Sample records for industrial materials program

  1. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  2. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less

  3. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less

  4. As Teachers Tell It: Implementing All Aspects of the Industry. Supporting Materials. [Volume Two.

    ERIC Educational Resources Information Center

    Andrew, Erika Nielsen, Ed.

    This document contains supporting materials from five case studies illustrating the All Aspects of the Industry (AAI) approach. AAI provides a framework for redesigning programs around broadly conceived, interdisciplinary, industry-focused programs and integrating academic and vocational education. Materials from the Boston (Massachusetts) Public…

  5. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less

  6. Industrial Automation Mechanic Model Curriculum Project. Final Report.

    ERIC Educational Resources Information Center

    Toledo Public Schools, OH.

    This document describes a demonstration program that developed secondary level competency-based instructional materials for industrial automation mechanics. Program activities included task list compilation, instructional materials research, learning activity packet (LAP) development, construction of lab elements, system implementation,…

  7. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  8. Synthesis and design of silicide intermetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has amore » number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.« less

  9. SUMMER PROGRAM FOR UPDATING THE TECHNICAL COMPETENCY OF TEACHERS OF INDUSTRIAL SUBJECTS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOHN, RALPH C.

    STUDENTS OF THE INSERVICE PROGRAM WERE 96 INDUSTRIAL EDUCATION TEACHERS FROM THE AREAS OF AUTO AND POWER, DRAFTING, ELECTRONICS, AND METALS WHO WERE SELECTED FROM 576 APPLICANTS. OBJECTIVES WERE TO (1) DEVELOP MODELS FOR INDUSTRY-SCHOOL COOPERATIVE PROGRAMS, (2) INTEGRATE INSTRUCTION ON INDUSTRIAL MATERIALS, CYBERNETICS, AND AUTOMATION INTO THE…

  10. BACIE Register of Programmed Instruction in the Field of Education and Training in Commerce and Industry. Volume 2, 1968.

    ERIC Educational Resources Information Center

    British Association for Commercial and Industrial Education, London (England).

    The British Association for Commercial and Industrial Education has included in its register of annotated programed instructional materials: programs available in the United Kingdom; programs dealing with industrial and commercial training and related further education; and information as supplied by the authors or producers of programs. The areas…

  11. Experienced Teacher Fellowship Program. Final Report.

    ERIC Educational Resources Information Center

    Wolansky, William D.; Cochran, Leslie H.

    The Industrial Arts Fellowship Program provides an opportunity for 24 experienced teachers to pursue graduate study related to two occupational clusters: industrial materials and processes or energy and propulsion systems. As part of their studies, students developed, field tested, and evaluated curriculum materials which applied these evolving…

  12. Industry Sources Form Reading List in No-Text Class.

    ERIC Educational Resources Information Center

    Korda, Ronald

    1988-01-01

    Discusses the use of broadcast industry sources to develop broadcast journalism course materials. Asserts that industry sources (trade journals, audience research reports, press releases, and videotapes of programs, promotions, or special industry presentations) can effectively replace textbook materials by integrating the academic and…

  13. The National Shipbuilding Research Program. Proceedings of the IREAPS Technical Symposium. Paper No. 24: MAPLIS: An On-Line Materials Resource Planning System Tailored to the Shipbuilding and Offshore Industry

    DTIC Science & Technology

    1982-09-01

    Offshore Industry U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER Report Documentation Page Form ApprovedOMB No . 0704...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM September 1982 NSRP 0009...Proceedings of the IREAPS Technical Symposium Paper No . 24: MAPLIS: An On-Line Materials Resource Planning System Tailored to the Shipbuilding and

  14. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  15. Industrial Arts Curriculum Guide for Plastics.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    This curriculum guide provides topic outlines and objectives for 12 units of an industrial arts program in plastics at any grade level. Introductory material describes the scope and sequence of an Industrial Arts program, gives specific guidelines for Industrial Arts, and briefly discusses the nature of plastics. Unit titles include Orientation of…

  16. Advanced Industrial Materials (AIM) fellowship program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currentlymore » under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).« less

  17. Career Education. Industrial Arts Objectives, Grades 6-12. DS Manual 2890.1 [and] Approved List of Essential Textbooks/Instructional Materials for Industrial Arts, Grades 6-12. DS Manual 2890.2; Revised.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC.

