). Our results show that for the IGB as a whole climate change will increase water availability in the coming decades, due to an overall, albeit uncertain, increase in monsoon precipitation in combination with a sustained melt water supply from the upstream parts of the basins. However, irrespective of the SSP and RCP, the water demand as a result of socio-economic growth is expected to increase extremely fast in the near future and this is likely to be the main adaptation challenge for the IGB as far as water shortages are concerned. Our results also show that regional and temporal variation in the water gap is large and that basin specific adaptation measures are required that take into account both socio-economic developments as well as climate change.
A Summary Case Report on the Health Impacts and Response to the Pakistan Floods of 2010
Shabir, Omar
2013-01-01
In July 2010, Pakistan suffered nationwide floods after unprecedented monsoon rains overwhelmed the Indus basin. The ensuing floods claimed 1985 lives, injured 2946 people and affected over 20.2 million people. Seventy-eight out of 121 districts were affected and at one stage one-fifth of the country’s land was inundated with water. Indiscriminate damage was caused to housing, educational and health facilities, communication networks, power plants and grids, irrigation channels, agricultural land and livestock. Over 37 million medical consultations were reported within one year of the floods with acute respiratory infection, skin diseases, acute diarrhoea and suspected malaria forming the most common presentations. Rescue and relief operations were organised through the National Disaster Management Authority and a UN Cluster Approach was adopted for providing humanitarian assistance. The Office for the Coordination of Humanitarian Affairs (OCHA) played a pivotal role in coordinating relief efforts between cluster groups and providing communication platforms for identifying gaps and sharing information. This paper attempts to collate information available in the public domain into a summary report based on key principles described by Kulling et al. (2010) on health crisis reporting. PMID:23591385
Use of Ethnomedicinal Plants by the People Living around Indus River
Mussarat, Sakina; AbdEl-Salam, Nasser M.; Tariq, Akash; Wazir, Sultan Mehmood; Ullah, Riaz; Adnan, Muhammad
2014-01-01
The objective of present study was to document and preserve ethnomedicinal knowledge use to treat different human ailments by traditional healers of Dera Ismail Khan region, Pakistan. Field work was conducted between February 2012 and January 2013 using semistructured questionnaires. Data was collected from 120 traditional healers through questionnaire survey. Traditional healers in the study area use 70 plant species mostly herbs (57%) for ethnomedicinal and other purposes. The highest FIC values (0.80) were obtained each for gastrointestinal and kidney problems followed by respiratory infections (0.72) and skin infections (0.73). There was a significant correlation (r 2 = 0.950; p < 0.01) between the age and traditional knowledge of respondent. Direct matrix ranking indicated Morus alba and Dalbergia sissoo as highly multipurpose and threatened species in the study area. The results showed high dependency of local inhabitants on medicinal plants in meeting their primary health care needs. Moreover, the traditional knowledge has been restricted to elder people. Protection measures should be taken in order to conserve precious multipurpose species that are facing overexploitation. Medicinal plants treating major ailments in the region may be subjected to phytochemical and pharmacological investigations for the identification of bioactive compounds. PMID:24778701
A summary case report on the health impacts and response to the pakistan floods of 2010.
Shabir, Omar
2013-04-11
In July 2010, Pakistan suffered nationwide floods after unprecedented monsoon rains overwhelmed the Indus basin. The ensuing floods claimed 1985 lives, injured 2946 people and affected over 20.2 million people. Seventy-eight out of 121 districts were affected and at one stage one-fifth of the country's land was inundated with water. Indiscriminate damage was caused to housing, educational and health facilities, communication networks, power plants and grids, irrigation channels, agricultural land and livestock. Over 37 million medical consultations were reported within one year of the floods with acute respiratory infection, skin diseases, acute diarrhoea and suspected malaria forming the most common presentations. Rescue and relief operations were organised through the National Disaster Management Authority and a UN Cluster Approach was adopted for providing humanitarian assistance. The Office for the Coordination of Humanitarian Affairs (OCHA) played a pivotal role in coordinating relief efforts between cluster groups and providing communication platforms for identifying gaps and sharing information. This paper attempts to collate information available in the public domain into a summary report based on key principles described by Kulling et al. (2010) on health crisis reporting.
NASA Technical Reports Server (NTRS)
Dey, B.
1985-01-01
In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.
2001-10-22
This ASTER sub-scene covers an area of 12 x 15 km in NW India in the Thar Desert. The sand dunes of the Thar Desert constantly shift and take on new shapes. Located in northwestern India and eastern Pakistan, the desert is bounded on the south by a salt marsh known as the Rann of Kutch, and on the west by the Indus River plain. About 800 kilometers long and about 490 kilometers wide, the desert's terrain is mainly rolling sandhills with scattered growths of shrub and rock outcroppings. Only about 12 to 25 centimeters of rain fall on the desert each year, and temperatures rise as high as 52 degrees Celsius. Much of the population is pastoral, raising sheep for their wool. The image is located at 24.4 degrees north latitude and 69.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11094
Analysis of soft x-ray/VUV transmission characteristics of Si and Al filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Aby; Modi, Mohammed H.; Singh, Amol
Ultrathin filters of Al (1500A) and Si (1200A) should exhibit more than 65% transmission above their Labsorption edges in the soft x-ray/vacuum ultra violet region(Si L-edge: 124 A and Al L-edge: 170 A). However, the measured transmission characteristics of these filters showed {approx}40% transmission. The transmission measurements of these filters were carried at the reflectivity beamline of Indus-1 synchrotron source out over a large wavelength range of 120-360A. In order to understand the measured transmission performance a detailed model fitting is performed using the Paratt formalism. It is found that the oxidation of the surface region of the filters ismore » responsible for the reduced transmission performance. Effects of higher harmonics of the toroidal grating monochromator are also considered in the data analysis.« less
Rare earth elements in river waters
NASA Technical Reports Server (NTRS)
Goldstein, Steven J.; Jacobsen, Stein B.
1988-01-01
To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).
NASA Astrophysics Data System (ADS)
Kapp, P. A.; Decelles, P. G.; Ding, L.; van Hinsbergen, D. J.
2010-12-01
The India-Asia collision, although profound, is only the most recent in a series of orogenic events that has modified the architecture of the Asian lithosphere. For instance, large parts of central Tibet (Lhasa and Qiangtang terranes) underwent >50% upper-crustal shortening, and likely substantial elevation gain, between Cretaceous and Eocene time in response to Lhasa - Qiangtang continental collision and Andean-style orogenesis along the southern margin of Asia. Findings by independent groups of Gangdese-arc-age detrital zircons in 52-50 Ma Tethyan Himalaya (TH) strata indicate that TH-Asia collision was ongoing by this time. This collision timing is consistent with multiple other, albeit less direct lines of evidence and suggests that a magmatic flare-up within the Gangdese arc (culminated at 52-51 Ma) occurred during subduction of TH lithosphere. Low-temperature thermochronologic data indicate that very low erosion rates, and likely plateau-like conditions considering the shortening history, were established in large parts of central Tibet at or by 50-45 Ma. The temporal-spatial distribution of subsequent shortening and exhumation is consistent with plateau growth northward and southward from central Tibet since the Eocene. The Cenozoic magmatic record of Tibet shows intriguing temporal-spatial patterns. Between 45 Ma and 30 Ma, volcanism swept >600 km northward from the Indus-Yarlung suture (IYS) and then back southward between 30 Ma and 25 Ma. These magmatic sweeps may have been produced by underthrusting and subsequent rollback of subducting TH lithosphere. Recent stratigraphic and structural studies suggest localized extension and elevation loss along the IYS at ~25 Ma, which is explainable in a slab rollback scenario, followed within a few million years by uplift back to near-modern elevations, perhaps in response to breakoff of TH lithosphere and northward underthrusting of Indian lithosphere. This hypothesis of TH - Indian lithosphere subduction can explain how ~2000 km of India-Asia convergence was accommodated south of the IYS since ~50 Ma (with the remaining ~1000 km accommodated by shortening of Asian lithosphere). Outstanding questions include: (1) What are the explanations for major, coeval geological changes in the Lhasa terrane, Gangdese forearc, IYS, and TH at 65-63 Ma, which have led some workers to argue for initiation of India-Asia collision at this time? (2) What was the nature of the subducted TH lithosphere and its former paleogeographic and tectonic relationships to Indian cratonic lithosphere? (3) Why has only <50% of the estimated 2000 km of post-50 Ma convergence south of the Indus-Yarlung suture been documented as shortening within the Tethyan-Himalayan thrust belts? (4) Why did Asian lithosphere in Pamir and Tibet behave so differently in response to collisional orogenesis?
The sedimentary record of India-Asia collision: an evaluation of new and existing constraints
NASA Astrophysics Data System (ADS)
Najman, Yani; Henderson, Alex; Boudagher-Fadel, Marcelle; Godin, Laurent; Parrish, Randy; Bown, Paul; Garzanti, Eduardo; Horstwood, Matt; Jenks, Dan
2010-05-01
The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between ~65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). Such discrepancy is, to some extent, the result of the different definitions and methods used to define the collision. Here, we evaluate constraints from the sedimentary record preserved in the suture zone and Tethyan Himalaya where a minimum age to collision has been constrained by determining 1) the timing of cessation of marine facies, 2) first evidence of Asian detritus deposited on the Indian plate and 3) first evidence of mixed Indian-Asian detritus in the sedimentary record. Extensive previous work has been carried out on the Indus molasse of the Indus Suture zone in Ladakh, India. Here, cessation of marine facies is dated at 50.5 Ma (Green et al. 2008), with the underlying Chogdo Formation considered to show first evidence of mixed Indian and Asian provenance, and be the oldest Formation of Asian-derived provenance to lie in sedimentary contact with the underlying Indian plate (Clift et al 2001, 2002), thus constraining collision at >50.5 Ma. However, our new mapping and provenance analyses on these rocks show that there is no unequivocal evidence of Indian-derived material in the Chogdo Formation, nor that the Chogdo Formation lies in sedimentary contact with the underlying Indian plate (Henderson et al., in review). Thus we question the timing of Indian-Asian collision based on these evidences. South of the suture zone in India and Tibet, we carried out similar investigations of the youngest Tethyan strata. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that although the Indus Molasse does not provide constraint to the timing of India-Asia collision as previously thought, data from the Tethyan strata show that collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.
Mass loss on Himalayan glacier endangers water resources
NASA Astrophysics Data System (ADS)
Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.
2008-11-01
Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.
Natural and Human Impacts on Recent Development of Asian Large Rivers and Deltas
NASA Astrophysics Data System (ADS)
Liu, P.; Lu, C.
2014-12-01
Most recent data analysis indicates sediment loads in most of Asian large rivers (like, Yellow, Yangtze, Pearl, Chao Phraya, Indus, Krishna, Godavari, etc) have decreased up to 80-90% in the past 60 years. Correspondingly, most of Asian large river deltas are facing severe sediment starving; delta shoreline comparisons indicate that some are under strong coastal erosion. For examples, the Yellow River Delta has been retreating since 1990s when its annual sediment load has kept below 300 million tons. The Yangtze River delta kept growing before Three Gorges Dams was operating, and began to be eroded from the year 2003 to 2009, and then prograded locally due to the Deep Water Navigation Project. The Mekong Delta shoreline has also been dynamically changing with the sediment flux variation, eroding from 1989 to 1996 and prograding from 1996 to 2002. More information is available at http://www.meas.ncsu.edu/sealevel
NASA Astrophysics Data System (ADS)
Ivory, Sarah J.; Lézine, Anne-Marie
2009-08-01
Pollen studies from core SO90-56KA recovered from the Arabian Sea off the Makran Coast (24° 509N, 65° 559E; 695 m depth) show that the end of the Holocene Humid Period, linked to the weakening of Indian monsoon fluxes, took place between 4700 and 4200 BP. Two periods of strong summer monsoon activity are identified between 5400-4200 BP and 2000-1000 BP during which the montane pollen taxa coming from the Himalayas reached the Makran coast due to increased fluvial activity of the Indus River. A contrasting period, dominated by the winter monsoon between 4200 and 2000 BP, is identified based on the presence of pollen taxa from the Baluchistan plateaus. The regional vegetation of the low- and midaltitudes, arid and semiarid, are remarkably stable from 4500 BP to the present.
Deadly heat waves projected in the densely populated agricultural regions of South Asia.
Im, Eun-Soon; Pal, Jeremy S; Eltahir, Elfatih A B
2017-08-01
The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.
Separation of magnetic susceptibility components from magnetization curves
NASA Astrophysics Data System (ADS)
Kosareva, L.; Nourgaliev, D.; Kuzina, D.; Spassov, S.; Fattakhov, A.
2014-12-01
Modern lake sediments are a unique source of information for climate changes, regionally and globally, because all environmental variations are recorded by these sediments with high resolution. The magnetic properties of Chernyshov Bay (Aral Sea) sediments we investigated from core number 4 (N45o57'04.2''; E59o17'14.3'') are taken at far water depth of 9.5 m. The length of the core is 4.16 m. Samples for measurements were taken to plastic sample boxes with internal dimensions 2x2x2 cm. Remanent magnetization curves were measured by coercivity spectrometer for the separate determination of the different contributions to the total bulk magnetic susceptibility. There was measured also magnetic susceptibility using MS2 susceptibility meter. Those operations were done for data comparison between 2 susceptibilities obtained from different equipment. Our goal is to decipher the magnetic susceptibility signal in lake sediments by decomposing the bulk susceptibility signal of a lake sediment sequence into ferromagnetic (χf), dia-/paramagnetic (χp) and superparamagnetic (χsp) components using data from remanent and indused magnetization curves Each of these component has a different origin: paramagnetic minerals are usually attributed to terrigenous sediment input, ferromagnetics are of biogenic origin, and superparamagnetic minerals may be of either biogenic or terrigenous origin. Comparison between susceptibility measurements of MS2-Bartington susceptometer and of the coercivity spectrometer has shown good correlation. The susceptibility values measured in two different equipment are fairly close and indicate thus the reliability the proposed method. In research also has shown water level changes in Aral Sea based on magnetic susceptibility. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14-05-31376 - а, 14-05-00785- а.
NASA Astrophysics Data System (ADS)
Velicogna, I.; Ciraci, E.; Grogan, D. S.; Lammers, R. B.
2017-12-01
Access to freshwater is important as world populations grow, especially in High Mountain Asia, where glaciers are a significant component of the freshwater resources, particularly in summer. Glaciers are sensitive to climate perturbations and affected by climate change. Our understanding of the contribution of glacier runoff to specific watersheds, and projections of glacier runoff in a warming climate, are critical to inform decisions, management and policy development. Here, we quantify changes in glacier mass balance in HMA using GRACE data and determine their contribution to river basin hydrology. We use GRACE data to estimate the HMA glacier mass mas balance and compare the results with changes in total water storage (TWS) for the major watersheds in the HMA regions. We designed ad-hoc mascon configurations to calculate the upstream glacier change in mass balance and contribution to major river basins water supply, determined appropriate corrections and uncertainties for the signal and evaluated the results via comparison with the Water Balance Model (WBM) output and other data (re-analysis data and satellite-derived precipitation and evapotranspiration). Most of the glacier loss is from the Himalaya region (Himalaya, Hengduan Shan S and E Tibet), whereas the western sectors (E and W Tien Shan; and Hindu Kush, Karakoram, W Kunlun, Pamir, Hissar Alay) experienced smaller losses but with larger interannual variability driven by changes in the westerly-driven winter precipitation. For the Indus basin, to evaluate the glacier contribution to the total water budget, we examine the contribution of the upper basin to the lower basin TWS change. Over the Upper Indus basin, we find that the seasonal decline in total water storage between May and September averages 88 Gt during 2002-2012. TRMM cumulative precipitation amounts to 119 Gt, leaving a runoff and evapotranspiration component of 207 Gt. This estimate compares well with an estimate for the WBM modeled runoff of 178 Gt and ET from remote sensing observations. We use these upper basin estimates to close the water budget in the downstream basin using GRACE TWS in conjunction with ancillary data from modeled and observed evapotranspiration, precipitation and runoff. We apply a similar methodology to other major basins. This work was conducted under a NASA contract.
Long-Term Changes in Chemical Weathering in the Himalayan Region from Indus Fan Sediments
NASA Astrophysics Data System (ADS)
Carter, S.; Griffith, E. M.; Scher, H.; Dellapenna, T. M.; Clift, P. D.
2017-12-01
The Asian Monsoon reflects large-scale interactions between the atmosphere, land, and ocean systems. Increasing our understanding of this system, how and why it has evolved through time, is critically important in order to understand how it may evolve in the future. The radiogenic strontium isotopic signature (87Sr/86Sr) of the clay fraction in deep sea sediment cores within submarine fans has been used as a record of riverine 87Sr/86Sr composition to gain information about Himalayan weathering intensity. Strontium exists in clay minerals primarily in interlayer sites or adsorbed onto mineral surfaces. Interlayer cation exchange is thought to be completed within rivers during recrystallization or neoformation of clays. A record of chemical weathering intensity in the Himalayas is presented by analyzing the 87Sr/86Sr signature of the clay fraction in sediments from International Ocean Discovery Program (IODP) Expedition 355 Sites U1456 and U1457, located on the Indus Fan, eastern Arabian Sea. This record will be coupled with additional records of bulk grain size and K/Al ratios of clay as potentially additional indicators of weathering intensity. The Sr isotopes in the interstitial waters at each site have also been measured (Carter et al., in press) to verify that the Sr in the treated clay fraction is not being reset by diagenesis in the sedimentary column. Initial results verify that the 87Sr/86Sr values of the clay are less than those in the bulk sediment, as expected, but are not similar to pore fluid Sr. 87Sr/86Sr values of the clays show trends suggesting fluctuations in chemical weathering intensity through time. However, bulk grain size and K/Al ratios results conflict with the 87Sr/86Sr values. If the additional proxy records continue to show conflicting results for "weathering intensity", together they may reveal more information regarding the sedimentary system. Ultimately, the various records will either agree, providing strong evidence for changes in chemical weathering and the evolution of the monsoon, or disagree, allowing for further investigation into the relationships between chemical weathering, evolution of the flood plain, and sediment deposition in the fan. These new records will aid in the correlation of Himalayan exhumation and monsoon intensity and help to constrain this dynamic system.
Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)
NASA Astrophysics Data System (ADS)
Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.
2013-12-01
The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.
NASA Astrophysics Data System (ADS)
Bansal, Himani; Tiwari, M. K.; Mittal, Raj
2018-01-01
M sub-shell X-ray fluorescence cross-sections of elements Pt, Au, Hg, Pb, Th and U have been measured with linearly polarized photon beams from Indus-II synchrotron source at Raja Ramanna Centre for Advanced Technology (RRCAT), India at tuned 5, 7 and 9 keV energies less than the L3 edge energy of elements. Measurements at present energies and elements are not available in literature. Therefore, measured cross-sections for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays were compared with calculated theoretical values based upon Non Relativistic Hartree-Slater (NRHS) and relativistic Dirac-Fork (DF) and Dirac-Hartree-Slater (DHS) models. The measured cross-sections along with our earlier quoted measurements at 8 and 10 keV by Kaur et al. [Nucl. Instrum. Meth. B, 2014; 320: 37] are found in good agreement with DF and DHS values around 20% deviations and are highly deviated from NRHS values. Most of the spots of observed high deviations in measured and theoretical cross-sections are found to coincide with the presence of crisscrosses/sharp variations in contributing physical parameters photo-ionization cross-sections σMi's and Coster-Kronig yields fij's with Zs.
Modified coaxial wire method for measurement of transfer impedance of beam position monitors
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.
2018-05-01
The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.
NASA Astrophysics Data System (ADS)
Naseer, Muhammad Tayyab; Asim, Shazia
2017-10-01
Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.
X-ray absorption spectral studies of copper (II) mixed ligand complexes
NASA Astrophysics Data System (ADS)
Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2014-09-01
X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.
Statistical downscaling and future scenario generation of temperatures for Pakistan Region
NASA Astrophysics Data System (ADS)
Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas
2015-04-01
Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.
Rydberg states of chloroform studied by VUV photoabsorption spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.
2013-11-01
The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.
NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER sub-scene covers an area of 12 x 15 km in NW India in the Thar Desert. The sand dunes of the Thar Desert constantly shift and take on new shapes. Located in northwestern India and eastern Pakistan, the desert is bounded on the south by a salt marsh known as the Rann of Kutch, and on the west by the Indus River plain. About 800 kilometers long and about 490 kilometers wide, the desert's terrain is mainly rolling sandhills with scattered growths of shrub and rock outcroppings. Only about 12 to 25 centimeters of rain fall on the desert each year, and temperatures rise as high as 52 degrees Celsius. Much of the population is pastoral, raising sheep for their wool. The image is located at 24.4 degrees north latitude and 69.3 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.Deadly heat waves projected in the densely populated agricultural regions of South Asia
Im, Eun-Soon; Pal, Jeremy S.; Eltahir, Elfatih A. B.
2017-01-01
The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability. PMID:28782036
Territorial expansion and primary state formation
Spencer, Charles S.
2010-01-01
A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation. PMID:20385804
Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique
NASA Astrophysics Data System (ADS)
Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida
2018-04-01
The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Astrophysics Data System (ADS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
NASA Astrophysics Data System (ADS)
Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.
2014-08-01
It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.
Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S
2014-01-01
It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779
NASA Astrophysics Data System (ADS)
You, Chao; Yao, Tandong; Xu, Chao
2018-03-01
Changes in fire activity across regions around the Tibetan Plateau are poorly understood, especially under the recent warming and drying trends. In this work, we report records of the specific fire tracer levoglucosan in a central Tibetan ice core, indicating a rapid increase in wildfires across the Himalayas and surroundings at the beginning of the 21st century. The climate system, especially precipitation changes, modulates the annual variability of wildfires in regions around the Tibetan Plateau. Decreasing premonsoon precipitation has prolonged the dry seasons across Himalayan regions affected by the Indian summer monsoon; meanwhile, increasing precipitation over the arid and semiarid Indus River Plain promotes plant growth and thereby increases biofuel availability. These trends have therefore induced increased frequencies of strong wildfires in the Himalayas and surroundings. Increasing strong wildfire events can potentially enhance black carbon deposits on Himalayan glaciers, which would impact glacial melting during the premonsoon wildfire seasons in the near future.
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Schwartz, Susan Y.
We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.
Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonsdale, C.J.; Hacking, P.B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-01-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
Territorial expansion and primary state formation.
Spencer, Charles S
2010-04-20
A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation.
A palaeomagnetic reconnaissance of northeastern Baluchistan, Pakistan
NASA Astrophysics Data System (ADS)
Klootwijk, Chris T.; Nazirullah, Russel; de Jong, Kees A.; Ahmed, Habib
1981-01-01
A total of 560 samples from three areas in northeastern Baluchistan (the southern Sulaiman Range, the central Loralai Range, and the northern Kirthar Range) were analyzed using thermal demagnetization techniques. Thirteen formations of late Palaeozoic to early Tertiary age were studied palaeomagnetically. Inclinations of the obtained results show a general affinity with the Indian apparent polar wander path. Deviating declinations from the Loralai Range indicate a clockwise rotation over 50° with respect to the Indian shield. Secondary magnetization components probably of late Palaeocene to early Eocene age were consistently present in the samples from the Kirthar Range and the Sulaiman Range but were not observed in samples from the Loralai Range. Acquisition of these components is attributed to crustal upwarping during the Palaeocene, which is tentatively related to initial collision of continental Indo-Pakistan with an island arc off south central Asia. The Baluchistan data support recent palaeomagnetic results from the Indus-Tsangpo suture zone in Ladakh (NW Himalaya), which indicate that such an initial collision took place at very low northern palaeolatitudes.
Radiation of extant cetaceans driven by restructuring of the oceans.
Steeman, Mette E; Hebsgaard, Martin B; Fordyce, R Ewan; Ho, Simon Y W; Rabosky, Daniel L; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V; Willerslev, Eske
2009-12-01
The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36-34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18-16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans.
NASA Astrophysics Data System (ADS)
Najman, Y.; Jenks, D.; Godin, L.; BouDagher-Fadel, M. K.; Bown, P. R.; Horstwood, M. S.; Garzanti, E.; Bracciali, L.; Millar, I.
2014-12-01
The timing of India-Asia collision is critical to the understanding of crustal deformation processes. In the NW Himalaya, a number of workers have proposed a ~55-50 Ma age for collision along the Indus suture zone which separates India from the Kohistan-Ladakh Intraoceanic Island arc (KLA) to the north. This is based on a number of factors including the age of youngest marine sediments in the suture (e.g. Green et al. 2008), age of eclogites indicative of onset of Indian continental subduction (e.g. de Sigoyer et al. 2000), and first evidence of detritus from north of the suture zone deposited on the Indian plate (e.g. Clift et al. 2002). Such evidence can be interpreted as documenting the age of India-Asia collision if one takes the KLA to have collided with the Asian plate prior to its collision with India (e.g. Petterson 2010 and refs therein). However, an increasing number of workers propose that the KLA collided with Asia subsequent to its earlier collision with India, dated variously at 85 Ma (Chatterjee et al. 2013), 61 Ma (Khan et al. 2009) and 50 Ma (Bouilhol et al. 2013). If correct, then the previous constraints to dating the collision as outlined above have in fact been dating the timing of India-arc collision, rather than the final ocean closure and terminal collision of India+arc with Asia as previously believed. This, plus the questioning of earlier provenance work of Clift et al. (2002) regarding the validity of their data for constraining the time when detritus from north of the suture first arrived on the Indian plate (Henderson et al. 2011) suggests that the time is right for a reappraisal of this topic. But which method to use? A provenance study now brings with it a requirement to distinguish between detritus from the KLA and Southern margin of Asia. Recently, Bouilhol et al (2013) undertook a detailed study of the KLA, using temporal and spatial variation of zircon U-Pb and Hf as well as Sr-Nd bulk analyses, to document the arc's collision with India at 50 Ma and its subsequent collision with Asia at 40 Ma. Such variation should be reflected in the detrital record of material eroded from the arc. We use zircon U-Pb and Hf analyses from Palaeogene sediments deposited in and adjacent to the Indus suture in Ladakh, to further explore the interpretations presented in that research.
NASA Astrophysics Data System (ADS)
El Morris, Brandon; Suflita, Joseph M.; Richnow, Hans-Hermann
2010-05-01
Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring in situ [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. Desulfoglaeba alkanexedens and Pseudomonas putida GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors (bulk) for anaerobic and aerobic biodegradation of hexane were -5.52 ± 0.2‰ and -4.34 ± 0.3‰, respectively. Hydrogen enrichment during hexane degradation was -43.14 ± 6.32‰ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation (may be used to help elucidate in situ microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts. References 1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 2009, 40, (3), 301-311. 2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 2008, 42, 4356-4363.
Myint, Chomar Kaung; Asato, Yutaka; Yamamoto, Yu-ichi; Kato, Hirotomo; Bhutto, Abdul M; Soomro, Farooq R; Memon, Muhamad Z; Matsumoto, Jun; Marco, Jorge D; Oshiro, Minoru; Katakura, Ken; Hashiguchi, Yoshihisa; Uezato, Hiroshi
2008-02-01
The exact species and/or strains of Leishmania parasites involved strongly influence the clinical and epidemiological features of leishmaniasis, and current knowledge of those influences and relationships is inadequate. We report that cytochrome b (cyt b) gene sequencing identified causal Leishmania parasites of 69 cutaneous leishmaniasis cases in Pakistan over a 3-year period. Of 21 cases in highland areas (Quetta city, Balochistan province), 16 (76.2%) were identified as Leishmania (L.) tropica and five (23.8%) as Leishmania (L.) major. Of 48 cases from lowland areas, cities/villages in Indus valley in Sindh and Balochistan provinces, 47 (97.9%) were identified as L. (L.) major and one (2.1%) as L. (L.) tropica. Statistical analysis (Fisher's exact test) revealed a significant difference (P < 0.0001) in the distribution of the two species by altitude; L. (L.) major is predominant in lowland and L. (L.) tropica at highland areas. The present result enriched our earlier finding, based on the first year's cultured parasite data, that only L. (L.) tropica was found in highland areas and only L. (L.) major in lowland areas. Among Leishmania samples analyzed, three types of cyt b polymorphism of L. (L.) major were found, including 45 (86.5%) cases of type I, six (11.5%) of type II and one (2%) of type III. We report for the first time on the presence of polymorphisms in L. (L.) major (types I, II and III) based on species identification using cyt b gene sequencing from clinical samples. Moreover, we found no correlation between clinical presentation (wet-, dry- and/or mixed-types of cutaneous lesions) and causal Leishmania parasites.
NASA Astrophysics Data System (ADS)
Cusworth, D.; Mickley, L. J.; Payer Sulprizio, M.; Marlier, M. E.; DeFries, R. S.; Liu, T.; Guttikunda, S. K.
2017-12-01
In recent decades, farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers burn to ready their fields for subsequent planting. A key question is to what extent the intense smoke emitted by these fires contributes to the already severe pollution in Delhi and across the heavily populated Indus-Ganges Plain, downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. We first derive the signal of regional PM2.5 enhancements from the Delhi network of surface air monitors during each winter burning season (Oct. 17 - Nov. 30) for 2012-2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to generate particle back-trajectories from Delhi, which allows us to map the sensitivity of Delhi pollution to agricultural fires in each grid cell upwind. By combining these sensitivity maps with emissions from a suite of fire inventories, we can reproduce 15-36% of the weekly variability in observed PM2.5. Our method attributes 7-84% of maximum observed PM2.5 enhancement in Delhi to fires upwind, depending on the year and emission inventory. The large range of these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may mask the hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1-3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the magnitude of the influence of agricultural fire emissions on Delhi air pollution, our work helps clarify the pollution exposure and potential health risk of this harvesting practice.
The near-eastern roots of the Neolithic in South Asia.
Gangal, Kavita; Sarson, Graeme R; Shukurov, Anvar
2014-01-01
The Fertile Crescent in the Near East is one of the independent origins of the Neolithic, the source from which farming and pottery-making spread across Europe from 9,000 to 6,000 years ago at an average rate of about 1 km/yr. There is also strong evidence for causal connections between the Near-Eastern Neolithic and that further east, up to the Indus Valley. The Neolithic in South Asia has been far less explored than its European counterpart, especially in terms of absolute (14)C) dating; hence, there were no previous attempts to assess quantitatively its spread in Asia. We combine the available (14)C data with the archaeological evidence for early Neolithic sites in South Asia to analyze the spatio-temporal continuity of the Neolithic dispersal from the Near East through the Middle East and to the Indian subcontinent. We reveal an approximately linear dependence between the age and the geodesic distance from the Near East, suggesting a systematic (but not necessarily uniform) spread at an average speed of about 0.65 km/yr.
Ancient scientific basis of the "great serpent" from historical evidence.
Stothers, Richard B
2004-06-01
Zoological data and a growing mythology contributed to ancient Western knowledge about large serpents. Yet little modern attention has been paid to the sources, transmission, and receipt in the early Middle Ages of the ancients' information concerning "dragons" and "sea serpents." Real animals--primarily pythons and whales--lie behind the ancient stories. Other animals, conflations of different animals, simple misunderstandings, and willful exaggerations are found to account for the fanciful embellishments, but primitive myths played no significant role in this process during classical times. The expedition of Alexander the Great into India (327-325 B.C.) and the Bagradas River incident in North Africa (256 B.C.) had enormous repercussions on the development of serpent lore. Credible evidence is found for the presence of ancient populations of pythons living along the North African coast west of Egypt and along the coast of the Arabian Sea between the Indus River and the Strait of Hormuz--places where they no longer exist today. The maximum sizes of ancient pythons may have been greater than those of today's specimens.
Ancient scientific basis of the "great serpent" from historical evidence
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
2004-01-01
Zoological data and a growing mythology contributed to ancient Western knowledge about large serpents. Yet little modern attention has been paid to the sources, transmission, and receipt in the early Middle Ages of the ancients' information concerning "dragons" and "sea serpents." Real animals--primarily pythons and whales--lie behind the ancient stories. Other animals, conflations of different animals, simple misunderstandings, and willful exaggerations are found to account for the fanciful embellishments, but primitive myths played no significant role in this process during classical times. The expedition of Alexander the Great into India (327-325 B.C.) and the Bagradas River incident in North Africa (256 B.C.) had enormous repercussions on the development of serpent lore. Credible evidence is found for the presence of ancient populations of pythons living along the North African coast west of Egypt and along the coast of the Arabian Sea between the Indus River and the Strait of Hormuz--places where they no longer exist today. The maximum sizes of ancient pythons may have been greater than those of today's specimens.
Asia’s glaciers are a regionally important buffer against drought
NASA Astrophysics Data System (ADS)
Pritchard, Hamish D.
2017-05-01
The high mountains of Asia—encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains—have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.
Asia's glaciers are a regionally important buffer against drought.
Pritchard, Hamish D
2017-05-10
The high mountains of Asia-encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains-have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.
Carrapa, Barbara; Orme, D.A.; DeCelles, Peter G.; Kapp, Paul; Cosca, Michael A.; Waldrip, R.
2014-01-01
The India-Asia collision zone in southern Tibet preserves a record of geodynamic and erosional processes following intercontinental collision. Apatite fission-track and zircon and apatite (U-Th)/He data from the Oligocene–Miocene Kailas Formation, within the India-Asia collision zone, show a synchronous cooling signal at 17 ± 1 Ma, which is younger than the ca. 26–21 Ma depositional age of the Kailas Formation, constrained by U-Pb and 40Ar/39Ar geochronology, and requires heating (burial) after ca. 21 Ma and subsequent rapid exhumation. Data from the Gangdese batholith underlying the Kailas Formation also indicate Miocene exhumation. The thermal history of the Kailas Formation is consistent with rapid subsidence during a short-lived phase of early Miocene extension followed by uplift and exhumation driven by rollback and northward underthrusting of the Indian plate, respectively. Significant removal of material from the India-Asia collision zone was likely facilitated by efficient incision of the paleo–Indus River and paleo–Yarlung River in response to drainage reorganization and/or intensification of the Asian monsoon.
Kennedy, Uttara; Sharma, Arvind; Phillips, Clive J C
2018-04-26
Reverence for the cow has been a centerpiece of Hindu culture, the roots of which can be traced back to the Indus Valley Civilization around 3000 BCE. Historical and anthropological literature demonstrates how over the millennia the animal’s status as a religious symbol steadily increased and the concept of its sanctity grew in complexity, becoming deeply entrenched and assuming a core identity of the religion. The cow has also been used as a symbol of political opposition to external influences and invading powers. Nowhere else in the world has an animal maintained such divine significance into modern day. This literature review explores the interplay of complex cultural, religious, social and political factors that led to the phenomenon of the sacred cow, a ban on its slaughter and the advent of the modern gaushala. The review also discusses the moral implications of preservation of animal life past their commercial use, the impact on their welfare and need for objectively assessing whether there is a place for such strategies in other animal industries worldwide.
Improving gold catalysis of nitroarene reduction with surface Pd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.
2016-04-01
Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less
NASA Astrophysics Data System (ADS)
ul-Haq, Zia; Rana, Asim Daud; Tariq, Salman; Mahmood, Khalid; Ali, Muhammad; Bashir, Iqra
2018-03-01
We have applied regression analyses for the modeling of tropospheric NO2 (tropo-NO2) as the function of anthropogenic nitrogen oxides (NOx) emissions, aerosol optical depth (AOD), and some important meteorological parameters such as temperature (Temp), precipitation (Preci), relative humidity (RH), wind speed (WS), cloud fraction (CLF) and outgoing long-wave radiation (OLR) over different climatic zones and land use/land cover types in South Asia during October 2004-December 2015. Simple linear regression shows that, over South Asia, tropo-NO2 variability is significantly linked to AOD, WS, NOx, Preci and CLF. Also zone-5, consisting of tropical monsoon areas of eastern India and Myanmar, is the only study zone over which all the selected parameters show their influence on tropo-NO2 at statistical significance levels. In stepwise multiple linear modeling, tropo-NO2 column over landmass of South Asia, is significantly predicted by the combination of RH (standardized regression coefficient, β = - 49), AOD (β = 0.42) and NOx (β = 0.25). The leading predictors of tropo-NO2 columns over zones 1-5 are OLR, AOD, Temp, OLR, and RH respectively. Overall, as revealed by the higher correlation coefficients (r), the multiple regressions provide reasonable models for tropo-NO2 over South Asia (r = 0.82), zone-4 (r = 0.90) and zone-5 (r = 0.93). The lowest r (of 0.66) has been found for hot semi-arid region in northwestern Indus-Ganges Basin (zone-2). The highest value of β for urban area AOD (of 0.42) is observed for megacity Lahore, located in warm semi-arid zone-2 with large scale crop-residue burning, indicating strong influence of aerosols on the modeled tropo-NO2 column. A statistical significant correlation (r = 0.22) at the 0.05 level is found between tropo-NO2 and AOD over Lahore. Also NOx emissions appear as the highest contributor (β = 0.59) for modeled tropo-NO2 column over megacity Dhaka.