    Designed to assist the instructor in presenting curriculum content based upon industry and technology, this manual presents a program description and the instructional objectives for the industrial arts program in the Department of Defense Dependents Schools (DoDDS). Six sections are included in the manual: Industrial Arts Program Objectives,…

  18. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work withmore » a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.« less

  19. Industrial Work Experience I. Curriculum Guide. General Related Study Units.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Div. of Vocational-Technical Education.

    The primary purpose of this guide is to present basic sample instructional materials for the Industrial Work Experience (IWE) Program. It is designed to aid those charged with local administration and coordination of programs in secondary level trade and industrial education, referred to as the IWE training program. The guide contains 10 units of…

  20. The "We Card" program: tobacco industry "youth smoking prevention" as industry self-preservation.

    PubMed

    Apollonio, Dorie E; Malone, Ruth E

    2010-07-01

    The "We Card" program is the most ubiquitous tobacco industry "youth smoking prevention" program in the United States, and its retailer materials have been copied in other countries. The program's effectiveness has been questioned, but no previous studies have examined its development, goals, and uses from the tobacco industry's perspective. On the basis of our analysis of tobacco industry documents released under the 1998 Master Settlement Agreement, we concluded that the We Card program was undertaken for 2 primary purposes: to improve the tobacco industry's image and to reduce regulation and the enforcement of existing laws. Policymakers should be cautious about accepting industry self-regulation at face value, both because it redounds to the industry's benefit and because it is ineffective.

  1. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  2. A photovoltaic industry overview - The results of a survey on photovoltaic technology industrialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Thornhill, J. W.; Shimada, K.

    1981-01-01

    The National Photovoltaics Program of the United States Department of Energy has the objective of bringing photovoltaic power systems to a point where they can supply a significant portion of the United States energy requirements by the year 2000. This is planned to be accomplished through substantial research and technology development activities aimed at achieving major cost reductions and market penetration. This paper presents information derived from a limited survey performed to obtain photovoltaic industry attitudes concerning industrialization, and to determine current industry plans to meet the DOE program goals. Silicon material production, a key photovoltaic manufacturing industry, is highlighted with regards to implementation of technology improvement and silicon material supply outlook.

  3. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  4. An Android Research and Development Program.

    DTIC Science & Technology

    1983-03-01

    reprogrammable multifunctional manipulator designed to move material, parts, tools, or special devices, through variable programmed motions for the performance...thesis: 1. An ’industrial robot’ is a [mechanized,] reprogrammable multifunctional manipulator designed to move material, parts, tools, or...insertion is also well defined in space. These manipulators are currently in use in the automobile industry, and two were were demonstrated by Kohol

  5. The “We Card” Program: Tobacco Industry “Youth Smoking Prevention” as Industry Self-Preservation

    PubMed Central

    Malone, Ruth E.

    2010-01-01

    The “We Card” program is the most ubiquitous tobacco industry “youth smoking prevention” program in the United States, and its retailer materials have been copied in other countries. The program's effectiveness has been questioned, but no previous studies have examined its development, goals, and uses from the tobacco industry's perspective. On the basis of our analysis of tobacco industry documents released under the 1998 Master Settlement Agreement, we concluded that the We Card program was undertaken for 2 primary purposes: to improve the tobacco industry's image and to reduce regulation and the enforcement of existing laws. Policymakers should be cautious about accepting industry self-regulation at face value, both because it redounds to the industry's benefit and because it is ineffective. PMID:20466965

  6. Resources - Supply and availability. [of superalloys for United States aerospace industry

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Over the past several decades there have been shortage of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.

  7. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  8. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  9. Industrial Arts 7-9. Manufacturing: Metalwork, Plastics, Woodwork, Manufacturing.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Div. of Vocational Education.

    This curriculum guide provides materials for the industrial arts (grades 7-9) subject cluster of manufacturing. This subject cluster has four areas of study: metalwork, plastics, woodwork, and manufacturing. Introductory materials include an overview of the industrial arts curriculum in its entirety, a listing of program objectives for each of the…

  10. New applications of particle accelerators in medicine, materials science, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, E.A.

    1981-01-01

    Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

  11. Occupational Employment Statistics Program. Staffing Patterns in Selected Nonmanufacturing Industries.

    ERIC Educational Resources Information Center

    Indiana State Employment Security Div., Indianapolis. Research and Statistics Section.

    The material in the publication is intended to acquaint users with the occupational composition of the various nonmanufacturing industries in the State of Indiana. It is directed particularly to those who are concerned with designing academic and vocational education programs in order to supply workers to fill the needs of industry and to…

  12. Volunteerism in Special Education through Industry-Education Cooperation: A Program Development Handbook for Coordinators of Volunteer Recruitment.

    ERIC Educational Resources Information Center

    Hughes, James H.

    Intended for coordinators of volunteer recruitment, the booklet examines practical issues in developing and implementing programs in which industry employees serve as volunteers in special education. Introductory material briefly addresses volunteerism in America, and considers the need for industry-education cooperation as well as advantages to…

  13. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  14. Replacing critical and strategic refractory metal elements in nickel-base superalloys. [NASA's COSAM program

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.; Nathal, M. V.

    1983-01-01

    Because of the import status and essential nature of their use, cobalt, chromium, tantalum, and niobium were identified as strategic and critical in the aerospace industry. NASA's Conservation of Strategic Aerospace Materials (COSAM) program aims to reduce the need for strategic materials used in gas turbine engines. Technological thrusts in two major areas are under way to meet the primary objective of conserving the use of strategic materials in nickelbase superalloys. These thrusts consist of strategic element substitution and alternative material identification. The program emphasizes cooperative research teams involving NASA Lewis Research Center, universities, and industry. The adoption of refractory metals in nickel-base superalloys is summarized including their roles in mechanical strengthening and environmental resistance; current research activities under way in the COSAM Program are presented as well as research findings to date.

  15. Industry-university cooperation/research

    NASA Technical Reports Server (NTRS)

    Whitten, Raymond P.

    1991-01-01

    The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such area of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs.

  16. COMETT-CALLIOPE: The Implementation of Call Materials for Business and Industrial Purposes.

    ERIC Educational Resources Information Center

    Van Elsen, Edwig; And Others

    The development of a Computer Assisted Language Learning for Information Organization and Production in Europe (CALLIOPE) program is discussed. CALLIOPE is a program launched by the European Community that is intended to provide computer-based foreign language instruction for the business and industrial environment. Program goals are two-fold: (1)…

  17. Materials R&D-student internships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.B.; Jiles, D.C.; Chumbley, L.S.

    1995-05-01

    This program has as an objective the conduct of programmatic research for the Advanced Industrial Concepts Materials Program while training minority graduate students in the process. Well-known demographics indicate that minorities will constitute an increasing fraction of our future work force. Consequently, efforts have been initiated to increase the fraction of minorities and women who choose technical career paths. Included are a wide ranging set of programs beginning with pre-school education, progressing through efforts to retain students in technical paths in grades K-12 and undergraduate education, and ending with encouraging graduate education. The Materials R & D - Student Internshipsmore » is a unique approach in the latter category. Here, we have focused on a particular area of applied materials research, the Advanced Industrial Concepts Materials Program. Our goal, then, is to educate minority graduate students in the context of this program. The Ames Laboratory was selected as a site for this pilot project since it is a DOE national laboratory, located on the campus of a major research university, which includes in its research interests programs with a strong technological flavor.« less

  18. The international aerospace industry - New challenges and opportunities for translation suppliers

    NASA Technical Reports Server (NTRS)

    Rowe, T.

    1986-01-01

    Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.

  19. Education: Firms Offer Academics Polymer Science Training.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1983

    1983-01-01

    Provides information on industry-sponsored programs for college faculty and advanced undergraduate students designed to improve polymer science training: these include residency programs for professors available at industrial laboratories, establishment of a Polymer Education Award, newsletter on course materials/sources in polymer science,…

  20. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  1. The Preparation and Use of Specialist Material in Foreign Language Teaching for Industry.