Discovery of Nearest Known Brown Dwarf
NASA Astrophysics Data System (ADS)
2003-01-01
Bright Southern Star Epsilon Indi Has Cool, Substellar Companion [1] Summary A team of European astronomers [2] has discovered a Brown Dwarf object (a 'failed' star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi (now "Epsilon Indi A"), previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys (SSS) and confirmed using data from the Two Micron All Sky Survey (2MASS). Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties. Epsilon Indi B has a mass just 45 times that of Jupiter, the largest planet in the Solar System, and a surface temperature of only 1000 °C. It belongs to the so-called 'T dwarf' category of objects which straddle the domain between stars and giant planets. Epsilon Indi B is the nearest and brightest T dwarf known. Future studies of the new object promise to provide astronomers with important new clues as to the formation and evolution of these exotic celestial bodies, at the same time yielding interesting insights into the border zone between planets and stars. TINY MOVING NEEDLES IN GIANT HAYSTACKS ESO PR Photo 03a/03 ESO PR Photo 03a/03 [Preview - JPEG: 400 x 605 pix - 92k [Normal - JPEG: 1200 x 1815 pix - 1.0M] Caption: PR Photo 03a/03 shows Epsilon Indi A (the bright star at far right) and its newly discovered brown dwarf companion Epsilon Indi B (circled). The upper image comes from one of the SuperCOSMOS Sky Surveys (SSS) optical photographic plates (I-band, centred at wavelength 0.7 µm) on which this very high proper motion object was discovered. The lower image is the 'Quicklook atlas' infrared image (Ks-band, 2.1 µm) from the Two Micron All Sky Survey (2MASS). Epsilon Indi B is much brighter in the near-infrared than at optical wavelengths, indicating that it is a very cool object. Both images cover roughly 7 x 5 arcmin. Imagine you are a professional ornithologist, recently returned home from an expedition to the jungles of South America, where you spent long weeks using your high-powered telephoto lenses searching for rare species of birds. Relaxing, you take a couple of wide-angle snapshots of the blooming flowers in your back garden, undistracted by the common blackbird flying across your viewfinder. Only later, when carefully comparing those snaps, you notice something tiny and unusually coloured, flittering close behind the blackbird: you've discovered an exotic, rare bird, right there at home. In much the same way, a team of astronomers [2] has just found one of the closest neighbours to the Sun, an exotic 'failed star' known as a 'brown dwarf', moving rapidly across the sky in the southern constellation Indus (The Indian). Interestingly, at a time when telescopes are growing larger and are equipped with ever more sophisticated electronic detectors, there is still much to be learned by combining old photographic plates with this modern technology. Photographic plates taken by wide-field ("Schmidt") telescopes over the past decades have been given a new lease on life through being digitised by automated measuring machines, allowing computers to trawl effectively through huge and invaluable data archives that are by far not yet fully exploited [3]. For the Southern Sky, the Institute for Astronomy in Edinburgh (Scotland, UK) has recently released scans made by the SuperCOSMOS machine of plates spanning several decades in three optical passbands. These data are perfectly suited to the search for objects with large proper motions and extreme colours, such as brown dwarfs in the Solar vicinity. Everything is moving - a question of perspective In astronomy, the `proper motion' of a star signifies its apparent motion on the celestial sphere; it is usually expressed in arcseconds per year [4]. The corresponding, real velocity of a star (in kilometres per second) can only be estimated if the distance is known. A star with a large proper motion may indicate a real large velocity or simply that the star is close to us. By analogy, an airplane just after takeoff has a much lower true speed than when it's cruising at high altitude, but to an observer watching near an airport, the departing airplane seems to be moving much more quickly across the sky. Proxima Centauri, our nearest stellar neighbour, is just 4.2 light-years away (cf. ESO PR 22/02) and has a proper motion of 3.8 arcsec/year (corresponding to 23 km/sec relative to the Sun, in the direction perpendicular to the line-of-sight). The highest known proper motion star is Barnard's Star at 6 light-years distance and moving 10 arcsec/year (87 km/sec relative to the Sun). All known stars within 30 light-years are high-proper-motion objects and move at least 0.2 arcsec/year. Trawling for fast moving objects For some time, astronomers at the Astrophysical Institute in Potsdam have been making a systematic computerised search for high-proper-motion objects which appear on red photographic sky plates, but not on the equivalent blue plates. Their goal is to identify hitherto unknown cool objects in the Solar neighbourhood. They had previously found a handful of new objects within 30 light-years in this way, but nothing as red or moving remotely as fast as the one they have now snared in the constellation of Indus in the southern sky. This object was only seen on the very longest-wavelength plates in the SuperCOSMOS Sky Survey database. It was moving so quickly that on plates taken just two years apart in the 1990s, it had moved almost 10 arcseconds on the sky, giving a proper motion of 4.7 arcsec/year. It was also very faint at optical wavelengths, the reason why it had never been spotted before. However, when confirmed in data from the digital Two Micron All Sky Survey (2MASS), it was seen to be much brighter in the infrared, with the typical colour signature of a cool brown dwarf. At this point, the object was thought to be an isolated traveller. However, a search through available online catalogues quickly revealed that just 7 arcminutes away was a well-known star, Epsilon Indi. The two share exactly the same very large proper motion, and thus it was immediately clear the two must be related, forming a wide binary system separated by more than 1500 times the distance between the Sun and the Earth. Epsilon Indi is one of the 20 nearest stars to the Sun at just 11.8 light years [5]. It is a dwarf star (of spectral type K5) and with a surface temperature of about 4000 °C, somewhat cooler than the Sun. As such, it often appears in science fiction as the home of a habitable planetary system [6]. That all remains firmly in the realm of speculation, but nevertheless, we now know that it most certainly has a very interesting companion. This is a remarkable discovery: Epsilon Indi B is the nearest star-like source to the Sun found in 15 years, the highest proper motion source found in over 70 years, and with a total luminosity just 0.002% that of the Sun, one of the intrinsically faintest sources ever seen outside the Solar System! After Proxima and Alpha Centauri, the Epsilon Indi system is also just the second known wide binary system within 15 light years. However, unlike Proxima Centauri, Epsilon Indi B is no ordinary star. BROWN DWARFS: COOLING, COOLING, COOLING... ESO PR Photo 03b/03 ESO PR Photo 03b/03 [Preview - JPEG: 480 x 400 pix - 41k [Normal - JPEG: 960 x 800 pix - 120k] [Full-Res - JPEG: 2200 x 1834 pix - 304k] Caption: PR Photo 03b/03 shows the near-infrared (0.9-2.5 µm) spectrum of Epsilon Indi B, obtained on November 16-17, 2002, with the SOFI multi-mode instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile) The total integration time is 360 sec. Regions of strong absorption in the Earth's atmosphere have been removed for clarity. The locations of prominent molecular absorption bands from water (H2O), methane (CH4) and carbon monoxide (CO) in the atmosphere of Epsilon Indi B are indicated. Also labelled are some spectral lines from potassium (KI, at 1.25 and 1.52 µm) and sodium (NaI, at 2.33 µm) atoms. From these data, the spectral type of Epsilon Indi B is determined as T2.5V, corresponding to an effective temperature of 'just' 1000 ± 60 °C. Within days of its discovery in the database, the astronomers managed to secure an infrared spectrum of Epsilon Indi B using the SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile). The spectrum showed the broad absorption features due to methane and water steam in its upper atmosphere, indicating a temperature of 'only' 1000 °C. Ordinary stars are never this cool - Epsilon Indi B was confirmed as a brown dwarf. Brown dwarfs are thought to form in much the same way as stars, by the gravitational collapse of clumps of cold gas and dust in dense molecular clouds. However, for reasons not yet entirely clear, some clumps end up with masses less than about 7.5% of that of our Sun, or 75 times the mass of planet Jupiter. Below that boundary, there is not enough pressure in the core to initiate nuclear hydrogen fusion, the long-lasting and stable source of power for ordinary stars like the Sun. Except for a brief early phase where some deuterium is burned, these low-mass objects simply continue to cool and fade slowly away while releasing the heat left-over from their birth. Theoretical discussions of such objects began some 40 years ago. They were first named 'black dwarfs' and later 'brown dwarfs', in recognition of their predicted very cool temperatures. However, they were also predicted to be very faint and very red, and it was only in 1995 that such objects began to be detected. The first were seen as faint companions to nearby stars, and then later, some were found floating freely in the Solar neighbourhood. Most brown dwarfs belong to the recently classified spectral types L and T, below the long-known cool dwarfs of type M. These are very red to human eyes, but L and T dwarfs are cooler still, so much so that they are almost invisible at optical wavelengths, with most of their emission coming out in the infrared. [7]. How massive is Epsilon Indi B? The age of most brown dwarfs detected to date is unknown and thus it is hard to estimate their masses. However, it may be assumed that the age of Epsilon Indi B is the same as that of Epsilon Indi A, whose age is estimated to be 1.3 billion years based on its rotational speed. Combining this information with the measured temperature, brightness, and distance, it is then possible to determine the mass of Epsilon Indi B using theoretical models of brown dwarfs. Two independent sets of models yield the same result: Epsilon Indi B must have a mass somewhere between 4-6% of that of the Sun, or 40-60 Jupiter masses. The most likely value is around 45 Jupiter masses, i.e. well below the hydrogen fusion limit, and definitively confirming this new discovery as a bona-fide brown dwarf. THE IMPORTANCE OF EPSILON INDI B ESO PR Photo 03c/03 ESO PR Photo 03c/03 [Preview - JPEG: 469 x 400 pix - 77k [Normal - JPEG: 937 x 800 pix - 328k] [Full-Res - JPEG: 2718 x 2321 pix - 3.1M] [Java Applet] Caption: PR Photo 03c/03 displays a 3D map of all known stellar systems in the solar neighbourhood within a radius of 12.5 light-years. The Sun is at the centre and the Epsilon Indi binary system with the newly found brown dwarf Epsilon Indi B lies near the bottom. The colour is indicative of the temperature and the spectral class - white stars are (main-sequence) A and F dwarfs; yellow stars like the Sun are G dwarfs; orange stars are K dwarfs; and red stars are M dwarfs, by far the most common type of star in the solar neighbourhood. The blue axes are oriented along the galactic coordinate system, and the radii of the rings are 5, 10, and 15 light-years, respectively. The Java Applet conveniently provides detailed information about the stars in the figure - just move the cursor over the field. The figure is adapted from a diagram by Richard Powell. PR Photo 03c/03 shows the current census of the stars in the solar neighbourhood. All these stars have been known for many years, including GJ1061, which, however, only had its distance firmly established in 1997. The discovery of Epsilon Indi B, however, is an extreme case, never before catalogued, and the first brown dwarf to be found within the 12.5 light year horizon. If current predictions are correct, there should be twice as many brown dwarfs as main sequence stars. Consequently, Epsilon Indi B may be the first of perhaps 100 brown dwarfs within this distance, still waiting to be discovered! Epsilon Indi B is an important catch well beyond the cataloguing the Solar neighbourhood. As the nearest and brightest known brown dwarf and with a very accurately measured distance, it can be subjected to a wide variety of detailed observational studies. It may thus serve as a template for more distant members of its class. With the help of Epsilon Indi B, astronomers should now be able to see further into the mysteries surrounding the formation and evolution of the exotic objects known as brown dwarfs, halfway between stars and giant planets, the physics of their inner cores, and the weather and chemistry of their atmospheres. AN HISTORICAL NOTE - THE SOUTHERN CONSTELLATION INDUS ESO PR Photo 03d/03 ESO PR Photo 03d/03 [Preview - JPEG: 478 x 400 pix - 91k [Normal - JPEG: 956 x 800 pix - 952k] [Full-Res - JPEG: 2260 x 1892 pix - 3.2M] Caption: PR Photo 03d/03 shows the southern constellation Indus (The Indian) and its surroundings, as drawn in the famous Uranographia published 1801 of German astronomer Johann Elert Bode. This reproduction was made from original printing plates held by the library of the Astrophysical Institute Potsdam (Germany). The binary stellar system Epsilon Indi is associated with one of the arrows in the Indian's hand. However, because of its proximity, only 12 light-years away, it is moving so fast across the sky that it is now located someway below the arrows. In only a few thousand years, it will have moved out of the Indus constellation and into the neighbouring constellation Tucana (The Toucan). The constellation Indus lies deep in the southern sky, nestled between three birds, Grus (The Crane), Tucana (The Toucan) and Pavo (The Peacock), cf. PR Photo 03d/03. First catalogued in 1595-1597 by the Dutch navigators Pieter Dirkszoon Keyser and Frederick de Houtman, this constellation was added to the southern sky by Johann Bayer in his book 'Uranometria' (1603) to honour the Native Americans that European explorers had encountered on their travels. In particular, it has been suggested that it is specifically the native peoples of Tierra del Fuego and Patagonia that are represented in Indus, just over two thousand kilometres south of La Silla where the first spectroscopic observations of Epsilon Indi B were made some 400 years later. In the later drawing by Bode shown here, Epsilon Indi, the fifth brightest star in Indus, is associated with one of the arrows in the Indian's hand. More information The information in this press release is based on a paper ("Epsilon Indi B: a new benchmark T dwarf" by Ralf-Dieter Scholz and co-authors), soon to be published in the European journal Astronomy & Astrophysics (Letters). It is available on the web in preprint form at http://babbage.sissa.it/abs/astro-ph/0212487.
Radiation of Extant Cetaceans Driven by Restructuring of the Oceans
Steeman, Mette E.; Hebsgaard, Martin B.; Fordyce, R. Ewan; Ho, Simon Y. W.; Rabosky, Daniel L.; Nielsen, Rasmus; Rahbek, Carsten; Glenner, Henrik; Sørensen, Martin V.; Willerslev, Eske
2009-01-01
Abstract The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans. PMID:20525610
Toward Automated Generation of Reservoir Water Elevation Changes From Satellite Radar Altimetry.
NASA Astrophysics Data System (ADS)
Okeowo, M. A.; Lee, H.; Hossain, F.
2015-12-01
Until now, processing satellite radar altimetry data over inland water bodies on a large scale has been a cumbersome task primarily due to contaminated measurements from their surrounding topography. It becomes more challenging if the size of the water body is small and thus the number of available high-rate measurements from the water surface is limited. A manual removal of outliers is time consuming which limits a global generation of reservoir elevation profiles. This has limited a global study of lakes and reservoir elevation profiles for monitoring storage changes and hydrologic modeling. We have proposed a new method to automatically generate a time-series information from raw satellite radar altimetry without user intervention. With this method, scientist with little knowledge of altimetry can now independently process radar altimetry for diverse purposes. The method is based on K-means clustering, backscatter coefficient and statistical analysis of the dataset for outlier detection. The result of this method will be validated using in-situ gauges from US, Indus and Bangladesh reservoirs. In addition, a sensitivity analysis will be done to ascertain the limitations of this algorithm based on the surrounding topography, and the length of altimetry track overlap with the lake/reservoir. Finally, a reservoir storage change will be estimated on the study sites using MODIS and Landsat water classification for estimating the area of reservoir and the height will be estimated using Jason-2 and SARAL/Altika satellites.
Estimated use of water in Lincoln County, Wyoming, 1993
Ogle, K.M.; Eddy-Miller, C. A.; Busing, C.J.
1996-01-01
Total water use in Lincoln County, Wyoming in 1993 was estimated to be 405,000 Mgal (million gallons). Water use estimates were divided into nine categories: public supply, self-supplied domestic, commercial, irrigation, livestock, indus ial, mining, thermoelectric power, and hydro- electric power. Public supply water use, estimated to be 2,160 Mgal, primarily was obtained from springs and wells. Shallow ground water wells were the primary source of self-supplied domestic water, estimate to be 1.7 Mgal, and 53 percent of those wells were drilled to a depth of 100 feet or less. Commercial water use, estimated to be 117 Mgal, was obtained from public-supply systems. Surface water supplied an estimated 153,000 Mgal of the total estimated water use of 158,000 Mgal for irrigation in 1993. Sprinkler and flood irrigation technology were used about equally in the northern part of Lincoln County and flood irrigation was the primary technology used in the southern part. Livestock, industrial, and mining were not major water users in Lincoln County in 1993. Livestock water use totaled an estimated 203 Mgal. Industrial water use was estimated to be 120 Mgal from self-supplied water sources and 27 Mgal from public supplied water source Mining water use was an estimated 153 Mgal. Thermoelectric and hydroelectric power generation used surface water sources. Thermoelectric power water use was an estimated 5,900 Mgal. An estimated 238,000 Mgal of water was used to generate hydroelectc power at Fontenelle Reservoir on the Green River.
Ancient water and sanitation systems - applicability for the contemporary urban developing world.
Bond, T; Roma, E; Foxon, K M; Templeton, M R; Buckley, C A
2013-01-01
The idea of implementing ancient water and wastewater technologies in the developing world is a persuasive one, since ancient systems had many features which would constitute sustainable and decentralised water and sanitation (WATSAN) provision in contemporary terminology. Latest figures indicate 2.6 billion people do not use improved sanitation and 1.1 billion practise open defecation, thus there is a huge need for sustainable and cost-effective WATSAN facilities, particularly in cities of the developing world. The objective of this study was to discuss and evaluate the applicability of selected ancient WATSAN systems for the contemporary developing world. Selected WATSAN systems in ancient Mesopotamia, the Indus Valley, Egypt, Greece, Rome and the Yucatan peninsula are briefly introduced and then discussed in the context of the developing world. One relevant aspect is that public latrines and baths were not only a part of daily life in ancient Rome but also a focal point for socialising. As such they would appear to represent a model of how to promote use and acceptance of modern community toilets and ablution blocks. Although public or community toilets are not classified as improved sanitation by WHO/UNICEF, this is a debatable premise since examples such as Durban, South Africa, illustrate how community toilets continue to represent a WATSAN solution for urban areas with high population density. Meanwhile, given the need for dry sanitation technologies, toilets based on the production of enriched Terra Preta soil have potential applications in urban and rural agriculture and warrant further investigation.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Fowler, Hayley; Pritchard, David
2017-04-01
High mountain Asia (HMA), including the Hindu Kush-Karakoram, Himalayas and Tibetan Plateau, constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area is currently experiencing substantial demographic growth and socio-economic development. This evolution will likely continue for the next few decades and compound pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. This is vital because the spatiotemporal distribution of precipitation and temperature in mountains determine the seasonality of streamflow from the headwater reaches and of major river basins. Once the biases of individual GCM/RCM experiments have been identified methodologies can be developed for modulating (correcting) the projected patterns of change identified by comparing simulated climate sub-regional climate under specific emissions scenarios (e.g. RCP8.5) to historical representations by the same model (time-slice approach). Such methods could for example include calculating temperature change factors as a function elevation difference from present 0°C (freezing) isotherm rather than simply using the overlying RCM grid cell if for instance the RCM showed exacerbated temperature increase at snow line (i.e. albedo feedback in elevation dependent warming) but also showed a pronounced bias in the historical (vertical) position of the isotherm. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative to which multiple international modelling centres have contributed RCM experiments. This work evaluates the present publically available CORDEX South Asia experiments including integrations of CCAM, RegCM4, REMO2009 and RCA4. These have been driven by a range of GCMS including ACCESS1.0, CNRM-CM5, GFDL, LMDZ, MPI-ESM, and NorESM. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically within the CORDEX South Asia domain on an orthogonal subdomain from 72E to 77E and 32.5N to 37.5N which covers the bulk of the Karakoram range and key headwaters tributaries of the Indus river basin upon which Pakistan is preponderantly dependent for agricultural water supply and hydro-electric power generation.
NASA Astrophysics Data System (ADS)
Qaisar, Maha
2016-07-01
Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded that transitory alteration of the biophysical characteristics of the surface driven by variations in rainfall is the prevailing progression. Moreover, future work will focus on finer-scale analysis and validations of patterns of changes due to rapid urbanization and population explosion in poverty stricken areas of Sindh which are posing an adverse impact on the land utilization and in turn increasing the land surface temperature and ultimately more stress on the low lying areas of Sindh i.e. Indus Delta will be losing its productivity and capacity to bear biodiversity whether the fauna or flora. Hence, this regional scale problem will become a global concern. Therefore, it is needed to stop the menace in its starting phase to mitigate the problem and to bring minds on this horrendous situation.
Anthropogenic emissions and space-borne observations of carbon monoxide over South Asia
NASA Astrophysics Data System (ADS)
Ul-Haq, Zia; Tariq, Salman; Ali, Muhammad
2016-11-01
The focus of this study is to understand anthropogenic emissions, spatiotemporal variability and trends of carbon monoxide (CO) over South Asia by using datasets from MACCity (Monitoring Atmospheric Composition and Climate, MACC and megaCITY - Zoom for the Environment, CityZEN), REAS (Regional Emission inventory in Asia), AIRS (Atmospheric Infrared Sounder) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY). MACCity anthropogenic emissions show an overall increase of 16.5% during 2000-2010. Elevated levels of MACCity CO are found in Indo-Gangetic Basin (IGB), eastern mining region of India, Bangladesh and large urban areas. Some of the major contributors of these emissions have been identified as agricultural waste burning, land transport, industrial production, and energy generation and distribution. An area averaged mean value of AIRS CO at 600 hPa is found to be 114 ± 2 ppbv (slope -0.48 ± 0.2 ppbv yr-1, y-intercept 117 ± 1 ppbv and r = 0.68) with a minor declining trend at -0.41 ± 0.18% yr-1 over the region during 2003-2015. A strong seasonality in AIRS CO concentration is observed with spring season peak in March 129 ± 1.9 ppbv, whereas low values have been observed in summer monsoon with sturdy dip in July 99.6 ± 1.94 ppbv. AIRS CO and SCIAMACHY CO Total Column (CO TC) over the study region show spatial patterns similar to MACCity and REAS emissions. An analysis of SCIAMACHY CO TC tendencies has been performed which indicates minor rising trends over some parts of the region. Background CO, Recent Emissions (RE), and spatial anomalies in RE over high anthropogenic activity zones of Indus Basin, Ganges Basin and Eastern Region were analyzed using AIRS and SCIAMACHY CO data.
NASA Astrophysics Data System (ADS)
Luque, E.; Santiago, B.; Pieres, A.; Marshall, J. L.; Pace, A. B.; Kron, R.; Drlica-Wagner, A.; Queiroz, A.; Balbinot, E.; Ponte, M. dal; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Walker, A. R.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Davis, C.; Doel, P.; Eifler, T. F.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Nichol, R. C.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.
2018-04-01
We report the discovery of a new star cluster, DES 3, in the constellation of Indus, and deeper observations of the previously identified satellite DES J0222.7-5217 (Eridanus III). DES 3 was detected as a stellar overdensity in first-year Dark Energy Survey data, and confirmed with deeper photometry from the 4.1 metre Southern Astrophysical Research (SOAR) telescope. The new system was detected with a relatively high significance and appears in the DES images as a compact concentration of faint blue point sources. We determine that DES 3 is located at a heliocentric distance of ≃ 76.2 kpc and it is dominated by an old (≃ 9.8 Gyr) and metal-poor ([Fe/H] ≃ -1.84) population. While the age and metallicity values of DES 3 are comparable to typical globular clusters (objects with a high stellar density, stellar mass of ˜105M⊙ and luminosity MV ˜ -7.3), its half-light radius (rh ˜ 6.87 pc) and luminosity (MV ˜ -1.7) are more indicative of faint star cluster. Based on the angular size, DES 3, with a value of rh ˜ 0{^'.}31, is among the smallest faint star clusters known to date. Furthermore, using deeper imaging of DES J0222.7-5217 taken with the SOAR telescope, we update structural parameters and perform the first isochrone modeling. Our analysis yields the first age (≃ 12.6 Gyr) and metallicity ([Fe/H] ≃ -2.01) estimates for this object. The half-light radius (rh ≃ 11.24 pc) and luminosity (MV ≃ -2.4) of DES J0222.7-5217 suggest that it is likely a faint star cluster. The discovery of DES 3 indicates that the census of stellar systems in the Milky Way is still far from complete, and demonstrates the power of modern wide-field imaging surveys to improve our knowledge of the Galaxy's satellite population.
Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.
Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan
2013-12-01
Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.
Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet
Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan
2013-01-01
Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study. PMID:24367140
NASA Astrophysics Data System (ADS)
Xu, Qiang; Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Pei, Shunping
2017-10-01
We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intracrustal discontinuity is observed at 55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At 20 km depth, a midcrustal low-velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.
Revisiting demographic processes in cattle with genome-wide population genetic analysis
Orozco-terWengel, Pablo; Barbato, Mario; Nicolazzi, Ezequiel; Biscarini, Filippo; Milanesi, Marco; Davies, Wyn; Williams, Don; Stella, Alessandra; Ajmone-Marsan, Paolo; Bruford, Michael W.
2015-01-01
The domestication of the aurochs took place approximately 10,000 years ago giving rise to the two main types of domestic cattle known today, taurine (Bos taurus) domesticated somewhere on or near the Fertile Crescent, and indicine (Bos indicus) domesticated in the Indus Valley. However, although cattle have historically played a prominent role in human society the exact origin of many extant breeds is not well known. Here we used a combination of medium and high-density Illumina Bovine SNP arrays (i.e., ~54,000 and ~770,000 SNPs, respectively), genotyped for over 1300 animals representing 56 cattle breeds, to describe the relationships among major European cattle breeds and detect patterns of admixture among them. Our results suggest modern cross-breeding and ancient hybridisation events have both played an important role, including with animals of indicine origin. We use these data to identify signatures of selection reflecting both domestication (hypothesized to produce a common signature across breeds) and local adaptation (predicted to exhibit a signature of selection unique to a single breed or group of related breeds with a common history) to uncover additional demographic complexity of modern European cattle. PMID:26082794
Fibromyalgia complicating disease management in rheumatoid arthritis.
Abbasi, Lubna; Haidri, Fakhir Raza
2014-06-01
To evaluate frequency of fibromyalgia in rheumatoid arthritis and its effect on disease activity score. Cross-sectional study. The Indus Hospital, Karachi, from December 2010 to May 2011. All adult patients of either gender diagnosed as rheumatoid arthritis on the basis of clinical, laboratory and X-ray criteria were included in the study. The sample data was separated into two groups depending on presence or absence of fibromyalgia and 28 joint disease activity score (DAS-28) value was evaluated. There were 31 (25.83%) patients with rheumatoid arthritis and fibromyalgia (RAFM) out of the total 120. The median (IQR) age of patients was 40 (32 - 51) years. All were females. The overall female frequency was 79 (88.8%). The median (IQR) DAS-28 score in RA group was 4.9 (3.66 - 5.71), while the median (IQR) DAS-28 score in RAFM was 7.04 (6.62 - 7.64) [p < 0.0001]. The number of patient getting combination therapy of DMARD in RAFM group was 61.3% while in RA group was 42.7%. DAS-28 was found to be significantly higher in RAFM patients probably because of higher perception of pain.
Begotten of Corruption? Bioarchaeology and "othering" of leprosy in South Asia.
Robbins Schug, Gwen
2016-12-01
Leprosy is strongly stigmatized in South Asia, being regarded as a manifestation of extreme levels of spiritual pollution going back through one or more incarnations of the self. Stigma has significant social consequences, including surveillance, exclusion, discipline, control, and punishment; biologically speaking, internalized stigma also compounds the disfigurement and disability resulting from this disease. Stigma results from an othering process whereby difference is recognized, meaning is constituted, and eventually, sufferers may be negatively signified and marked for exclusion. This paper traces the history of leprosy's stigmatization in South Asia, using archaeology and an exegesis of Vedic texts to examine the meaning of this disease from its apparent zero-point-when it first appears but before it was differentiated and signified-in the mature Indus Age. Results suggest that early in the second millennium BCE, leprosy was perceived as treatable and efforts were apparently made to mitigate its impact on the journey to the afterworld. Ignominy to the point of exclusion does not emerge until the first millennium BCE. This paper uses archaeology to create an effective history of stigma for leprosy, destabilizing what is true about this disease and its sufferers in South Asia today. Copyright © 2016 Elsevier Inc. All rights reserved.
On the relationship between Indian Ocean Dipole events and the precipitation of Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Kim, Sunyoung; Lee, Seungho
2017-10-01
This study investigated the relationship between the Indian Ocean Dipole (IOD) and the precipitation of Pakistan using data for the period of 1958-2010. The long-term evolution of the IOD index did not show interannual patterns similar to those of the annual precipitation of Pakistan. No linkage between the co-occurring trends of the IOD and the precipitation was traced during the period of investigation. The correlation between the IOD and the precipitation of Pakistan indicated a noteworthy impact over the monsoonal regions, especially the coastal area and the western region of Pakistan, which showed a significant positive correlation between the IOD index and annual and summer precipitation. A significant positive relationship was also revealed between the precipitation of the Balochistan Plateau and the IOD index for the summer monsoon season. No connection was observed between the IOD and the precipitation of the northern regions and the upper Indus Plain of Pakistan. Positive phases of the IOD have been noted to occur along with surplus precipitation during active monsoon conditions. The southeasterly wind moves from the Arabian Sea and transports additional moisture from the Arabian Sea to the coastal and southwestern parts of Pakistan during positive phases of the IOD.
Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin
NASA Astrophysics Data System (ADS)
Hasson, S.; Böhner, J.; Lucarini, V.
2015-03-01
Largely depending on meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus basin (UIB) contribute to half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, we present a comprehensive hydro-climatic trend analysis over the UIB, including for the first time observations from high-altitude automated weather stations. We analyze trends in maximum, minimum and mean temperatures (Tx, Tn, and Tavg, respectively), diurnal temperature range (DTR) and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012), and separately, from six stations of their long term record (1961-2012). We apply Mann-Kendall test on serially independent time series to assess existence of a trend while true slope is estimated using Sen's slope method. Further, we statistically assess the spatial scale (field) significance of local climatic trends within ten identified sub-regions of UIB and analyze whether the spatially significant (field significant) climatic trends qualitatively agree with a trend in discharge out of corresponding sub-region. Over the recent period (1995-2012), we find a well agreed and mostly field significant cooling (warming) during monsoon season i.e. July-October (March-May and November), which is higher in magnitude relative to long term trends (1961-2012). We also find general cooling in Tx and a mixed response in Tavg during the winter season and a year round decrease in DTR, which are in direct contrast to their long term trends. The observed decrease in DTR is stronger and more significant at high altitude stations (above 2200 m a.s.l.), and mostly due to higher cooling in Tx than in Tn. Moreover, we find a field significant decrease (increase) in late-monsoonal precipitation for lower (higher) latitudinal regions of Himalayas (Karakoram and Hindukush), whereas an increase in winter precipitation for Hindukush, western- and whole Karakoram, UIB-Central, UIB-West, UIB-West-upper and whole UIB regions. We find a spring warming (field significant in March) and drying (except for Karakoram and its sub-regions), and subsequent rise in early-melt season flows. Such early melt response together with effective cooling during monsoon period subsequently resulted in a substantial drop (weaker increase) in discharge out of higher (lower) latitudinal regions (Himalaya and UIB-West-lower) during late-melt season, particularly during July. These discharge tendencies qualitatively differ to their long term trends for all regions, except for UIB-West-upper, western-Karakorum and Astore. The observed hydroclimatic trends, being driven by certain changes in the monsoonal system and westerly disturbances, indicate dominance (suppression) of nival (glacial) runoff regime, altering substantially the overall hydrology of UIB in future. These findings largely contribute to address the hydroclimatic explanation of the "Karakoram Anomaly".
NASA Astrophysics Data System (ADS)
Makhluf, A. R.; Newton, R. C.; Manning, C. E.
2013-12-01
Supercritical fluids in rock-H2O systems have been proposed to be important agents of mass transfer in high-pressure environments such as subduction zones. We conducted new experimental studies of the important model system H2O-albite (NaAlSi3O8). Equilibrium phase relations were determined in isobaric T-XH2O binaries at 10.0, 12.5, 14.0, 16.0, and 17.0 kbar, at 600-1060 °C and H2O mole fractions (XH2O) of 0.35 to 0.99. All experiments were conducted in a piston-cylinder apparatus. Stabilities of hydrous albite liquid (L) and H2O-rich vapor (V) were determined from textural analysis of run products by binocular, petrographic and scanning electron microscopy. At each pressure, the experiments bracketed the liquidus curve, the topology of the L+V miscibility gap, and the temperature of critical mixing (TC). The bulk composition at critical mixing of L+V is ~50 wt% H2O at all pressures investigated. The P-T trace of the critical curve is described by the equation TC = -59.9P + 1650 (R2=0.998) where T is in °C and P is in kbar, and the equation is valid over the investigated P and T. The results indicate a critical endpoint on the hydrous melting curve at 16.3 kbar and 667 °C. Our results agree reasonably well with the work of Burnham and Jahns (1962, Am. Journal of Sci., 260, 721) and Shen and Keppler (1997, Nature, 385, 710). The constraints on the phase equilibria allow derivation of a thermodynamic model using a modified version of the Redlich-Kister method (1948, Indus. and Eng. Chem., 40b, 345) which allows quantification of the NaAlSi3O8 activity, aAb, and H2O activity, aH2O, over the entire composition range at each of the above listed pressures, between the solidus temperatures and critical temperatures. The results provide fundamental constraints on the physical chemical controls on the generation and solution properties of supercritical and subcritical fluids in the albite-H2O system.
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.
2017-12-01
Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.
NASA Astrophysics Data System (ADS)
Khim, B. K.; Kim, J. E.; Lee, J.; Ikehara, M.; Clift, P. D.; Pandey, D.; Kulhanek, D. K.; Science Party, E.
2016-12-01
The Arabian Sea is characterized by a large pool of denitrifying water at intermediate water depths, which plays an important role in the marine nitrogen cycle and resultant response to climate change. A growing body of research emphasizes strong linkage between denitrification strength in the Arabian Sea and climate change at both orbital and millennial timescales. Drilling by International Ocean Discovery Program Expedition 355 was conducted at Site U1456 in the Laxmi Basin, Eastern Arabian Sea, 475 km from the Indian coastline and 820 km south of the modern Indus River Delta. Four lithologic units are defined onboard at the Site U1456. A total of 282 samples were collected from a composite section of Unit I consisting of Holes U1456A and U1456C. Unit I is composed mostly of nannofossil ooze and/or foraminifer-rich nannofossil ooze with interbedded clay, silt, and sand layers. Oxygen isotope measurements of planktonic foraminifera (G. ruber and G. sacculifer), together with shipboard biostratigraphic and paleomagnetic data, constrain the age of Unit I to younger than about 1.2 Ma. The δ15Nbulk values fluctuate from 4.5‰ to 9.6‰ with a mean of 7.3(±0.95)‰. Higher δ15Nbulk values coincide with interglacial intervals whereas lower δ15Nbulk values correspond to glacial intervals, representing clear glacial-interglacial cyclicity. These variations demonstrate the distinct climatic linkage with the degree of denitrification at orbital timescales, in association with changes in hydrography and productivity. The relation between denitrification and monsoon intensity, previously reported for the continental margins of the Arabian Sea, is also recorded in the deep water sediments.
The 2010 Pakistan floods: high-resolution simulations with the WRF model
NASA Astrophysics Data System (ADS)
Viterbo, Francesca; Parodi, Antonio; Molini, Luca; Provenzale, Antonello; von Hardenberg, Jost; Palazzi, Elisa
2013-04-01
Estimating current and future water resources in high mountain regions with complex orography is a difficult but crucial task. In particular, the French-Italian project PAPRIKA is focused on two specific regions in the Hindu-Kush -- Himalaya -- Karakorum (HKKH)region: the Shigar basin in Pakistan, at the feet of K2, and the Khumbu valley in Nepal, at the feet of Mount Everest. In this framework, we use the WRF model to simulate precipitation and meteorological conditions with high resolution in areas with extreme orographic slopes, comparing the model output with station and satellite data. Once validated the model, we shall run a set of three future time-slices at very high spatial resolution, in the periods 2046-2050, 2071-2075 and 2096-2100, nested in different climate change scenarios (EXtreme PREcipitation and Hydrological climate Scenario Simulations -EXPRESS-Hydro project). As a prelude to this study, here we discuss the simulation of specific, high-intensity rainfall events in this area. In this paper we focus on the 2010 Pakistan floods which began in late July 2010, producing heavy monsoon rains in the Khyber Pakhtunkhwa, Sindh, Punjab and Balochistan regions of Pakistan and affecting the Indus River basin. Approximately one-fifth of Pakistan's total land area was underwater, with a death toll of about 2000 people. This event has been simulated with the WRF model (version 3.3.) in cloud-permitting mode (d01 14 km and d02 3.5 km): different convective closures and microphysics parameterization have been used. A deeper understanding of the processes responsible for this event has been gained through comparison with rainfall depth observations, radiosounding data and geostationary/polar satellite images.
Owen Fracture Zone: The Arabia-India plate boundary unveiled
NASA Astrophysics Data System (ADS)
Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M. O.; Zaragosi, S.
2011-02-01
We surveyed the Owen Fracture Zone at the boundary between the Arabia and India plates in the NW Indian Ocean using a high-resolution multibeam echo-sounder (Owen cruise, 2009) for search of active faults. Bathymetric data reveal a previously unrecognized submarine fault scarp system running for over 800 km between the Sheba Ridge in the Gulf of Aden and the Makran subduction zone. The primary plate boundary structure is not the bathymetrically high Owen Ridge, but is instead a series of clearly delineated strike-slip fault segments separated by several releasing and restraining bends. Despite an abundant sedimentary supply by the Indus River flowing from the Himalaya, fault scarps are not obscured by recent deposits and can be followed over hundreds of kilometres, pointing to very active tectonics. The total strike-slip displacement of the fault system is 10-12 km, indicating that it has been active for the past ~ 3 to 6 Ma if its current rate of motion of 3 ± 1 mm yr- 1 has remained stable. We describe the geometry of this recent fault system, including a major pull-apart basin at the latitude 20°N, and we show that it closely follows an arc of small circle centred on the Arabia-India pole of rotation, as expected for a transform plate boundary.
NASA Astrophysics Data System (ADS)
Ge, Yukui; Li, Yalin; Wang, Xiaonan; Qian, Xinyu; Zhang, Jiawei; Zhou, Aorigele; Liu-Zeng, Jing
2018-01-01
The Kailas conglomerates crop out ubiquitously along the southernmost boundary of the Gangdese batholith. They unconformably overlie the Gangdese batholith and are displaced by the Great Counter thrust (GCT) fault, forming a fault contact with the Xigaze forearc basin, the associated subduction complex and the Tethyan Himalayan sequence. These strata furnish a record of uplift and paleoenvironmental change in the Indus-Yarlung suture zone during the Oligocene-Miocene. Our new and previously published low-temperature thermochronometric data from the Gangdese batholith and the Kailas conglomerates indicate a period of rapid exhumation beginning approximately 17-15 Ma centered on the southern margin of the Gangdese batholith, whereas regional uplift commenced significantly earlier during the deposition of the Kailas conglomerates, based on the presence of an abrupt facies transition from deep-water lacustrine deposits to red alluvial fan or fluvial deposits. The period of rapid exhumation probably lagged behind the initiation of faster uplift, while the related changes in the depositional environment were most likely recorded immediately in the basin stratigraphy. Subsequently, the Kailas conglomerates were buried in association with the development of the north-directed Great Counter thrust, while rapid exhumation was facilitated by efficient incision by the paleo-Yarlung river at approximately 17-15 Ma.
Sarkar, Anindya; Mukherjee, Arati Deshpande; Bera, M K; Das, B; Juyal, Navin; Morthekai, P; Deshpande, R D; Shinde, V S; Rao, L S
2016-05-25
The antiquity and decline of the Bronze Age Harappan civilization in the Indus-Ghaggar-Hakra river valleys is an enigma in archaeology. Weakening of the monsoon after ~5 ka BP (and droughts throughout the Asia) is a strong contender for the Harappan collapse, although controversy exists about the synchroneity of climate change and collapse of civilization. One reason for this controversy is lack of a continuous record of cultural levels and palaeomonsoon change in close proximity. We report a high resolution oxygen isotope (δ(18)O) record of animal teeth-bone phosphates from an archaeological trench itself at Bhirrana, NW India, preserving all cultural levels of this civilization. Bhirrana was part of a high concentration of settlements along the dried up mythical Vedic river valley 'Saraswati', an extension of Ghaggar river in the Thar desert. Isotope and archaeological data suggest that the pre-Harappans started inhabiting this area along the mighty Ghaggar-Hakra rivers fed by intensified monsoon from 9 to 7 ka BP. The monsoon monotonically declined after 7 ka yet the settlements continued to survive from early to mature Harappan time. Our study suggests that other cause like change in subsistence strategy by shifting crop patterns rather than climate change was responsible for Harappan collapse.
NASA Astrophysics Data System (ADS)
Zhernov, Evgeny; Nehoda, Evgenia
2017-11-01
The state, regional and industry approaches to the problem of personnel training for building an innovative knowledge economy at all levels that ensures sustainable development of the region are analyzed in the article using the cases of the Kemerovo region and the coal industry. A new regional-matrix approach to the training of highly qualified personnel is proposed, which allows to link the training systems with the regional economic matrix "natural resources - cognitive resources" developed by the author. A special feature of the new approach is the consideration of objective conditions and contradictions of regional systems of personnel training, which have formed as part of economic systems of regions differ-entiated in the matrix. The methodology of the research is based on the statement about the interconnectivity of general and local knowledge, from which the understanding of the need for a combination of regional, indus-try and state approaches to personnel training is derived. A new form of representing such a combination is the proposed approach, which is based on matrix analysis. The results of the research can be implemented in the practice of modernization of professional education of workers in the coal industry of the natural resources extractive region.
Mussarat, Sakina; Amber, Rahila; Tariq, Akash; Adnan, Muhammad; AbdElsalam, Naser M.; Bibi, Roqaia
2014-01-01
The present study was aimed to document detailed ethnopharmacological knowledge of medicinal plants against livestock infections of an unexplored remote region of Pakistan. Semistructured questionnaires were used for data collection. Total 43 plants belonging to 26 families were found to be used in ethnoveterinary practices. Seeds (29%) were found to be the most frequent plant part used followed by leaves (22%). Ethnoveterinary recipes were mostly prepared in the form of decoction and powdering. Informant consensus factor (Fic) results revealed high consensus for gastrointestinal (0.81), mastitis (0.82), and dermatological infections (0.80). Curcuma longa ranked first with highest fidelity level (FL) value (66%) followed by Trachyspermum ammi that ranked second (58%). Preference ranking (PR) results showed that Zingiber officinale, Punica granatum, Triticum aestivum, Gossypium hirsutum, and Withania coagulans were the most preferred species for the treatment of diarrhea. Direct matrix ranking (DMR) results showed that Morus alba, Melia azedarach, Withania coagulans, Cassia fistula, Azadirachta indica, and Tamarix aphylla were the multipurpose species of the region. We invite the attention of pharmacologists and chemists for further exploration of plants having high Fic, FL, and PR values in the present study. Conservation strategies should be adopted for the protection of multipurpose plant species. PMID:25544941
Classification of case-II waters using hyperspectral (HICO) data over North Indian Ocean
NASA Astrophysics Data System (ADS)
Srinivasa Rao, N.; Ramarao, E. P.; Srinivas, K.; Deka, P. C.
2016-05-01
State of the art Ocean color algorithms are proven for retrieving the ocean constituents (chlorophyll-a, CDOM and Suspended Sediments) in case-I waters. However, these algorithms could not perform well at case-II waters because of the optical complexity. Hyperspectral data is found to be promising to classify the case-II waters. The aim of this study is to propose the spectral bands for future Ocean color sensors to classify the case-II waters. Study has been performed with Rrs's of HICO at estuaries of the river Indus and GBM of North Indian Ocean. Appropriate field samples are not available to validate and propose empirical models to retrieve concentrations. The sensor HICO is not currently operational to plan validation exercise. Aqua MODIS data at case-I and Case-II waters are used as complementary to in- situ. Analysis of Spectral reflectance curves suggests the band ratios of Rrs 484 nm and Rrs 581 nm, Rrs 490 nm and Rrs 426 nm to classify the Chlorophyll -a and CDOM respectively. Rrs 610 nm gives the best scope for suspended sediment retrieval. The work suggests the need for ocean color sensors with central wavelength's of 426, 484, 490, 581 and 610 nm to estimate the concentrations of Chl-a, Suspended Sediments and CDOM in case-II waters.
Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations
NASA Astrophysics Data System (ADS)
MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.
2016-10-01
Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.
From Natural to Design River Deltas
NASA Astrophysics Data System (ADS)
Giosan, Liviu
2016-04-01
Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.
Sarkar, Anindya; Mukherjee, Arati Deshpande; Bera, M. K.; Das, B.; Juyal, Navin; Morthekai, P.; Deshpande, R. D.; Shinde, V. S.; Rao, L. S.