    ERIC Educational Resources Information Center

    Conlin, Christine

    1984-01-01

    Outlines methods by which dialogs are produced in a program which teaches foreign languages to local British industries. Recommends that such dialogs on specialized topics be short and simple. Also discusses how role play and materials such as graphs, charts, forms, and diagrams can be used as language teaching material. (SED)

  2. Loss control and its place in the insurance industry.

    PubMed

    Kelly, A B

    1986-08-01

    The historical development of the insurance industry's role in efforts to prevent industrial accidents and occupational disease will be discussed. The various approaches that have evolved include fire insurance, casuality insurance, and compensation for occupational diseases. The basic approach used in insurance programs involved with occupational disease is to identify the toxic material to which employees are exposed, recommend engineering controls to reduce the exposure, and suggest a medical surveillance program. The insurance industry's efforts in industrial hygiene are also described.

  3. Mechanical Drafting Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in mechanical drafting. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program, vocational…

  4. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  5. Industrial Technology Modernization Program. Project 20. Consolidation and Automation of Material and Tool Storage. Phase 2

    DTIC Science & Technology

    1987-06-15

    GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION

  6. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materialsmore » database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.« less

  7. Polycrystalline silicon material availability and market pricing outlook study for 1980 to 88: January 1983 update

    NASA Technical Reports Server (NTRS)

    Costogue, E.; Pellin, R.

    1983-01-01

    Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers.

  8. General Safety Manual for Vocational-Technical Education and Industrial Arts Programs. Bulletin No. 1674.

    ERIC Educational Resources Information Center

    Dennis, Bill; Poston, David

    This manual is designed to offer suggestions for teaching safety in Louisiana industrial arts and vocational education programs. The suggestions and information presented are intended for use in an ongoing safety program, not a short unit presented at the beginning of the school year. Following an introduction in unit 1, the material has been…

  9. 48 CFR 1446.170 - Government-Industry Data Exchange Program (GIDEP).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INTERIOR CONTRACT MANAGEMENT QUALITY ASSURANCE General 1446.170 Government-Industry Data Exchange... construction materials), manufacturing processes, environmental issues associated with those manufacturing...

  10. Industry to Education Technology Transfer Program. Composite Materials--Personnel Development. Final Report.

    ERIC Educational Resources Information Center

    Tomezsko, Edward S. J.

    A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…

  11. Hazardous Materials Technology: A Community College's Response to a Critical Employment Need.

    ERIC Educational Resources Information Center

    Friedel, Janice N.; And Others

    Studies conducted by the Eastern Iowa Community College District in 1986 revealed a lack of credit programs and curricula for training individuals in the technical aspects of hazardous materials management and need for hazardous materials technicians by local industry. In response, an associate of applied science (AAS) degree program in Hazardous…

  12. Masonry Curriculum Guide. Construction Trades. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in masonry. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program, vocational cooperative…

  13. Colleges Working with Industry. FEDA Paper.

    ERIC Educational Resources Information Center

    Hughes, Maria

    1996-01-01

    This handbook, which is intended for individuals involved in program evaluation and improvement at British further education (FE) colleges, contains strategies and materials to help colleges work with industry to make their programs better able to build the skills and knowledge of their local communities. The first two sections offer rationales…

  14. Establishing an Elementary Industrial Arts Program. Monograph 9.

    ERIC Educational Resources Information Center

    White, Michael R., Ed.

    This monograph provides various audiences with background material necessary to the successful establishment of an elementary school industrial arts (IA) program. Chapter 1 discusses needs of children in respect to activity-based learning and addresses concerns teachers have as they move from print media instruction to an activity-based elementary…

  15. Carpentry Curriculum Guide. Construction Trades. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in carpentry. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program, vocational cooperative…

  16. Machine Trades Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in machine trades. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program, vocational cooperative…

  17. Plumbing Curriculum Guide. Construction Trades. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in plumbing. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program, vocational cooperative…

  18. Construction Trades Related Areas Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide is intended to help secondary teachers provide relevant training for an entry-level job in related building trades procedures. Introductory materials include background information on trade and industrial education and program goals and safety information. Descriptions follow of the construction trades program,…

  19. The Vital Role of Faculty in Developing Successful Relationships with Business and Industry.

    ERIC Educational Resources Information Center

    Milligan, Frank G.