2016-01-01
The antiquity and decline of the Bronze Age Harappan civilization in the Indus-Ghaggar-Hakra river valleys is an enigma in archaeology. Weakening of the monsoon after ~5 ka BP (and droughts throughout the Asia) is a strong contender for the Harappan collapse, although controversy exists about the synchroneity of climate change and collapse of civilization. One reason for this controversy is lack of a continuous record of cultural levels and palaeomonsoon change in close proximity. We report a high resolution oxygen isotope (δ18O) record of animal teeth-bone phosphates from an archaeological trench itself at Bhirrana, NW India, preserving all cultural levels of this civilization. Bhirrana was part of a high concentration of settlements along the dried up mythical Vedic river valley ‘Saraswati’, an extension of Ghaggar river in the Thar desert. Isotope and archaeological data suggest that the pre-Harappans started inhabiting this area along the mighty Ghaggar-Hakra rivers fed by intensified monsoon from 9 to 7 ka BP. The monsoon monotonically declined after 7 ka yet the settlements continued to survive from early to mature Harappan time. Our study suggests that other cause like change in subsistence strategy by shifting crop patterns rather than climate change was responsible for Harappan collapse. PMID:27222033
Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River
NASA Astrophysics Data System (ADS)
Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver
2016-04-01
Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.
Jongeneelen, Frans; ten Berge, Wil
2012-08-01
A physiologically based toxicokinetic (PBTK) model can predict blood and urine concentrations, given a certain exposure scenario of inhalation, dermal and/or oral exposure. The recently developed PBTK-model IndusChemFate is a unified model that mimics the uptake, distribution, metabolism and elimination of a chemical in a reference human of 70 kg. Prediction of the uptake by inhalation is governed by pulmonary exchange to blood. Oral uptake is simulated as a bolus dose that is taken up at a first-order rate. Dermal uptake is estimated by the use of a novel dermal physiologically based module that considers dermal deposition rate and duration of deposition. Moreover, evaporation during skin contact is fully accounted for and related to the volatility of the substance. Partitioning of the chemical and metabolite(s) over blood and tissues is estimated by a Quantitative Structure-Property Relationship (QSPR) algorithm. The aim of this study was to test the generic PBTK-model by comparing measured urinary levels of 1-hydroxypyrene in various inhalation and dermal exposure scenarios with the result of model simulations. In the last three decades, numerous biomonitoring studies of PAH-exposed humans were published that used the bioindicator 1-hydroxypyrene (1-OH-pyrene) in urine. Longitudinal studies that encompass both dosimetry and biomonitoring with repeated sampling in time were selected to test the accuracy of the PBTK-model by comparing the reported concentrations of 1-OHP in urine with the model-predicted values. Two controlled human volunteer studies and three field studies of workers exposed to polycyclic aromatic hydrocarbons (PAH) were included. The urinary pyrene-metabolite levels of a controlled human inhalation study, a transdermal uptake study of bitumen fume, efficacy of respirator use in electrode paste workers, cokery workers in shale oil industry and a longitudinal study of five coke liquefaction workers were compared to the PBTK-predicted values. The simulations showed that the model-predicted concentrations of urinary pyrene and metabolites over time, as well as peak-concentrations and total excreted amount in different exposure scenarios of inhalation and transdermal exposure were in all comparisons within an order of magnitude. The model predicts that only a very small fraction is excreted in urine as parent pyrene and as free 1-OH-pyrene. The predominant urinary metabolite is 1-OH-pyrene-glucuronide. Enterohepatic circulation of 1-OH-pyrene-glucuronide seems the reason of the delayed release from the body. It appeared that urinary excretion of pyrene and pyrene-metabolites in humans is predictable with the PBTK-model. The model outcomes have a satisfying accuracy for early testing, in so-called 1st tier simulations and in range finding. This newly developed generic PBTK-model IndusChemFate is a tool that can be used to do early explorations of the significance of uptake of pyrene in the human body following industrial or environmental exposure scenarios. And it can be used to optimize the sampling time and urine sampling frequency of a biomonitoring program.
NASA Astrophysics Data System (ADS)
Jagoutz, O. E.; Royden, L.; Macdonald, F. A.
2015-12-01
In this presentation we demonstrate that the two tectonic events in the late Cretaceous-Early Tertiary triggered the two distinct cooling events that followed the Cretaceous Thermal Maximum (CTM). During much of the Cretaceous time, the northern Neo Tethyan ocean was dominated by two east-west striking subduction system. Subduction underneath Eurasia formed a continental arc on the southern margin of Eurasia and intra oceanic subduction in the equatorial region of the Neo Tethys formed and intra oceanic arc. Beginning at ~85-90 Ma the western part of the TTSS collided southward with the Afro-Arabian continental margin, terminating subduction. This resulted in southward obduction of the peri-Arabian ophiolite belt, which extends for ~4000 km along strike and includes the Cypus, Semail and Zagros ophiolites. At the same time also the eastern part of the TTS collided northwards wit Eurasia. After this collisional event, only the central part of the subduction system remained active until it collided with the northern margin of the Indian continent at ~50-55 Ma. The collision of the arc with the Indian margin, over a length of ~3000 km, also resulted in the obduction of arc material and ophiolitic rocks. Remnants of these rocks are preserved today as the Kohistan-Ladakh arc and ophiolites of the Indus-Tsangpo suture zone of the Himalayas. Both of these collision events occurred in the equatorial region, near or within the ITCZ, where chemical weathering rates are high and are contemporaneous with the onset of the global cooling events that mark the end of the CTM and the EECO. The tectonic collision events resulted in a shut down of subduction zone magmatism, a major CO2 source and emplacement of highly weatherable basaltic rocks within the ITCZ (CO2 sink). In order to explore the effect of the events in the TTSS on atmospheric CO2, we model the potential contribution of subduction zone volcanism (source) and ophiolite obduction (sink) to the global atmospheric CO2 budget. Our results show that the global ocean bottom water temperature are highly correlated with CO2 variation modeled due to the arc-continent collisions along the TTSS. Our results show that global climate in the Late Cretaceous to Early Eocene have likely been strongly changed due to the tectonic evolution of the Neo-Tethys.
Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan
Malmberg, Glenn T.
1975-01-01
Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres a few miles west of the City of Lahore was selected for the pilot project. The first Salinity Control and Reclamation Project (SCARP-l) was completed in 1962. Within the project area about 2,000 wells were drilled as deep as 350 feet and equipped with turbine pumps having a capacity of up to 5 cubic feet per second each and a combined operating capacity of about 3.5 million acre-feet per year. To July 1968 pumping from project wells and from private and other governmental agency wells supplied about 12 million acre-feet of water. This pumping more than doubled the available irrigation supply and lowered the water table to a depth of 10 feet or more below most of the project area. As a result, approximately 66 percent of the 400,000 acres of land damaged by waterlogging and accumulation of excessive salt was wholly or partially reclaimed. The cropping intensity was increased from about 77 percent in 1962 to 101 percent in July 1968, and the annual value of crops increased 186 percent over 1962. Annual water budgets for the first 6 years of project operation indicate that pumping caused a decrease in annual ground-water outflow from the project area from about 57,000 acre-feet to 32,000 acre-feet, caused an increase in annual ground-water inflow to the project area from 35,0'00 acre-feet to 52,000 acre-feet, and depleted about 1.71 million acre-.feet of groundwater storage. Net annual recharge to the ground-water reservoir during this same period ranged from a high of slightly more than 2 million acre-feet in 1964 to a low of about 1 million acre-feet in 1965. The budgets suggest that perhaps as much as half the net canal' inflow to the project area is lost through leakage. This leakage is the principal source of recharge to the ground-water reservoir. Pumping has caused widespread changes in the chemical quality of ground water by chanelling the rate and direction of flow, inducing infiltration from canals, and mixing of indigenous waters of dif
NASA Technical Reports Server (NTRS)
Lau, W. K.; Reale, O.; Kim, K.
2011-01-01
In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.
Harnessing Photovoice for tuberculosis advocacy in Karachi, Pakistan.
Mohammed, Shama; Sajun, Sana Zehra; Khan, Faisal S
2015-06-01
In Pakistan, despite publically available free testing and treatment throughout the country, there were an estimated 58,000 deaths due to tuberculosis in 2010. Understanding the experiences of people affected by TB is essential in addressing barriers to effective treatment. The Indus Hospital used Photovoice to understand the experiences of people affected by TB in Karachi. Two hundred and thirty photographs and stories were collected from 55 people affected by TB. Five major themes and 12 sub-themes emerged from the data: the physical aspects of TB (weakness and the side effects of the medication), the social aspects of TB (loneliness, stigma, and the fear/guilt of infecting family members), the socio-economic aspects of TB (financial difficulties/poverty and poor living conditions), supportive factors during treatment (support from family and friends, support from welfare organizations, prayer, visiting peaceful places), and recovery (happiness about getting better). The photographs, stories, and a Call for Action were shared at a Gallery event with patients, practitioners, and policy-makers. This study provides a look at the complexities surrounding TB and emphasizes the need for holistic interventions for TB that address all aspects of the disease, including its social determinants. It also highlights the potential of Photovoice as an effective means to bring much-needed attention to this disease. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kharlamova, A S; Barabanov, V M; Saveliev, S V
2015-01-01
We provide the data of the olfactory bulbs (OB) development in the human fetuses on the stages from 8 week to birth. Immunochistochemical markers of presynaptic terminals (anti-SNAP-25, -synapsin-I, -synaptophysin) were used to evaluate the maturation of the OB. Differentiation of the OB layers begins from periphery, which implicitly evidences that growth of the olfactory nerves fibers induses not only anatomical differentiation of the OB, but also differentiation of its functional layers. The sites of the developing glomerulus are revealed using the immunochistochemical prosedure on the stage before distinct glomerulus can be identified with common histological procedure. OB conductive system demonstrates immunoreactivity with the antibodies to the presynaptic proteins on the all stages from 10-11 weeks of fetus development. Four stages of the OB development are described. All functional layers of the OB are mature at the 22-weeks stage. Further differentiation of the OB neuroblasts, including lamina formation of the internal granular leyer, glomerular layer development, OB growth continue after 20-22 weeks stage until 38-40 weeks of the fetus develoment. Patterns of the immunoreactivity with antibodies to SNAP-25, synapsin-I and synaptophysin are completely appropriate to those of adult's OB on the 38-40 weeks of the prenatal development. Complete maturity of the human OB is achived at 38-40 weeks of the prenatal development.
Vacuum Brazing of Accelerator Components
NASA Astrophysics Data System (ADS)
Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.
2012-11-01
Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.
Holocene climate and cultural evolution in late prehistoric-early historic West Asia
NASA Astrophysics Data System (ADS)
Staubwasser, Michael; Weiss, Harvey
2006-11-01
The precipitation climatology and the underlying climate mechanisms of the eastern Mediterranean, West Asia, and the Indian subcontinent are reviewed, with emphasis on upper and middle tropospheric flow in the subtropics and its steering of precipitation. Holocene climate change of the region is summarized from proxy records. The Indian monsoon weakened during the Holocene over its northernmost region, the Ganges and Indus catchments and the western Arabian Sea. Southern regions, the Indian Peninsula, do not show a reduction, but an increase of summer monsoon rain across the Holocene. The long-term trend towards drier conditions in the eastern Mediterranean can be linked to a regionally complex monsoon evolution. Abrupt climate change events, such as the widespread droughts around 8200, 5200 and 4200 cal yr BP, are suggested to be the result of altered subtropical upper-level flow over the eastern Mediterranean and Asia. The abrupt climate change events of the Holocene radically altered precipitation, fundamental for cereal agriculture, across the expanse of late prehistoric-early historic cultures known from the archaeological record in these regions. Social adaptations to reduced agro-production, in both dry-farming and irrigation agriculture regions, are visible in the archaeological record during each abrupt climate change event in West Asia. Chronological refinement, in both the paleoclimate and archaeological records, and transfer functions for both precipitation and agro-production are needed to understand precisely the evident causal linkages.
NASA Astrophysics Data System (ADS)
Muldoon, G.; Jackson, C. S.; Young, D. A.; Blankenship, D. D.
2016-12-01
Understanding mass balance and volumetric change of glaciers are extremely important in areas where the majority of the population depends on cryospheric sources for the livelihood. Ladakh is one of the coldest and the aridest region of India. The majority of the population live in mountain pockets where the only source of water is snow and glacier melt for agriculture and domestic use. Stok village catchment (52 km2) has seven very small glaciers with an area ranging between 0.2-1.05 km2 at an elevation above 5300m a.s.l (GSI 2009). These glaciers contribute to a stream feeding Stok village of 274 ( 1469 individuals) households and a portion of Chuchot village before joining the Indus River. Ironically very limited studies have been carried out so far in this region, making it even more urgent to monitor the health of the glaciers in this region. With the changing climate, booming of the tourism industry and scarcity of water resources during the spring season, there is a shift in the livelihood of the region towards other option leading to a negative impact on the environment and over exploitation of natural resources. In this study we present analysis of measured annual mass balances for the period 2015-2017 and reconstruction of annual mass balances since 1969 to 2015 of Stok glacier located on the north eastern slope of Zanskar range in Ladakh region of western Himalayas. Direct glaciological methods were used to obtain annual mass balance for 2015-2017 and for reconstruction of annual mass balances, Classical Temperature Index model were used with the help of meteorological data from Indian Meteorological Department. The data gaps were filled with the help of several modelled datasets viz. HAR (High Asia Reanalysis), REMO, and Climate Research Unit (CRU) TS2.1 dataset. We also present catchment wide change in volume of the glaciers since 1969 to 2015. Declassified satellite images and Landsat images were used to obtain the change in volume of the glacier with the help of already established empirical relationships. Since the region has a large number of such catchments (mountain pockets) therefore understanding one such catchment (e.g. Stok village catchment) will surely help policy making on a larger scale. Acknowledgement: Authors thank UGC UPOE II (project) for the support
Altaf, Arshad; Zahidie, Aysha; Agha, Ajmal
2012-04-10
In 2005, Pakistan was first labeled as a country with concentrated epidemic of Human Immunodeficiency Virus (HIV). This was revealed through second generation surveillance conducted by HIV/AIDS Surveillance Project (HASP). While injection drug users (IDUs) were driving the epidemic, subsequent surveys showed that Hijra (transgender) sex workers (HSWs) were emerging as the second most vulnerable group with an average national prevalence of 6.4%. An exceptionally high prevalence (27.6%) was found in Larkana, which is a small town on the right bank of river Indus near the ruins of Mohenjo-Daro in the province of Sindh. This paper presents the risk factors associated with high prevalence of HIV among HSWs in Larkana as compared to other cities of the country. Data were extracted for secondary analysis from 2008 Integrated behavioral and biological survey (IBBS) to compare HSWs living in Larkana with those living in other cities including Karachi and Hyderabad in Sindh; Lahore and Faisalabad in Punjab; and Peshawar in Khyber Pakhtunkhwa provinces. After descriptive analysis, univariate and multivariate analyses were performed to identify risk factors. P value of 0.25 or less was used to include factors in multivariate analysis. We compared 199 HSWs from Larkana with 420 HSWs from other cities. The average age of HSWs in Larkana was 26.42 (±5.4) years. Majority were Sindhi speaking (80%), uneducated (68%) and unmarried (97%). In univariate analysis, factors associated with higher prevalence of HIV in Larkana included younger age i.e. 20-24 years (OR: 5.8, CI: 2.809-12.15), being unmarried (OR: 2.4, CI: 1.0-5.7), sex work as the only mode of income (OR: 5.5, CI: 3.70-8.2) and longer duration of being involved in sex work 5-10 years (OR: 3.3, CI: 1.7-6.12). In multivariate logistic regression the HSWs from Larkana were more likely to lack knowledge regarding preventive measures against HIV (OR 11.9, CI: 3.4-41.08) and were more prone to use of alcohol during anal intercourse (OR: 6.3, CI: 2.77-17.797). Outreach programs focusing on safer sexual practices and VCT are urgently needed to address the upsurge of HIV among HSWs in Larkana.
NASA Astrophysics Data System (ADS)
Mohd, S.; AL, R.
2017-12-01
Understanding mass balance and volumetric change of glaciers are extremely important in areas where the majority of the population depends on cryospheric sources for the livelihood. Ladakh is one of the coldest and the aridest region of India. The majority of the population live in mountain pockets where the only source of water is snow and glacier melt for agriculture and domestic use. Stok village catchment (52 km2) has seven very small glaciers with an area ranging between 0.2-1.05 km2 at an elevation above 5300m a.s.l (GSI 2009). These glaciers contribute to a stream feeding Stok village of 274 ( 1469 individuals) households and a portion of Chuchot village before joining the Indus River. Ironically very limited studies have been carried out so far in this region, making it even more urgent to monitor the health of the glaciers in this region. With the changing climate, booming of the tourism industry and scarcity of water resources during the spring season, there is a shift in the livelihood of the region towards other option leading to a negative impact on the environment and over exploitation of natural resources. In this study we present analysis of measured annual mass balances for the period 2015-2017 and reconstruction of annual mass balances since 1969 to 2015 of Stok glacier located on the north eastern slope of Zanskar range in Ladakh region of western Himalayas. Direct glaciological methods were used to obtain annual mass balance for 2015-2017 and for reconstruction of annual mass balances, Classical Temperature Index model were used with the help of meteorological data from Indian Meteorological Department. The data gaps were filled with the help of several modelled datasets viz. HAR (High Asia Reanalysis), REMO, and Climate Research Unit (CRU) TS2.1 dataset. We also present catchment wide change in volume of the glaciers since 1969 to 2015. Declassified satellite images and Landsat images were used to obtain the change in volume of the glacier with the help of already established empirical relationships. Since the region has a large number of such catchments (mountain pockets) therefore understanding one such catchment (e.g. Stok village catchment) will surely help policy making on a larger scale. Acknowledgement: Authors thank UGC UPOE II (project) for the support
Raman counting of heavy minerals in turbidites: Indus Fan, IODP Expedition 355
NASA Astrophysics Data System (ADS)
Andò, Sergio
2017-04-01
Raman spectroscopy is an innovative tool with tremendous potential. Thorny long-standing problems that cannot be solved confidently with a polarizing microscope alone, such as the determination of opaque heavy minerals or of detrital grains as small as a few microns, can finally be addressed. Heavy-mineral species commonly found in sediments convey specific information on the genesis of their source rocks and are therefore crucial in provenance diagnoses and palaeotectonic reconstructions. A high-resolution mineralogical study of Indus Fan turbiditic sediments cored during IODP Expedition 355 (Arabian Sea Monsoon) in the Laxmi Basin was carried out to investigate and quantify the different compositional signatures of sand and silt fractions. Silt and sand in turbidite deposits recovered at IODP Sites U1456 and U1457 were chosen as the best natural archive for this source-to-sink study. An integrated mineralogical dataset was obtained by coupling traditional and innovative single-grain heavy-mineral analyses. Reliable quantitative results even in the medium to fine silt classes, which represent the dominant sediment sizes encountered in the recovered cores, were obtained by point-counting of single grains under the microscope assisted by Micro-Raman spectroscopy. Preliminary data from the studied turbidites document rich and diverse heavy-mineral assemblages in both sand and silty-sand fractions. Multiple varietal studies of amphibole, epidote and garnet varieties, representing the dominant heavy-mineral trial in orogenic detritus derived from collided ranges such as the Himalaya, were performed to highlight the wide unexplored potential of Raman spectroscopy when applied to provenance studies. Discriminating within the isomorphous series of garnets is possible, and diverse pyralspite and ugrandite garnets are distinguished by the position of characteristic peaks found at high frequencies and caused by Si-O stretching modes (873-880 cm-1 in ugrandites, 907-926 cm-1 in pyralspites; Bersani et al., 2009; Andò et al., 2009). Raman discrimination of amphibole varieties is also possible and the diagnostic position and shape of the more intense OH stretching bands (frequencies between 3600 and 3700 cm-1) are particularly helpful (Vezzoli et al., 2016). Raman discrimination of epidote-group minerals was tackled by using a new data set of the characteristic vibrational modes in the high-frequency region to facilitate distinction from other silicates and distinguish different varieties. A protocol to separate heavy minerals from the silt fraction, starting from a few grams of sediments only, was developed at the Laboratory for Provenance Studies of Milano-Bicocca. An appropriate data base of Raman spectra of detrital minerals is essential to apply this method routinely in future provenance studies of deep-sea turbidites. Such a new methodological approach plays a potentially key role to differentiate among the diverse Himalayan versus Indian Peninsular sources of detritus and opens up a new frontier for future studies of the largely unexplored deep-marine sedimentary record. Cited references S. Andò, D. Bersani, P. Vignola, E. Garzanti, 2009. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochimica Acta Part A 73, 3, 450-455. D. Bersani, S. Andò, P. Vignola, G. Moltifiori, I.G. Marino, P.P. Lottici, V. Diella, 2009. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochimica Acta Part A 73, 3, 484-491. G. Vezzoli, E. Garzanti, M. Limonta, S. Andò, S. Yang, 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology 261, 177-192.
Practicality of marine protected areas - Can there be solutions for the River Indus delta?
NASA Astrophysics Data System (ADS)
Kidwai, Samina; Fanning, Paul; Ahmed, Waqar; Tabrez, Mohsin; Zhang, Jing; Khan, Muhammad Wasim
2016-12-01
The River Indus delta is the most prominent feature on the Pakistan coast. Owing to its prominence, mangrove ecosystem, historical, ecological and economic significance it is also a proposed Marine Protected Area (MPA). Currently there are no designated MPAs in Pakistan. This paper presents findings of the Fishery Resource Appraisal Project of Pakistan (FRAPP) a fishery stock assessment carried out for the pelagic and demersal fishery resource of Pakistan from 2009 to 2015 and the Creek Survey Program (CSP) which was part of FRAPP. And discusses how the delta suffers from physical stress. The observations from FRAPP indicates deterioration in the mangrove ecosystem, that are evident in the form of loss of biodiversity and biological productivity. The 600 observations from 10 major creeks showed that trawl catches were a mix of generally small size fish and shrimp. Catches averaged less than 1 kg per tow in all the creeks sampled. Catch weights were somewhat higher in Isaro, WadiKhuddi, Paitiani, Dabbo, Richaal Creeks all of which were near mangrove areas and open sea. The most frequently occurring species of shrimps caught in the trawls belonged to 7 major taxa. The Khobar Creek and Upper Wari Creek are notable for the high rates of occurrence of every group except the Caridea. They are also the only two creeks where the freshwater family Paleomonidae is common. The size composition of the important penaeid family of shrimps in all study areas combined suggests that the smallest shrimps (0.5-1.5 cm carapace length CL) enter the creeks in February/March and adults (5-6 cm CL) move out again 6-12 months later. Four species of Penaeus (monodon, japonicus, semisulcatus, merguiensis), two species of Metapenaeus (monoceros, affinis), Parapeneoposis stylifera and Solenosera sp. were caught, all in low abundance, less than 0.5 Kg tow-1. The shrimp catches in the area off the Sindh coast, the catches averaged 4.30 ± 13.40 kg h-1 on the inner shelf (20-50 m) and 1.7 ± 6.6 kg h-1 on the outer shelf (51-200 m). Further east, on the Kori bank, the shrimp catch averaged 4.40 ± 6.6 kg h-1 (inner shelf) and 1.7 ± 6.6 kg h-1 (outer shelf). Penaeus spp. were more abundant in the inshore and Metapenaeus spp. on the outer shelf. The creeks that have a direct connection to the sea and support a natural mangrove stand are significantly more productive than the smaller creeks. Scientific and management questions have arisen that are addressed in order to help revive the delta and hope that this results in a spillover effect that will spread on to the shelf areas. Fisher communities depend heavily on the delta and coastal waters and its natural resources for their livelihood. Their participation and ownership on the resource is over generations, and therefore their involvement is key to proposing any management and conservation initiatives. The study proposes how the delta and its ecosystem in parts should be protected and why and how it is a prime candidate for being declared nationally as protected. This paper proposes a way forward.
NASA Astrophysics Data System (ADS)
Rham, D. J.; Preistley, K.; Tatar, M.; Paul, A.
2006-12-01
We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across Iran and the surrounding region. Data for these measurements comes from field deployments within Iran by the University of Cambridge (GBR) and the Universite Joseph-Fourier (FRA) in conjunction with International Institute of Earthquake Engineering and Seismology (Iran), in addition to data from IRIS and Geofone. 1D path- averaged dispersion measurements have been made for ~5500 source-receiver paths using multiple filter analysis. We combine these observations in a tomographic inversion to produce group velocity images between 10 and 60 s period. Because of the dense path coverage, these images have substantially higher lateral resolution for this region than is currently available from global and regional group velocity studies. We observe variations in short-period wave group velocity which is consistent with the surface geology. Low group velocities (2.00-2.55 km/s) at short periods (10-20 s), for both Rayleigh and Love waves are observed beneath thick sedimentary deposits; The south Caspian Basin, Black Sea, the eastern Mediterranean, the Persian Gulf, the Makran, the southern Turan shield, and the Indus and Gangetic basins. Somewhat higher group velocity (2.80-3.15 km/s for Rayleigh, and 3.00-3.40 km/s for Love) at these periods occur in sediment poor regions, such as; the Turkish-Iranian plateau, the Arabian shield, and Kazakhstan. At intermediate periods (30-40 s) group velocities over most of the region are low (2.65-3.20 km/s for Rayleigh, and 2.80-3.45 km/s for love) compared to Arabia (3.40-3.70 km/s Rayleigh, 3.50-4.0 km/s Love). At longer periods (50-60 s) Love wave group velocities remain low (3.25-3.70 km/s) over most of Iran, but there are even lower velocities (2.80-3.00 km/s) still associated with the thick sediments of the south Caspian basin, the surrounding shield areas have much higher group velocities (3.90-4.45 km/s) at these periods. A similar pattern is seen for longer period Rayleigh waves, with low velocities (2.85-3.60 km/s) beneath the Alpine-Himalaya belt, compared to the velocities (3.80-4.10 km/s) of the Turan and Arabian shields, to the north and south respectively, no large anomaly beneath the south Caspian is observed for these longer period Rayleigh waves.
Food security, irrigation, climate change, and water scarcity in India
NASA Astrophysics Data System (ADS)
Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.
2015-12-01
This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the annual reductions in welfare will be about 24.3 billion for 2008 to 2030. This study highlights the importance of considering the interplay between climate and water availability in assessments of food security.
Estimating changing snow water resources over the Himalaya from remote sensing at the weekly scale
NASA Astrophysics Data System (ADS)
Ackroyd, C.; Skiles, M.
2017-12-01
Water resources in South Asia are critically dependent on High Mountain Asia, namely as the headwaters for the Indus, Ganges, and Brahmaputra River Basins. For water and economic security it is important to understand how the natural snow water reservoir is changing at a time scale that is relevant for water management, which can most feasibly be achieved across this vast and complex landscape through remote sensing. Here we present results from recent efforts to develop an optimal method that combines MODIS fractional snow covered area (MODSCAG) with retrievals of SWE from space borne microwave data (AMSR2) over the Hindu Kush Himalaya, which is further combined with MODIS dust radiative forcing (MODDRFS) to monitor rate of snow darkening, and provide a simple snowmelt metric that informs the contribution to melt by light absorbing particulates like dust and black carbon. For data consistency we are using 8 day composites of all products, and therefore the difference from time step to time step is a weekly, first order approximation, of the amount of SWE lost or gained from the region. MODIS retrievals are valuable for studying the hydrology of South Asia because there are mature sub kilometer scale products for the reflectance and fractional extent of the snow cover, the melt from which is mainly controlled by net solar radiation. The value of retrievals of SWE from space borne microwave data is less well established due to numerous sources of error (e.g. grain size and density, forest obscuration, penetration depth reduction, saturation) and the coarse 25 km spatial scale, which cannot capture the variation in SWE at the scale of individual mountain massifs. Despite these limitations it is currently the only available satellite based SWE product. This research effort is part of a larger NASA-SERVIR project that aims to join SWE estimates from MODIS and AMSR2, subsurface water storage variations from GRACE, and the RAPID river routing model to assess water resource variability at the management scale in South Asia and then transfer knowledge, and share developed tools and datasets, to local stakeholders.
Durrani, N.A.; Warwick, Peter D.
1991-01-01
Field work drilling, and other related studies carried out from 1985 to 1988 to assess the quantity and quality of the coal resources of southern Sindh. Sixty-eight holes drilled in the Lakhra/Jherruck, Thatta, and Indus East coal fields indicate that presently known and mined coal fields in southern Sindh are not isolated coal occurrences. Rather, much of southern Sindh, including the Thar Desert, is underlain by strata that contain coal beds.More than 400 core and mine samples were collected for proximate and ultimate analysis and determination of major, minor and trace elements; also, lithologie logs were prepared from description of rock cuttings and core. Original coal resources of 1,080 million tones have been estimated for 7 out of 9 coal zones in parts of the Lakhra area, where coal-bed thicknesses range from a few centimeters to 5 m. In the Sonda/Jherruk area, 3,700 million tones of coal have been identified, the thickest coal bed intercepted being 6.3 meters. The apparent rank of the coal in these fields ranges from lignite A to sub-bituminous C. Averaged analytical results on an as received basis indicate the coal beds contain 28.4 % moisture, 18,3 % ash, 4.7 % sulfur, 25,2 % fixed carbon, 27.9 % volatile matter, and 33.1% oxygen. Average calorific value for Lakhra coal samples is about 3,660 Kcal/kg, whereas that of Sonda/Jherruk samples is about 3,870 Kcal/kg. Geophysical logs were obtained for the drill holes, and cores and rock cuttings are available from the GSP for further study and reference.The second phase of the project began in 1987 with surface exploration in the Salt Range coal field of Punjab Province, the Sor Range and Khost-Sharig-Harnai coal fields of Baluchistan, and the Makarwal and Cherat coal fields of NWFP. These are briefly discussed here.
NASA Astrophysics Data System (ADS)
Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.
2015-12-01
Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.
NASA Astrophysics Data System (ADS)
Tsay, S. C.; Holben, B. N.
2016-12-01
All major rivers that run through densely populated Asia (i.e., Yangtze, Yellow in China; Mekong in Southeast Asian peninsula; Brahmaputra, Ganges, Indus in Indian subcontinent) originate in High Mountain Asia (HMA) and are fed by the seasonal melt of snowpack and glaciers. Although varying greatly in space and time, the overall snowpack/ glaciers in the HMA are losing mass and retreating at an accelerated rate (e.g., Kulkarni et al., 2007; Kehrwald et al., 2008), as revealed from recent observations. This situation poses an imminent danger to the water supply and environmental hazards (e.g., soil erosion, glacial-lake-outburst flood) not only to regional inhabitants, but also to the global ecosystem through feedback mechanisms. Comprehensive regional-to-global assimilation models, advancing in lockstep with the advent of satellite observations (e.g., MODIS-/CERES-like sensors) and complementary surface measurements (e.g., AERONET), are playing an ever-increasing role in developing mitigation strategies. However, the complex characteristics of HMA, such as its ragged terrain, atmospheric inhomogeneity, snow susceptibility, and ground-truth accessibility, introduces difficulties for the aforementioned research tools to retrieve/assess radiative forcing on snow/ice melting with a high degree of fidelity. In terms of quantifying radiative forcing, the key components are transport/evolution of light-absorbing aerosols (e.g., dust, black carbon) aloft, the surface solar/terrestrial irradiance budget, and snow reflectivity/absorptivity with/without impurities. The RAJO-MEGHA (Sanskrit for Dust-Cloud) project is an initiative on the integrated (aerosols, clouds, and precipitation) measurements in the vicinity of HMA (e.g., Indo-Gangetic Plain, Himalaya-Tibetan Plateau). We will discuss an array of ground-based (e.g., AERONET, MPLNET, SMARTLabs, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season. Close collaboration with other international programs, such as EvK2-CNR, ICIMOD, ITPCAS in the region, is anticipated.
Hemphill, Brian E; Mallory, J P
2004-07-01
Numerous Bronze Age cemeteries in the oases surrounding the Täklamakan Desert of the Tarim Basin in the Xinjiang Uyghur Autonomous Region, western China, have yielded both mummified and skeletal human remains. A dearth of local antecedents, coupled with woolen textiles and the apparent Western physical appearance of the population, raised questions as to where these people came from. Two hypotheses have been offered by archaeologists to account for the origins of Bronze Age populations of the Tarim Basin. These are the "steppe hypothesis" and the "Bactrian oasis hypothesis." Eight craniometric variables from 25 Aeneolithic and Bronze Age samples, comprising 1,353 adults from the Tarim Basin, the Russo-Kazakh steppe, southern China, Central Asia, Iran, and the Indus Valley, are compared to test which, if either, of these hypotheses are supported by the pattern of phenetic affinities possessed by Bronze Age inhabitants of the Tarim Basin. Craniometric differences between samples are compared with Mahalanobis generalized distance (d2), and patterns of phenetic affinity are assessed with two types of cluster analysis (the weighted pair average linkage method and the neighbor-joining method), multidimensional scaling, and principal coordinates analysis. Results obtained by this analysis provide little support for either the steppe hypothesis or the Bactrian oasis hypothesis. Rather, the pattern of phenetic affinities manifested by Bronze Age inhabitants of the Tarim Basin suggests the presence of a population of unknown origin within the Tarim Basin during the early Bronze Age. After 1200 B.C., this population experienced significant gene flow from highland populations of the Pamirs and Ferghana Valley. These highland populations may include those who later became known as the Saka and who may have served as "middlemen" facilitating contacts between East (Tarim Basin, China) and West (Bactria, Uzbekistan) along what later became known as the Great Silk Road. Copyright 2004 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Forsythe, N. D.; Fowler, H.; Pritchard, D.
2016-12-01
High mountain Asia (HMA) constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area will experience rapid demographic growth and socio-economic development for the next few decades compounding pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative. Multiple international modelling centres have contributed RCM experiments for the CORDEX South Asia domain. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically on the northwest Upper Indus basin (NW UIB) which covers the bulk of the Karakoram range. Within this subdomain we use climatologies derived from local observations and meteorological reanalyses (ERA-Interim, NASA MERRA-2, HAR)as benchmarks for inter-comparison of individual CORDEX South Asia ensemble members skill in reproducing seasonality and spatial gradients (orographic precipitation profile, temperature lapse rates). Validation of individual CORDEX South Asia ensemble members to this level of detail is indispensable because discontinuities - e.g. differences in latent heat regimes (fusion versus vaporisation) - abound in mountain environments. These discontinuities may undermine widely used statistical approaches (e.g. change factors) used for downscaling and bias correction of future climate projections to locally observed conditions.
South Asia transboundary water quality monitoring workshop summary report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.
2003-04-01
The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regionalmore » Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of sites within the region at which water quality data are to be collected; (4) instituting a data and information collection and sharing process; and, (5) training of partners in the use of water quality monitoring equipment.« less
NASA Astrophysics Data System (ADS)
Felfelani, F.; Pokhrel, Y. N.
2016-12-01
Hydrological models and data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) change; however, both have disadvantages that necessitate the integrated use of them. While GRACE doesn't disintegrate the vertical storage into its components, most models do not account for human activities. Here we use two Land Surface Models (LSMs), i.e., HiGW-MAT and PCRGLOBWB that fully couple natural and human drivers of changes in water cycle, explicitly simulating the changes in various TWS compartments. We first evaluate the models performance with GRACE observations. Then, we quantify the human footprint over global river basins located in different geographic and climate regions. To quantify human impacts, a new framework is proposed based on the GRACE observations (representing both climate variability and human activities) together with the natural simulation of LSMs using water budget equation (P-ET-R; P for precipitation, ET for evapotranspiration, and R for runoff). Finally, we examine the uncertainty in TWS simulations arising from the uncertainties in forcing data. Results indicate that, in snow-dominated regions, PCRGLOBWB generally fails to reproduce neither the interannual variability of observed TWS nor the seasonal cycle, while HiGW-MAT model shows significantly better results. In basins with human signatures, PCRGLOBWB generally shows better agreement with GRACE compared to HiGW-MAT. It is found that HiGW-MAT tends to overestimate groundwater depletion in basins with human impacts (e.g., Amudarya, Colorado, Euphrates and Indus), which results in larger negative interannual TWS trend compared to GRACE. Euphrates and Ganges river basins experience the highest human-induced TWS deficit rates (2.08 cm/yr and 1.94 cm/yr, respectively) during the simulation period of 2002-2010. Uncertainty analysis of results from the same model but with different forcing data suggests a high standard deviation in the order of 10 cm/yr.
NASA Astrophysics Data System (ADS)
Krishna, M. S.; Prasad, M. H. K.; Rao, D. B.; Viswanadham, R.; Sarma, V. V. S. S.; Reddy, N. P. C.
2016-01-01
Coastal regions are highly productive due to the nutrients largely supplied by rivers. To examine the contribution of dissolved inorganic nutrients (DIN) by Indian rivers to coastal waters, data were collected near the freshwater heads of 27 monsoonal rivers of peninsular India during three weeks in late July to mid-August, the middle of the principal runoff period of the southwest monsoon of 2011. Twelve researchers in four groups, equipped with car and portable laboratory equipment, sampled mid-stream of each estuary using mechanized boat, and filtered and partly analyzed the water in the evening. The estimated exports were 0.22 ± 0.05, 0.11 ± 0.03, and 1.03 ± 0.26 Tg yr-1 for dissolved inorganic nitrogen, phosphorus and silicate, respectively. Higher amounts of DIN reach the Bay of Bengal than the Arabian Sea due to the higher volume (∼76%) of discharge to the former. In contrast, the export of dissolved inorganic nitrogen is almost same to the Bay of Bengal (0.12 ± 0.03 Tg yr-1) and Arabian Sea (0.10 ± 0.02 Tg yr-1) principally due to the polluted Narmada and Tapti rivers in the northwest. Including input from the glacial rivers, Ganges, Brahmaputra and Indus, it is estimated that the northern Indian Ocean receives ∼1.84 ± 0.46, 0.28 ± 0.07 and 3.58 ± 0.89 Tg yr-1 of nitrate, phosphate and silicate, respectively, which are significantly lower than the earlier estimates of DIN export from the Indian rivers based on DIN measured in the mid or upstream rivers. Such low fluxes in this study were attributed to efficient retention/elimination of DIN (∼91%) before reaching the coastal ocean. Hence, this study suggests that the importance of sampling locations for estimating nutrient fluxes to the coastal ocean. Riverine DIN export of 1.84 ± 0.46 Tg yr-1 would support 12.2 ± 3.1 Tg C yr-1 of new production in coastal waters of the northern Indian Ocean that results in a removal of 12.2 ± 3.1 Tg atmospheric CO2 yr-1.
Role of sub-regional variations on melting Response of Indian-Himalayan Glaciers
NASA Astrophysics Data System (ADS)
Tayal, S.; Hasnain, S. I.
2010-12-01
Glaciers play a crucial role in maintaining ecosystem stability as they act as buffers and regulate the runoff water supply from high mountains to the plains during both dry and wet spells. Retreat of Hindu Kush-Himalaya-Tibetan glaciers is one of the major environmental problems facing the south Asian and south-east Asian region. The Himalayan mountain range spans 2500 km east to west and includes diverse cultures of five countries (Afghanistan, Pakistan, India, Tibet (China), Nepal, Bhutan) and a range of weather patterns, which has been strongly affected by regional climate change. The glaciers of Indian Himalayan ranges covers an area of 19000 km2 contains over 9500 glaciers and feed major perennial river systems like Indus, Ganges, Brahmaputra, and sustain the livelihood of over 0.5 billion south Asians. Glaciers are melting fast but their response time varies from westerly nourished Kashmir Himalaya glaciers to south-west monsoon nourished Sikkim Himalaya glaciers based on regional climatic variations. Changes in mass balance of a glacier are considered as the most direct representative of the impacts of meteorological parameters on the glacier dynamic responses. A comparative study of mass balance, based on field measurements techniques is being conducted on two benchmark glaciers in the Indian Himalaya. The glaciers currently being monitored are Kolahoi glacier (340 07 - 340 12 N: 750 16 - 750 23E), Kashmir Himalaya and E.Rathong glacier (270 33 - 480 36 N: 880 06 - 880 08 E), Sikkim Himalaya. One year mass balance results (2008-2009) for both the benchmark glaciers are now available and are being presented. Mass balance for Kolahoi glacier located in sub-tropical to temperate setting and nourished by westerly system show range from -2.0 m.w.e. to -3.5 m.w.e. per annum. Whereas, the E. Rathong glacier located in tropical climatic settings and nourished by SW monsoon system show range from -2.0 m.w.e. to -5.0 m.w.e. per annum. The (2009/2010) mass balance data is being processed and will be presented during the AGU workshop on Third Pole glaciers. The results show that the global climate change impacts are widespread over Indian Himalaya however, local geographic and climatic settings play a dominating influence on the melting behaviour of these glaciers, and there exists a sharp gradient in rate of melting from western to eastern Himalaya.