    Community college faculty play a vital role in the establishment and continuation of industry training programs. Faculty assist the company in determining the level, focus, and starting point of the course or program; develop instructional materials and techniques; present the subject; and interact with employee-students. During the delivery of…

  20. Resource Information for Industrial Arts. Industrial Arts Series No. 10,008.

    ERIC Educational Resources Information Center

    Hinrichs, Roy S., Comp.; Stone, Gary A., Comp.

    Designed to assist teachers in improving industrial arts programs, this resource guide lists (1) 102 sources of free instructional materials (industries and trade associations), (2) 30 equipment and supply catalogs, (3) 80 loan films costing only the price of return postage, and (4) 124 books, 5 professional journals, and 10 magazines suggested…

  1. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  2. Commercial Use of Space: a New Economic Strength for America

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.

  3. Basic Skills in the Hotel & Food Service Industries. Workforce & Workplace Literacy Series. Revised.

    ERIC Educational Resources Information Center

    BCEL Brief, 1993

    1993-01-01

    This report contains a list of 21 contacts and 9 references concerned with workplace literacy programs in the hotel and food service industries. Each listing includes addresses and telephone numbers, prices if applicable, and a brief description of the resource or materials. The materials listed are mostly reports of workplace literacy projects in…

  4. Photovoltaic energy program overview, fiscal year 1991

    NASA Astrophysics Data System (ADS)

    1992-02-01

    The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

  5. Materials Division research and technology accomplishments for FY 87 and plans for FY 88

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1988-01-01

    The research program of the Materials Division is presented as FY 87 accomplishments and FY 88 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  6. Materials Division research and technology accomplishments for FY 89 and plans for FY 90

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1990-01-01

    The research program of the Materials Division is presented as FY-89 accomplishments and FY-90 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  7. Materials Division research and technical accomplishments for FY 1988 and plans for FY 1989

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1989-01-01

    The research program of the Materials Division is presented as FY-88 accomplishments and FY-89 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.

  8. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART 1. CANDIDATE MATERIALS LABORATORY TESTS

    DTIC Science & Technology

    A space power system of the type envisioned by the ASTEC program requires the development of a lightweight solar collector of high reflectance...capable of withstanding the space environment for an extended period. A survey of the environment of interest for ASTEC purposes revealed 4 potential...developed by the solar-collector industry for use in the ASTEC program, and to test the effects of space environment on these materials. Of 6 material

  9. A Testing Service for Industry

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.

  10. 75 FR 22165 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-fit an existing manufacturing facility to produce autoclaved aerated concrete (AAC) ``green'' building materials. The NAICS industry code for this enterprise is: 327331 Concrete Block and Brick Manufacturing...

  11. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  12. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART III CANDIDATE MATERIALS ORBITAL EVALUATION.

    DTIC Science & Technology

    by the solar-collector industry for use in the ASTEC Program, and to test the degrading effects of various segregated and combined elements of the...elements which may be causative to material surface degradation can be determined. The ASTEC scientific space experiment was developed and qualified, and

  13. Core I Materials for Rural Agricultural Programs. Units D-E.

    ERIC Educational Resources Information Center

    Ethridge, Jim; And Others

    These units of instructional materials and teaching aids are part of a series of eight designed for use in rural agriculture programs for students in grades 9 and 10. Covered in the unit on livestock science are understanding the livestock industry, identifying breeds of livestock and poultry, selecting livestock, and feeding livestock.…

  14. Studies on the Use of Extramural Videopublished Materials in Continuing Education. Final Report.

    ERIC Educational Resources Information Center

    Sjogren, Douglas; And Others

    The Engineering Renewal and Growth (ERG) program at Colorado State University (CSU) was designed for continuing education of engineers. The program used videotapes and coordinated written materials to deliver instruction to the practicing engineer. Courses were leased to individual students or industries in which students worked. The courses were…

  15. Mineral commodity summaries 2017

    USGS Publications Warehouse

    Ober, Joyce A.

    2017-01-31

    This report is the earliest Government publication to furnish estimates covering 2016 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  16. Self-Publishing Indigenous Language Materials.