The impact of conjunctive use of canal and tube well water in Lagar irrigated area, Pakistan
NASA Astrophysics Data System (ADS)
Kazmi, Syed Iftikhar; Ertsen, Maurits W.; Asi, Muhammad Rafique
Introduction of the large gravity irrigation system in the Indus Basin in the late 19th century without a drainage system resulted in a rising water table, which resulted in water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem, the Pakistan government initiated installation of 10,000 tube wells in different areas. This not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the irrigation opportunities motivated framers to install private tube wells. The Punjab area meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tube wells, creating a pattern of private and public water control. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. The field work in the Lagar irrigated area, discussed in this paper, show that within the general picture of conjunctive use of canal water and groundwater, there is a clear spatial pattern between upstream and downstream areas, with upstream areas depending much less on groundwater than downstream areas. The irrigation context in the study area proves to be highly complex, with water users having differential access to canal and tube well water, resulting in different responses of farmers with their irrigation strategies, which in turn affect the salinity and water balances on the fields.
Khaire, Devendra; Atkulwar, Ashwin; Farah, Sameera; Baig, Mumtaz
2017-09-01
The Indian wild ass Equus hemionus khur, belonging to ass-like equid branch, inhabits the dry and arid desert of the Little Rann of Kutch, Gujarat. The E. h. khur is the sole survivor of Asiatic wild ass species/subspecies in South Asia. To provide first ever insights into the genetic diversity, phylogeny, and demography of the endangered Indian wild ass, we sampled 52 free-ranging individuals from the Little Rann of Kutch by using a non-invasive methodology. The sequencing of 230 bp in cytochrome b (Cyt b) and displacement loop (D-loop) region revealed that current ∼4000 extant population of Indian wild ass harbours low genetic diversity. Phylogenetic analyses confirmed that E. h. khur, E. h. onager, and E. h. kulan belong to a single strict monophyletic clade. Therefore, we suggest the delimitation of the five E. hemionus subspecies in vogue to a single species E. hemionus. The application of molecular clock confirmed that the Asiatic wild ass had undergone diversification 0.65 Million years ago. Demographic measurements assessed using a Bayesian skyline plot demonstrated decline in the maternal effective population size of the Indian wild ass during different periods; these periods coincided with the origin and rise of the Indus civilization in the northwest of the Indian subcontinent during the Neolithic. In conclusion, maintaining high genetic diversity in the existing isolated population of 4000 Indian wild asses inhabiting the wild ass sanctuary is important compared with subspecies preservation alone.
NASA Astrophysics Data System (ADS)
Mazumder, S.; Tep, Blecy; Pangtey, K. K. S.; Das, K. K.; Mitra, D. S.
2017-08-01
The Gondwanaland assembly rifted dominantly during Late Carboniferous-Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner-Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.
A Carbonate Platform Record of Neogene Paleoenvironmental Changes in the Indian Ocean (Maldives)
NASA Astrophysics Data System (ADS)
Betzler, C.; Kroon, D.; Lindhorst, S.; Reolid, J.; Lüdmann, T.; Eberli, G. P.
2017-12-01
The Maldives Inner Sea is a natural sediment trap which preserves a 25 Myrs record of paleoenvironmental changes in the Indian Ocean. This encompasses records of past changes in sea level, productivity, and circulation, but also of the dust influx. As such, the sedimentary succession, which has been cored during IODP Expedition 359, provides the opportunity to study the evolution and the dynamics of the South Asian Monsoon. This amends the reconstruction developed in other, mainly siliciclastic records such as in the Bengal and Indus fan deposits. Seismic-, downhole-, and core data show that windblown dust has been deposited in the Maldives since 22 Ma. However, from 22 to 13 Ma the sedimentation in the Maldives under a weak monsoon was mainly controlled by sea level changes. At 13 Ma this situation changed, and wind driven currents started to control sedimentation, as reflected by the onset of widespread drift deposits. This is interpreted to reflect a more vigorous atmospheric circulation. Linked to the current onset, there was a rise of productivity and a coeval expansion of the oxygen minimum zone. Changes in magnetic susceptibility during the Late Miocene and Pliocene, as imaged in downhole magnetic susceptibility logs are interpreted to reflect fluctuations of the dust influx, mainly from the Indian subcontinent. The combination of XRF data and non-carbonate grain-size data allows a further and detailed reconstruction of variations in the dust influx and bottom-current changes for the last 4 Myrs.
[EARLY DETECTION OF PREECLAMPSIA].
Todorov, N
2016-01-01
The preeclampsia is one of the most serious complications in the second half of the pregnancy with a high risk of perinatal maternal and neonatal mortality. The study is aiming to determine which pregnant women have a higher risk of developing preeclampsia with a view to the subsequent antenatal care, on the base of the individual factors. From prospectively followed pacients is collected information by a questionnaire and sonographic examination at 11-13 weeks of gestation/w.g./ + 6 days, at the point of biochemical screening implementation. Selected is a group of women with one fetus pregnancy, non-smokers, without chromosomal and structural anomalies of the fetus, excluding those taking prophylactic low-dose of aspirin. The Doppler examination was transabdominaly performed on the ascending branch of the A. Uterina at the level of OICC.Pusatility and resistance index /Pi and Ri/ are bilaterally evaluated and converted to MoM for the relevant age of gestation. The information about the taken values of Pi, Ri, the presence of diastolic incisures and the development of preeclampsia /PE/ or pregnancy indused hypertension /PIH/ is analyzed at 205 pregnant women. Out of them high values of Pi have 9 pregnant women, who subsequently developed PE or PlH. The measurement of Pi at 12-13 weeks of gestation and presence of diastolic incisures have prognostic importance for the development of PE in the later period of pregnancy. The values of Ri, taken at 12-13 weeks of gestation have not essential importance in the forecast of preeclamsia development.
NASA Astrophysics Data System (ADS)
Borges, Joniell; Huh, Youngsook
2007-02-01
The Red (Hong) River straddles southwestern China and northern Vietnam and drains the eastern Indo-Asian collision zone. We collected bed sediments from its tributaries and main channel and report the petrographic point counts of framework grains and major oxide compositions as well as organic and inorganic carbon contents. The Q:F:Rf ratios and Q:F:(L-L c) ratios of the bed-load indicate quartz-poor, mineralogically immature sediments of recycled orogen provenance. The weathering indices based on major oxides — the chemical index of alteration (CIA) and the weathering index of Parker — are also consistent with the recycled sedimentary nature of the bed sediments. Using geographic information system (GIS) we calculated for each sample basin such parameters as temperature, precipitation, potential evapotranspiration, runoff, basin length, area, relief, and areal exposure of igneous, metamorphic and sedimentary rocks. Statistically meaningful correlations are obtained between the two weathering indices, between CIA and sedimentary to metamorphic rock fragments ratio, S / (S + M), and between CIA and sedimentary rock cover, but otherwise correlations are poor. The bed sediments preserve signatures of their provenance, but the effect of weathering is not clearly seen. Subtle differences in the bed sediments are observed between the Red and the Himalayan rivers (Indus, Ganges, and Brahmaputra) as well as between sub-basins within the Red River system and are attributed mainly to differences in lithology.
Holocene aridification of India
Ponton, C.; Giosan, L.; Eglinton, T.I.; Fuller, D.Q.; Johnson, J.E.; Kumar, P.; Collett, T.S.
2012-01-01
Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long-term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity-adapted vegetation from ???4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants after that. The oxygen isotopic composition of planktonic foraminifer Globigerinoides ruber detects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub-millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ???4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water-conservation technology in south India. Copyright 2012 by the American Geophysical Union.
High-P metamorphic rocks from the Himalaya and their tectonic implication ? a review
NASA Astrophysics Data System (ADS)
Jan, M. Qasim
The suture zones bordering the Indian subcontinent on the E, N and W are characterized in several places by the occurrence of ophiolitic complexes and tectonic melanges. High-P metamorphic rocks have recently been discovered in the melanges in Burma, Naga Hills, southern Tibet, eastern and western Ladakh, Kohistan (Jijal, Allai, Shangla) and Khost (Afghanistan). The development of these rocks has an important bearing on the plate tectonics of the Himalaya. The High-P metamorphic rocks belong to prehnite-pumpellyite, blueschist and high-P greenschist facies but extensive garnet-granulites have developed at 35 km depth in Jijal. In the Indus-Zangbo suture zone (IZS) the high-P metamorphism is complemented to the N by low- or medium-P metamorphism and calc-alkaline magmatism in Tibet, Ladakh as well as Kohistan. High-P metamorphism in Jijal has been dated at 104 Ma, in Shangla at 70-100 Ma and in western Ladakh during mid-Cretaceous. Elsewhere, the timing of the high-P metamorphism is not known but a Cretaceous age is inferred. Since collision along the IZS occurred during Eocene, the high-P metamorphism is therefore related to the northwards subduction of the neo-Tethyan lithosphere under Tibet or late Mesozoic magmatic arcs. The timing of high-P metamorphism coincides with the breakup of India from Gondwanaland and its rapid northwards movement, whereas the tectonic melanges may principally have formed during Eocene collision and obduction.
NASA Astrophysics Data System (ADS)
Critelli, Salvatore; De Rosa, Rosanna; Platt, John Paul
1990-10-01
Detrital modes of Early Miocene to Early Pliocene sandstones from the Makran accretionary wedge in southwest Pakistan show a mainly quartzolithic composition with an evolution from the transitional recycled to quartzose recycled. The lithic types, however, indicate two distinct petrofacies. Accreted abyssal plain turbidites have Qp 11Lvm 27Lsm 62 and Lm 39Lv 27Ls 34, showing a predominant supply from sedimentary and metasedimentary source terranes whereas slope and shelf facies sediments deposited on the accretionary wedge have Qp 7Lvm 47Lsm 47 and Lm 22Lv 48Ls 30 due to an increase of volcanic detritus. The detrital modes of the abyssal plain sediments suggest a recycled orogenic source, probably the Himalayan collision zone. The facies and longitudinal dispersal pattern suggest deposition in an Oligo-Miocene analogue of the present Indus fan. The sediment must have been transported across strike, parallel to the transform structure linking the Makran wedge to the Himalayas (Chaman-Ornach Nal fault system), and fed into the fan at the western end of the subduction zone. The detrital modes also show an increase in volcanic detritus with time (Lv/L = 0.27 for the Early Miocene abyssal plain sediments to 0.47 for the slope sequences). This may have been derived from Late Mesozoic volcanic terrains in northern Baluchistan or the Ladakh Himalayas, or more probably from the Early to middle Miocene andesitic volcanic centre in the northern Makran.
Tectonic-erosion coupling? The erosional response to India-Asia collision
NASA Astrophysics Data System (ADS)
Najman, Y.; Henderson, A.; Jenks, D.; Parrish, R.; Horstwood, M.; Foster, G. L.; Green, O.
2009-04-01
In order to use the detrital record as an archive of hinterland evolution, we need to understand the erosional response to tectonics. Collision of India and Asia at ca 50 Ma [1 and refs therein] resulted in the subsequent development of the Himalayan orogen. What was the erosional response to this event? Most basins into which Himalayan detritus may have been deposited have now been researched at least at reconnaissance level. The conclusion reached is that, as yet, there appears to be no evidence of substantial detritus eroded from the southern flanks of the rising Himalayan mountain belt prior to ~40 Ma, 10 My after collision. In the Indus suture zone basin, detritus is predominantly sourced from the Trans-Himalayan arc of the northern, Asian plate, rather than the Himalaya to the south [2, 3]. In the peripheral foreland basin, the oldest substantial Himalayan-derived detritus is dated at <40 Ma [4]. To the west, in the Katawaz remnant ocean basin and offshore Indus Fan, earliest Himalayan derived deposits are poorly dated, insubstantial, and/or predominantly derived from north of the suture zone rather than the rising Himalayan thrust belt to the south [5, 6]. In the east, earliest Himalayan-derived material is dated at 38 Ma in the Bengal remnant ocean basin [7], and "post-Paleocene" in the Bengal Fan [8 and refs therein]. Paleogene sediments of the Sunda Arc accretionary prism, originally thought to be offscraped Himalayan-derived Bengal Fan [9, 10] are now shown to be predominantly derived from the arc to the east [11, 12]. What could be reason for this ~10 My delay between collision and first documented products of erosion from the mountain belt? The delay has been explained by suggesting collision occurred considerably later than commonly believed [13]. However, this is at variance with provenance data which show that material of Asian origin was deposited on the Indian plate by 50 Ma [14, 15] A second possibility is that Palaeogene Himalayan-derived detritus may lie beneath the overthrust fold-thrust belt. A third possibility is that the time gap does in fact represent a true delayed response to erosion after collision. This idea is consistent with the evidence of a transition from slow to exponentially increasing accumulation rates in offshore basins adjacent to the Himalaya around the start of the Oligocene. A 10 million year delayed response to erosion following India-Asia collision has been ascribed to either climatic causes or subdued topography in the early stages of collision, the result of a number of proposed mechanisms [16-18]. Given the bedrock evidence for metamorphism in the Himalaya that requires early crustal thickening [19, 20], we would favour those models that allow early crustal thickening, but retard erosion or uplift, if indeed early erosion was negligible. Such a study illustrates how the detrital record can inform and constrain models of crustal deformation, but also serves to show how incomplete our understanding of the principles of tectonic-erosion coupling currently stand. 1. Hodges, K.V.. GSA Bull, 2000. 112 p. 324-350. 2. Henderson, A., et al., (abstr). EGU 2009; this conference.. 3. Wu, F.Y., et al Tectonics, 2007. 26. 4. Najman, Y., et al., Nature, 2001. 410(6825): p. 194-197. 5. Clift, P.D., et al., GSA Bull, 2001. 113: p. 1039-1051. 6. Qayyum, M., et al. GSA Bull, 2001. 113: p. 320-332. 7. Najman, Y., et al., EPSL, 2008. 273: p. 1-14. 8. Curray, J.R. et al. Marine & Petrol. Geol., 2003. 19: p. 1191-1223. 9. Curray, J.R., J. Asian Earth Sci., 2005. 25: p. 187-232. 10. Curray, J.R., et al., AAPG Memoir, J.. Watkins, Ed.. 1979. p. 189-198. 11. Allen, R., et al., GSA Spec. Pap, A. Draut & P.D. Clift, Eds. 2008. p. 223-255. 12. Allen, R., et al., J. Geol. Soc. London, 2008. 165: p. 1045-1057. 13. Aitchison, J.C., J.R. Ali, and A.M. Davis, J. Geophys. Res., 2007. 112: p. B05423. 14. Critelli, S. & E. Garzanti, Sed. Geol, 1994. 89: p. 265-284. 15. Jenks, D., et al., (abstr.). EGU 2009; this conference. 16. Guillot, S., et al., G3 2003. 4: p. 1064. 17. Kohn, M.J. & C.D. Parkinson, Geology, 2002. 30: p. 591-594. 18. Metivier, F., et al., Geophys J. Internat, 1999. 137: p. 280-318. 19. Foster, G., et al., EPSL, 2000. 181: p. 327-340. 20. Vance, D. & N. Harris, Geology, 1999. 27: p. 395-398.
Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.
Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing
2016-11-01
Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.
Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar
2012-01-01
Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.
The water footprint of sweeteners and bio-ethanol.
Gerbens-Leenes, Winnie; Hoekstra, Arjen Y
2012-04-01
An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce resource. This study aims to assess the green, blue and grey water footprint (WF) of sweeteners and bio-ethanol from sugar cane, sugar beet and maize in the main producing countries. The WFs of sweeteners and bio-ethanol are mainly determined by the crop type that is used as a source and by agricultural practise and agro-climatic conditions; process water footprints are relatively small. The weighted global average WF of sugar cane is 209 m(3)/tonne; for sugar beet this is 133 m(3)/tonne and for maize 1222 m(3)/tonne. Large regional differences in WFs indicate that WFs of crops for sweeteners and bio-ethanol can be improved. It is more favourable to use maize as a feedstock for sweeteners or bio-ethanol than sugar beet or sugar cane. The WF of sugar cane contributes to water stress in the Indus and Ganges basins. In the Ukraine, the large grey WF of sugar beet contributes to water pollution. In some western European countries, blue WFs of sugar beet and maize need a large amount of available blue water for agriculture. The allocation of the limited global water resources to bio-energy on a large scale will be at the cost of water allocation to food and nature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kirsch, Thomas; Siddiqui, Muhammad Ahmed; Perrin, Paul Clayton; Robinson, W Courtland; Sauer, Lauren M; Doocy, Shannon
2013-07-01
Ascertain recipients' level of satisfaction with humanitarian response efforts. A multi-stage, 80×20 cluster sample randomized survey (1800 households) with probability proportional to size of households affected by the 2010 Indus river floods in Pakistan. The floods affected over 18 million households and led to more than 8 billion USD in response dollars. Less than 20% of respondents reported being satisfied with response, though a small increase in satisfaction levels was observed over the three time periods of interest. Within the first month, receipt of hygiene items, food and household items was most strongly predictive of overall satisfaction. At 6 months, positive receipt of medicines was also highly predictive of satisfaction. The proportion of households reporting unmet needs remained elevated throughout the 6-month period following the floods and varied from 50% to 80%. Needs were best met between 1 and 3 months postflood, when response was at its peak. Unmet needs were the greatest at 6 months, when response was being phased down. Access-limiting issues were rarely captured during routine monitoring and evaluation efforts and seem to be a significant predictor in dissatisfaction with relief efforts, at least in the case of Pakistan, another argument in favor of independent, population-based surveys of this kind. There is also need to better identify and serve those not residing in camps. Direct surveys of the affected population can be used operationally to assess ongoing needs, more appropriately redirect humanitarian resources, and ultimately, judge the overall quality of a humanitarian response.
Complex Engineered Systems: A New Paradigm
NASA Astrophysics Data System (ADS)
Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer
Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.
Hydrological modelling improvements required in basins in the Hindukush-Karakoram-Himalayas region
NASA Astrophysics Data System (ADS)
Khan, Asif; Richards, Keith S.; McRobie, Allan; Booij, Martijn
2016-04-01
Millions of people rely on river water originating from basins in the Hindukush-Karakoram-Himalayas (HKH), where snow- and ice-melt are significant flow components. One such basin is the Upper Indus Basin (UIB), where snow- and ice-melt can contribute more than 80% of total flow. Containing some of the world's largest alpine glaciers, this basin may be highly susceptible to global warming and climate change, and reliable predictions of future water availability are vital for resource planning for downstream food and energy needs in a changing climate, but depend on significantly improved hydrological modelling. However, a critical assessment of available hydro-climatic data and hydrological modelling in the HKH region has identified five major failings in many published hydro-climatic studies, even those appearing in reputable international journals. The main weaknesses of these studies are: i) incorrect basin areas; ii) under-estimated precipitation; iii) incorrectly-defined glacier boundaries; iv) under-estimated snow-cover data; and v) use of biased melt factors for snow and ice during the summer months. This paper illustrates these limitations, which have either resulted in modelled flows being under-estimates of measured flows, leading to an implied severe water scarcity; or have led to the use of unrealistically high degree-day factors and over-estimates of glacier melt contributions, implying unrealistic melt rates. These effects vary amongst sub-basins. Forecasts obtained from these models cannot be used reliably in policy making or water resource development, and need revision. Detailed critical analysis and improvement of existing hydrological modelling may be equally necessary in other mountain regions across the world.
Sethi, Khushboo; Siwach, Priyanka; Verma, Surender Kumar
2015-10-01
Among the four cultivated cotton species, G. hirsutum (allotetraploid) presently holds a primary place in cultivation. Efforts to further improve this primary cotton face the constraints of its narrow genetic base due to repeated selective breeding and hence demands enrichment of diversity in the gene pool. G. arboreum (diploid species) is an invaluable genetic resource with great potential in this direction. Based on the dispersal and domestication in different directions from Indus valley, different races of G. arboreum have evolved, each having certain traits like drought and disease resistance, which the tetraploid cotton lack. Due to lack of systematic, race wise characterization of G. arboreum germplasm, it has not been explored fully. During the present study, 100 polymorphic SSR loci were used to genotype 95 accessions belonging to 6 races of G. arboreum producing 246 polymorphic alleles; mean number of effective alleles was 1.505. AMOVA showed 14 % of molecular variance among population groups, 34 % among individuals and remaining 52 % within individuals. UPGMA dendrogram, based on Nei's genetic distance, distributed the six populations in two major clusters of 3 populations each; race 'bengalense' was found more close to 'cernuum' than the others. The clustering of 95 genotypes by UPGMA tree generation as well as PCoA analysis clustered 'bengalense' genotypes into one group along with some genotypes of 'cernuum', while rest of the genotypes made separate clusters. Outcomes of this research should be helpful in identifying the genotypes for their further utilization in hybridization program to obtain high level of germplasm diversity.
Long-term variability and changes of the precipitation regime in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Lee, Seungho
2014-05-01
This paper presents an examination of precipitation amounts in Pakistan. For this purpose, the annual precipitation and the annual number of precipitation days have been calculated, and a study aimed at investigating precipitation intensity and decadal changes was conducted. Precipitation trends have been calculated using a simple linear regression method and Kendall's tau-based test. To assess stability and differences, a 10-year span was determined for each precipitation region for the period of 1951-2010. This study focused on the three CLINO (Climatological Normal) periods, namely 1961-1990, 1971-2000, and 1981-2010 (the latest global standard normal period). Results confirm the gradual increase of annual precipitation in southwestern coastal areas of Pakistan and Cholistan desert. With regard to annual number of precipitation days, in the central part of the country negative trends were evident for wet days (with precipitation ≧ 0.1 mm), while the number of rainy days (with precipitation ≧ 1 mm) displayed a prominent positive trend. The series of the precipitation intensity gives evidence of a minor decrease in the Baluchistan Plateau, sub-Himalayas, and Potwar Plateau during the study period. Examination of secular trends evidenced that the Murree hills, the upper Indus plain, and the northwestern Baluchistan plateau have had shifts in their precipitation regime towards drier conditions, while the central plain, the northwestern mountains, and the southern part of the country are shifting in their precipitation regime towards wetter conditions. Description among the means of precipitation amounts suggests that "normal" precipitation data for various national projects should be calculated for the last 30 years.
A shared Y-chromosomal heritage between Muslims and Hindus in India.
Gutala, Ramana; Carvalho-Silva, Denise R; Jin, Li; Yngvadottir, Bryndis; Avadhanula, Vasanthi; Nanne, Khaja; Singh, Lalji; Chakraborty, Ranajit; Tyler-Smith, Chris
2006-11-01
Arab forces conquered the Indus Delta region in 711 AD: and, although a Muslim state was established there, their influence was barely felt in the rest of South Asia at that time. By the end of the tenth century, Central Asian Muslims moved into India from the northwest and expanded throughout the subcontinent. Muslim communities are now the largest minority religion in India, comprising more than 138 million people in a predominantly Hindu population of over one billion. It is unclear whether the Muslim expansion in India was a purely cultural phenomenon or had a genetic impact on the local population. To address this question from a male perspective, we typed eight microsatellite loci and 16 binary markers from the Y chromosome in 246 Muslims from Andhra Pradesh, and compared them to published data on 4,204 males from East Asia, Central Asia, other parts of India, Sri Lanka, Pakistan, Iran, the Middle East, Turkey, Egypt and Morocco. We find that the Muslim populations in general are genetically closer to their non-Muslim geographical neighbors than to other Muslims in India, and that there is a highly significant correlation between genetics and geography (but not religion). Our findings indicate that, despite the documented practice of marriage between Muslim men and Hindu women, Islamization in India did not involve large-scale replacement of Hindu Y chromosomes. The Muslim expansion in India was predominantly a cultural change and was not accompanied by significant gene flow, as seen in other places, such as China and Central Asia.
NASA Astrophysics Data System (ADS)
Bowen, M. G.; Kulhanek, D. K.; Lyle, M. W.; Hahn, A.
2017-12-01
Variations in CaCO3 accumulation on the seafloor depend on a number of factors, including productivity of carbonate-producing organisms in the overlying water column, input of siliciclastic material from nearby continents, and changes in ocean chemistry. These factors are affected by variations in tectonics and climate. Here we use X-ray fluorescence (XRF) core scanning data to develop high-resolution chemical profiles calibrated with discrete samples to examine changes in carbonate production and burial in the eastern Arabian Sea. International Ocean Discovery Program (IODP) Expedition 355 cored two sites in the Indus Fan in Laxmi Basin. We scanned the Pleistocene composite sections from both sites at 2 cm resolution ( 150-300 year sampling resolution) using the Avaatech XRF core scanner at the IODP Gulf Coast Repository. In addition, we scanned a hemipelagic interval dated to the late Miocene ( 8 to 6 Ma) that spans the late Miocene climate transition to drier conditions globally, as documented by an expansion in C4 plants. The 2 cm scanning resolution represents 500 years between samples for the upper Miocene section. We used carbonate measurements on discrete samples to calibrate the XRF data, supplemented by analysis using a quantitative benchtop XRF at the University of Bremen. We find large variability in carbonate content in the Pleistocene and upper Miocene, varying from 15-80 wt%, with higher carbonate content correlating with lighter colored sediment. The aluminosilicate composition varies in part because of carbonate dilution but also because of changes in the source of clays and turbidites through the section. We also explore the use of chemical ratios to better understand the variations through the section. Changes in Ca/Fe (biogenic/terrestrial component) and Rb/Zr (fine/coarse grained) match well with visual observation of sediment composition in the cores. We can combine these with the oxygen isotope-derived age model for the Pleistocene section to examine orbital-scale variations in carbonate production and terrigenous input at the sites. We also explore proxies for precipitation (Ti/Ca) and weathering (Fe/K and Al/K) to elucidate changes in monsoon strength during the Pleistocene, although these results are preliminary.
Prehistoric human colonization of India.
Misra, V N
2001-11-01
Human colonization in India encompasses a span of at least half-a-million years and is divided into two broad periods, namely the prehistoric (before the emergence of writing) and the historic (after writing). The prehistoric period is divided into stone, bronze and iron ages. The stone age is further divided into palaeolithic, mesolithic and neolithic periods. As the name suggests, the technology in these periods was primarily based on stone. Economically, the palaeolithic and mesolithic periods represented a nomadic, hunting-gathering way of life, while the neolithic period represented a settled, food-producing way of life. Subsequently copper was introduced as a new material and this period was designated as the chalcolithic period. The invention of agriculture, which took place about 8000 years ago, brought about dramatic changes in the economy, technology and demography of human societies. Human habitat in the hunting-gathering stage was essentially on hilly, rocky and forested regions, which had ample wild plant and animal food resources. The introduction of agriculture saw it shifting to the alluvial plains which had fertile soil and perennial availability of water. Hills and forests, which had so far been areas of attraction, now turned into areas of isolation. Agriculture led to the emergence of villages and towns and brought with it the division of society into occupational groups. The first urbanization took place during the bronze age in the arid and semi-arid region of northwest India in the valleys of the Indus and the Saraswati rivers, the latter represented by the now dry Ghaggar-Hakra bed. This urbanization is known as the Indus or Harappan civilization which flourished during 3500-1500 B.C. The rest of India during this period was inhabited by neolithic and chalcolithic farmers and mesolithic hunter-gatherers. With the introduction of iron technology about 3000 years ago, the focus of development shifted eastward into the Indo-Gangetic divide and the Ganga valley. The location of the Mahabharata epic, which is set in the beginning of the first millennium B.C., is the Indo-Gangetic divide and the upper Ganga-Yamuna doab (land between two rivers). Iron technology enabled pioneering farmers to clear the dense and tangled forests of the middle and lower Ganga plains. The focus of development now shifted further eastward to eastern Uttar Pradesh and western Bihar which witnessed the events of the Ramayana epic and rise of the first political entities known as Mahajanapadas as also of Buddhism and Jainism. The second phase of urbanization of India, marked by trade, coinage, script and birth of the first Indian empire, namely Magadha, with its capital at Pataliputra (modern Patna) also took place in this region in the sixth century B.C. The imposition by Brahmin priests of the concepts of racial and ritual purity, pollution, restrictions on sharing of food, endogamy, anuloma (male of upper caste eligible to marry a female of lower caste) and pratiloma (female of upper caste ineligible to marry a male of lower caste) forms of marriage, karma (reaping the fruits of the actions of previous life in the present life), rebirth, varnashrama dharma (four stages of the expected hundred-year life span) and the sixteen sanskaras (ceremonies) on traditional occupational groups led to the birth of the caste system - a unique Indian phenomenon. As a consequence of the expansion of agriculture and loss of forests and wildlife, stone age hunter-gatherers were forced to assimilate themselves into larger agriculture-based rural and urban societies. However, some of them resisted this new economic mode. To this day they have persisted with their atavistic lifestyle, but have had to supplement their resources by producing craft items or providing entertainment to the rural population.
NASA Astrophysics Data System (ADS)
Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.
2017-12-01
This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test
Accessing The Fourth Dimension In Orogenic Reconstruction Using Granitoid Thermobarometry
NASA Astrophysics Data System (ADS)
Alexander, E.; Wielicki, M. M.; Harrison, M.; Lovera, O. M.; DePaolo, D.
2016-12-01
Tectonic models for the Tibetan-Himalayan orogen predict very different crustal thickness histories, providing a possible test of these various hypotheses. However, reconstructing the evolution of the Tibetan-Himalayan crust is a four-dimensional problem. Knowing the 2D distribution of U-Pb zircon dated samples permits insights into changes in magmatic style, but understanding of N-S thickening history requires depth information. In S. Tibet, voluminous granitoids emplaced between 200-20 Ma provides a spatiotemporal window into the tectonic evolution of the Tibetan crust. A thermoisotopic model utilizing systematic N-S ɛNd variations as a crustal thickness proxy indicates that, at the time of collision, the crust beneath the Indus-Tsangpo suture was relatively thin ( 20 km), increasing to >45 km 100 km to the N. Given evidence of little post-50 Ma upper-crustal shortening, the Tibetan crust appears to have reached its present 85 km thickness via 20 km of tectonic accretion, 15 km of juvenile magma input, as well as the underthrusted Indian crust. Since zircon ɛHf correlates well with whole rock ɛNd, using it together with in situ δ18O, Ti-thermometry and trace element analyses, has provided a refined picture of the relative roles of assimilation and recharge in granitoid formation. To understand the spatiotemporal progression of thickening, we utilize two thermobarometers to reconstruct crystallization depths: Al-in-hornblende and Ti-in-quartz. While Al-in-hornblende has been more widely tested on igneous systems, our data show that it may be sensitive to closure effects during high T storage and hydrothermal alteration. In contrast, Ti-in-quartz preserves magmatic Ti signatures, and quartz's exclusive structure and resistance to alteration provides a more robust proxy for emplacement conditions. Using these thermobarometers in conjunction with Ti-in-zircon thermometry can establish emplacement depth of syn-collisional Lhasa block granites providing the missing dimension in reconstructing orogenic histories. Together, our data show that the southern margin of Asia remained thin (<25 km) until collision began whereas the northern terrane was continuously thick from 200 Ma. This observation reinforces the growing view that Tibet hosted significant topography prior to collision.
Reading Hidden Messages Through Deciphered Manual Alphabets on Classic Artwork
NASA Astrophysics Data System (ADS)
Castronovo, Joseph Anthony, Jr.
1998-10-01
Decipherment is the tool used to uncover several types of hand signs that played vital roles in the creation of hidden messages in classic artwork. A 3,100 B.C. bas-relief of The 'Kaph' Telescope, formerly named The Narmer Palette, and Michaelangelo Buonarrotte's Battle of Cascina of 1506 were two key works of art that show certain similarities even though separated by 4,500 years. It is evident that Renaissance humanists provided artists with certain knowledge of the ancients. Results of incorporating a number of minor works of art showed that the competence of ancient Egyptians, Cretans and Australian Aboriginals, to name a few, as astronomers, was underestimated. Some deciphered Indus seals attested to a global understanding of the universe, with Gemini and the star of Thuban at the center of their attention. Certain forms of secrecy had to be undertaken for various reasons throughout the millennia. Three examples are: (1) In Italy, to keep controversial and truthful teachings discreet and hidden, artists embedded them in artwork long before the plight of Galileo Galilei and his discoveries. (2) Among Jewish Kabbalists, a well-known design was obscured in The Arnolfini Wedding painting for fear it would be lost due to persecution. (3) Michaelangelo Buonarrotte indicated several meanings through the hands of The Statue of Moses. They were overlooked by several societies, including the gesticulating culture of Italy, because they oppressed the value of signed languages. Spatial decipherment may testify to a need for the restoration of a spatial writing system for expanded linguistic accessibility. A 21st century model community for sign language residents and employees will benefit visual learners, particularly visual artists and non-phonetic decipherers, to better uncover, understand and perhaps use ancient hand forms to restore ancient knowledge. Moreover, the National Association of Teaching English (NATE) has recently endorsed the addition of two skills, viewing and visual representing, to the traditional list of reading, writing, speaking and listening. Students will master these two new skills far more effectively when they are exposed to such a signing community.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David
2017-04-01
Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of large-scale circulation influences on sub-regional conditions in terms of their sign, strength and the mechanisms through which it acts, the KV/KZI work substantively advances climate science in this domain. The work also thus provides a new set of criteria for assessing the skill of global circulation models in representation of western HMA climate processes.
Shahab, Asfandyar; Qi, Shihua; Zaheer, Muhammad
2018-06-18
Arsenic (As) contamination in drinking water is a global public health risk. The present study highlighted the geological and anthropogenic causes of As contamination in groundwater (GW) and surface water (SW) and assessment of their potential health risks in Sindh province of Pakistan. Upon analyzing 720 GW and SW samples from 18 different sites, the estimates of As in groundwater and surface water was observed in the range of 0 to 125 and 0 to 35 μg/L with mean values of 46.8 and 15.43 μg/L respectively. Majority of the samples exceeded WHO permissible limit of As (10 μg/L) with higher concentration detected in groundwater samples compared to surface water. Moreover, both of these sample sources were found not potable based on physicochemical characteristics. The results of statistical analysis (correlation analysis, principal component analysis (PCA), and hierarchy cluster analysis (HCA)) indicate that natural mobilization of As in groundwater is believed to be enhanced by the pH-based reductive dissolution of iron hydroxide (FeOH) and competitive sorption of bicarbonate minerals in the presence of microorganisms along with evaporative enrichment while water logging, coal mining, and excessive use of pesticides are believed to be the anthropogenic causes of As enrichment. Furthermore, enormous health risk was associated with As in terms of chronic daily intake (CRI), hazard quotient (HQ), and cancer risk probability (CR) in GW and SW. Mean HQ values in GW were 4.47 mg/kg/day in adults and 3.89 mg/kg/day in children (standard HQ ≤ 1) and was 1.43 and 1.28 mg/kg/day in SW. Mean CR value in both GW and SW was found higher than the safe limit (10 -6 ) having a mean of 2 × 10 -3 in GW and 7 × 10 -4 (mg/kg/day) in SW. These findings suggest that majority of the sampling sites carry serious public health risk due to high As values and hence demands exigent remedial and management measures.
Decades of urban growth and development on the Asian megadeltas
NASA Astrophysics Data System (ADS)
Small, Christopher; Sousa, Daniel; Yetman, Gregory; Elvidge, Christopher; MacManus, Kytt
2018-06-01
The current and ongoing expansion of urban areas worldwide represents the largest mass migration in human history. It is well known that the world's coastal zones are associated with large and growing concentrations of population, urban development and economic activity. Among coastal environments, deltas have long been recognized for both benefits and hazards. This is particularly true on the Asian megadeltas, where the majority of the world's deltaic populations reside. Current trends in urban migration, combined with demographic momentum suggest that the already large populations on the Asian megadeltas will continue to grow. In this study, we combine recently released gridded population density (circa 2010) with a newly developed night light change product (1992 to 2012) and a digital elevation model to quantify the spatial distribution of population and development on the nine Asian megadeltas. Bivariate distributions of population as functions of elevation and coastal proximity quantify potential exposure of deltaic populations to flood and coastal hazards. Comparison of these distributions for the Asian megadeltas show very different patterns of habitation with peak population elevations ranging from 2 to 11 m above sea level over a wide range of coastal proximities. Over all nine megadeltas, over 174 million people reside below a peak population elevation of 7 m. Changes in the spatial extent of anthropogenic night light from 1992 to 2012 show widely varying extents and changes of lighted urban development. All of the deltas except the Indus show the greatest increases in night light brightness occurring at elevations <10 m. At global and continental scales, growth of settlements of all sizes takes the form of evolving spatial networks of development. Spatial networks of lighted urban development in Asia show power law scaling properties consistent with other continents, but much higher rates of growth. The three largest networks of development in China all occur on deltas and adjacent lowlands, and are growing faster than the rest of the urban network in China. Since 2000, the Huanghe Delta + North China Plain urban network has surpassed the Japanese urban network in size and may soon connect with the Changjiang Delta + Yangtze River urban network to form the largest conurbation in Asia.
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Preface to the volume Large Rivers
NASA Astrophysics Data System (ADS)
Latrubesse, Edgardo M.; Abad, Jorge D.
2018-02-01
The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).
NASA Astrophysics Data System (ADS)
Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain
2018-08-01
The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.
Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif
2015-02-01
A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.
Exploring the energy-water-food-climate nexus for the Indian Economy in 2030
NASA Astrophysics Data System (ADS)
Taheripour, F.; Hertel, T. W.; Gopalakrishnan, B. N.
2014-12-01
The economy of India is expected to face serious environmental challenges over the coming decades. Population growth, coupled with economic growth of nearly 7%/year to 2030 will translate into strong growth in energy demands - particularly electricity. The electricity sector's claim on total available water could grow from 4% to more than 10% in India in 2030, if the use of wet cooling technologies persists (IGES 2013). Water-saving, dry cooling technologies are available for coal-fired power plants, but this requires significant investment and must be done at the time of construction. Growing water demands from electricity generation, when coupled with industrial, residential and commercial demands, are projected to result in water shortages for irrigation in some key river basins such as Indus, Ganges, Subernarekha, Krishna, and Chotanagpui (Rosegrant et al., 2013). The resulting pressure on agricultural production is likely to be exacerbated by climate change, which itself may increase demands for irrigation as an adaptation strategy to higher temperatures and more variable rainfall (AgMIP, 2013). In this paper we examine the impact of water scarcity on economic growth, food, and energy security in India using an enhanced version of the GTAP-AEZ-WATER model. We find that investments in water-saving technology in the electricity sector are less costly than developing new water supply. However, even when these technologies are implemented, we project shortfalls in water available for irrigated agriculture. These shortfalls result in the contraction of irrigated area and diminished food production relative to the unconstrained baseline. However, trade could help India to mitigate a portion of this pressure by importing more food products from water abundant regions. In addition, allowing for the trading of water within river basins helps to alleviate some of the consequences of water scarcity.
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Wang, Wei; Yao, Zhenxing
2012-05-01
Through analysis of the Rayleigh wave and Love wave empirical Green's functions recovered from cross-correlation of seismic ambient noise, we image the radial anisotropy and shear wave velocity structure beneath southern Tibet and the central Himalaya. Dense ray path coverage from 22 broadband seismic stations deployed by the Himalayan Nepal Tibet Seismic Experiment project provides the unprecedented opportunity to resolve the spatial distribution of the radial anisotropy within the crust of the central Himalaya and southern Tibet. In the shallow subsurface, the obtained results indicate significant radial anisotropy with negative magnitude (VSV > VSH) mainly associated with the Indus Yarlung Suture and central Himalaya, possibly related to the fossil microcracks or metamorphic foliations formed during the uplifting of the Tibetan Plateau. With increasing depth, the magnitude of radial anisotropy varies from predominantly negative to predominantly positive, and a mid-crustal layer with prominent positive radial anisotropy (VSV < VSH) has been detected. The top of the mid-crustal anisotropic layer correlates nicely with the starting depth of the mid-crustal lower velocity layers detected in our previous study. The spatial correlation of the positive radial anisotropy layers and mid-crustal lower velocity layers might suggest lateral crustal channel flow induced alignment of mineral grains, most likely micas or amphiboles, within the mid-crust of the central Himalaya and southern Tibet. This observation provides independent seismic evidence to support the thermo-mechanical model, which involves the southward extrusion of a low viscosity mid-crustal channel driven by the denudation effect focused at the southern flank of the Tibetan Plateau to explain the tectonic evolution of the Tibetan-Himalayan orogen.
Giant submarine canyons: Is size any clue to their importance in the rock record?
Normark, William R.; Carlson, Paul R.
2003-01-01
Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size of the associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record.Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channels and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.
NASA Astrophysics Data System (ADS)
Wada, Y.; Wisser, D.; Bierkens, M. F. P.
2013-02-01
To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979-2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.
NASA Astrophysics Data System (ADS)
Wada, Y.; Wisser, D.; Bierkens, M. F. P.
2014-01-01
To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.
NASA Astrophysics Data System (ADS)
Wada, Y.; Wisser, D.; Bierkens, M. F.
2014-12-01
To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.
NASA Astrophysics Data System (ADS)
Siddiqi, A.; Muhammad, A.; Wescoat, J. L., Jr.
2017-12-01
Large-scale, legacy canal systems, such as the irrigation infrastructure in the Indus Basin in Punjab, Pakistan, have been primarily conceived, constructed, and operated with a techno-centric approach. The emerging socio-hydrological approaches provide a new lens for studying such systems to potentially identify fresh insights for addressing contemporary challenges of water security. In this work, using the partial definition of water security as "the reliable availability of an acceptable quantity and quality of water", supply reliability is construed as a partial measure of water security in irrigation systems. A set of metrics are used to quantitatively study reliability of surface supply in the canal systems of Punjab, Pakistan using an extensive dataset of 10-daily surface water deliveries over a decade (2007-2016) and of high frequency (10-minute) flow measurements over one year. The reliability quantification is based on comparison of actual deliveries and entitlements, which are a combination of hydrological and social constructs. The socio-hydrological lens highlights critical issues of how flows are measured, monitored, perceived, and experienced from the perspective of operators (government officials) and users (famers). The analysis reveals varying levels of reliability (and by extension security) of supply when data is examined across multiple temporal and spatial scales. The results shed new light on evolution of water security (as partially measured by supply reliability) for surface irrigation in the Punjab province of Pakistan and demonstrate that "information security" (defined as reliable availability of sufficiently detailed data) is vital for enabling water security. It is found that forecasting and management (that are social processes) lead to differences between entitlements and actual deliveries, and there is significant potential to positively affect supply reliability through interventions in the social realm.
Pyenson, Nicholas D.
2016-01-01
The diversification of crown cetacean lineages (i.e., crown Odontoceti and crown Mysticeti) occurred throughout the Oligocene, but it remains an ongoing challenge to resolve the phylogenetic pattern of their origins, especially with respect to stem lineages. One extant monotypic lineage, Platanista gangetica (the Ganges and Indus river dolphin), is the sole surviving member of the broader group Platanistoidea, with many fossil relatives that range from Oligocene to Miocene in age. Curiously, the highly threatened Platanista is restricted today to freshwater river systems of South Asia, yet nearly all fossil platanistoids are known globally from marine rocks, suggesting a marine ancestry for this group. In recent years, studies on the phylogenetic relationships in Platanistoidea have reached a general consensus about the membership of different sub-clades and putative extinct groups, although the position of some platanistoid groups (e.g., Waipatiidae) has been contested. Here we describe a new genus and species of fossil platanistoid, Arktocara yakataga, gen. et sp. nov. from the Oligocene of Alaska, USA. The type and only known specimen was collected from the marine Poul Creek Formation, a unit known to include Oligocene strata, exposed in the Yakutat City and Borough of Southeast Alaska. In our phylogenetic analysis of stem and node-based Platanistoidea, Arktocara falls within the node-based sub-clade Allodelphinidae as the sister taxon to Allodelphis pratti. With a geochronologic age between ∼29–24 million years old, Arktocara is among the oldest crown Odontoceti, reinforcing the long-standing view that the diversification for crown lineages must have occurred no later than the early Oligocene. PMID:27602287
NASA Astrophysics Data System (ADS)
Pal, I.; Lall, U.; Robertson, A. W.; Cane, M. A.; Bansal, R.
2013-06-01
Snowmelt-dominated streamflow of the Western Himalayan rivers is an important water resource during the dry pre-monsoon spring months to meet the irrigation and hydropower needs in northern India. Here we study the seasonal prediction of melt-dominated total inflow into the Bhakra Dam in northern India based on statistical relationships with meteorological variables during the preceding winter. Total inflow into the Bhakra Dam includes the Satluj River flow together with a flow diversion from its tributary, the Beas River. Both are tributaries of the Indus River that originate from the Western Himalayas, which is an under-studied region. Average measured winter snow volume at the upper-elevation stations and corresponding lower-elevation rainfall and temperature of the Satluj River basin were considered as empirical predictors. Akaike information criteria (AIC) and Bayesian information criteria (BIC) were used to select the best subset of inputs from all the possible combinations of predictors for a multiple linear regression framework. To test for potential issues arising due to multicollinearity of the predictor variables, cross-validated prediction skills of the best subset were also compared with the prediction skills of principal component regression (PCR) and partial least squares regression (PLSR) techniques, which yielded broadly similar results. As a whole, the forecasts of the melt season at the end of winter and as the melt season commences were shown to have potential skill for guiding the development of stochastic optimization models to manage the trade-off between irrigation and hydropower releases versus flood control during the annual fill cycle of the Bhakra Reservoir, a major energy and irrigation source in the region.
Ocean Carbon Flux, Transport, and Burial Within the Western and Eastern US Coastal Zones
NASA Technical Reports Server (NTRS)
McWilliams, James C.; Moisan, John R.; Haidvogel, Dale B.; Miller, Arthur J.; Cornuelle, Bruce; Stolzenbach, Keith D.
2004-01-01
This project has been to develop and apply a regional. eddy-resolving circulation and biogeochemistry model of both the western and eastern U.S. coastal regions, capable of simulating the processes that control the carbon cycle. Validation has been by statistical comparison with analyses from various satellite measurements, including those from EOS sensors, as well as from in situ measurements. Sensitivity studies were carried out to investigate how the coastal ecosystem and biogeochemical cycles respond to changes in climate, large-scale eutrophication from indus- trial pollution, and other anthropogenic induced changes. The research has been conducted in collaboration with research groups at UCLA. NASA/GSFC (Wallops), Rutgers, and SIO. Overall. the project was focused on several key modeling issues, each of which tie back into completing the primary task of developing a coastal carbon model for both the eastern and western US. coasts. Individual groups within the entire program are still collaborating to address these specific tasks. These include: implementation of the coupled circulation/biogeochemical model within the U.S. West Coast. including high-resolution, embedded subdomains for the Southern California Bight and Monterey Bay region; development of a biogeochemical model with resolved carbon, nitrogen and oxygen cycles; development of data assimilation techniques for use of satellite data sets; reconfiguration of the model domain to U.S. East Coast; development of coastal forcing fields: development of methods to compare the model against remotely sensed data; and, the test of model sensitivity to environmental conditions. Below, we present a summary of the progress made toward achieving these soak. Because this has been a multi-institutional, collaborative effort, we note the groups involved with particular activities.
Origin of the invasive Arundo donax (Poaceae): a trans-Asian expedition in herbaria.
Hardion, Laurent; Verlaque, Régine; Saltonstall, Kristin; Leriche, Agathe; Vila, Bruno
2014-09-01
The hypothesis of an ancient introduction, i.e. archaeophyte origin, is one of the most challenging questions in phylogeography. Arundo donax (Poaceae) is currently considered to be one of the worst invasive species globally, but it has also been widely utilzed by man across Eurasia for millennia. Despite a lack of phylogenetic data, recent literature has often speculated on its introduction to the Mediterranean region. This study tests the hypothesis of its ancient introduction from Asia to the Mediterranean by using plastid DNA sequencing and morphometric analysis on 127 herbarium specimens collected across sub-tropical Eurasia. In addition, a bioclimatic species distribution model calibrated on 1221 Mediterranean localities was used to identify similar ecological niches in Asia. Despite analysis of several plastid DNA hypervariable sites and the identification of 13 haplotypes, A. donax was represented by a single haplotype from the Mediterranean to the Middle East. This haplotype is shared with invasive samples worldwide, and its nearest phylogenetic relatives are located in the Middle East. Morphometric data characterized this invasive clone by a robust morphotype distinguishable from all other Asian samples. The ecological niche modelling designated the southern Caspian Sea, southern Iran and the Indus Valley as the most suitable regions of origin in Asia for the invasive clone of A. donax. Using an integrative approach, an ancient dispersion of this robust, polyploid and non-fruiting clone is hypothesized from the Middle East to the west, leading to its invasion throughout the Mediterranean Basin. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Meltwater Contributions to Irrigation in High Mountain Asia Under a Changing Climate
NASA Astrophysics Data System (ADS)
Grogan, D. S.; Wisser, D.; Proussevitch, A. A.; Lammers, R. B.; Frolking, S. E.
2016-12-01
Snow melt and glacier melt are known to contribute significantly to river flows in High Mountain Asia. This region is also an important agricultural producer, and relies heavily on irrigation. In this study we use a hydrologic model coupled with a glacier model to quantify the historical contribution of snow melt and glacier melt to irrigation water use in High Mountain Asia, with detailed basin-level budgets of meltwater use, re-use, and contributions to crop evapotranspiration. We find that it is important to quantify not only how much meltwater is extracted from rivers and reservoirs for irrigation, but also to track this water through irrigation return flows and downstream re-use. We also project future basin-level meltwater use for irrigation, making use of a suite of climate model projections and associated glacier model projections. We assess the relative importance of snow melt and glacier melt to irrigation supplies across seasons, and for future projections we compare temporal shifts in meltwater hydrographs to potential shifts in crop planting dates due to increasing temperatures and shifts in monsoon onset. Results show that, historically (c. 2000), meltwater for irrigation is most important in the Indus and Ganges basins, which use 90 km3yr-1 and 20 km3yr-1 meltwater, respectively. In both basins, snow melt contributions to annual irrigation use are larger than glacier melt contributions, but the relative importance of these two meltwater sources shifts through the growing season. Uncertainties in future precipitation projections lead to large differences in the direction of change of future meltwater use for irrigation: depending upon the climate model and pathway used, we find that meltwater availability may decrease or increase in 2070-2099 compared to historical results.
Low-latitude high elevation of the leading edge of southern Eurasia throughout the Cenozoic
NASA Astrophysics Data System (ADS)
Ingalls, M.; Rowley, D. B.; Colman, A. S.; Olack, G.; Currie, B.; Li, S.
2016-12-01
The elevation history of the Tibetan Plateau promises insight into the mechanisms and dynamics that develop and sustain high topography over tens of millions of years. We present the first continuous Cenozoic elevation history from two proximal sedimentary basins on the southern Tibetan Plateau, as well as preliminary paleoaltimetry results from the south-central and central Plateau (Sangsang and Lunpola). The oxygen stable isotope and Δ47 clumped isotope compositions of non-marine carbonates allow us to constrain the carbonate formation temperatures and reconstruct the paleo-precipitation record of the Eocene to Pliocene Oiyug Basin and Paleocene to Eocene Penbo Basin. We exploit the systematic decrease of surface temperature and meteoric water δ18O with elevation. Minimally altered and unaltered pedogenic carbonates from the Oiyug Basin yield Δ47, CDES values of 0.625 to 0.755, that correspond with temperatures of 1-30 °C using a (Zaarur et al., 2013) Δ47 thermometer for low temperature carbonates. Similarly, the Penbo Basin yields Δ47, CDES values of 0.700-0.730, corresponding with temperatures of 6-12°C. Our paleoelevation estimates for the well-studied Oiyug basin ( 6100-4200 meters) support previous evidence (Spicer et al., 2003; Currie et al., 2005; Polissar et al., 2009; Currie et al., 2016) that high elevations were attained in southern Tibet by at least 30 Ma. Our paleoelevation estimates for the Penbo Basin (4100±550 meters) extends the altitude record of the southern Plateau to pre-India-Asia collision. Preliminary results from Sangsang, further west along the Indus-Yarlung Suture, and Lunpola, on the central Plateau, allow us to develop a spatially and temporally more complex paleo-altitude map and land surface evolution of the Tibetan Plateau since the onset of continent-continent collision.
NASA Astrophysics Data System (ADS)
Xiang, Longwei; Wang, Hansheng; Steffen, Holger; Wu, Patrick; Jia, Lulu; Jiang, Liming; Shen, Qiang
2016-09-01
Understanding groundwater storage (GWS) changes is vital to the utilization and control of water resources in the Tibetan Plateau. However, well level observations are rare in this big area, and reliable hydrology models including GWS are not available. We use hydro-geodesy to quantitate GWS changes in the Tibetan Plateau and surroundings from 2003 to 2009 using a combined analysis of satellite gravity and satellite altimetry data, hydrology models as well as a model of glacial isostatic adjustment (GIA). Release-5 GRACE gravity data are jointly used in a mascon fitting method to estimate the terrestrial water storage (TWS) changes during the period, from which the hydrology contributions and the GIA effects are effectively deducted to give the estimates of GWS changes for 12 selected regions of interest. The hydrology contributions are carefully calculated from glaciers and lakes by ICESat-1 satellite altimetry data, permafrost degradation by an Active-Layer Depth (ALD) model, soil moisture and snow water equivalent by multiple hydrology models, and the GIA effects are calculated with the new ICE-6G_C (VM5a) model. Taking into account the measurement errors and the variability of the models, the uncertainties are rigorously estimated for the TWS changes, the hydrology contributions (including GWS changes) and the GIA effect. For the first time, we show explicitly separated GWS changes in the Tibetan Plateau and adjacent areas except for those to the south of the Himalayas. We find increasing trend rates for eight basins: + 2.46 ± 2.24 Gt/yr for the Jinsha River basin, + 1.77 ± 2.09 Gt/yr for the Nujiang-Lancangjiang Rivers Source Region, + 1.86 ± 1.69 Gt/yr for the Yangtze River Source Region, + 1.14 ± 1.39 Gt/yr for the Yellow River Source Region, + 1.52 ± 0.95 Gt/yr for the Qaidam basin, + 1.66 ± 1.52 Gt/yr for the central Qiangtang Nature Reserve, + 5.37 ± 2.17 Gt/yr for the Upper Indus basin and + 2.77 ± 0.99 Gt/yr for the Aksu River basin. All these increasing trends are most likely caused by increased runoff recharges from melt water and/or precipitation in the surroundings. We also find that the administrative actions such as the Chinese Ecological Protection and Construction Project help to store more groundwater in the Three Rivers Source Region, and suggest that seepages from the Endorheic basin to the west of it are a possible source for GWS increase in this region. In addition, our estimates for GWS changes basically confirm previous results along Afghanistan, Pakistan, north India and Bangladesh, and clearly reflect the excessive use of groundwater. Our results will benefit the water resource management in the study area, and are of particular significance for the ecological restoration in the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; Brodzik, M. J.; Hardman, M.; Troy, T. J.
2017-12-01
Snow is a vital part of the terrestrial hydrological cycle, a crucial resource for people and ecosystems. In mountainous regions snow is extensive, variable, and challenging to document. Snow melt timing and duration are important factors affecting the transfer of snow mass to soil moisture and runoff. Passive microwave brightness temperature (Tb) changes at 36 and 18 GHz are a sensitive way to detect snow melt onset due to their sensitivity to the abrupt change in emissivity. They are widely used on large icefields and high latitude watersheds. The coarse resolution ( 25 km) of historically available data has precluded effective use in high relief, heterogeneous regions, and gaps between swaths also create temporal data gaps at lower latitudes. New enhanced resolution data products generated from a scatterometer image reconstruction for radiometer (rSIR) technique are available at the original frequencies. We use these Calibrated Enhanced-resolution Brightness (CETB) Temperatures Earth System Data Records (ESDR) to evaluate existing snow melt detection algorithms that have been used in other environments, including the cross polarized gradient ratio (XPGR) and the diurnal amplitude variations (DAV) approaches. We use the 36/37 GHz (3.125 km resolution) and 18/19 GHz (6.25 km resolution) vertically and horizontally polarized datasets from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Radiometer for EOS (AMSR-E) and evaluate them for use in this high relief environment. The new data are used to assess glacier and snow melt records in the Hunza River Basin [area 13,000 sq. km, located at 36N, 74E], a tributary to the Upper Indus Basin, Pakistan. We compare the melt timing results visually and quantitatively to the corresponding EASE-Grid 2.0 25-km dataset, SRTM topography, and surface temperatures from station and reanalysis data. The new dataset is coarser than the topography, but is able to differentiate signals of melt/refreeze timing for different altitudes and land cover in this remote area with significant hazards from snow melt and glacier discharge. The improved spatial resolution, enhanced to 3-6 km, and retaining twice daily observations is a key improvement to fully analyze snowpack melt characteristics in remote mountainous regions.
Study of Nox Levels At The Castellon Area (spain) By Means of Passive Samplers
NASA Astrophysics Data System (ADS)
Delgado, J. M.; Esteve, V.
Nitrogen oxides are emitted by mobile sources like traffic, heating engines and indus- tries. In the case of La Plana de Castellon area, the cities, the industrial area called El Serrallo (with its oil refinery and power plant), the tile factories and the main roads (A7-E15 and N-340), all they are the main pollutant focus of NOx. Those pollutants are precursors of tropospheric ozone formation. The aim of this work is the study of nitrogen oxides levels in La Plana de Castellon area, by means of passive samplers and stand relationships between NOx levels and ozone levels both measured with pas- sive samplers. The measurement campaign is made during summer, the higher pho- tochemical activity period (from May to September) in order to obtain the necessary data of NOx levels to make the relationship with measured ozone levels. Measuring campaing has been divided into sampling periods of one week. Twelve samples are collected each sampling period to cover an interest area of 1400 Km2, Two of these samples are laboratory blanks, four are situated at reference points (beside an auto- matic NOx sampler), one is situated at A7-E15 expressway, other at the main road N-340 and another one in a hard traffic road. The other three are placed in the main cities (Castellon and Benicassim). We employ Radielloo samplers developed by Dr. Cocheo at Fondazione Salvatore Maugeri. Samples located far from the main roads, at countryside show the lowest levels of NOx, lower than 10 ppb. Samples located at Castellon city show a difference between downtown and boundaries of about 33% higher at downtown, raising from 11 ppb to 14,5 ppb of NOx. The highest levels of NOx are measured at roads and their surroundings with medium levels of 14,3 ppb of NOx. Moreover, the sample located close to the expressway raises its level until 18 ppb of NOx, 53,4% higher than the media of all the samples measured. We would like to thank Dr. M. Wolfson(Harvard University), Dr. Carlos Felis (Conselleria de Medi Ambient) and Ms. C. Clemente for their contribution and work on this project as well as to Generalitat Valenciana for the FPI grant.
Climatic Droughts and the Impacts on Crop Yields in Northern India during the Past Century
NASA Astrophysics Data System (ADS)
Ge, Y.; Cai, X.; Zhu, T.
2014-12-01
Drought has become an increasingly severe threat to water and food security recently. This study presents a novel method to calculate the return period of drought, considering drought as event characterized by expected drought inter-arrival time, duration, severity and peak intensity. Recently, Copula distribution, a multivariable probability distribution, is used to deal with strongly correlated variables in analyzing complex hydrologic phenomenon. This study assesses drought conditions in Northern India, including 8 sites, in the past century using Palmer Drought Severity Index (PDSI) from two latest datasets, Dai (2011, 2013) and Sheffield et al. (2012), which concluded conflicting results about global average drought trend. Our results include the change of the severity, intensity and duration of drought events during the past century and the impact of the drought condition on crop yields in the region. It is found that drought variables are highly correlated, thus copulas joint distribution enables the estimation of multi-variate return period. Based on Dai's dataset from 1900 to 2012, for a fixed drought return period the severity and duration is lower for the period before1955 in sites close to the Indus basin (site 1) or off the coast of the Indian Ocean (Bay of Bengal) (site 8), while they are higher for the period after 1955 in other inland sites (sites 3-7), (e.g., severity in Fig.1). Projections based on two models (IPCC AR4 and AR5) in Dai (2011, 2013) suggested less severity and shorter duration in longer-year drought (e.g., 100-year drought), but larger in shorter-year drought (e.g., 2-year drought). Drought could bring nonlinear responses and unexpected losses in agriculture system, thus prediction and management are essential. Therefore, in the years with extreme drought conditions, impact assessment of drought on crop yield of corn, barley, wheat and sorghum will be also conducted through correlating crop yields with drought conditions during corresponding growing seasons. A. Dai, J. Geophys. Res., 116, D12115 (2011).A. Dai, Nature Climate Change, 3, 52-58 (2013). J. Sheffield, E.F. Wood, M. L. Roderick, Nature, 491, 435-438 (2012) Fig. 1 Return period for severity from 1900 to 1954 (green), from 1955 to 2012 (red), and from 2013 to 2099 (black for AR4, blue for AR5), respectively for 8 sites.
NASA Astrophysics Data System (ADS)
Phartiyal, B.
2016-12-01
The climate system plays an important role in the geomorphological dynamics of a region. The cold, arid, high altitude, tectonically active areas of Ladakh (India) in Trans Himalaya, western Tibetan Plateau is none exception. Noticeable change in the landscape with a shift from fluvial to lacustrine regime at 10000 yrs BP forming big open valley lakes occupying the present day river valleys is attributed to the early Holocene northward advancement of the mean latitudinal position of the summer ITCZ causing wetter conditions in this dry area. The glaciers of the Ladakh range are almost depleted and the northern range glaciers show andrastic retreat in the Quaternary time. Lakes were studied using multi-proxies, to record centennial and decadal scale climatic variability. Spatial and temporal setting of Spituk palaeolake (12600-240 cal yrs BP) along Indus River, was analyzed using multi proxies. The lake that extended for 40-50 km covering an area of 106 km2, was formed after Older Dryas as a result of river blockage by precipitation induced debris flow and seismicity. Two lake phases between 12600-9000 and 5500-3200 cal yrs BP show stable lake conditions and have synchronous relationship between high variation in monsoon intensity, high δ18O values in the Guliya core, rise in temperature and high solar insolation. High magnetic susceptibility and clay content along with diversified diatom and other freshwater algae and land derived organic matter are indicative of fresh water supply leading to high lake level from 4700 yr BP onwards in the present pro-glacial lakes studied. The multi-proxy data provides evidence of much higher and stable lake level during 3700 yr BP and 3000 yr BP onwards due to high water supply in these lake. It is in contrast to the records of weak ISM conditions and low lake level in rest of the part of Indian peninsula during the period. The study also suggests strong western disturbance activity during 4800-3000 yr BP leading to high lake level in this region. The ongoing researches aim to make an inventory/dataset of these records and address the climate-tectonics interaction with respect to the lake outburst consequences.
Cancer profile of Hyderabad, Pakistan 1998-2002.
Bhurgri, Yasmin; Bhurgri, Asif; Pervez, Shahid; Bhurgri, Mishaal; Kayani, Naila; Ahmed, Rashida; Usman, Ahmed; Hasan, Sheema H
2005-01-01
Hyderabad is the third largest city of Pakistan, the second largest city of Sindh Province and one of the oldest cities of the sub-continent. This administrative headquarter is located just east of the River Indus and is an important commercial and industrial center. Once a provincial capital, it is at a distance of approximately 200-km from Karachi. This present study was conducted with the objective of providing the cancer profile of Hyderabad, which has an urban population of 2,840,653 (52.2% M, 47.8% F) annual growth rate 1.13. The city is inhabited by all ethnicities of the country, however the predominant ethnicity is Sindhi, followed by Mohajirs (post-partition immigrants from India), and a lesser extent other ethnicities of Pakistan viz. Baluchs, Punjabis and Pathans. The study includes two sets of patients. First the incident cancer cases, residents of Hyderabad, who reached Karachi for diagnosis or treatment. Second the incident cancer cases registered at the Aga Khan University Pathology-based Cancer Registry (APCR) Pathology collection points at Hyderabad and subsequently registered at APCR, during 1st January 1998 to 31st December 2002. The pathology department of the AKU has 3 centers in Hyderabad, which provide diagnostic pathology especially oncopathology services to the city. The age-standardized rates (ASR) for cancer (all sites) 1998 to 2002 in Hyderabad were 91.6/100,000 in males and 96.0/100,000 in females. The most common malignancies (ASR per 100,000) in males were oral cavity (11.8), lymphoma (10.6), lung (8.0), urinary bladder (6.8), prostate (4.8), liver (4.4), pharynx (4.2), colo-rectum (3.6), larynx (3.2), and skin (3.2). The cancers in females (ASR per 100,000) were breast (22.4), oral cavity (11.5), gall bladder (4.8), esophagus (4.2), cervix (3.6), ovary (3.4), colo-rectum (3.4), lymphoma (3.4), uterus (3.4), and thyroid (2.4). Tobacco-associated cancers were responsible for approximately 40.0% of the tumors in males and 20.0% in females. Histological confirmation remained 96.3%, with 44.5% presenting in grade II or I, 55.5% presenting as stage III and IV. Information on grade and stage of malignancy was available in 70% and 50% of the cases respectively. Males comprised 53.1%, and females 46.9% of the cases. The mean age of cancer all sites, both genders was 45.2 years (95% CI 44.4; 45.9), males 45.4 years (95% CI 44.3; 46.5); females 44.9 years (95% CI 43.9; 45.9). Conclusions drawn from this database must be interpreted with care, as it may be identified as data from selected medical institutions. Chances of selective collection bias are minimized as the data of the AKU pathology is collected from multiple centers in the city of Hyderabad, dispersed at distances, which allows adequate sampling from the entire city. There is a slight preponderance of lymphomas in males which we feel is a true higher risk, yet it may indicate an over representation of easily accessible sites in pathology based-data. Nonetheless, this is the first attempt to determine the cancer incidence pattern of Hyderabad, and should serve as a guideline for estimation of the cancer burden and risk assessment statistics of Pakistan and the cancer control program of the country.
NASA Astrophysics Data System (ADS)
Brandt, T.; Bookhagen, B.; Dozier, J.
2014-12-01
Since 1978, space based passive microwave (PM) radiometers have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of PM radiometers to directly measure SWE at high temporal frequencies offers some distinct advantages over optical remote sensors. Nevertheless, in mountainous terrain PM radiometers often struggle to accurately measure SWE because of wet snow, saturation in deep snow, forests, depth hoar and stratigraphy, variable relief, and subpixel heterogeneity inherent in large pixel sizes. The Himalaya, because of their high elevation and high relief—much above tree line—offer an opportunity to examine PM products in the mountains without the added complication of trees. The upper Sutlej River basin— the third largest Himalayan catchment—lies in the western Himalaya. The river is a tributary of the Indus River and seasonal snow constitutes a substantial part of the basin's hydrologic budget. The basin has a few surface stations and river gauges, which is unique for the region. As such, the Sutlej River basin is a good location to analyze the accuracy and effectiveness of the current National Snow and Ice Data Center's (NSIDC) standard AMSR-E/Aqua Daily SWE product in mountainous terrain. So far, we have observed that individual pixels can "flicker", i.e. fluctuate from day to day, over large parts of the basin. We consider whether this is an artifact of the algorithm or whether this is embedded in the raw brightness temperatures themselves. In addition, we examine how well the standard product registers winter storms, and how it varies over heavily glaciated pixels. Finally, we use a few common measures of algorithm performance (precision, recall and accuracy) to test how well the standard product detects the presence of snow, using optical imagery for validation. An improved understanding of the effectiveness of PM imagery in the mountains will help to clarify the technology's limits.
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.
Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, A.; Harrison, T.M.; Murphy, M.A.
1999-11-01
Geologic mapping and geochronological analysis in southwest (Kailas area) and southeast (Zedong area) Tibet reveal two major episodes of Tertiary crustal shortening along the classic Indus-Tsangpo suture in the Yalu River valley. The older event occurred between ca. 30 and 24 Ma during movement along the north-dipping Gangdese thrust. The development of this thrust caused extensive denudation of the Gangdese batholith in its hanging wall and underthrusting of the Xigase forearc strata in its footwall. Examination of timing of major tectonic events in central Asia suggests that the initiation of the Gangdese thrust was approximately coeval with the late Oligocenemore » initiation and development of north-south shortening in the eastern Kunlun Shan of northern Tibet, the Nan Shan at the northeastern end of the Altyn Tagh fault, the western Kunlun Shan at the southwestern end of the Altyn Tagh fault, and finally the Tian Shan (north of the tarim basin). Such regionally synchronous initiation of crustal shortening in and around the plateau may have been related to changes in convergence rate and direction between the Eurasian plate and the Indian and Pacific plates. The younger thrusting event along the Yalu River valley occurred between 19 and 10 Ma along the south-dipping Great Counter thrust system, equivalent to the locally named Renbu-Zedong thrust in southeastern Tibet, the Backthrust system in south-central Tibet, and the South Kailas thrust in southwest Tibet. The coeval development of the Great Counter thrust and the North Himalayan granite-gneiss dome belt is consistent with their development being related to thermal weakening of the north Himalayan and south Tibetan crust, due perhaps to thermal relaxation of an already thickened crust created by the early phase of collision between India and Asia or frictional heating along major thrusts, such as the Main Central thrust, beneath the Himalaya.« less
Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile
2017-04-01
Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of the GRACE-derived sediment discharges values.
NASA Astrophysics Data System (ADS)
Kachovich, S.; Aitchison, J. C.; Lokho, K.; Stojanovic, D.
2016-12-01
The Manipur Ophiolite complex in the Indo-Burman ranges is characterised by a north-south trending belt of ophiolitic and related oceanic volcanic and sedimentary rocks. The ophiolite is considered to have formed in Jurassic time as part of an intra-oceanic subduction zone. It was subsequently emplaced onto the continental margin of India. Although the ophiolite is extensively disrupted, well-exposed outcrops exist in new road cuttings. We present new results from investigations of associated oceanic pelagic sequences amongst which radiolarian microfossils help to constrain the timing for the emplacement event. Pelagic sediments assigned to the Disang Formation that crop out near Khamasom village, west of Ukhrul city are characterised by extensive fault-bounded packages of reddish-coloured, radiolarian-bearing mudstones. They yield abundant well-preserved, late Palaeocene to early Eocene radiolarians. As the ophiolitic rocks are thrust over these radiolarian-bearing sediments, they provide a precise biostratigraphic maximum age with which to constrain any ophiolite emplacement event. Elsewhere along the length of the Indus-Yarlung Tsangpo suture zone from NW India (Spongtang, Ladakh) in the west as well as at Zhongba, Sangdanlin and Gyantse across Tibet, correlative radiolarian faunas provide similar age constraints suggesting that this event was broadly coeval. Collision of an intra-oceanic island arc system with northern margin of the Indian continent over such an extensive strike length must be of regional significance. Moreover, given that this was an intra-Tethyan system it's collision (the `soft-collision' postulated by Curray et al. 1982) must pre-date later (hard) continent-continent collision. Reference: Curray, J.R., Emmel, F.J., Moore, D.G., Raitt, R.W., 1982. Structure, tectonics, and geological history of the northeastern Indian Ocean. In; Nairn, A.E.M. The Ocean Basins and Margins vol. 6: 399-450, Plenum Press.
NASA Astrophysics Data System (ADS)
AL, R.
2016-12-01
It has been widely recognized that western Himalayan region depends heavily on glacier and snow melt for its water needs. This is true especially for the Chenab sub-basin and more generally for other sub-catchments of the mighty Indus catering to the water demands of millions of stake holders who depend on this water resource. However, there are very few studies available to understand high altitude glaciated catchments, the climatic controls over their flow regimes, and their dependency on glacier mass balances, mainly because of poor access. Hence, the proglacial stream discharges from Chhota Shigri Glacier, a representative glacier of western Himalayan region has been analyzed for understanding the impact of rising air temperatures and highly variable summer precipitation events on discharges that are sourced majorly from snow melt and glacier wastage. This study, for the first time attempts to understand the factors influencing the interannual, subseasonal, and the diurnal variability observed in this representative catchment over four ablation seasons (2010-2013), by monitoring solar radiation, air temperature, summer precipitation, albedo and transient snow cover. The proglacial discharge is governed by air temperatures and albedo-enhancing summer precipitation events, which also enhances transient snow cover. While, the positive mass balance years gave rise to lesser proglacial discharges in comparison to negative mass balance years, lesser winter accumulation was compensated by the lower ablation resulting summer snowfall events in some years. While rising summer air temperatures give rise to glacier wastage, the role of melting transient snow cover on stream discharge is highly significant, especially for positive mass balance years. The pronounced interannual variations and the decreased proglacial discharge in comparison to 1980s suggest that Chhota Shigri Glacier is possibly wasting its way to reach equilibrium to the changed climatic conditions of the 21st century; however these findings need to be corroborated with runoff modeling.
NASA Astrophysics Data System (ADS)
Macklin, M. G.; Panyushkina, I. P.; Toonen, W. H. J.
2014-12-01
The Ili, Syr Dayra and Amu Dayra rivers of Inner Asia are emerging as critical areas for the development of irrigation-based agriculture in the ancient world. Following research by Russian archaeologists in the 1970s it is evident that these watersheds had flourishing riverine civilizations comparable to those in Mesopotamia and the Indus Valley. But unlike these areas where the relationship between Holocene river dynamics, climate change and floodwater farming is increasingly underpinned by radiometric dating, the alluvial archaeology of Inner Asia is significantly under researched. To address this, a major multi-disciplinary research program was begun in 2011 centred on the Talgar catchment, a south-bank tributary of the Ili river, southeast Kazakhstan. Building on archaeological excavations and surveys conducted over the past 20 years, we have undertaken one of the most detailed investigations of Holocene people-river environment interactions in Inner Asia. River development has been reconstructed over the last 20,000 years and human settlement histories from the Eneolithic to the Medieval period documented. Periods of Holocene river aggradation and high water levels in Lake Balkhash and Aral Sea correspond with cooler and wetter neoglacial episodes while river entrenchment and floodplain soil development are associated with warmer and drier conditions. Floodwater farming in the Talgar river reached its acme in the late Iron Age (400-200 cal. BC) with more than 60 settlement sites and 550 burial mounds. This corresponds to a period of reduced flood flows, river stability and glacier retreat in the Tien Shan headwaters. A new hydroclimatic-based model for the spatial and temporal dynamics of floodwater farming in the Ili, Syr Dayra and Amu Dayra watersheds is proposed, which explains the large scale expansion (down-river) and contraction (up-river) of settlements since the first use of irrigation in the Neolithic through to the late Medieval period.
NASA Astrophysics Data System (ADS)
Liu, S.; Guo, W.; Wei, J.; Bao, W.
2012-12-01
The Karakoram-Himalaya Mountains (KHM) are the largest mountain system surrounding the Tibetan Plateau. The early and the recent estimate indicate that the total glacier area in KHM region is about one third of that in the whole Asia High Mountains. Glaciers in KHM are one of the key components in the water resource formation and variation of rivers like Tarim, Brahmaputra, Indus, and Ganges, and so on, where about 1 billion people are living in. Climate change have led to retreating of glaciers in the ranges which may have potential impact on the water availability and so the food and water resources security in the lower reaches of river basins that originated from the huge mountains. Lot of efforts have been taken for understanding changes of glaciers in the region, but few covers the changes based on glacier inventories. Here we introduce our results for glaciers in Chinese part based on glacier inventories from the topographical maps in the late 1950s to early 1980s (area average year of 1972 in the Karakoram and 1975 in the Himalaya) and from satellite images (Landsat TM/ETM+, ASTER, SPOT4/5) acquired in 2009/2010. By excluding those glaciers not well identified from optical images, the total area of glaciers mapped for the second time are 89% and 69% of the total ones mapped at first time in the Karakoram and Himalaya mountains. Results show that glacier retreat was dominant and very few glaciers were in advance or stable. Glaciers in the Himalaya have lost 26.3% of their area in the late 1950s to early 1980s, while that in the Karakoram is 11.9% for the similar time span. As far annual retreat rates, glaciers in Himalaya have experienced a speedy area decrease by 0.80%/yr, higher than that of 0.33%/yr in Karakorum. In General, glacier shrinkage in KHM shows obvious spatial heterogeneity.
Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan
NASA Astrophysics Data System (ADS)
Winslow, David M.; Zeitler, Peter K.; Chamberlain, C. Page; Williams, Ian S.
1996-12-01
40Ar/39Ar data (hornblende, biotite, muscovite, and K-feldspar) and U/Pb data (zircons) were obtained from the Nanga Parbat-Haramosh Massif (NPHM), NW Pakistan, along three transects in the southern regions of the NPHM. We have based our interpretations on our new data as well as geochronologic dates from previous studies in the northern regions of the massif. Geochronologic data show that the NPHM has experienced exceptionally high denudation and cooling rates over the past 10 m.y. U/Pb ages determined through sensitive high-resolution ion microprobe (SHRIMP) "depth-profiling" experiments on metamorphic zircons and conventional U/Pb monazite dates suggest that the timing of metamorphism varied across the massif. In addition, we have documented that the massif has experienced postmetamorphic, differential cooling both along and across strike. Thermochronologic data on currently exposed surface rocks suggest that cooling occurred more recently and at greater rates in the south-central regions of the massif (representing deeper crustal levels) than along the margins and northern regions of the massif. Within the Tato region, cooling following peak metamorphic temperatures of 600°-700 °C was as high as 140 °C/m.y. following partial melting of pelitic units. Biotites from this area record plateau ages of 0.9 ± 0.1 Ma. Along the Astor and Indus gorges, cooling was less rapid (approximately 70°-80°C/m.y.) following peak metamorphism as indicated by U/Pb monazite ages of 6-8 Ma and 40Ar/39Ar muscovite cooling ages of 2.2-3.4 Ma. Cooling over the last 3 m.y. occurred at rates of 100°-140 °C/m.y. The overall cooling age pattern within the massif is interpreted syntaxial growth through the development of north plunging antiforms prior to 3 Ma, followed by reverse faulting along east dipping fault zones. Along the Raikot River transect the biotite cooling age pattern is consistent with the folding of isotherms during folding of the foliation surfaces. The age pattern was disrupted at 1 Ma due to faulting along the Raikot and Tato faults. An electronic supplement of Tables A1, A2, and A3 may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GUEST and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 95TC00032, Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan, David M. Winslow, Peter K. Zeitler, C. Page Chamberlain, and Ian S. Williams). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N. W., Washington, DC 20009; $$15.00. Payment must accompany order.
1985-05-01
In this discussion of India attention is directed to the following: the people; geography; history; government; political conditions; the economy; foreign relations (Pakistan and Bangladesh, China, and the Soviet Union); defense; and the relations between the US and India. In 1983 India's population was estimated at 746 million with an annual growth rate of 2.24%. The infant mortality rate was estimated at 116/1000 in 1984 with a life expectancy of 54.9 years. Although India occupies only 2.4% of the world's land area, it supports nearly 15% of the world's population. 2 major ethnic strains predominate in India: the Aryan in the north and the Dravidian in the south, although the lines between them are blurred. India dominates the South Asian subcontinent geographically. The people of India have had a continuous civilization since about 2500 B.C., when the inhabitants of the Indus River Valley developed an urban culture based on commerce, trade, and, to a lesser degree, agriculture. This civilization declined about 1500 B.C. and Aryan tribes originating in central Asia absorbed parts of its culture as they spread out over the South Asian subcontinent. During the next few centuries, India flourished under several successive empires. The 1st British outpost in South Asia was established in 1619 at Surat on the northwestern coast of India. The British gradually expanded their influence until, by the 1850s, they controlled almost the entire area of present-day India. Independence was attained on August 15, 1947, and India became a dominion within the Commonwealth of Nations with Jawaharlal Nehru as prime minister. According to its constitution, India is a "sovereign socialist secular democratic republic." Like the US, India has a federal form of government, but the central government in India has greater power in relation to its states, and government is patterned after the British parliamentary system. The Congress Party has ruled India since independence with the exception of the 1977-79 period of Janta Party rule. Domestically, India has made much progress since independnece. A relatively sophisticated industrial base and a large pool of skilled labor have been created, but agriculture remains the crucial sector and supports 70% of the people. It contributes about 40% of gross national product (GNP). Only modest gains in per capita GNP have been achieved. Agricultural production has been increasing at an average annual rate of around 3%. Cotton and jute textile production continues to be the most important industry, but public sector firms in steel, heavy industry, and chemicals have become important since 1960. Supreme command of India's armed forces rests with the president but actual responsibility for national defense lies with the Cabinet Committee for Political Affairs. The US and India have aimed at cordial relations. The US is India's largest trading partner and has been an important source of foreign economic assistance.