    ERIC Educational Resources Information Center

    St. Clair, Robert N.; Busch, John; Webb, B. Joanne

    Indigenous language programs that have a literacy component require reading materials. Recent advances in computer technology and certain legal changes in the publishing industry have made self-publishing such materials an easier task. This paper describes some of the steps necessary to self-publish indigenous language materials. Suggestions are…

  17. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  18. Strategies for Dealing with the Defense Budget

    DTIC Science & Technology

    1983-08-17

    changes were computed and are shown in Tables B-3 and B-4, on pages B-66 and B-67. B.6 ACQUISITION PROGRAM TURBULENCE The purpose of this section is to...planning. The following brief overviev / of the NAVMAT study illustrates this cause of program turbulence. Figure C-13 shows the NAVMAT analytical...Inflation, Industrial Base, Life-Cycle Costs, Material Acquisition, Material Balance, Multi-year Contracting/procurement, Planning, Programming and

  19. Preparing technicians for engineering materials technology

    NASA Technical Reports Server (NTRS)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  20. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  1. Attempts to undermine tobacco control: tobacco industry "youth smoking prevention" programs to undermine meaningful tobacco control in Latin America.

    PubMed

    Sebrié, Ernesto M; Glantz, Stanton A

    2007-08-01

    We sought to understand how the tobacco industry uses "youth smoking prevention" programs in Latin America. We analyzed tobacco industry documents, so-called "social reports," media reports, and material provided by Latin American public health advocates. Since the early 1990s, multinational tobacco companies have promoted "youth smoking prevention" programs as part of their "Corporate Social Responsibility" campaigns. The companies also partnered with third-party allies in Latin America, most notably nonprofit educational organizations and education and health ministries. Even though there is no evidence that these programs reduce smoking among youths, they have met the industry's goal of portraying the companies as concerned corporate citizens and undermining effective tobacco control interventions that are required by the World Health Organization Framework Convention on Tobacco Control.

  2. The Galaxy Plan in Industrial Education. [Materials] Developed in The Experienced Teacher Fellowship Program.

    ERIC Educational Resources Information Center

    McClea, Kenneth R., Ed.; And Others

    These materials inform school administrators of the rationale of the Detroit Galaxy Plan and provide procedures for implementing the Plan. This program of occupational education for secondary Grades 7 through 12 is planned for students who intend to enter college, apprenticeships, or employment after high school. The Plan, developed by 24…

  3. Laboratory Resources Management in Manufacturing Systems Programs

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2004-01-01

    Most, if not all, industrial technology (IT) programs have laboratories or workshops. Often equipped with modern equipment, tools, materials, and measurement and test instruments, these facilities constitute a major investment for IT programs. Improper use or over use of program facilities may result in dirty lab equipment, lost or damaged tools,…

  4. Procedures for Trade and Industrial Program Development.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    The instructional systems development (ISD) approach for the development and accomplishment of vocational training programs provides a methodology for gathering and analyzing job information, developing instructional materials in a variety of media, conducting instruction, and evaluating and improving the effectiveness of training programs. This…

  5. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  6. Recovering Radioactive Materials with OSRP team

    ScienceCinema

    None

    2017-12-09

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  7. National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.

  8. Thermal Protection and Control

    NASA Technical Reports Server (NTRS)

    Greene, Effie E.

    2013-01-01

    During all phases of a spacecraft's mission, a Thermal Protection System (TPS) is needed to protect the vehicle and structure from extreme temperatures and heating. When designing TPS, low weight and cost while ensuring the protection of the vehicle is highly desired. There are two main types of TPS, ablative and reusable. The Apollo missions needed ablators due to the high heat loads from lunar reentry. However, when the desire for a reusable space vehicle emerged, the resultant_ Space Shuttle program propelled a push for the development of reusable TPS. With the growth of reqsable TPS, the need for ablators declined, triggering a drop off of the ablator industry. As a result, the expertise was not heavily maintained within NASA or the industry. When the Orion Program initiated a few years back, a need. for an ablator reemerged. Yet, due to of the lack of industry capability, redeveloping the ablator material took several years and came at a high cost. As NASA looks towards the future with both the Orion and Commercial Crew Programs, a need to preserve reusable, ablative, and other TPS technologies is essential. Research of the different TPS materials alongside their properties, capabilities, and manufacturing process was performed, and the benefits of the materials were analyzed alongside the future of TPS. Knowledge of the different technologies has the ability to help us know what expertise to maintain and ensure a lack in the industry does not occur again.