NASA Astrophysics Data System (ADS)
Gul, Chaman; Praveen Puppala, Siva; Kang, Shichang; Adhikary, Bhupesh; Zhang, Yulan; Ali, Shaukat; Li, Yang; Li, Xiaofei
2018-04-01
Black carbon (BC), water-insoluble organic carbon (OC), and mineral dust are important particles in snow and ice which significantly reduce albedo and accelerate melting. Surface snow and ice samples were collected from the Karakoram-Himalayan region of northern Pakistan during 2015 and 2016 in summer (six glaciers), autumn (two glaciers), and winter (six mountain valleys). The average BC concentration overall was 2130 ± 1560 ng g-1 in summer samples, 2883 ± 3439 ng g-1 in autumn samples, and 992 ± 883 ng g-1 in winter samples. The average water-insoluble OC concentration overall was 1839 ± 1108 ng g-1 in summer samples, 1423 ± 208 ng g-1 in autumn samples, and 1342 ± 672 ng g-1 in winter samples. The overall concentration of BC, OC, and dust in aged snow samples collected during the summer campaign was higher than the concentration in ice samples. The values are relatively high compared to reports by others for the Himalayas and the Tibetan Plateau. This is probably the result of taking more representative samples at lower elevation where deposition is higher and the effects of ageing and enrichment are more marked. A reduction in snow albedo of 0.1-8.3 % for fresh snow and 0.9-32.5 % for aged snow was calculated for selected solar zenith angles during daytime using the Snow, Ice, and Aerosol Radiation (SNICAR) model. The daily mean albedo was reduced by 0.07-12.0 %. The calculated radiative forcing ranged from 0.16 to 43.45 W m-2 depending on snow type, solar zenith angle, and location. The potential source regions of the deposited pollutants were identified using spatial variance in wind vector maps, emission inventories coupled with backward air trajectories, and simple region-tagged chemical transport modeling. Central, south, and west Asia were the major sources of pollutants during the sampling months, with only a small contribution from east Asia. Analysis based on the Weather Research and Forecasting (WRF-STEM) chemical transport model identified a significant contribution (more than 70 %) from south Asia at selected sites. Research into the presence and effect of pollutants in the glaciated areas of Pakistan is economically significant because the surface water resources in the country mainly depend on the rivers (the Indus and its tributaries) that flow from this glaciated area.
NASA Astrophysics Data System (ADS)
Rittger, K.; Armstrong, R. L.; Bair, N.; Racoviteanu, A.; Brodzik, M. J.; Hill, A. F.; Wilson, A. M.; Khan, A. L.; Ramage, J. M.; Khalsa, S. J. S.; Barrett, A. P.; Raup, B. H.; Painter, T. H.
2017-12-01
The Contribution to High Asia Runoff from Ice and Snow, or CHARIS, project is systematically assessing the role that glaciers and seasonal snow play in the freshwater resources of Central and South Asia. The study area encompasses roughly 3 million square kilometers of the Himalaya, Karakoram, Hindu Kush, Pamir and Tien Shan mountain ranges that drain to five major rivers: the Ganges, Brahmaputra, Indus, Amu Darya and Syr Darya. We estimate daily snow and glacier ice contributions to the water balance. Our automated partitioning method generates daily maps of 1) snow over ice (SOI), 2) exposed glacier ice (EGI), 3) debris covered glacier ice (DGI) and 4) snow over land (SOL) using fractional snow cover, snow grain size, and annual minimum ice and snow from the 500 m MODIS-derived MODSCAG and MODICE products. Maps of snow and ice cover are validated using high-resolution (30 m) maps of snow, ice, and debris cover from Landsat. The probability of detection is 0.91 and precision is 0.85 for MODICE. We examine trends in annual and monthly snow and ice maps and use daily maps as inputs to a calibrated temperature-index model and an uncalibrated energy balance model, ParBal. Melt model results and measurements of isotopes and specific ions used as an independent validation of melt modeling indicate a sharp geographic contrast in the role of snow and ice melt to downstream water supplies between the arid Tien Shan and Pamir ranges of Central Asia, where melt water dominates dry season flows, and the monsoon influenced central and eastern Himalaya where rain controls runoff. We also compare melt onset and duration from the melt models to the Calibrated, Enhanced Resolution Passive Microwave Brightness Temperature Earth Science Data Record. Trend analysis of annual and monthly area of permanent snow and ice (the union of SOI and EGI) for 2000 to 2016 shows statistically significant negative trends in the Ganges and Brahmaputra basins. There are no statistically significant trends in permanent snow and ice in the other basins and no statistically significant trends in SOL, the renewable and seasonal component of snow and ice cover, in any of the five basins. This work gives a better understanding of the current hydrologic regime to guide realistic estimates of the future availability and vulnerability of water resources in these regions.
Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet)
NASA Astrophysics Data System (ADS)
Gong, Xiao-Han; Shi, Ren-Deng; Griffin, W. L.; Huang, Qi-Shuai; Xiong, Qing; Chen, Sheng-Sheng; Zhang, Ming; O'Reilly, Suzanne Y.
2016-10-01
Ophiolites in the Indus-Yarlung Zangbo (IYZ) suture (southern Tibet) have been interpreted as remnants of the Neo-Tethyan lithosphere. However, the discovery of diamonds and super-reducing, ultra-high pressure (SuR-UHP) mineral assemblages (e.g., coesite after stishovite, olivine after wadsleyite, native metals, alloys, and moissanite) in some of these massifs and associated chromitites requires a re-evaluation of their origin and evolution. A new petrological and geochemical study of the Purang ophiolite in the western IYZ suture sheds new lights on these issues. The depleted harzburgites of the Purang massif have low modal contents of clinopyroxene (< 2%), and high Cr# [100*Cr3 +/(Cr3 + + Al3 +)] in spinel (> 40 70) and pyroxenes (> 16 in orthopyroxene, and > 20 in clinopyroxene), suggesting high degrees of melt extraction (> 20%). These features are not consistent with formation in a (ultra-) slow-spreading mid-ocean ridge. These peridotites have high modal contents of orthopyroxene; this, and the extremely high Cr# of spinels in these peridotites, suggests modification in a subduction zone. The clinopyroxene-rich harzburgites and lherzolites contain rare spinel-pyroxene symplectites after garnet. Their clinopyroxenes have low MREE-to-HREE ratios ((Sm/Yb)N < 0.1) at relatively high HREE concentrations, and are Na-rich but Nd-poor. The relatively enrichment of Na but depletion of Nd in clinopyroxene cannot be explained by refertilization with MORB melts but are consistent with an origin from Na-rich subcontinental lithospheric mantle (SCLM). All lines of evidence suggest that these peridotites underwent initial melting in the stability field of garnet-facies peridotites, followed by additional melting in the spinel-facies mantle. Whole-rock Os isotopic compositions of the Purang peridotites give ancient TRD model ages (up to 1.3 Ga), indicating that the formation of these ancient depletion residues predated the opening of Neo-Tethyan Ocean. These observations, together with recent studies on other IYZ peridotites, suggest that the Purang peridotites are genetically unrelated to the associated mafic crust. Instead, they represent ancient SCLM domains, initially formed beneath a continental margin, and then modified by subduction, before they were incorporated into the Neo-Tethyan ocean basin. This model is consistent with the deep-mantle-recycling model for the presence of SuR-UHP phases in the IYZ ophiolites. The infiltration of MORB melts through these ancient depleted peridotites during their final exhumation in a (ultra-) slow-spreading center may have refertilized them to produce the clinopyroxene-rich peridotites.
Deformation and kinematics of the central Kirthar Fold Belt, Pakistan
NASA Astrophysics Data System (ADS)
Hinsch, Ralph; Hagedorn, Peter; Asmar, Chloé; Nasim, Muhammad; Aamir Rasheed, Muhammad; Kiely, James M.
2017-04-01
The Kirthar Fold Belt is part of the lateral mountain belts in Pakistan linking the Himalaya orogeny with the Makran accretionary wedge. This region is deforming very oblique/nearly parallel to the regional plate motion vector. The study area is situated between the prominent Chaman strike-slip fault in the West and the un-deformed foreland (Kirthar Foredeep/Middle Indus Basin) in the East. The Kirthar Fold Belt is subdivided into several crustal blocks/units based on structural orientation and deformation style (e.g. Kallat, Khuzdar, frontal Kirthar). This study uses newly acquired and depth-migrated 2D seismic lines, surface geology observations and Google Earth assessments to construct three balanced cross sections for the frontal part of the fold belt. Further work was done in order to insure the coherency of the built cross-sections by taking a closer look at the regional context inferred from published data, simple analogue modelling, and constructed regional sketch sections. The Khuzdar area and the frontal Kirthar Fold Belt are dominated by folding. Large thrusts with major stratigraphic repetitions are not observed. Furthermore, strike-slip faults in the Khuzdar area are scarce and not observed in the frontal Kirthar Fold Belt. The regional structural elevation rises from the foreland across the Kirthar Fold Belt towards the hinterland (Khuzdar area). These observations indicate that basement-involved deformation is present at depth. The domination of folding indicates a weak decollement below the folds (soft-linked deformation). The fold pattern in the Khuzdar area is complex, whereas the large folds of the central Kirthar Fold Belt trend SSW-NNE to N-S and are best described as large detachment folds that have been slightly uplifted by basement involved transpressive deformation underneath. Towards the foreland, the deformation is apparently more hard-linked and involves fault-propagation folding and a small triangle zone in Cretaceous sediments. Shortening is in the order of 21-24% for the frontal structures. The deformation above the weak Eocene Ghazij shales is partly decoupled from the layers underneath, especially where the Ghazij shales are thick. Thus, not all structures visible at surface level in the Kirthar Fold Belt are also present in the deeper section, and vice versa (disharmonic folding). The structural architecture in the frontal central Kirthar Fold Belt shows only convergent structures nearly parallel to the regional plate motion vector of the Indian plate and thus represents an example of extreme strain partitioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ul Hasson, Shabeh
Since the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments exhibit limited skill in reproducing the statistical properties of prevailing precipitation regimes over the major Himalayan watersheds (Indus, Ganges, Brahmaputra and Mekong), this study evaluates the anticipated added skill of their dynamically refined simulations performed under the framework of Coordinated Regional Climate Downscaling Experiments for South Asia (CX-SA). For this, the fidelity of eight CX-SA experiments against their six driving CMIP5 experiments is assessed for the historical period (1971–2005) in terms of time-dependent statistical properties (onset/retreat timings and rapid fractional accumulation—RFA) of the dominant summer monsoonal precipitation regime (MPR). Further,more » a self-defining seasonality index (SI), which is a product of precipitation and the distance of its actual distribution relative to its uniform distribution (relative entropy—RE), has been computed for MPR, westerly precipitation regime (WPR) and annual precipitation. The time evolution of precipitation, RE and SI has also been analyzed. Results suggest that CX-SA experiments simulate even higher wet biases than their driving CMIP5 experiments over all study basins, mainly due to higher wet biases simulated over the Himalayas and Tibetan Plateau. Most of the CX-SA experiments suggest unrealistic timings of the monsoon onset that are far earlier than their driving CMIP5 experiments for all basins. Generally, CX-SA experiments feature higher underestimation of RFA slope, RE and SI, distancing their driving CMIP5 experiments farther from observations. Interestingly, regardless of the diverse skill of CMIP5 experiments, their fine scale CX-SA experiments exhibit quite a similar skill when downscaled by the same regional climate model (RCM), indicating RCM’s ability to considerably alter the driving datasets. Lastly, these findings emphasize on improving the fidelity of simulated precipitation regimes over the Himalayan watersheds by exploiting the potential of RCMs in term of microphysics, resolutions and convective closures, and preferably, on resolving the crucial fine scale processes further down to their representative (meso-to-local) scales.« less
NASA Astrophysics Data System (ADS)
Fahad, M.; Iqbal, Y.; Riaz, M.; Ubic, R.; Redfern, S. A. T.
2015-12-01
The KP province of Pakistan hosts widespread deposits of thermo-metamorphic marbles that were extensively used as a building and ornamental stones since the time of earliest flourishing civilization in this region known as Indus Valley Civilization (2500 BC). The macroscopic characteristics of 22 marble varieties collected from three different areas of Lesser Himalayas (Northwest Pakistan), its chemical, mineralogical, petrographic features, temperature conditions of metamorphic re-crystallization, and the main physical properties are presented in order to provide a solid basis for possible studies on the provenance and distribution of building stones from this region. The results provide a set of diagnostic parameters that allow discriminating the investigated marbles and quarries. Studied marbles overlap in major phase assemblage, but the accessory mineral content, chemistry, the maximum grain size (MGS) and other petrographic characteristics are particularly useful in the distinction between them. On the basis of macroscopic features, the studied marbles can be classifies into four groups: (i) white (ii) grey-to-brown veined, (iii) brown-reddish to yellowish and (iv) dark-grey to blackish veined marbles. The results show that the investigated marbles are highly heterogeneous in both their geochemical parameters and minero-petrographic features. Microscopically, the white, grey-to-brown and dark-grey to blackish marbles display homeoblastic/granoblastic texture, and the brown-reddish to yellowish marbles display a heteroblastic texture with traces of slightly deformed polysynthetic twining planes. Minero-petrography, XRD, SEM and EPMA revealed that the investigated marbles chiefly consist of calcite along with dolomite, quartz, muscovite, pyrite, K-feldspar, Mg, Ti and Fe-oxides as subordinates. The magnesium content of calcite coexisting with dolomite was estimated by both XRD and EPMA/EDS, indicating the metamorphic temperature of re-crystallization from 414 - 628oC. The multi-analytical approach applied in the present study allows the best possible discrimination. The detailed databank relating to the quarried material, created here for the first time, provides a solid basis for possible studies on the provenance and distribution of building stones from these areas.
NASA Astrophysics Data System (ADS)
Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping
2018-04-01
We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.
Understanding Himalayan extreme rainfall to inform disaster governance
NASA Astrophysics Data System (ADS)
Ek, M. B.; Kumar, A.
2017-12-01
The hydrological aspects of the Himalayan flooding events were investigated with the coupled atmospheric and Hydrological (WRF-LIS) modeling tool. The Convective storms occurring at the steep edge of broad high topography, such as the Rocky Mountains and Himalayas, are notorious for producing surprising and lethal flash floods. We investigated two recent Himalayan flood events (a) 2010 Ladakh flood: A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5-6 August 2010 resulted in hundreds of deaths and great property damage. (b) 2013 Uttrakhand flood: Over a three-day period in June 2013, approximately 500-1000 mm of rain fell over Uttarakhand and its river valleys as well as neighboring Nepal. The extensive precipitation and runoff led to devastating floods and landslides throughout the region and resulted in much destruction and loss of life (over 4,000 villages were affected, and the death toll exceeded 5,000). The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta. Our study examines the land-atmosphere interactions & cloud structure and dynamics of these flooding events in more detail, identifying the synoptic, mesoscale, convective, orographic, and land-surface components of the storm. We include satellite observations, ground-based radar imagery, and convection-permitting model simulations down to 1 km grid resolution to show the three-dimensional character of the precipitating cloud systems in more detail than previous studies. Our Land Information System (LIS) calculations suggest that soil moisture preconditioning by prior storms in the area in a vulnerable watershed is a hydrologic ingredient that should be taken into account along with the meteorological ingredients. In this regard, our results will be seen to reinforce the position taken by Doswell et al. (1996) that local forecasting of flood situations is ideally based on identifying key meteorological and hydrologic "ingredients" for a variety of flash flood-producing storms provides lessons for understanding and predicting flash floods and leads to insights into flash flood-producing scenarios in various regions of the world.
NASA Astrophysics Data System (ADS)
Shuja Syed, Ahmed
2013-12-01
The 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies (ICSICCST-2013), took place in Karachi, Pakistan, from 24-26 June 2013. It was organized by Indus University, Karachi, in collaboration with HEJ Research Institute of Chemistry, University of Karachi, Karachi. More than 80 abstracts were submitted to the conference and were double blind-reviewed by an international scientific committee. The topics of the Conference were: Video, Image & Voice Sensing Sensing for Industry, Environment, and Health Automation and Controls Laser Sensors and Systems Displays for Innovative Applications Emerging Technologies Unmanned, Robotic, and Layered Systems Sensing for Defense, Homeland Security, and Law Enforcement The title of the conference, 'Sensing for Industry, Control, Communication & Security Technologies' is very apt in capturing the main issues facing the industry of Pakistan and the world. We believe the sensing industry, particularly in Pakistan, is currently at a critical juncture of its development. The future of the industry will depend on how the industry players choose to respond to the challenge of global competition and opportunities arising from strong growth in the Asian region for which we are pleased to note that the conference covered a comprehensive spectrum of issues with an international perspective. This will certainly assist industry players to make informed decisions in shaping the future of the industry. The conference gathered qualified researchers from developed countries like USA, UK, Sweden, Saudi Arabia, China, South Korea and Malaysia etc whose expertise resulting from the research can be drawn upon to build an exploitable area of new technology that has potential Defense, Homeland Security, and Military applicability. More than 250 researchers/students attended the event and made the event great success as the turnout was 100%. An exceptional line-up of speakers spoke at the occasion. We want to thank the Organizing Committee, the Institutions and Sponsors supporting the Conference, especially 'Centre for Emerging Sciences, Engineering & Technology (CESET), Islamabad', the IOP Publishers and everyone who contributed to the organization of this meeting, for their invaluable efforts to make this event a great success. Professor Dr Ahmed Shuja Syed Chief Editor The PDF also contains lists of the boards, committees and sponsors.
Tibetan Glaciers as Integrators and Sentinels of Climate Change
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Tandong, Y.; Davis, M. E.; Kehrwald, N. M.; Mosley-Thompson, E. S.
2008-12-01
Information from ice cores collected over the last two decades across the Tibetan Plateau demonstrates that this is a climatically diverse and complex region. Records spanning more than 500,000 years have been recovered from the Guliya ice cap in the far northwestern Kunlun Mountains, where the climate is dominated by the westerly flow over the Eurasian land mass. Shorter records (less than 10,000 years) have been recovered from ice fields in the central Himalaya to the south, where a monsoonal climate regime dominates and the annual accumulation is high. On decadal and longer timescales IPCC climate models predict that continued anthropogenic greenhouse gas emissions will force air temperature to increase faster at higher elevations. This vertical amplification will be greatest in low latitudes due to upper tropospheric humidity and water vapor feedback. Meteorological records across the Tibetan Plateau indicate that temperatures have risen since the mid-1950s and the rate of warming is greater (0.3°C per decade) at the higher elevation stations. Likewise, the stable isotopic compositions of ice cores across the Plateau show an overall the 20th Century enrichment that is greatest at the highest elevation sites. Glaciers in the central Himalayas, including many around the Tibetan Plateau, are experiencing an accelerating rate of ice loss, due in part to current temperature trends and associated feedbacks. Ice loss in the central Himalayas is evident from ice cores recovered in 2006 from the Naimona'nyi ice field. Unlike previous cores from glaciers around the world, including those drilled across the Tibetan Plateau, the Naimona'nyi cores lack the elevated levels of beta radioactivity from the decay of 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. This suggests that net mass (ice) loss has exceeded accumulation on this glacier since at least 1950. If the climate conditions that govern the mass balance on Naimona'nyi extend to other glaciers in the region, the implications for future water resources in South Asia could be dire as these glaciers feed the headwaters of the Indus, Ganges and Brahmaputra Rivers which sustain the world's most populous region.
Distribution and dynamics of mangrove forests of South Asia.
Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David
2015-01-15
Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem. Published by Elsevier Ltd.
ul Hasson, Shabeh
2016-10-02
Since the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments exhibit limited skill in reproducing the statistical properties of prevailing precipitation regimes over the major Himalayan watersheds (Indus, Ganges, Brahmaputra and Mekong), this study evaluates the anticipated added skill of their dynamically refined simulations performed under the framework of Coordinated Regional Climate Downscaling Experiments for South Asia (CX-SA). For this, the fidelity of eight CX-SA experiments against their six driving CMIP5 experiments is assessed for the historical period (1971–2005) in terms of time-dependent statistical properties (onset/retreat timings and rapid fractional accumulation—RFA) of the dominant summer monsoonal precipitation regime (MPR). Further,more » a self-defining seasonality index (SI), which is a product of precipitation and the distance of its actual distribution relative to its uniform distribution (relative entropy—RE), has been computed for MPR, westerly precipitation regime (WPR) and annual precipitation. The time evolution of precipitation, RE and SI has also been analyzed. Results suggest that CX-SA experiments simulate even higher wet biases than their driving CMIP5 experiments over all study basins, mainly due to higher wet biases simulated over the Himalayas and Tibetan Plateau. Most of the CX-SA experiments suggest unrealistic timings of the monsoon onset that are far earlier than their driving CMIP5 experiments for all basins. Generally, CX-SA experiments feature higher underestimation of RFA slope, RE and SI, distancing their driving CMIP5 experiments farther from observations. Interestingly, regardless of the diverse skill of CMIP5 experiments, their fine scale CX-SA experiments exhibit quite a similar skill when downscaled by the same regional climate model (RCM), indicating RCM’s ability to considerably alter the driving datasets. Lastly, these findings emphasize on improving the fidelity of simulated precipitation regimes over the Himalayan watersheds by exploiting the potential of RCMs in term of microphysics, resolutions and convective closures, and preferably, on resolving the crucial fine scale processes further down to their representative (meso-to-local) scales.« less
Sharma, Arvind; Phillips, Clive J. C.
2018-01-01
Simple Summary The cow has evolved to become one of the most important symbols of Hindu identity, often synonymous with religious or nationalistic sentiment and pride. The issue of protecting and revering the cow has been the cause of much unrest, violence and vigilantism; this continues to be the case even in the present day. Nowadays the law bans cow-slaughter in a majority of Indian States. A direct result of these anti-slaughter laws is a large population of abandoned, aged or otherwise unproductive cattle housed in cattle-shelters that often face inadequacy of space, infrastructure, skilled labour and lack of financial and veterinarian support. Many members of the Indian community do not necessarily look upon this phenomenon negatively, since they view historical events spanning three millennia of Indian history from the perspective of cow-symbolism. We discuss the moral, social and welfare ramifications of this unique phenomenon of nationwide animal worship and protection, exploring whether such strategies could find application in the Western milk, meat and egg production context. Abstract Reverence for the cow has been a centerpiece of Hindu culture, the roots of which can be traced back to the Indus Valley Civilization around 3000 BCE. Historical and anthropological literature demonstrates how over the millennia the animal’s status as a religious symbol steadily increased and the concept of its sanctity grew in complexity, becoming deeply entrenched and assuming a core identity of the religion. The cow has also been used as a symbol of political opposition to external influences and invading powers. Nowhere else in the world has an animal maintained such divine significance into modern day. This literature review explores the interplay of complex cultural, religious, social and political factors that led to the phenomenon of the sacred cow, a ban on its slaughter and the advent of the modern gaushala. The review also discusses the moral implications of preservation of animal life past their commercial use, the impact on their welfare and need for objectively assessing whether there is a place for such strategies in other animal industries worldwide. PMID:29701646
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.
2013-12-01
We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate Model (GCM) perturbed physics ensemble (PPE) of transient (130-year) simulations using a moderate resolution (25km) regional climate model (RCM). The GCM ensemble is the17-member QUMP (Quantifying Uncertainty in Model Projections) ensemble and the downscaling is done using HadRM3P, part of the PRECIS regional climate modelling system. Both the RCM and GCMs are models developed the UK Met Office Hadley Centre and are based on the HadCM3 GCM. Use of the multi-member PPE enables quantification of uncertainty in projected temperature change while the spatial resolution of RCM improves insight into the role of elevation in projected rates of change. Furthermore comparison with the results of the remote sensing analysis component - considered to provide an 'observed climatology' - permits evaluation of individual ensemble members with regards to biases in spatial gradients in temperature as well timing and magnitude of annual cycles.
NASA Astrophysics Data System (ADS)
Fort, Monique; Braucher, Regis; Bourlès, Didier; Guillou, Valery; Nath Rimal, Lila; Gribenski, Natacha; Cossart, Etienne
2014-05-01
Large catastrophic slope failures have recently retained much attention in the northern dry Himalayas (1). They play a prominent role in the denudation history of active orogens at a wide range of spatial and time scales (2), and they impact durably landforms and process evolution in upstream catchments. Their occurrence mostly results from three different potential triggers: earthquakes, post-glacial debuttressing, and permafrost melting. We focus on two examples of giant rock slope failures that occurred across and north of the Higher Himalaya of Nepal and assess their respective influence on the regional, geomorphic evolution. The Ringmo rockslide (4.5 km3) results from the collapse of a mountain wall (5148 m) cut into palaeozoic dolomites of the Tethysian Himalayas. It caused the damming of the Suli Gad River at the origin of the Phoksumdo Lake (3600 m asl). The presence of glacial till at the very base of the sequence suggests the rockslide event is post-glacial, a field assumption confirmed by cosmogenic dating. Two consistent 36Cl ages of 20,885 ±1675 argue for a single, massive event of paraglacial origin that fits well with the last chronologies available on the Last Glacial Maximum in the Nepal Himalaya. The persistence of the Phoksumdo Lake is due to its dam stability (i.e. high lime content of landslide components) and to low sediment flux from the arid, upper Suli Gad catchment. The Dhampu-Chhoya rock avalanche (about 1 km3, area extent 10 km2) was derived from the northward failure of the Kaiku ridge, uphold by north-dipping, upper crystallines of the Higher Himalaya. It dammed the Kali Gandaki River, with complex interactions with the Late Pleistocene ice tongues derived from the Dhaulagiri (8167 m) and Nilgiris (7061 m) peaks. Both the rock avalanche and glaciers controlled the existence and level of the "Marpha Lake" (lacustrine deposits up to Kagbeni). Again, consistent 10Be ages of 29,680 ± 1015 ka obtained from two large blocks (>1000 m3) suggest a single event, in full agreement with other 10Be dates obtained by a different team from the same site (3). This latter event occurred during glaciation, and was likely triggered in connection with the North Himalayan Fault and/or Thakkhola fault activity. Post-landslide dam evolution includes rapid dissection of lacustrine deposits (4), yet the braided pattern of the Kali Gandaki evidence the delay in headward erosion caused by landslide dam persistence. References: (1) Hewitt K., 2009. Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh Massif, Upper Indus basin, northern Pakistan. Quaternary Science Reviews, 28, 1055-1069; (2) Korup, O., Clague, J.J., 2009. Natural hazards, extreme events, and mountain topography. Quaternary Science Reviews 28, 977-990; (3) Zech R., Zech M, Kubik P.W., Kharki K., Zech W. (2009). Deglaciation and landscape history around Annapurna, Nepal, based on 10Be surface exposure dating, Quaternary Science Reviews, v. 28(11-12), pp.1106-1118; (4) Fort M., Cossart E. (2013) Erosion assessment in the middle Kali Gandaki (Nepal): A sediment budget approach. Journal of Nepal Geological Society, Vol. 46, pp. 25-40.
NASA Astrophysics Data System (ADS)
Kelemen, Peter; Hacker, Bradley
2016-04-01
Some Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle wedge (e.g., Powell & Conaghan 73), others indicate thickening of both crustal sections, juxtaposed along a steep suture (e.g., Dewey & Burke 73), and many combine features of both end-members (e.g., Argand 24). To understand crustal scale structure and related phenomena, we focus on data from an area in southern Tibet at 28-30°N, 84-91°E. 21st century observations in this area show a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across a region where Tibetan crust is interpreted to overlie Indian crust, into thickened Tibetan crust (Zhao et al 01; Monsalve et al 08; Wittlinger et al 09; Nabelek et al 09; Kind et al 02; Schulte-Pelkum et al 05; Shi et al 15). About half the subducted Indian crustal volume is present, whereas the other half is missing (Replumaz et al 10). Vp/Vs indicates the alpha-beta quartz transition is at ca 50 km depth (Sheehan et al 13). Miocene lavas include primitive andesites probably formed by interaction of crustal material with mantle peridotite at > 1000°C (Turner et al 93; Williams et al 01, 04; Chung et al 05). Thermobarometry of xenoliths in a 12.7 Ma dike records ~ 1100°C at 2.2-2.6 GPa and 920°C at 1.7 GPa (Chan et al 09). Biotite-rich pyroxenites among the xenoliths, similar to those in central Tibet (Hacker et al 00) and the Pamirs (Hacker et al 05), may form via reaction of hot crustal lithologies and mantle peridotite (e.g., Sekine & Wyllie 82, 83). These data, taken together, indicate Miocene to present day temperatures exceeding 800°C from ca 50 km depth to the Moho, unlike thermal models with a hot mid-crust and cold Moho (McKenzie & Priestley 08, Craig et al 12, Wang et al 13; Nabelek & Nabelek 14), and despite the observation of numerous, near-Moho earthquakes (Chen & Molnar 83; Chen & Yang 04; Monsalve et al 06; Priestley et al 08; Craig et al 12) interpreted by many as brittle failure at less than 700°C (e.g. Jackson 02). We build on earlier studies (LePichon et al 92, 97; Schulte-Pelkum et al 05; Monsalve et al 08) to develop the hypothesis that there is rapid growth of garnet at 80 km and 1000°C within subducting Indian crust, causing increased rock densities. Dense eclogites founder into the mantle, while relatively buoyant lithologies accumulate in thickening lower crust. Mantle return flow plus radioactive heating in thick, felsic crust maintains high temperature, facilitating formation of hybrid magmas and pyroxenites. The crustal volume grows at 760 cubic m/yr/m of strike length. Moho-depth earthquakes may be due to localized deformation and thermal runaway in weak layers and along the margins of dense, foundering diapirs (e.g., Larsen & Yuen 97; Braeck & Podladchikov 07; Kelemen & Hirth 07; Lister et al 08; Kufner et al 16). A similar process may take place at some convergent margins, where forearc crust is thrust beneath hot, magmatic arc crust, leading to extensive, Moho-depth density sorting and hybrid crust-mantle magmatism in Arc Tadpole Zones.
Earthquake and the Catastrophic End of the Late Bronze Age in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Nur, A.
2009-04-01
The reasons for the catastrophic and wide spread political as well as physical collapse in the Aegean and Eastern Mediterranean areas that define the end of the Bronze age ca. 1225 BC to 1175 BC remain a major enigma. It has been attributed by historian to attacks by outsiders with the most favored group being the (enigmatic) so-called sea people. Unfortunately there is no real evidence for this. However combined geological, geophysical and archaeological evidence suggests that earthquakes may have played a key role in this extraordinary collapse during the late 13th and early 12th centuries . Based on the instrumentally recorded earthquakes occurring in the Aegean and Eastern Mediterranean region during the 20th century, several events that have clear historical information, and the geography of seismically active faults it is obvious that numerous earthquakes of magnitude 6·5 or greater (enough to destroy modern buildings, let alone those of antiquity) occurred here frequently in the past. Furthermore major earthquakes often occur in this region in groups, known as ‘‘sequences'' or ‘‘storms'', in which one large quake is followed days, months, or a few years later by others elsewhere on the plate boundary fault lines. When a map of the areas in the Aegean and Eastern Mediterranean region shaken by 20th century earthquakes of magnitude 6·5 and greater and with an intensity of VII or greater is overlaid on Robert Drews' map of sites destroyed in these same regions during the so-called ‘‘Catastrophe'' near the end of the Late Bronze Age, it is readily apparent that virtually all of these LBA sites lie within the affected (‘‘high-shaking'') areas. This would suggest that a major ‘‘earthquake storm'' may have occurred in the Late Bronze Age Aegean and Eastern Mediterranean during the years 1225-1175 . This ‘‘storm'' may have interacted with societal, political and economic forces at work in these areas c. 1200 and merits consideration by archaeologists and prehistorians. Similarly several other unexplained civilization collapses may also be linked to catastrophic earthquakes such as the collapse of the Cassas Grandes civilization in Sonora, Mexico, and the Indus valley civilization,
Das, Kamal; Ganie, Showkat Hussain; Mangla, Yash; Dar, Tanvir-Ul-Hassan; Chaudhary, Manju; Thakur, Rakesh Kumar; Tandon, Rajesh; Raina, S N; Goel, Shailendra
2017-03-01
Hippophae rhamnoides L. ssp. turkestanica (Elaeagnaceae) is a predominantly dioecious and wind-pollinated medicinal plant species. The mature fruits of the species possess antioxidative, anti-inflammatory, antimicrobial, anticancerous, and antistimulatory properties that are believed to improve the immune system. The identification of male and female plants in H. rhamnoides ssp. turkestanica is quite difficult until flowering which usually takes 3-4 years or more. A sex-linked marker can be helpful in establishing the orchards through identification of genders at an early stage of development. Therefore, we studied the genetic diversity of populations in Ladakh with the aim to identify a gender-specific marker using ISSR markers. Fifty-eight ISSR primers were used to characterize the genome of H. rhamnoides ssp. turkestanica, of which eight primers generated 12 sex-specific fragments specific to one or more populations. The ISSR primer (P-45) produced a fragment which faithfully segregates all the males from the female plants across all the three valleys surveyed. This male-specific locus was converted into a SCAR. Forward and reverse primers designed from this fragment amplified a 750-bp sequence in males only, thus specifying it as an informative male-specific sex-linked marker. This SCAR marker was further validated for its capability to differentiate gender on an additional collection of plants, representing three geographically isolated valleys (Nubra, Suru, and Indus) from Ladakh region of India. The results confirmed sex-linked specificity of the marker suggesting that this conserved sequence at the Y chromosome is well preserved through the populations in Ladakh region. At present, there are no reliable markers which can differentiate male from female plants across all the three valleys of Ladakh region at an early stage of plant development. It is therefore envisaged that the developed SCAR marker shall provide a reliable molecular tool for early identification of the sex in this commercial crop. The genetic diversity of populations as surveyed by ISSR primers revealed 85.71 % polymorphism at the population level. The dendrogram obtained divided the genotypes into three different clusters, and the distribution of male and female genotypes in all the clusters was random. The Nei's genetic similarity index was in the range of 0.63-0.96.
Herbal drug patenting in India: IP potential.
Sahoo, Niharika; Manchikanti, Padmavati; Dey, Satya Hari
2011-09-01
Herbal drugs are gaining worldwide prominence due to their distinct advantages. Developing countries have started exploring the ethnopharmacological approach of drug discovery and have begun to file patents on herbal drugs. The expansion of R&D in Indian herbal research organizations and presence of manufacturing units at non-Indian sites is an indication of the capability to develop new products and processes. The present study attempts to identify innovations in the Indian herbal drug sector by analyzing the patenting trends in India, US and EU. Based on key word and IPC based search at the IPO, USPTO, Esp@cenet and WIPO databases, patent applications and grant in herbal drugs by Indian applicants/assignees was collected for the last ten years (from 1st January 2001 to 31st October 2010). From this collection patents related to human therapeutic use only were selected. Analysis was performed to identify filing trends, major applicants/assignees, disease area and major plant species used for various treatments. There is a gradual increase in patent filing through the years. In India, individual inventors have maximum applications and grants. CSIR, among research organizations and Hindustan Unilever, Avesthagen, Piramal Life Science, Sahajanand Biotech and Indus Biotech among the companies have the maximum granted patents in India, US and EU respectively. Diabetes, cancer and inflammatory disorders are the major areas for patenting in India and abroad. Recent patents are on new herbal formulations for treatment of AIDS, hepatitis, skin disorders and gastrointestinal disorders. A majority of the herbal patents applications and grants in India are with individual inventors. Claim analysis indicates that these patents include novel multi-herb compositions with synergistic action. Indian research organizations are more active than companies in filing for patents. CSIR has maximum numbers of applications not only in India but also in the US and EU. Patents by research organizations and herbal companies are on development of new processes for active compound isolation and standardization of such components in addition to new compositions for therapeutic use. Pharmaceutical companies such as Ranbaxy, Lupin and Panacea Biotec are increasingly patenting on herbal drugs. There is increased patenting activity related to diabetes, cancer, cardiovascular diseases, asthma and arthritis in India and abroad. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
History of India-Asia Suturing in Tibet: Constraints and Questions
NASA Astrophysics Data System (ADS)
Kapp, P. A.; Ding, L.
2011-12-01
The India-Asia collision zone is widely pointed to as the type Cenozoic example of continental suturing and collision, yet there remains considerable controversy about its geological and geodynamical evolution. This in part may reflect the richness and complexity of the geological records exposed across the collision zone and how much remains to be extracted from them. Separating the formerly Andean-style continental margin of southern Asia (Gangdese arc and forearc of the Lhasa terrane) in the north, from Indian-affinity strata deformed in the Tethyan Himalayan thrust belt to the south, is the Indus-Yarlung suture zone (IYSZ). In Tibet, ophiolitic rocks along the IYSZ crystallized and were obducted in a suprasubduction zone setting during Early Cretaceous time. The ophiolitic rocks are of the appropriate age to have formed the basement upon which Gangdese forearc strata accumulated. Alternatively, they may represent remnants of an intra-oceanic subduction system that persisted in the Tethys, far from Asia, until Greater India collided with it during the latest Cretaceous to Paleocene. There has been no documentation, however, of ophiolitic or arc fragments younger than Early Cretaceous within the IYSZ. Distinguishing between these two end-member scenarios is important for interpreting detrital records of orogenesis and seismic tomographic images of the mantle. A preponderance of evidence suggests that collision between the Tethyan Himalaya and Asia initiated by 52 Ma. Initial collision led abruptly to profound and far-field changes in paleogeography and tectonism such that by 45 Ma, major shortening and potassic volcanism was ongoing in northern Tibet, plateau-like conditions were established in central Tibet, Tethyan Himalayan crust was undergoing anatexis, and Eo-Himalayan prograde metamorphism was underway. Additional constraints on the shortening history of the Tethyan Himalayan thrust belt will be key to assessing when and how much Greater Indian lithosphere was subducted northward beneath Asia during the Paleogene. Large-scale northward underthrusting of Greater Indian lithosphere (>600 km between 45 and 30 Ma), its subsequent rapid rollback to the south of the IYSZ (30 - 20 Ma), and renewed northward underthrusting (15 Ma to Recent), is inferred from north-south temporal sweeps in Cenozoic magmatism in Tibet. This history of Greater Indian lithosphere subduction may help explain major transitions in the kinematic evolution of the Himalayan-Tibetan orogen and can account for more than half of the total convergence between India and Asia since 50 Ma.
Evidence for Tectonic Activity During the Mature Harappan Civilization, 2600-1800 BCE
NASA Astrophysics Data System (ADS)
Grijalva, K. A.; Kovach, R. L.; Nur, A. M.
2006-12-01
The mature Harappan civilization located in Pakistan and India dates from 2600 to 1800 BCE. By combining seismic data, three-dimensional elastic dislocation modeling, and archaeological findings we examined the role that earthquakes played in the demise of Harappan settlements. The study focuses on three different geographical regions: Gujarat, the Sarasvati-Ghaggar-Hakra River valley, and the Makran coast of Pakistan. In Gujarat, the fluvial system of the Rann of Kachchh has undergone significant changes. The Rann of Kachchh formed as a delta for three rivers, becoming an inland sea during the time of Alexander the Great, and ultimately a salty marsh. These changes were brought about by a combination of sea level changes, the truncation of the three rivers by tectonic uplift and the deepening of the Rann by earthquake induced subsidence. Events analogous to the 1819 Allah Bund earthquake, which dammed the Puran River for seven years, would have significantly altered the water source for downstream settlements. Data from the recent 2001 Bhuj event shows that Harappan settlements would have suffered considerable shaking damage from an analogous historical event. Archaeological studies to date have found direct evidence for of at least one large earthquake at Dholavira in 2200 BCE. A number of the mature Harappan settlements are located along the dry Sarasvati-Ghaggar-Hakra river system. The decline of these sites coincides with the divergence of the Sarasvati-Ghaggar-Hakra system to the Indus and Ganga river systems. A succession of earthquakes, along with a period of aridity, likely led to the disappearance of the Sarasvati-Ghaggar-Hakra system. Although this region has not had any large earthquakes in historic times, there is archaeological evidence of two large events at the Harappan site of Kalibangan, at 2900 and 2700 BCE. Along the Makran coast two settlements, believed to have been Harappan seaports, are now located tens of kilometers inland. Changes in sea level, along with tectonic uplift from great Makran subduction zone earthquakes, can explain the conundrum of why these sites are now tens of kilometers inland. Dislocation modeling demonstrates that several great subduction earthquakes in the historical past could easily have raised the Harappan settlements to their current inland positions above sea level. The examples presented demonstrate that earthquakes affected the demise of several Harappan sites either by direct shaking damage, altering the water supply, or by changing the relative sea level.
Khan, Jehangir; Khan, Inamullah; Ghaffar, Abdul; Khalid, Bushra
2018-06-15
Dengue is becoming more common in Pakistan with its alarming spreading rate. A historical review needs to be carried out to find the root causes of dengue dynamics, the factors responsible for its spread and lastly to formulate future strategies for its control. We searched (January, 2015) all the published literature between 1980 and 2014 to determine spread/burden of dengue disease in Pakistan. A total of 81 reports were identified, showing high numbers of dengue cases in 2010, 2011, and 2013. The tendency of dengue to occur in younger than in older age groups was evident throughout the survey period and all four serotypes were recorded, with DENV1 the least common. Most dengue hemorrhagic fever (DHF) cases fell in the 20-45 years age range. High frequencies tended to be observed first in the Southern coastal region characterized by mild winters and humid warm summers and then the disease progressed towards the lowland areas of the Indus plain with cool winters, hot summers and monsoon rainfall. Based on this survey, new risk maps and infection estimates were identified reflecting public health burden imposed by dengue at the national level. Our study showed that dengue is common in the three provinces of Pakistan, i.e., Khyber Pakhtunkhwa (KP), Punjab and Sindh. Based on the literature review as well as on our study analysis the current expansion of dengue seems multifactorial and may include climate change, virus evolution, and societal factors such as rapid urbanization, population growth and development, socioeconomic factors, as well as global travel and trade. Due to inadequate remedial strategies, effective vector control measures are essential to target the dengue vector mosquito where high levels of human-vector contact occur. The known social, economic, and disease burden of dengue is alarming globally and it is evident that the wider impact of this disease is grossly underestimated. An international multi-sectoral response, outlined in the WHO Global Strategy for Dengue Prevention and Control, 2012-2020, is now essential to reduce the significant influence of this disease in Dengue endemic areas. Overall gaps were identified in knowledge around seroprevalence, dengue incidence, vector control, genotype evolution and age-stratified serotype circulation.
Jongeneelen, Frans J; Berge, Wil F Ten
2011-10-01
Physiologically based toxicokinetic (PBTK) models are computational tools, which simulate the absorption, distribution, metabolism, and excretion of chemicals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPK) model with a high level of transparency. The model should be able to predict blood and urine concentrations of environmental chemicals and metabolites, given a certain environmental or occupational exposure scenario. The model refers to a reference human of 70 kg. The partition coefficients of the parent compound and its metabolites (blood:air and tissue:blood partition coefficients of 11 organs) are estimated by means of quantitative structure-property relationship, in which five easily available physicochemical properties of the compound are the independent parameters. The model gives a prediction of the fate of the compound, based on easily available chemical properties; therefore, it can be applied as a generic model applicable to multiple compounds. Three routes of uptake are considered (inhalation, dermal, and/or oral) as well as two built-in exercise levels (at rest and at light work). Dermal uptake is estimated by the use of a dermal diffusion-based module that considers dermal deposition rate and duration of deposition. Moreover, evaporation during skin contact is fully accounted for and related to the volatility of the substance. Saturable metabolism according to Michaelis-Menten kinetics can be modelled in any of 11 organs/tissues or in liver only. Renal tubular resorption is based on a built-in algorithm, dependent on the (log) octanol:water partition coefficient. Enterohepatic circulation is optional at a user-defined rate. The generic PBTK model is available as a spreadsheet application in MS Excel. The differential equations of the model are programmed in Visual Basic. Output is presented as numerical listing over time in tabular form and in graphs. The MS Excel application of the PBTK model is available as freeware. The accuracy of the model prediction is illustrated by simulating experimental observations. Published experimental inhalation and dermal exposure studies on a series of different chemicals (pyrene, N-methyl-pyrrolidone, methyl-tert-butylether, heptane, 2-butoxyethanol, and ethanol) were selected to compare the observed data with the model-simulated data. The examples show that the model-predicted concentrations in blood and/or urine after inhalation and/or transdermal uptake have an accuracy of within an order of magnitude. It is advocated that this PBTK model, called IndusChemFate, is suitable for 'first tier assessments' and for early explorations of the fate of chemicals and/or metabolites in the human body. The availability of a simple model with a minimum burden of input information on the parent compound and its metabolites might be a stimulation to apply PBTK modelling more often in the field of biomonitoring and exposure science.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Biswajit
2012-01-01
SummaryIn river basins where melt water from snow and ice constitutes a dominant component of stream discharge during summer, degradation or reduction of perennial snow and ice covered areas ( SCA P) has a profound effect on stream water availability in those basins. Degradation of SCA P that includes glaciers is a globally widespread phenomenon observed in the recently past decades; its cause has been attributed to global warming and its consequence is expected to dramatically alter the flow regimes of the rivers draining the terrains. The predicted change in flow regime is an initial increase in summer flows in the early decades of 21st century followed by sharp decline of the same during the later parts of the century. Estimation of SCA P within the Upper Indus Basin (UIB), straddling the western ranges of the Greater Himalayas, Karakoram Mountains, and the eastern mountain ranges of the Hindu Kush, shows that from 1992 to 2010 there has been about 2.15% reduction in SCA P. A spatially distributed basin-scale stream water availability model is presented to calculate monthly river discharges at critical hydrologic junctions within UIB. Model calculations for the years 1992, 2000, and 2008, show that due to the degradation of the SCA P within the basin, there has been significant decrease in summer discharges at various hydrologic junctions. The percentage decline in flows varies from 10% to 22%, depending on the locations of the junctions within the basin. The space-dependence of these variations reflects differential degradation of SCA P in various parts of the basin. Furthermore, the time of peak discharge at all of the hydrological junctions has shifted from middle/late summer to late spring/early summer as another outcome of SCA P reduction. Such temporal shifting of nival regimes to early part of warmer season has also been predicted by global warming models. However, the case study presented here for a major Himalayan river basin demonstrates that such shifting of peak discharge in the time domain can also take place simply due to retreat of the equilibrium line. Thus, the effects of a warming climate have possibly been already set within UIB. Instead of experiencing an increased pulse of summer flows for the next few decades, summer flows within this basin are expected to decline. Changes in the timing of peak flows can have adverse effects on multipurpose water resources management without appropriate adaptation and mitigation measures. Monthly average stream flow data with 35 year period of record from a key gauging station support the findings of the model results. Similarly, digital maps of SCA P at different time periods within a key catchment of UIB, containing one of the major glaciers, show retreat of glacial lobes and significant decrease in total SCA P taking place during the past decades.
NASA Astrophysics Data System (ADS)
Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew
2015-04-01
The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be < 40 Ma to < 22 Ma. The result is consistent with the previous nanofossil study that constrained the upper part of underlying Nisai Formation to be the Middle to Late Eocene. Our current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (< 120 Ma), characterizing the KLA and Karakoram, persistently exist throughout the whole sedimentary section and (2) the detrital zircons from KLA and Karakoram which are distinctive in Hf isotopes also show the presence throughout the sequence. Collectively, we argue that 1) the major collision between the Indian and Asian plates occurred no later than 50 Ma in the NW Himalaya and 2) the amalgamation of KLA with the Asian plate occurred prior to the major Indo-Asia collision. Cited references Carter, A., Najman, Y., Bahroudi, A., Bown, P., Garzanti, E., Lawrence, R.D., 2010. Locating earliest records of orogenesis in western Himalaya: Evidence from Paleogene sediments in the Iranian Makran region and Pakistan Katawaz basin. Geology 38, 807-810. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997a. Discovery of the palaeo-Indus delta-fan complex. Journal of the Geological Society 154, 753-756. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997b. Molasse-Delta-flysch continuum of the Himalayan orogeny and closure of the Paleogene Katawaz Remnant Ocean, Pakistan. International geology review 39, 861-875. Qayyum, M., Niem, A.R., Lawrence, R.D., 1996. Newly discovered Paleogene deltaic sequence in Katawaz basin, Pakistan, and its tectonic implications. Geology 24, 835-838. Qayyum, M., Niem, A.R., Lawrence, R.D., 2001. Detrital modes and provenance of the Paleogene Khojak Formation in Pakistan: Implications for early Himalayan orogeny and unroofing. Geological Society of America Bulletin 113, 320-332.
NASA Astrophysics Data System (ADS)
Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel
2013-04-01
We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop residue burning is practiced during harvesting months (April-May) displays enhanced seasonal average PM10 loadings. Average PM10 loadings are approximately 40 μg/m3 higher compared to average PM10 loadings in the Eastern IGP, where crop residue burning is not practiced. PM10 loading in Patiala (Central Punjab) are underpredicted by a factor of 1.8 with respect to the seasonal average and a factor of 2.5 for the harvesting season only. A comparison between 1992-1995 and 2000-2003 shows that PM10 loadings over entire India decreased with the strongest decrease (-150 μg/m3) over the mining areas in Madhya Pradesh and in Chhattisgarh, providing confidence in environmental protection norms put in place by government regulatory authorities. TSP mass loadings decreased over Central India, the Eastern IGB and the Bay of Bengal (-300 μg/m3) but increased over the Southern Indus plains (+ 200 μg/m3) and the Thar Desert. In general there is an increase of TSP from windblown desert dust which is most apparent over the dust source regions but also impacts TSP loadings over the NW-IGB. References: Gupta and Kumar: Trends of particulate matter in four cities in India. Atmospheric Environment 40 (2006) 2552-2566. Acknowledgement: Vinod Kumar and Himanshu Sachan acknowledge the DST INSPIRE Fellowship programme. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding
Fresh Water River discharges as observed by SMOS in the Arabian Sea and the Bay of Bengal
NASA Astrophysics Data System (ADS)
Olmedo, Estrella; Ballabrera-Poy, Joaquim; Turiel, Antonio
2017-04-01
The Bay of Bengal (BoB) and the Arabian Sea (AS) are two peculiar regions in the Indian Ocean exhibiting a wide range of Sea Surface Salinity (SSS) values. In the BoB, the strong summer monsoon rainfall and the continental run-offs into these semi-enclosed basins result in an intense dilution of the surface seawater in the northern part of the Bay, thereby inducing some of the lowest SSS water masses found in the tropical belt. In the AS, because of the intense variability associated with the monsoon cycle, water mass structure in the upper layers of the AS shows enormous variability in the space and time. As such, the role of the salinity in these regions is crucial in the ocean dynamics of these regions. After more than 7 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) mission [1] continues to provide a series of salinity data that could be used to monitor the SSS variations in these climatically relevant regions, provided that systematic errors due to land contamination are reduced. Recently-developed algorithms for SSS retrieval [2] have improved the filtering criteria and the mitigation of the systematic bias, providing coherent SSS retrievals close to the land masses. In this work we have analyzed the SSS in 2-degree boxes located at the mouth of the main rivers in the BoB: Ganges-Brahmaputra, Irrawady, Mahanadi, Godovari; and in the AS: Indus. We have first tried to validate the SMOS salinity retrievals with in situ measurements. Since there is few available in situ data, we have also compared the climatological SSS behavior derived from SMOS with the ones provided by the World Ocean Atlas [3]. We have also compared the SMOS SSS data with historical data of discharges [4] and [5], ocean currents from the Ocean Surface Current Analyses Real-time (OSCAR) [6], Sea Surface Temperature from Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) [7],[8] and [9] and Chlorophyll data [10]. The conclusion of this work is that, when the proper filtering criteria is implemented, SMOS provides coherent SSS measurements close to the coast, and especially in these regions of the Indian Ocean, providing near real-time information suitable for validation and ocean data assimilation. References: [1] Font, J., Camps, A., Borges, A., Martin-Neira, M., Boutin, J., Reul, N., Kerr, Y., Hahne, A., and Mechlenburg, S. (2010). SMOS: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98:649. [2] Olmedo, E., Martínez, J., Turiel, A., Ballabrera-Poy, J., and Portabella, M., (2017), "Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity, Remote Sensing of Environment, under review. [3] Zweng, M.M, J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson, D.Seidov, M.M. Biddle, 2013. World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp [4] Dai, A., and K. E. Trenberth, (2002): Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol., 3, 660-687 [5] Dai, A., T. Qian, K. E. Trenberth, and J. D Milliman, (2009): Changes in continental freshwater discharge from 1949-2004. J. Climate, 22, 10, 2773-2792 [6] Bonjean F. and G.S.E. Lagerloef, (2002): Diagnostic model and analysis of the surface currents in the tropical Pacific ocean, J. Phys. Oceanogr., 32, 2,938-2,954 [7] Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, (2011). The perational Sea Surface Temperature and Sea Ice analysis (OSTIA). Remote Sensing of the Environment. doi: 10.1016/j.rse.2010.10.017 2011. [8] Martin, M.J., A. Hines and M.J. Bell, (2007). Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Q.J.R. Meteorol. Soc., 133:981-995. [9] John D. Stark, Craig J. Donlon, Matthew J. Martin and Michael E. McCulloch, (2007), OSTIA : An operational, high resolution, real time, global sea surface temperature analysis system., Oceans '07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. Aberdeen, Scotland.IEEE. [10] NASA Goddard Space Flight Center, Ocean Biology Processing Group; (2014): Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA OB.DAAC, Greenbelt, MD, USA. http://doi.org/10.5067/ORBVIEW-2/SEAWIFS_OC.2014.0. Accessed 2016/12/31. Maintained by NASA Ocean Biology Distibuted Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD.
Coal resources of the Sonda coal field, Sindh Province, Pakistan
Thomas, R.E.; Riaz, Khan M.; Ahmed, Khan S.
1993-01-01
Approximately 4.7 billion t of original coal resources, ranging from lignite A to subbituminous C in rank, are estimated to be present in the Sonda coal field. These resources occur in 10 coal zones in the Bara Formation of Paleocene age. The Bara Formation does not out crop in the area covered by this report. Thin discontinuous coal beds also occur in the Sonhari Member of the Laki Formation, of Paleocene and Eocene age, but they are unimportant as a resource of the Sonda coal field. The coal resource assessment was based on 56 exploratory drill holes that were completed in the Sonda field between April 1986 and February 1988. The Sonda coal field is split into two, roughly equal, areas by the southwestward flowing Indus River, a major barrier to the logistics of communications between the two halves. As a result the two halves, called the Sonda East and Sonda West areas, were evaluated at different times by slightlydifferent techniques; but, because the geology is consistent between the two areas, the results of both evaluations have been summarized in this report. The resource estimates for the Sonda East area, approximately 1,700 million t, were based on the thickest coal bed in each zone at each drill hole. This method gives a conservative estimate of the total amount of coal in the Sonda East area. The resource estimates for the Sonda West area, approximately 3,000 million t, were based on cumulative coal bed thicknesses within each coal zone, resulting in a more liberal estimate. In both cases, minimum parameters for qualifying coal were a thickness of 30 cm or greater and no more than 50% ash; partings thicker than 1 cm were excluded. The three most important coal zones in the Sonda field are the Inayatabad, the Middle Sonda and the Lower Sonda. Together, these three coal zones contain 50% of the total resources. Isopachs were constructed for the thickest coal beds in these three coal zones and indicate large variations in thickness over relatively small distances. Coal beds in the Sonda coal field were difficult to correlate because of poor core recovery in some intervals and abrupt lateral thinning and thickening. Most coal zones are separated by 5-10 m of interburden, although in some places the interburden between zones is over 100 m thick. More closely spaced drill holes should clarify and significantly improve coal zone correlations in the Bara Formation. Coal resources in the Sonda coal field were calculated for three reliability categories; measured, indicated, and inferred. The most reliable estimates are those for the measured category. Measured coal resources are approximately 91 million t, or about 2% of the total resource; indicated resources are 681 million t, or about 14% of the total; and inferred resources, the least reliable resource category, are 3,931 million t, or 84% of the total resources. The distribution of resources by reliability category is due to the relatively wide spacing (approximately 5 km) between core holes. Analyses of 90 coal samples, on an as-received basis, indicate average ash and sulfur contents of 13.7% and 3.6%, respectively, and a range in rank from lignite A to subbituminous C. Calorific values for these samples range from 6,000 to 8,000 Btu/lb (1 Btu = 1055J; 1 lb = 4536 kg). ?? 1993.
Climate Past and Present: A Study on Glaciology of Himalayas in India
NASA Astrophysics Data System (ADS)
Shanmuganandan, S.
2003-04-01
Glaciers are moving bodies of ice and snow, which are normally present above the snow line. Glaciers and ice sheets are hundreds to more than one thousand meters thick and change significantly only over decades. On these longer time scales they can influence atmospheric circulation and global sea levels. Glaciers play an important role in maintaining ecosystem stability as they act as buffers and regulate the runoff water supply from high mountains to the plains during both dry and wet spells. The present study is an attempt to analyze the Climate of the Past and Present of the Himalayas with reference to study the glaciology. The study also attempted to use the remote sensed data to explore the past and present situation of glaciology of the Himalayas. Since mountain glaciology of Himalayas played a vital role and stand as an example to explore the possibility of the climate change that occurred from the past to the present and also to determine the status in the future. The Study was based on the secondary and primary data collected from available sources and also collected from various published records to document the evidences for the same. It was observed that the Himalayan glaciers account for about 70% of the world’s non-polar glaciers and affect the lives of millions of people in several countries: China, India, Pakistan, Afghanistan, Nepal and Bangladesh. Their runoff feeds two of the oldest rivers in the world, the Indus and the Ganges, whose tributaries carry precious water for 500 million people on the northern Indian plains. Most of the glaciers in the Himalayas are of a summer-accumulation type, that is major accumulation and ablation take place simultaneously during summer (Fujita et. al, 1997). The glaciers of the Himalayas include some of the longest outside the Polar Regions and reached their largest extent during the end of the last ice age (more than 20,000 years ago). The evidence of these large ice masses can be seen in 'U' shaped valleys, which characterize much of the higher Himalayas. On the basis of their mode of occurrence and dimensions, glaciers have broadly been classified into three categories: valley glaciers, piedmont glaciers and continental glaciers. Himalayan glaciers fall in the category of valley glaciers. It has been estimated that an area of about 32,000 sq. km is under permanent cover of ice and snow in the Himalayas (Negi, 1991). This amounts to about 17% of the total geographical area of the Himalayas. Higher concentration of glaciers in the Himalayas lie in the regions with the highest mountain peaks, that is, Nanga Parbat, Nun Kun, Kinner Kailash, Nanda Devi, Nanda Kot, Annapurna, Mt. Everest, Makalu and Kanchanjunga. There are a number of small, medium and large size glaciers in the Himalayan ranges with typical landform features. Some of the famous and important ones include Baltoro glacier, Gangotari glacier, Gasherbrum glacier, Siachen glacier, Kanchanjunga glacier and Hispar glacier. Of these, the Siachen glacier is the most well known, on account of its strategic significance in the South Asian region. Glaciers are dynamic in nature; they grow and shrink in response to changing climate. During the Pleistocene era (2 million years ago) glaciers occupied about 30% of the total area of the earth as against 10% at present.
NASA Astrophysics Data System (ADS)
Bracciali, Laura; Najman, Yani; Parrish, Randy; Millar, Ian; Akhter, Syed
2014-05-01
It has been proposed that the rapid exhumation and anomalously young metamorphism of the Namche Barwa eastern Himalayan syntaxis in the Plio-Pleistocene resulted from river capture of the Yarlung Tsangpo by the Brahmaputra (the "tectonic aneurysm" model; e.g. Zeitler et al.GSA Today 2001) . In order to test this hypothesis, the occurrence of river capture, and its timing, must be ascertained. Today, the Yarlung Tsangpo flows east along the Indus-Yarlung suture before taking a 180º turn at the eastern Himalayan syntaxis to flow south across the Himalaya as the Brahmaputra. Whether this river pattern results from river capture, or whether the river is antecedent to orogenesis, is much debated, yet robust constraints on the occurrence of the proposed river capture and an independent time-frame for such an event are lacking. The Yarlung Tsangpo drains the Jurassic-Paleogene Trans-Himalayan arc of the Asian plate north of the suture and the Tethyan Himalaya of the Indian plate to the south of the suture, while the Brahmaputra prior to any capture would have drained the southern Himalayan slopes composed only of Precambrian-Palaeozoic Indian crust, much of which metamorphosed to high grade during the Oligo-Miocene. Hence, the first occurrence of Trans-Himalayan arc detritus which is distinctive of the Yarlung Tsangpo, in the Neogene palaeo-Brahmaputra deposits in the Bengal Basin, Bangladesh, is key to date the river capture. We have applied a multi-disciplinary provenance study to these sediments and identify the earliest occurrence of detritus from the arc in the Early Miocene. Dating the time of river capture has implications both for the timing of uplift of Tibet and models of tectonic-erosion interactions: - Whilst some workers propose an early uplift of the plateau, others propose a later independent uplift event, at least for the east of the plateau, caused by an additional mechanism. This late uplift event has been invoked by previous workers as the cause of the river capture of the Yarlung Tsangpo by the Brahmaputra due to effective lowering of base level. If this cause and effect correlation is correct, this uplift event must have occurred prior to the Early Miocene. - These data allow us to explore the proposed interaction between the Namche Barwa snytaxial evolution and the timing of river capture. Given we have now dated the time of this river capture at ~18 Ma, the modelled coupling between capture and onset of rapid exhumation (dated at Plio-Pleistocene) would need to accommodate a lag time of ~8 Ma for this hypothesis to hold true.
DOE Office of Scientific and Technical Information (OSTI.GOV)
der Lee, S v; Flanagan, M P; Rodgers, A J
2005-07-13
We report on progress towards a new, comprehensive three-dimensional model of seismic velocity in a broad region encompassing the Middle East, northern Africa, the Mediterranean Sea, the Levant, the Arabian Peninsula, the Turkish-Iranian Plateau, Indus Valley, and the Hindu Kush. Our model will be based on regional waveform fits, surface wave group velocity measurements, teleseismic arrival times of S and P waves, receiver functions, and published results from active source experiments. We are in the process of assembling each of these data sets and testing the joint inversion for subsets of the data. Seismograms come from a variety of permanentmore » and temporary seismic stations in the region. Some of the data is easily accessible through, for example, IRIS, while collection of other data is more involved. This work builds on ongoing work by Schmid et al. (GJI, 2004, and manuscript in preparation). In these proceedings we highlight our data sets and their inferences, demonstrate the proposed new data-inversion modeling methodology, discuss results from preliminary inversions of subsets of the data, and demonstrate the prediction of arrival times with three-dimensional velocity models. We compare our preliminary inversion results to the results of Schmid et al., and the predicted arrival times to ground-truth data from the NNSA Knowledge Base. Our data sets are simultaneously redundant and highly complementary. The combined data coverage will ensure that our three-dimensional model comprises the crust, the upper mantle, including the transition zone, and the top of the lower mantle, with spatially varying, but useful resolution. The region of interest is one of the most structurally heterogeneous in the world. Continental collision, rifting and sea-floor spreading, back-arc spreading, oceanic subduction, rotating micro plates, continental shelf, and stable platforms, are just some of the region's characteristics. Seismicity and the distribution of seismic stations are also geographically heterogeneous. The crustal thickness ranges from near 20 to near 45 km under dry places in the Mediterranean region alone, which contains at least seven of the fourteen types of crust defined globally by Mooney et al. (1998). The S-velocity varies laterally by an entire 1 km/s over 1000 km within the uppermost mantle. On average the S-velocity is 50 to 150 m/s slower, between a depth of 150 km and the Moho, than global model iasp91. These lowered S velocities reflect the high amount of tectonic activity in the study region. In the transition zone the S-velocity is roughly 150 m/s higher than iasp91. These heightened S velocities likely reflect the numerous fragments of oceanic lithosphere that subducted in the study region during geologically relatively recent times.« less
Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery
NASA Astrophysics Data System (ADS)
Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard
2016-04-01
Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised classification, but there is noise (snow) on edges of dirty ice/ moraines at the glacier termini and around rock outcrops on the glacier surface. Neither of the two methods distinguishes the debris-covered ice, so these were mapped separately using a combination of topographic indices (slope, terrain curvature), along with remote sensing surface temperature and texture data. Using average elevation of snow and ice areas, we calculate an ELA of 5260 m for 2013. We construct yearly time series of the ELAs around the centerlines of selected glaciers in the Hunza for the period 2000 - 2014 using Landsat imagery. We explore spatial trends in glacier ELAs within the region, as well as relationships between ELA and topographic characteristics extracted on a glacier-by-glacier basis from a digital elevation model.
NASA Astrophysics Data System (ADS)
Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze
2014-05-01
Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward propagation of the main faults. The evolution of the sedimentary provenance can be explained by overall forward propagation of deformation in the Himalayan fold-thrust belt. In both the eastern and western syntaxes, it also shows stability of the major drainage systems of the Yarlung-Brahmaputra and Indus, respectively, suggesting that hinterland river incision kept pace with uplift of the syntaxes during the Neogene. Drainage reorganization may take place in the foreland basin because of thin-skinned tectonics but did not significantly affect sediment routing and the contribution of different sources of the upper catchment to the overall sediment budget. In contrast, major rivers in the Central Himalaya (such as the Kali Gandaki or the Karnali) could have been affected by changes in their upper catchment.
NASA Astrophysics Data System (ADS)
Jain, A.; Lal, N.; Suelmani, B.; Awasthi, A. K.; Singh, S.; Kumar, R.
2007-12-01
Detrital-zircon fission-track geochronology of the synorogenically-deposited Subathu-Dagshai-Kasauli-Lower Siwalik Formations of the Sub-Himalayan Lower Cenozoic foreland basin reflects progressive effects of the Himalayan tectonometamorphic events on the Proterozoic-Paleozoic source rock as a consequence of the India-Asia collision. The oldest transgressive marine Subathu Formation (57.0-41.5 Ma) contains a very dominant 302.4 ± 21.9 Ma old detrital zircon FT suite with a few determinable 520.0 Ma grains. This old suite was derived by mild erosion of the Zircon Partially Annealed Zone (ZPAZ) of 240-180 oC, which affected the Himalayan Proterozoic basement and its Tethyan sedimentary cover as a consequence of first imprint of the collision. In addition, 50.0 Ma old detrital zircons in this formation were derived possibly from the Indus Tsangpo Suture Zone and the Trans-Himalayan Ladakh Batholith. Sudden source rock changes and unroofing are manifested in the overlying fluvial Dagshai (~30-20 Ma) and Kasauli (20-13 Ma) molassic sediments, which are characterised by dominant 30.0 and 25.0 Ma old youngest zircon FT peaks, respectively. A distinct unconformity spanning for about 10 Myr gets established between the Subathu-Dagshai formations on the basis of detrital- zircon FT ages. Molassic sedimentation since ~30 Ma coincides with the depletion of detritus from the suture zone, and the bulk derivation from the main Higher Himalayan source rock, which has undergone sequentially the UHP-HP-amphibolite facies metamorphism (53-40 Ma) in the extreme north and widespread Eo- and Neo-Himalayan tectonothermal events in the middle. Strength of the Pre-Himalayan Peaks (PHP) >50 Ma in these younger sediments gradually decreases with the intensification of the Himalayan thermal events till the end of the Kasauli sedimentation. Widespread Eo- and Neo-Himalayan metamorphic events (40.0-30.0 and 25.0-15.0 Ma) have almost remobilised the provenance and obliterated most of the evidences of the Pre-Himalayan Peaks in zircon FT ages and appear to be responsible for incoming of the Himalayan (HP) ~30.0 Ma and Young Himalayan Peaks (YHP) of ~15.0 Ma, respectively; the latter appears only between 13.0 and 11.0 Ma sedimentation of the Lower Siwalik Formation. Three distinct metamorphic events get recognised in source area of the Himalayan Metamorphic Belt. Though the Dagshai-Kasauli-Lower Siwalik sequence records uninterrupted fluvial sedimentation since 30 Ma, distinct breaks in zircon FT ages ~5.0-7.0 Myr at the beginning of each formation records pulsative exhumation of the source area in response to the collision between India and Asia.
A Multihazard Regional Level Impact Assessment for South Asia
NASA Astrophysics Data System (ADS)
Amarnath, Giriraj; Alahacoon, Niranga; Aggarwal, Pramod; Smakhtin, Vladimir
2016-04-01
To prioritize climate adaptation strategies, there is a need for quantitative and systematic regional-level assessments which are comparable across multiple climatic hazard regimes. Assessing which countries in a region are most vulnerable to climate change requires analysis of multiple climatic hazards including: droughts, floods, extreme temperature as well as rainfall and sea-level rise. These five climatic hazards, along with population densities were modelled using GIS which enabled a summary of associated human exposure and agriculture losses. A combined index based on hazard, exposure and adaptive capacity is introduced to identify areas of extreme risks. The analysis results in population climate hazard exposure defined as the relative likelihood that a person in a given location was exposed to a given climate-hazard event in a given period of time. The study presents a detailed and coherent approach to fine-scale climate hazard mapping and identification of risks areas for the regions of South Asia that, for the first time, combines the following unique features: (a) methodological consistency across different climate-related hazards, (b) assessment of total exposure on population and agricultural losses, (c) regional-level spatial coverage, and (d) development of customized tools using ArcGIS toolbox that allow assessment of changes in exposure over time and easy replacement of existing datasets with a newly released or superior datasets. The resulting maps enable comparison of the most vulnerable regions in South Asia to climate-related hazards and is among the most urgent of policy needs. Subnational areas (regions/districts/provinces) most vulnerable to climate change impacts in South Asia are documented. The approach involves overlaying climate hazard maps, sensitivity maps, and adaptive capacity maps following the vulnerability assessment framework of the United Nations' Intergovernmental Panel on Climate Change (IPCC). The study used data on the spatial distribution of various climate-related hazards in 1,398 subnational areas of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. An analysis of country-level population exposure showed that approximately 750 million people are affected from combined climate-hazards. Of the affected population 72% are in India, followed by 12% each from Bangladesh and Pakistan. Due in part to the economic importance of agriculture, it was found to be most vulnerable and exposed to climate extremes. An analysis of individual hazards indicates that floods and droughts) are the dominant hazards impacting agricultural areas followed by extreme rainfall, extreme temperature and sea-level rise. Based on this vulnerability assessment, all the regions of Bangladesh and the Indian States in Andhra Pradesh, Bihar, Maharashtra, Karnataka and Orissa; Ampara, Puttalam, Trincomalee, Mannar and Batticaloa in Sri Lanka; Sind and Baluchistan in Pakistan; Central and East Nepal; and the transboundary river basins of Indus, Ganges and Brahmaputra are among the most vulnerable regions in South Asia.
Global assessment of water policy vulnerability under uncertainty in water scarcity projections
NASA Astrophysics Data System (ADS)
Greve, Peter; Kahil, Taher; Satoh, Yusuke; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Byers, Edward; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Langan, Simon; Wada, Yoshihide
2017-04-01
Water scarcity is a critical environmental issue worldwide, which has been driven by the significant increase in water extractions during the last century. In the coming decades, climate change is projected to further exacerbate water scarcity conditions in many regions around the world. At present, one important question for policy debate is the identification of water policy interventions that could address the mounting water scarcity problems. Main interventions include investing in water storage infrastructures, water transfer canals, efficient irrigation systems, and desalination plants, among many others. This type of interventions involve long-term planning, long-lived investments and some irreversibility in choices which can shape development of countries for decades. Making decisions on these water infrastructures requires anticipating the long term environmental conditions, needs and constraints under which they will function. This brings large uncertainty in the decision-making process, for instance from demographic or economic projections. But today, climate change is bringing another layer of uncertainty that make decisions even more complex. In this study, we assess in a probabilistic approach the uncertainty in global water scarcity projections following different socioeconomic pathways (SSPs) and climate scenarios (RCPs) within the first half of the 21st century. By utilizing an ensemble of 45 future water scarcity projections based on (i) three state-of-the-art global hydrological models (PCR-GLOBWB, H08, and WaterGAP), (ii) five climate models, and (iii) three water scenarios, we have assessed changes in water scarcity and the associated uncertainty distribution worldwide. The water scenarios used here are developed by IIASA's Water Futures and Solutions (WFaS) Initiative. The main objective of this study is to improve the contribution of hydro-climatic information to effective policymaking by identifying spatial and temporal policy vulnerabilities under large uncertainty about the future socio-economic and climatic changes and to guide policymakers in charting a more sustainable pathway and avoiding maladaptive development pathways. The results show that water scarcity is increasing in up to 83% of all land area under a high-emission scenario (RCP 6.0-SSP3). Importantly, the range of uncertainty in projected water scarcity is increasing; in some regions by several orders of magnitude (e.g. sub-Saharan Africa, eastern Europe, Central Asia). This is further illustrated by focusing on a set of large river basins that will be subject both to substantial changes in basin-wide water scarcity and to strong increases in the overall range of uncertainty (e.g. the Niger, Indus, Yangtze). These conditions pose a significant challenge for water management options in those vulnerable basins, complicating decisions on needed investments in water supply infrastructure and other system improvements, and leading to the degradation of valuable resources such as non-renewable groundwater resources and water-dependent ecosystems. The results of this study call for careful and deliberative design of water policy interventions under a wide range of socio-economic and climate conditions.
Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, W.; Wooden, J.L.
2004-01-01
Magmatic rocks and depositional setting of associated volcaniclastic strata along a north-south traverse spanning the southern Tien Shan and eastern Pamirs of Kyrgyzstan and Tajikistan constrain the tectonics of the Pamirs and Tibet. The northern Pamirs and northwestern Tibet contain the north facing Kunlun suture, the south facing Jinsha suture, and the intervening Carboniferous to Triassic Karakul-Mazar subduction accretion system; the latter is correlated with the Songpan-Garze-Hoh Xi system of Tibet. The Kunlun arc is a composite early Paleozoic to late Paleozoic-Triassic arc. Arc formation in the Pamirs is characterized by ???370-320 Ma volcanism that probably continued until the Triassic. The cryptic Tanymas suture of the southern northern Pamirs is part of the Jinsha suture. A massive ??????227 Ma batholith stitches the Karakul-Mazar complex in the Pamirs. There are striking similarities between the Qiangtang block in the Pamirs and Tibet. Like Tibet, the regional structure of the Pamirs is an anticlinorium that includes the Muskol and Sares domes. Like Tibet, the metamorphic rocks in these domes are equivalents to the Karakul-Mazar-Songpan-Garze system. Granitoids intruding the Qiangtang block yield ???200-230 Ma ages in the Pamirs and in central Tibet. The stratigraphy of the eastern Pshart area in the Pamirs is similar to the Bangong-Nujiang suture zone in the Amdo region of eastern central Tibet, but a Triassic ocean basin sequence is preserved in the Pamirs. Arc-type granitoids that intruded into the eastern Pshart oceanic-basin-arc sequence (???190-160 Ma) and granitoids that cut the southern Qiangtang block (???170-160 Ma) constitute the Rushan-Pshart arc. Cretaceous plutons that intruded the central and southern Pamirs record a long-lasting magmatic history. Their zircons and those from late Miocene xenoliths show that the most distinct magmatic events were Cambro-Ordovician (???410-575 Ma), Triassic (???210-250 Ma; likely due to subduction along the Jinsha suture), Middle Jurassic (???147-195 Ma; subduction along Rushan-Pshart suture), and mainly Cretaceous. Middle and Late Cretaceous magmatism may reflect arc activity in Asia prior to the accretion of the Karakoram block and flat-slab subduction along the Shyok suture north of the Kohistan-Ladakh arc, respectively. Before India and Asia collided, the Pamir region from the Indus-Yarlung to the Jinsha suture was an Andean-style plate margin. Our analysis suggests a relatively simple crustal structure for the Pamirs and Tibet. From the Kunlun arc in the north to the southern Qiangtang block in the south the Pamirs and Tibet likely have a dominantly sedimentary crust, characterized by Karakul-Mazar-Songpan-Garze accretionary wedge rocks. The crust south of the southern Qiangtang block is likely of granodioritic composition, reflecting long-lived subduction, arc formation, and Cretaceous-Cenozoic underthrusting. Copyright 2004 by the American Geophysical Union.
Endogenous technological and demographic change under increasing water scarcity
NASA Astrophysics Data System (ADS)
Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu
2014-05-01
The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other more realistic cases of technological success, we find that endogenous technology change only helps to delay the peak of population size before it inevitably starts to decline. While the model is a rather simple model of societal development, it is shown to be capable of replicating patterns of technological and population changes. It is capable of replicating the pattern of declining consumption per capita in presence of growth in aggregate production. It is also capable of replicating an exponential population rise, even under increasing water scarcity. The results of the model suggest that societies that declined or are declining in the face of extreme water scarcity may have done so due to slower rate of success of investment in technological advancement. The model suggests that the population decline occurs after a prolonged decline in consumption per capita, which in turn is due to the joint effect of initially increasing population and increasing water scarcity. This is despite technological advancement and increase in aggregate production. We suggest that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water scarce basins.
Endogenous technological and population change under increasing water scarcity
NASA Astrophysics Data System (ADS)
Pande, S.; Ertsen, M.; Sivapalan, M.
2013-11-01
The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other more realistic cases of technological success, we find that endogenous technology change only helps to delay the peak of population size before it inevitably starts to decline. While the model is a rather simple model of societal development, it is shown to be capable of replicating patterns of technological and population changes. It is capable of replicating the pattern of declining consumption per capita in presence of growth in aggregate production. It is also capable of replicating an exponential population rise, even under increasing water scarcity. The results of the model suggest that societies that declined or are declining in the face of extreme water scarcity may have done so due to slower rate of success of investment in technological advancement. The model suggests that the population decline occurs after a prolonged decline in consumption per capita, which in turn is due to the joint effect of initially increasing population and increasing water scarcity. This is despite technological advancement and increase in aggregate production. We suggest that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water scarce basins.
NASA Astrophysics Data System (ADS)
Sher, Hassan; Aldosari, Ali
2014-05-01
Population pressure, climate change and resulting extreme weather scenarios, armed con?ict and economic pressure have put the situation of Pakistan's biodiversity at risk. Melting glaciers, deforestation, erosion, landslides and depletion of agricultural areas are aggravating the regulation of water ?ow in Pakistan. In Pakistan agro-biodiversity is central to human survival and play vital role in the economy of the country. It contributes 21% to the GDP, employs 45% of the labor force and contributes 71% of the export earnings. Agro- biodiversity in Pakistan is greatly affected by short term climate variability and could be harmed signi?cantly by long-term climate change. As the duration of crop growth cycle is related to temperature, an increase in temperature will speed up crop growth and shorten the duration between sowing and harvesting. This shortening could have an adverse effect on productivity of crops. The present assessment also revealed that hydrological cycle is also likely to be in?uenced by global warming. Since the agricultural crops are heavily dependent on the water, and water resources are inextricably linked with climate; therefore, the projected climate change has serious implications for water resources of the country. The freshwater resources, in Pakistan, are based on snow- and glacier-melt and monsoon rains, both being highly sensitive to climate change. The country speci?c current information strongly suggests that: decrease in glacier volume and snow cover leading to alterations in the seasonal ?ow pattern of Indus River System; increased annual ?ows for a few decades followed by decline in ?ows in subsequent years; increase in the formation and burst of glacial lakes; higher frequency and intensity of extreme climate events coupled with irregular monsoon rains causing frequent ?oods and droughts; and greater demand of water due to higher evapotranspiration rates at elevated temperatures. These trends will have large impact on the spatial and temporal distribution of water resources on annual and inter-annual basis in the country. To address the impact of climate change on ago-biodiversity and water resources, the present study was initiated with the aim to increase awareness to adapt to changing water resources situation due to climate change. Secondly to build climate change resilience into Pakistan agriculture system and also to enhance the understanding of climate change issues by farmers, and policy makers to enable them to make informed decision. Our assessment revealed a gap in our knowledge on the climate change vulnerability of mountain agro-biodiversity and institutional setups, as well as lack of policy imperatives to address the issues. Therefore, the 2014 generally assembly of EGU will provide a forum for our further understanding of the relevant scienti?c and geopolitical issues. This forum will not only establish a social network for future collaborative research but will also enable us to devise better strategies for both biodiversity and water-resource management and climate change adaptation.
Endogenous technological and demographic change under increasing water scarcity
NASA Astrophysics Data System (ADS)
Pande, S.; Ertsen, M.; Sivapalan, M.
2013-12-01
Many ancient civilizations such as the Indus Valley civilization dispersed under extreme dry conditions. Even contemporary societies such as the one in Murrumbidgee river basin, Australia, have started to witness a decline in overall population under increasing water scarcity. Skeptics of hydroclimatic determinism have often cautioned against the use of hydroclimatic change as the sole predictor of the fate of contemporary societies in water scarce regions by suggesting that technological change may ameliorate the effects of increasing water scarcity. We here develop a simple overlapping generations model of endogenous technological and demographic change. It models technological change not as an exogenous random sequence of events but as an endogenous process (as is widely accepted in contemporary literature) that depends on factors such as the investments that are (endogenously) made in a society, the endogenous diversification of a society into skilled and unskilled workers, individuals' patience in terms of its present consumption versus future consumption, the production technology and the (endogenous) interaction of these factors. The population growth rate is modeled to decline once consumption per capita crosses a ';survival' threshold. The model demonstrates that technological change may ameliorate the effects of increasing water scarcity but only to a certain extent in many cases. It is possible that technological change may allow a society to escape the effect of increasing water society, leading to an exponential rise in technology and population. However, such cases require that the rate of success of investment in technological advancement is high. In other more realistic cases of technological success, we find that endogenous technology change has an effect delaying the peak of population before it starts to decline. While the model is a rather simple model of societal growth, it is capable of replicating (not to scale) patterns of technological change (proxies of which in ancient technology include irrigation canals, metal tools, and the use of horses for labor while in contemporary societies its proxies may be the advent of drip irrigation, increasing reservoir storage capacity etc) and population change. It is capable of replicating the pattern of declining consumption per capita in presence of growth in aggregate production. It is also capable of modeling the exponential population rise even under increasing water scarcity. The results of the model suggest, as one of the many other possible explanations, that ancient societies that declined in the face of extreme water scarcity may have done so due to slower rate of success of investment in technological advancement. The model suggests that the population decline occurs after a prolonged decline in consumption per capita, which in turn is due to the joint effect of initially increasing population and increasing water scarcity. This is despite technological advancement and increase in aggregate production. Thus declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water scarce basins.
Microstructures and Argon age dating
NASA Astrophysics Data System (ADS)
Forster, Marnie; Fitz Gerald, John; Lister, Gordon
2010-05-01
Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser methods invariably record mixing ages, since the spot sizes are large. Carefully designed furnace step-heating experiments on the other hand seem well capable of sequentially extracting ages from different microstructural reservoirs, and this can be tested by comparing samples with different proportions of these microstructures. Here we examine the role of microstructure in Argon ‘age dating' by comparing and contrasting observed measurements with theoretical predictions developed on the basis of modelling and simulation of the effects of multi-path and multi-scale diffusion. We analyse these results in the context of microstructures observed in white micas and K-feldspar, at both the scale of the optical microscope as well as utilising electron microscopy. Examples from three different tectonic settings will be provided to illustrate the effect of the different variables that apply: a) the extensional South Cyclades Shear Zone, Greece; b) granitoids exhumed from ultra-high-pressures in the Dora Maira, Italy; and c) leucogranites shed from the Ladakh Batholith into the Indus Formation, NW India.
Hydrometeorological Variability Over Pakistan
NASA Astrophysics Data System (ADS)
Bashir, Furrukh
Pakistan, as an agriculture based economy, is vulnerable to various hydrometeorological hazards ranging from tropical cyclones, thunderstorms, tornadoes, drought, rain, hail, snow, lightning, fog, wind, temperature extremes, air pollution, and climatic change. However, three of the most pressing challenges in terms of water resource availability, that are different in nature, but are inter-linked to each other are discussed over here. We begin with the Karakoram Anomaly that is considered as one of the most mysterious and most speculated phenomena on Planet Earth. Though, it is confined to the glaciers in the eastern Hindukush, western Karakoram and northwestern Himalayan mountain ranges of Northern Pakistan that are not responding to global warming in the same manner as their counterparts elsewhere, because, their retreat rates are less than the global average, and some are either stable or growing. However, the Karakoram Anomaly has baffled scientific society for more than a decade since its earliest discovery in the year 2005. The reasons of the Karakoram anomaly were mainly associated to physiography of the area and role of climate was considered marginal till now, as climate is influencing glaciers differently all over the globe. Here, for the first time, we present a hydro-meteorological perspective based on five decades of synoptic weather observations collected by the meteorological network of Pakistan. Analysis of this unique data set indicates that increased regional scale humidity, cloud cover, and precipitation, along with decreased net radiation, near-surface wind speed, potential evapotranspiration and river flow, especially during the summer season, represent a substantial change in the energy, mass and momentum fluxes that are facilitating the establishment of the Karakoram Anomaly. In turn, it is influencing the availability of glacier melt in River Indus in summer season. Secondly, we developed a hydrometeorological data sets for Pakistan as they are extremely important for water related impact studies and future climate change scenarios. Presently, major sources of gridded temperature and precipitation data generation are in-situ observations, satellite retrieved information and outputs from numerical models. However, each has its own merits and demerits. Among them gridded observed data sets are considered superior if the gauge density is better. Unfortunately, precipitation gauge network of Pakistan is poorly presented in prior gridded products. Therefore, a daily in-situ observation based, 0.05° x0.05° gridded temperature and precipitation data set for Pakistan, for the period of 1960-2013 is developed. It is named as PAK-HYM-1.0, that is an abbreviation of Pakistan and Hydrometeorology, and 1.0 indicates that it is the first version. This data set is developed by utilizing data from 67 meteorological stations of Pakistan. This number of observation sites is 2 to 4 times higher than that used in prior similar products, and this product can be adopted as an operational information product that can be updated on daily basis. Finally, we focused on meteorological and hydrological droughts in Pakistan. We have reconstructed history of drought in Pakistan using in situ observations based high resolution gridded data through Standardized Precipitation Index (SPI) methodology on different time scales. Furthermore, we have explained the transition of meteorological drought to hydrological drought using river inflows data of large rivers of Pakistan, and explained the sensitivity of different rivers to rainfall and temperature of different seasons. On the basis of this analysis, we have proposed a solution of construction of water reservoirs to tap water resources from northern mountains as inflows from these mountains has potential to perform as a buffer against droughts in low-lying areas of Pakistan. In addition to that, we have demonstrated the potential of Palmer Drought Sensitivity Index (PDSI) as an operational tool for drought monitoring in Pakistan.
The Development in modeling Tibetan Plateau Land/Climate Interaction
NASA Astrophysics Data System (ADS)
Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio
2015-04-01
Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP. The offline SSiB4/TRIFFID is integrated using the observed precipitation and reanalysis-based meteorological forcing from 1948 to 2008 with 1 degree horizontal resolution. The simulated vegetation conditions and surface hydrology are compared well with observational data with some bias, and shows strong decadal and interannual variabilities with a linear trend associated with the global warming. The TP region is covered by both discontinuous and sporadic permafrost with irregular snow layers above. A frozen soil model is developed to take the coupling effect of mass and heat transport into consideration and includes a detailed description of mass balances of volumetric liquid water, ice, as well as vapor content. It also considers contributions' of heat conduction to the energy balance. The model has been extensively tested using a number of TP station data, which included soil temperature and soil water measurements. The results suggest that it is important to include the frozen sol process to adequately simulate the surface energy balance during the freezing and thawing periods and surface temperature variability, including its diurnal variation. Issues in simulating permafrost process will also be addressed. To better understand the glacier variations under climate change scenarios, an integrated modeling system with an energy budget-based multilayer scheme for clean glaciers, a single-layer scheme for debris-covered glaciers and multilayer scheme for seasonal snow over glacier, soil and forest are developed within a distributed biosphere hydrological modeling framework (WEB-DHM-S model). Discharge simulations using this model show good agreement with observations for Hunza River Basin (13,733 km2) in the Karakoram region of Pakistan for three hydrologic years (2002-2004). Flow composition analysis reveals that the runoff regime is strongly controlled by the snow and glacier melt runoff (50% snowmelt and 33% glacier melt) and suggests that both topography and glacier hypsometry play key roles in glacier mass balance. This study provides a basis for potential application of such an integrated model to the entire Hindu-Kush-Karakoram-Himalaya region.
Johnson, Edward A.; Warwick, Peter D.; Roberts, Stephen B.; Khan, Intizar H.
1999-01-01
The coal-bearing, lower Eocene Ghazij Formation is exposed intermittently over a distance of 750 kilometers along the western margin of the Axial Belt in north-central Pakistan. Underlying the formation are Jurassic to Paleocene carbonates that were deposited on a marine shelf along the pre- and post-rift northern margin of the Indian subcontinent. Overlying the formation are middle Eocene to Miocene marine and nonmarine deposits capped by Pliocene to Pleistocene collision molasse.The lower part of the Ghazij comprises mostly dark gray calcareous mudrock containing foraminifers and rare tabular to lenticular bodies of very fine grained to finegrained calcareous sandstone. We interpret the lower portion of this part of the Ghazij as outer-shelf deposits, and the upper portion as prodelta deposits. The middle part of the formation conformably overlies the lower part. It comprises medium-gray calcareous mudrock containing nonmarine bivalves, fine- to medium-grained calcareous sandstone, and rare intervals of carbonaceous shale and coal. Sandstone bodies in the middle part, in ascending stratigraphic order, are classified as Type I (coarsening-upward grain size, contain the trace fossil Ophiomorpha, and are commonly overlain by carbonaceous shale or coal), Type II (mixed grain size, display wedge-planar cross stratification, and contain fossil oyster shells and Ophiomorpha), and Type III (finingupward grain size, lenticular shape, erosional bases, and display trough cross stratification). These three types of bodies represent shoreface deposits, tidal channels, and fluvial channels, respectively. Mudrock intervals in the lower portion of this part of the formation contain fossil plant debris and represent estuarine deposits, and mudrock intervals in the upper portion contain fossil root traces and represent overbank deposits. We interpret the middle part of the Ghazij as a lower delta plain sequence. Overlying the middle part of the Ghazij, possibly unconformably, is the upper part of the formation, which comprises calcareous, nonfossiliferous, light-gray, brown, and red-banded mudrock, and rare Type III sandstone bodies. Much of the mudrock in this part of the formation represents multiple paleosol horizons. Locally, a limestone-pebble conglomerate is present in the upper part of the formation, either at the base or occupying most of the sequence. We interpret all but the uppermost portion of the upper part of the Ghazij as an upper delta plain deposit.Thin sections of Ghazij sandstones show mostly fragments of limestone, and heavy-liquid separations reveal the presence of chromite. Paleocurrent data and other evidence indicate a northwestern source area.During earliest Eocene time, the outer edge of the marine shelf off the Indian subcontinent collided with a terrestrial fragment positioned adjacent to, but detached from, the Asian mainland. This collision caused distal carbonateplatform deposits to be uplifted, and an intervening intracratonic sea, the Indus Foreland Basin, was created. Thus for the first time, the depositional slope switched from northwest facing to southeast facing, and a northwestern source for detritus was provided. We conclude that the Ghazij was deposited as a prograding clastic wedge along the northwestern shore of this sea, and that the formation contains sedimentologic evidence of a collisional event that predates the main impact between India and Asia.
NASA Astrophysics Data System (ADS)
Lu, M.; Lall, U.
2013-12-01
In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The decadal flow simulations are re-initialized every year with updated climate projections to improve the reliability of the operation rules for the next year, within which the seasonal operation strategies are nested. The multi-level structure can be repeated for monthly operation with weekly subperiods to take advantage of evolving weather forecasts and seasonal climate forecasts. As a result of the hierarchical structure, sub-seasonal even weather time scale updates and adjustment can be achieved. Given an ensemble of these scenarios, the McISH reservoir simulation-optimization model is able to derive the desired reservoir storage levels, including minimum and maximum, as a function of calendar date, and the associated release patterns. The multi-time scale approach allows adaptive management of water supplies acknowledging the changing risks, meeting both the objectives over the decade in expected value and controlling the near term and planning period risk through probabilistic reliability constraints. For the applications presented, the target season is the monsoon season from June to September. The model also includes a monthly flood volume forecast model, based on a Copula density fit to the monthly flow and the flood volume flow. This is used to guide dynamic allocation of the flood control volume given the forecasts.
Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.
Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods formore » genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPA’s resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology indus¬try, and non-governmental organiza¬tions. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/« less
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-01-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr-1) and the Ganges River Basin (108 Gm3 yr-1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48% green, 40% blue, 12% grey).
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-05-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr-1) and the Ganges river basin (108 Gm3 yr-1). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48 % green, 40 % blue, 12 % grey).
NASA Astrophysics Data System (ADS)
Sirocko, Frank; Garbe-Schönberg, Dieter; Devey, Colin
2000-11-01
Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). C org, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources—the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach—i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques—is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.
Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan
Whitney, John W.
2006-01-01
This report presents an overview of the geology, hydrology, and climate of the lower Helmand Basin, a large, closed, arid basin in southern Afghanistan. The basin is drained by the Helmand River, the only perennial desert stream between the Indus and Tigris-Euphrates Rivers. The Helmand River is the lifeblood of southern Afghanistan and has supported desert civilizations in the Sistan depression for over 6,000 years. The Helmand Basin is a structurally closed basin that began to form during the middle Tertiary as a consequence of the collision of several Gondwanaland fragments. Aeromagnetic studies indicate the basin is 3-5 kilometers deep over basement rocks. Continued subsidence along basin-bounding faults in Iran and Pakistan throughout the Neogene has formed the Sistan depression in the southwest corner of the basin. Lacustrine, eolian, and fluvial deposits are commonly exposed in the basin and were intruded by latest Miocene-middle Quaternary volcanoes, which indicates that depositional environments in the lower Helmand Basin have not substantially changed for nearly 10 million years. Lakes expanded in the Sistan depression during the Quaternary; however, the size and extent of these pluvial lakes are unknown. Climate conditions in the lower Helmand Basin likely mirrored climate changes in the Rajasthan Desert to the east and in Middle Eastern deserts to the west: greater aridity during global episodes of colder temperatures and increased available moisture during episodes of warmer temperatures. Eolian processes are unusually dominant in shaping the landscape in the basin. A strong wind blows for 120 days each summer, scouring dry lakebeds and creating dune fields from annual flood deposits. Nearly one-third of the basin is mantled with active or stabilized dunes. Blowing winds combined with summer temperatures over 50? Celsius and voluminous insect populations hatched from the deltaic wetlands create an environment referred to as the 'most odious place on earth' by 19th century visitors. During dry years, large plumes of dust originating from Sistan are recorded by weather satellites. The Helmand River drains about 40 percent of Afghanistan and receives most of its moisture from melting snow and spring storms. Similar to many desert streams, the Helmand and its main tributary, the Arghandab River, are characterized by large fluctuations in monthly and annual discharges. Water from the Helmand accumulates in several hamuns (shallow lakes) in the Sistan depression. The wetlands surrounding these hamuns are the largest in western Asia and are directly affected by droughts and floods on the Helmand. Average annual discharge on the Helmand is about 6.12 million megaliters (million cubic meters), and the annual discharge varies by a factor of five. In 2005, the region was just beginning to recover from the longest drought (1998-2005) of record back to 1830. Annual peak discharges range from less than 80 cubic meters per second in 1971 to nearly 19,000 cubic meters per second in 1885. Large floods fill each hamun to overflowing to create one large lake that overflows into the normally dry Gaud-i Zirreh basin. The interaction of flooding, active subsidence, and wind erosion causes frequent channel changes on the Helmand delta. A major development effort on the Helmand River was initiated after World War II with substantial aid from the United States. Two dams and several major canals were completed in the 1950s; however, poor drainage conditions on the newly prepared agricultural fields caused extensive waterlogging and salinization. New drains were installed and improved agricultural methods were implemented in the 1970s, and some lands became more productive. Since 1980, Afghanistan has endured almost constant war and civil and political strife. In 2005, the country was on a path to rebuild much of its technical infrastructure. Revitalization of agricultural lands in the lower Helmand Basin and improved managem
South Asia river flow projections and their implications for water resources
NASA Astrophysics Data System (ADS)
Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.
2015-06-01
South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a benchmark for comparison against the downscaled GCMs. On the basis that these simulations are among the highest resolution climate simulations available we examine how useful they are for understanding the changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows, with timing of maximum river flows broadly matching the available observations and the downscaled ERA-Interim simulation. Typically the RCM simulations over-estimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model although comparison with the downscaled ERA-Interim simulation is more mixed with only a couple of the gauges showing a bias compared with the downscaled GCM runs. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century; this trend is generally masked by the large annual variability of river flows for this region. The future seasonality of river flows does not change with the future maximum river flow rates still occuring during the ASM period, with a magnitude in some cases, greater than the present day natural variability. Increases in river flow during peak flow periods means additional water resource for irrigation, the largest usage of water in this region, but also has implications in terms of inundation risk. Low flow rates also increase which is likely to be important at times of the year when water is historically more scarce. However these projected increases in resource from rivers could be more than countered by changes in demand due to reductions in the quantity and quality of water available from groundwater, increases in domestic use due to a rising population or expansion of other industries such as hydro-electric power generation.
Liquefaction Effects from the Bhuj earthquake
NASA Technical Reports Server (NTRS)
2001-01-01
These MISR images show the Kachchh region in the Gujarat province of western India. On January 26, 2001, a magnitude 7.7 earthquake devastated this area, killing 20,000 people and destroying buildings, dams, and port facilities. The two upper MISR images are pre- and post-earthquake scenes acquired on January 15 and January 31, 2001, respectively (Terra orbits 5736 and 5969). They are 'true-color' images made by combining the red, green and blue bands from the nadir (vertically down-looking) camera. The two lower views are 'false-color' images made by combining the red bands from three different cameras. Blue is assigned to the camera pointing 70 degrees forward (more sun-facing), green to the nadir camera, and red to the camera pointing 70 degrees aftward. Each of these images is about 275 kilometers wide by 218 kilometers high.The earthquake epicenter was just below the southern tip of the large, white area on the right-hand side of the images, and about 70 kilometers northeast of the city of Bhuj. The earthquake may have occurred on the Kachchh Mainland Fault, which extends from the region of the epicenter westward along the curved boundary between the darker brown region to the south and the lighter brown area north of it. The compressive stresses responsible for the earthquake are related to the collision of India with Asia and the resulting rise of the Himalayas to the northeast.That part of the Kachchh region which lies north of the Kachchh Mainland Fault includes the Banni Plains and the Rann of Kachchh. It is a low, flat basin characterized by salt pans and mud flats. The salt forms in the Rann of Kachchh as mineral-laden waters evaporate. The salt flats can be seen in the nadir images as highly reflective, white and gray areas. During the earthquake, strong shaking produced liquefaction in the fine silts and sands below the water table in the Rann of Kachchh. This caused the mineral grains to settle and expel their interstitial water to the surface. Field investigations have found abundant evidence of mud volcanos, sand boils, and fissures from which salty ground water erupted over an area exceeding 10,000 square kilometers. Evidence of the expelled water can also be seen on the MISR images.Notice the delicate, dendritic pattern of stream channels throughout many of the salt-flats on the post-earthquake image, especially due north of the epicenter. These carried water brought to the surface by liquefaction during the earthquake. Areas where shallow surface water is present are much easier to see on the false-color multi-angle composite images. Wet areas are exhibiting a combination of enhanced forward-scattered light due to the reflection by the water, and enhanced backward scattering due to surface roughness or the presence of sediments. This combination results in blue to purple hues.The region of sand dunes in the upper right and the Indus River valley and delta in the upper left are inside Pakistan. Near the top of the images, there is an east-west trending linear feature separating the Thar desert of Pakistan from the Rann of Kachchh. This is the Nagar Parkar Fault. On both pre-earthquake images, this feature is evident only from the contrasting brown colors on either side of it. On the post-earthquake images, a narrow ribbon defines the boundary between the two geologic provinces. However, only in the multi-angle composite do we see evidence that this ribbon may be a water-filled channel. Because this area is politically sensitive and fairly inaccessible, no field teams have been able to verify liquefaction effects or the presence of water there.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Low-latitude ice cores and freshwater availability
NASA Astrophysics Data System (ADS)
Kehrwald, Natalie Marie
2009-12-01
Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of the glacier surface and melting the upper ice. The application of a novel technique of measuring and radiocarbon-dating ultra-small samples (< 100mug) of the BC and total organic carbon (TOC) fractions of Naimona'nyi demonstrates a decrease (˜12 to 14 ka versus ˜7 ka) in the composite age of BC in the upper 40 m and lowest 20 m of the 137 m ice core, suggesting the incorporation of radiocarbon-dead BC. Precambrian black shale in the Lesser Himalaya provide a natural source material which may be operationally defined as black carbon and which may incorporate radiocarbon-dead sediments into the bulk 14C measurements, yet as the mean 14C age is ˜10 ka, modern BC from biomass burning must also be incorporated into the ice core record. While the uppermost sample (5 m) contains 38% BC, 210 Pb dates show that this depth corresponds to an age before 1850 AD, or before the regional Industrial Revolution. As BC is a hydrophobic substance, the BC is unlikely to have migrated through the firn and glacial ice. Therefore, the high-elevation thinning on Naimona'nyi appears to be a response to increased temperatures rather than primarily driven by changes in surface albedo. This technique was applied to the annually-dated ice core from the accumulating summit of the Quleccaya ice cap, Peru (13'56'S; 70°50'W; 5670 m a.s.l.). A marked increase in modern BC and TOC was measured since 1880 AD. No increase in radiocarbon-dead (> 60,000 ka) BC or TOC was noted, suggesting that the source of the carbon was from biomass burning, with a possible contribution of Amazon slash and burn clearing, rather than the input of fossil fuel combustion. The age of the BC and TOC is thousands of years older than the age of the surrounding ice, and should not be used to date the ice core. Although Naimona'nyi provides challenges for constructing an ice core chronology due to its lack of independent horizons such as volcanic activity, methane gas measurements, 14C dates, 3H, 36Cl, or beta radioactivity, the oxygen isotopic record can be correlated with the neighboring Dasuopu and Guliya ice cores. Naimona'nyi contains a pronounced positive ˜10‰ shift in delta18O in the basal 37 m of the core which mimics similar isotopic shifts in regional speleothems, lacustrian sediments, and planktonic foraminifera proxy records. This distinct shift is attributed to amplified monsoon intensity caused by increased summer insolation at 30°N. This correlation between regional proxy records results in a basal age of ˜8.6 ka for Naimona'nyi, suggesting that the ice field grew as a response to tropical rather than polar climate forcings.
The Dark Side of Nature: the Crime was Almost Perfect
NASA Astrophysics Data System (ADS)
2006-12-01
Nature has again thrown astronomers for a loop. Just when they thought they understood how gamma-ray bursts formed, they have uncovered what appears to be evidence for a new kind of cosmic explosion. These seem to arise when a newly born black hole swallows most of the matter from its doomed parent star. Gamma-ray bursts (GRBs), the most powerful explosions in the Universe, signal the formation of a new black hole and come in two flavours, long and short ones. In recent years, international efforts have shown that long gamma-ray bursts are linked with the explosive deaths of massive stars (hypernovae; see e.g. ESO PR 16/03). ESO PR Photo 49a/06 ESO PR Photo 49a/06 GRB 060614 (FORS/VLT) Last year, observations by different teams - including the GRACE and MISTICI collaborations that use ESO's telescopes - of the afterglows of two short gamma-ray bursts provided the first conclusive evidence that this class of objects most likely originates from the collision of compact objects: neutron stars or black holes (see ESO PR 26/05 and ESO PR 32/05). The newly found gamma-ray bursts, however, do not fit the picture. They instead seem to share the properties of both the long and short classes. "Some unknown process must be at play, about which we have presently no clue," said Massimo Della Valle of the Osservatorio Astrofisico di Arcetri in Firenze, Italy, lead author of one of the reports published in this week's issue of the journal Nature. "Either it is a new kind of merger which is able to produce long bursts, or a new kind of stellar explosion in which matter can't escape the black hole." One of the mysterious events went bang on 14 June 2006, hence its name, GRB 060614. The gamma-ray burst lasted 102 seconds and belongs clearly to the category of long GRBs. As it happened in a relatively close-by galaxy, located only 1.6 billion light-years away in the constellation Indus, astronomers worldwide eagerly pointed their telescopes toward it to capture the supernova, watching and waiting as if for a jack-in-the-box to spring open. The MISTICI collaboration used ESO's Very Large Telescope to follow the burst for 50 days. "Despite our deep monitoring, no rebrightening due to a supernova was seen," said Gianpiero Tagliaferri from the Observatory of Brera, Italy and member of the team. "If a supernova is present, if should at least be 100 times fainter than any other supernova usually associated with a long burst." The burst exploded in a dwarf galaxy that shows moderate signs of star formation. Thus young, massive stars are present and, at the end of its life one of them could have uttered this long, agonising cry before vanishing into a black hole. "Why did it do so in a dark way, with no sign of a supernova?" asked Guido Chincarini, from the University of Milano-Bicocca, Italy, also member of the team. "A possibility is that a massive black hole formed that did not allow any matter to escape. All the material that is usually ejected in a supernova explosion would then fall back and be swallowed." ESO PR Photo 49c/06 ESO PR Photo 49b/06 GRB 060505 (FORS/VLT) The same conclusion was previously reached by another team, who monitored both GRB 060614 and another burst, GRB 060505 (5 May 2006) for 5 and 12 weeks, respectively. For this, they used the ESO VLT and the 1.54-m Danish telescope at La Silla. GRB 060505 was a faint burst with a duration of 4 seconds, and as such also belongs to the category of long bursts [1]. For GRB 060505, the astronomers could only see the burst in visible light for one night and then it faded away, while for GRB 060614, they could only follow it for four nights after the burst. Thus, if supernovae were associated with these long-bursts, as one would have expected, they must have been about a hundred times fainter than a normal supernova. "Although both bursts are long, the remarkable conclusion from our monitoring is that there were no supernovae associated with them," said Johan Fynbo from the DARK Cosmology Centre at the Niels Bohr Institute of the Copenhagen University in Denmark, who led the study. "It is a bit like not hearing the thunder from a nearby storm when one could see a very long lasting flash." For the May burst, the team has obtained deep images in very good observing conditions allowing the exact localisation of the burst in its host galaxy. The host galaxy turns out to be a small spiral galaxy, and the burst occurred in a compact star-forming region in one of the spiral arms of the galaxy. This is strong evidence that the star that made the GRB was massive [2]. "For the 5 May event, we have evidence that it was due to a massive star that died without making a supernova," said Fynbo. "We now have to find out what is the fraction of massive stars that die without us noticing, that is, without producing either a gamma-ray burst or a supernova." "Whatever the solution to the problem is, it is clear that these new results challenge the commonly accepted scenario, in which long bursts are associated with a bright supernova," said Daniele Malesani, from the International School for Advanced Studies in Trieste, and now also at the DARK Cosmology Centre. "Our hope is to be able to find more of these unconventional bursts. The chase is on!" High resolution images and their captions are available on the associated page. More information The two gamma-ray bursts were discovered with the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful explosions. The work presented here is published in the 21 December 2006 issue of the journal Nature: "No supernovae associated with two long-duration gamma-ray bursts", by Johan P. U. Fynbo et al., and "An enigmatic long-lasting gamma-ray burst not accompanied by a bright supernova", by Massimo Della Valle et al. Two other reports about the same events are published in the same issue of Nature. The Italian-led team - the MISTICI collaboration - is composed of Massimo Della Valle (INAF, Osservatorio Astrofisico di Arcetri, Italy), Guido Chincarini (INAF, Osservatorio Astronomico di Brera & Università degli Studi di Milano-Bicocca, Italy), Nino Panagia (Space Telescope Science Institute, USA), Gianpiero Tagliaferri, Dino Fugazza, Sergio Campana, Stefano Covino, and Paolo D'Avanzo (INAF, Osservatorio Astronomico di Brera, Italy), Daniele Malesani (SISSA/ISAS, Italy and Dark Cosmology Centre, Copenhagen), Vincenzo Testa, L. Angelo Antonelli, Silvia Piranomonte, and Luigi Stella (INAF, Osservatorio Astronomico di Roma, Italy), Vanessa Mangano (INAF/IASF Palermo, Italy), Kevin Hurley (University of California, Berkeley, USA), I. Felix Mirabel (ESO), and Leonardo J. Pellizza (Instituto de Astronomia y Fisica del Espacio). The Danish-led team is composed of Johan P. U. Fynbo, Darach Watson, Christina C. Thöne, Tamara M. Davis, Jens Hjorth, José Mará Castro Cerón, Brian L. Jensen, Maximilian D. Stritzinger, and Dong Xu (Dark Cosmology Centre, University of Copenhagen, Denmark), Jesper Sollerman (Dark Cosmology Centre and Department of Astronomy, Stockholm University, Sweden), Uffe G. Jørgensen, Tobias C. Hinse, and Kristian G. Woller (Niels Bohr Institute, University of Copenhagen), Joshua S. Bloom, Daniel Kocevski, Daniel Perley (Department of Astronomy, University of California at Berkeley, USA), Páll Jakobsson (Centre for Astrophysics Research, University of Hertfordshire, UK), John F. Graham and Andrew S. Fruchter (Space Telescope Science Institute, Baltimore, USA), David Bersier (Astrophysics Research Institute, Liverpool John Moores University, UK), Lisa Kewley (University of Hawaii, Institute of Astronomy, USA), Arnaud Cassan and Marta Zub (Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Germany), Suzanne Foley (School of Physics, University College Dublin, Ireland), Javier Gorosabel (Instituto de Astrofisica de Andalucia, Granada, Spain), Keith D. Horne (SUPA Physics/Astronomy, University of St Andrews, Scotland, UK), Sylvio Klose (Thüringer Landessternwarte Tautenburg, Germany), Jean-Baptiste Marquette (Institut d'Astrophysique de Paris, France), Enrico Ramirez-Ruiz (Institute for Advanced Study, Princeton and Department of Astronomy and Astrophysics, University of California, Santa Cruz, USA), Paul M. Vreeswijk (ESO and Departamento de Astronomia, Universidad de Chile, Santiago, Chile), and Ralph A. M. Wijers (Astronomical Institute 'Anton Pannekoek', University of Amsterdam, The Netherlands).
Department of Defense Joint Technical Architecture Version 2.0
1998-05-26
Mandates 2.1-5 2.1.4.1 Year 2000 (Y2K) Compliance 2.1-5 2.1.4.2 Defense Information Infrastructure Common Operating Environment (DU COE) 2.1-5 2.1.5...2.2.2.2.1.6 Communications Services 2.2-11 2.2.2.2.1.7 Operating System Services 2.2-11 2.2.2.2.2 Application Platform Cross-Area Services 2.2- 12 ...2.2.2.2.2.1 Internationalization Services 2.2- 12 2.2.2.2.2.2 Security Services 2.2- 12 2.2.2.2.2.3 System Management Services 2.2- 12 2.2.2.2.2.4
Code of Federal Regulations, 2010 CFR
2010-10-01
... 13 14 15 16 17 18 19 20 220 and under 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 230 3.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 240 4.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 250 6.3 3.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 260 8.0 4.8 2.1 2.0 2.0 2.0 2.0 2.0 2.0 270 9.9 6.4 3.5 2.0 2.0 2.0 2.0 2.0 2.0 280 11.8 8.1 4.9 2.1 2.0 2.0...
Word Criticality Analysis. MOS: 44B. Skill Levels 1 & 2.
1981-09-01
IILh2- 51,1 2- 96,1 2- 40.A a- sv;t t. 94.1 2- Soil 2- 12,2 2- list 2-Z5,1 2- 170i 1. 10,1 2- 95.) 2- 19.1 Z- 50.1 1- 411 * 3 Slits 2- 57j,1 0 3...46.1 2- 44,1 2- 43,1 2- 411J 2- . , 1 2- 53,1 2- .2. 2- 51,1 2- Soil 2- 49,1 2- 68.1 2- 47.1 4 APIII’l~if 2-.2 , SATTERIFS Z- 25,1 2 1 6 PIJ$1| " 2...9s1 2 9 1 2 lt 2 71 2 6 o -63,1 2- 94 2- 00 2- 0,1 2- 95,1 2- 96,1 2-10001 2- 96.1 A USL 2, 91.1 2 59,1 2- 16.1 2- 51 -1- 40,1 2’ 401 2- 31,2 2- 30#2
10 CFR 2.1000 - Scope of subpart J.
Code of Federal Regulations, 2013 CFR
2013-01-01
... repository at a geologic repository operations area noticed under §§ 2.101(f)(8) or 2.105(a)(5), and for an..., except for the following provisions: §§ 2.301; 2.303; 2.307; 2.309; 2.312; 2.313; 2.314; 2.315; 2.316; 2.317(a); 2.318; 2.319; 2.320; 2.321; 2.322; 2.323; 2.324; 2.325; 2.326; 2.327; 2.328; 2.330; 2.331; 2...
10 CFR 2.1000 - Scope of subpart J.
Code of Federal Regulations, 2014 CFR
2014-01-01
... repository at a geologic repository operations area noticed under §§ 2.101(f)(8) or 2.105(a)(5), and for an..., except for the following provisions: §§ 2.301; 2.303; 2.307; 2.309; 2.312; 2.313; 2.314; 2.315; 2.316; 2.317(a); 2.318; 2.319; 2.320; 2.321; 2.322; 2.323; 2.324; 2.325; 2.326; 2.327; 2.328; 2.330; 2.331; 2...
Design and Analysis of Multi-Sensor Sequential Detection System
1991-07-01
7 - A7Ŗ y - 2 Y21 -~ TI 21D2 T 2 -DI T2 2 Tj I e I11 921 f e-21Y-92 T -X-iIx-Liil X f- TD T2 +D2 f e fj e-1Y-2 1 1 log T T1-D1 2 T 2 D2 2. -’! IL...T2 +D2 X2 1 e-X2(T 2 -9 21) _1 e-x 2( T2 +D2 -IL21) q2 2 2 20 T40= 2 x-L2 Y - 2 e2(T 2-D2 -1) _ 1 e-X2(T2-9 21) T2 -D 2 2 2 T2 - 2 X2 2( TD 2 IL2 ) q10...0.5 * exp((-l) * (t - u)); retumn(i); ) double P2(ujl,t,d) double u,I, td ; double i; i= I - 0.5 * exp((-I) * (u - t)) - 0.5 *exp((-l) *(t + d - u
Guron, Marta; Wei, Xiaolan; Carroll, Patrick J; Sneddon, Larry G
2010-07-05
The ruthenium-catalyzed metathesis reactions of dialkenyl-substituted ortho- and meta-carboranes provide excellent routes to both cyclic-substituted o-carboranes and new types of main-chain m-carborane polymers. The adjacent positions of the two olefins in the 1,2-(alkenyl)(2)-o-carboranes strongly favor the formation of ring-closed (RCM) products with the reactions of 1,2-(CH(2)=CHCH(2))(2)-1,2-C(2)B(10)H(10) (1), 1,2-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,2-C(2)B(10)H(10) (2), 1,2-(CH(2)=CHSiMe(2))(2)-1,2-C(2)B(10)H(10) (3), 1,2-(CH(2)=CHCH(2)SiMe(2))(2)-1,2-C(2)B(10)H(10) (4), and 1,2-[CH(2)=CH(CH(2))(4)SiMe(2)](2)-1,2-C(2)B(10)H(10) (5) affording 1,2-(-CH(2)CH=CHCH(2)-)-C(2)B(10)H(10) (10), 1,2-[-CH(2)(CH(2))(3)CH=CH(CH(2))(3)CH(2)-]-1,2-C(2)B(10)H(10) (11), 1,2-[-SiMe(2)CH=CHSiMe(2)-]-1,2-C(2)B(10)H(10) (12), 1,2-[-SiMe(2)CH(2)CH=CHCH(2)SMe(2)-]-C(2)B(10)H(10) (13), and 1,2-[-SiMe(2)(CH(2))(4)CH=CH(CH(2))(4)SiMe(2)-]-C(2)B(10)H(10) (14), respectively, in 72-97% yields. On the other hand, the reaction of 1,2-(CH(2)-CHCH(2)OC(=O))(2)-1,2-C(2)B(10)H(10) (6) gave cyclo-[1,2-(1',8'-C(=O)OCH(2)CH=CHCH(2)OC(=O))-1,2-C(2)B(10)H(10)](2) (15a) and polymer 15b resulting from intermolecular metathesis reactions. The nonadjacent positions of the alkenyl groups in the 1,7-(alkenyl)(2)-m-carboranes, 1,7-(CH(2)=CHCH(2))(2)-1,7-C(2)B(10)H(10) (7), 1,7-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,7-C(2)B(10)H(10) (8), and 1,7-(CH(2)=CHCH(2)SiMe(2))(2)-1,7-C(2)B(10)H(10) (9), disfavor the formation of RCM products, and in these cases, acyclic diene metathesis polymerizations (ADMET) produced new types of main chain m-carborane polymers. The structures of 3, 9, 11, 12, 13, and 15a were crystallographically confirmed.
Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.
1997-08-13
Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation. The surface-substrate linking reagent Ph(2)PCH(2)CH(2)CH(2)Si(OEt)(3) (D) is formed efficiently by similar means from Si(OEt)(3)(CH(2)CH=CH(2)). NMR data ((1)H, (13)C, (29)Si, (31)P) for 2-12 have been measured and are discussed.
Wedgwood, Janet L; Kresinski, Roman A; Merry, Stephen; Platt, Andrew W G
2003-06-01
The reactions of phosphine Ph(2)P(CH(2))(2)SO(3)Na with Cp(2)M'Cl(2) (M'=Ti, Zr) in aqueous solution give the metallophosphines, Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2) (Cp=cyclopentadienyl) and CpZr(OH)(OSO(2)(CH(2))(2)PPh(2))(2). These react with CODM"Cl(2) (M"=Pd, Pt) (COD=1,5-cyclooctadiene) in dichloromethane to give heterobimetallic complexes Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)M"Cl(2) and CpZr(OH)(OSO(2)(CH(2))(2) PPh(2))(2)M"Cl(2) respectively. The compounds are characterised by infrared and NMR spectroscopies and elemental analysis. Electrospray mass spectra of the complexes are reported and compared to those of Cp(2)M'Cl(2) in water and dimethylsulfoxide (DMSO). For zirconocene dichloride and its product heterobimetallic complexes, the addition of ethylenediamine tetraacetic acid disodium salt (Na(2)H(2)EDTA) was found to be an effective ionisation enhancement agent for the electrospray mass spectral studies. Cytotoxicity studies for the previously reported Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O (Wedgwood et al., Inorg. Chim. Acta 290 (1999) 189), and the compounds Cp(2)Ti(OSO(2)(CH(2))(2) PPh(2))(2).1.5H(2)O and Cp(2)Ti(OSO(2)(CH(2))(2)PPh(2))(2)PtCl(2).4H(2)O reported here, have been evaluated by colony formation assay against cisplatin-sensitive and -resistant cell lines L929 and L929/R to highlight potential chemotherapeutic activity. The compound Cl(2)Pt(PPh(2)(CH(2))(2)SO(3)H)(2).3.5H(2)O overcomes cisplatin resistance.
A Dynamic Retention Model for Air Force Officers: Theory and Estimates
1984-12-01
9YOS STAY 2 2 2 1 1973 PIL ACAD 9YOS STAY 2 2 2 2 1 1973 PIL ACAD 9YOS STAY 2 2 2 2 2 4 1973 PIL ACAD 9YOS STAY 2 2 2...2 16 .37 1973 PIL ACAD 9YOS STAY 2 2 2 15 15 1973 PIL ACAD 9YOS STAY 2 2 14 14 14 1973 PIL ACAD 9YOS STAY 2 13 13 13 13 1973 PIL ACAD 9YOS STAY 2...13 13 13 31 1973 PIL ACAD 9YOS LEAVE 2 2 2 2 2 1 1973 PIL ACAD 9YOS LEAVE 2 7 1973 PIL ACAD 9YOS LEAVE 2 2 1 1973 PIL ACAD 9YOS LEAVE 2 2 2
Study Techniques for Controlling Flavor Intensity in Compressed Foods. Phase 1
1973-01-01
sweet --- 1 - - -- sour (vinegar) 2 1-2 1-2 1-2 tomato 1-2 1-2 1-2 1-2 pork - i-2 1-2 1-2 cayenne pepper 1 1 )H-1 1 catsup spice 1 1-2 1-2 1-2 onion...1 1 1 Sour 2 1-2 1-2 1 3 Tomato 1-2 ) (-1 1-2 1-2 1-2 Pork - )(-1 1-2 1 - Cayenne Pepper 1 - ) (-1 - - Catsup Spice 1 1-2 1-2 1-2 2 Onion - - )(-i 1...Pork 1-2 1-2 1-2 1 - Cayenne Pepper 1 - 71 - - Catsup Spice 1-2 1-2 1-2 1-2 1 Onion - - ) H-i Salt )(-1 1 )( )(-1 1 Cardboard 1 )(-1 )( 1 - Red Pepper
Marine Coatings Performance for Different Ship Areas. Volume 1
1979-07-01
Operating Service Conditions 2.3.3 Survey of the Major Coating Manufacturers for Coatings Criteria 2.4 Compilation of Service Histories 2.5 Analysis of...Compiled Service Histories 2.5.1 Background Information 2.5.2 Analytical Objective 2.5.3 Comparative Analysis 2.6 Laboratory Tests 2.6.1 Discussion...Service Histories Questionnaire i . . . [11 . . . III iv 1-1 1-1 1-1 1-1 1-2 1-5 1-5 1-5 1-5 2-2 2-2 2-2 2-2 2-5 2-5 2-5 2-5 2-5 2-6 2-7 2-8 2-8 2-8 2-8 2
Copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides
NASA Astrophysics Data System (ADS)
Peyronel, Giorgio; Malavasi, Wanda; Pignedoli, Anna
Some copper(I), silver(I) and gold(I) halide complexes with the dithioformamidinium dihalides (Tu 2X 2) were prepared and studied by infrared spectroscopy and conductometry: 3CuX.2Tu 2X 2(XCl,I), CuBr.Tu 2Br 2, 4CuBr.3.5Tu 2Br 2.MeOH, 2CuBr.Tu 2Br 2.0.66EtOH, 3CuI.2Tu 2I 2, 2AgCl.2.5Tu 2Cl 2, 3AgCl.2Tu 2Cl 2.0.5EtOH, 3AgCl.Tu 2Cl 2, 2AgBr.2Tu 2Br 2.0.5Tu 2(NO 3) 2.H 2O, AgBr.Tu 2Br 2, 4AgBr.Tu 2Br 2, 4AgI.0.5Tu 2I 2.EtOH, AuCl.1.5Tu 2Cl 2, 4AuCl.3.5Tu 2Cl 2.2DMF, AuBr.4Tu 2Br 2, AuBr.2Tu 2Br 2.1.5DMF, AuI.5Tu 2I 2, AuI.Tu 2I 2. A decrease of the ν(NH), δ(NH 2) and ν(CN 2) frequencies and an increase of the ν(CS) frequencies indicate an N-coordination of the dithioformamidinium cation to the metal ions; ν(MN) and ν(MX) frequencies are tentatively assigned in the far-infrared spectra.