  9. The AGTSR consortium: An update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fant, D.B.; Golan, L.P.

    1995-10-01

    The Advanced Gas Turbine Systems Research (AGTSR) program is a collaborative University-Industry R&D Consortium that is managed and administered by the South Carolina Energy R&D Center. AGTSR is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry-defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. The consortium is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its thirdmore » year of operation and is sponsored by the U.S. DOE - Morgantown Energy Technology Center. The program is scheduled to continue past the year 2000. At present, there are 78 performing member universities representing 36 states, and six cost-sharing U.S. gas turbine corporations. Three RFP`s have been announced and the fourth RFP is expected to be released in December, 1995. There are 31 research subcontracts underway at performing member universities. AGTSR has also organized three workshops, two in combustion and one in heat transfer. A materials workshop is in planning and is scheduled for February, 1996. An industrial internship program was initiated this past summer, with one intern positioned at each of the sponsoring companies. The AGTSR consortium nurtures close industry-university-government collaboration to enhance synergism and the transition of research results, accelerate and promote evolutionary-revolutionary R&D, and strives to keep a prominent U.S. industry strong and on top well into the 21st century. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1996.« less

  10. 75 FR 8316 - Office of Postsecondary Education; Overview Information; Erma Byrd Scholarship Program; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Transmittal of Applications: March 26, 2010. Full Text of Announcement I. Funding Opportunity Description... related to industrial health and safety: Mining and mineral engineering, industrial engineering... technology/technician, hazardous materials information systems technology/technician, mining technology...

  11. Warstopper Material Supply Chain Risk Assessments

    DTIC Science & Technology

    2012-05-22

    Steel : – Grade 300M for landing gear components and combat vehicle torsion bars – Grade M50 for bearings • NOMEX® Fiber – Fire retardant...vital domestic industry (not common) Warstopper Program Industrial Base Preparedness Past Investment Items: Class IX: Specialty Steel Benefit

  12. CONFERENCE LEADERSHIP.

    ERIC Educational Resources Information Center

    Louisiana State Vocational Curriculum Development and Research Center, Natchitoches.

    THIS INSTRUCTIONAL MATERIAL IS FOR USE BY PERSONS WHO CONDUCT CONFERENCE LEADER TRAINING PROGRAMS. SPECIFICALLY, ITS PURPOSE IS TO TRAIN VOCATIONAL TRADE AND INDUSTRIAL EDUCATION PEOPLE TO CONDUCT TRAINING CONFERENCES FOR INDUSTRY. IT IS INTENDED FOR USE IN AREA VOCATIONAL SCHOOLS IN THE PROMOTION AND DEVELOPMENT OF SUPERVISORY PERSONNEL…

  13. Achieving Innovation and Affordability Through Standardization of Materials Development and Testing

    NASA Technical Reports Server (NTRS)

    Bray, M. H.; Zook, L. M.; Raley, R. E.; Chapman, C.

    2011-01-01

    The successful expansion of development, innovation, and production within the aeronautics industry during the 20th century was facilitated by collaboration of government agencies with the commercial aviation companies. One of the initial products conceived from the collaboration was the ANC-5 Bulletin, first published in 1937. The ANC-5 Bulletin had intended to standardize the requirements of various government agencies in the design of aircraft structure. The national space policy shift in priority for NASA with an emphasis on transferring the travel to low earth orbit to commercial space providers highlights an opportunity and a need for the national and global space industries. The same collaboration and standardization that is documented and maintained by the industry within MIL-HDBK-5 (MMPDS-01) and MIL-HBDK-17 (nonmetallic mechanical properties) can also be exploited to standardize the thermal performance properties, processing methods, test methods, and analytical methods for use in aircraft and spacecraft design and associated propulsion systems. In addition to the definition of thermal performance description and standardization, the standardization for test methods and analysis for extreme environments (high temperature, cryogenics, deep space radiation, etc) would also be highly valuable to the industry. Its subsequent revisions and conversion to MIL-HDBK-5 and then MMPDS-01 established and then expanded to contain standardized mechanical property design values and other related design information for metallic materials used in aircraft, missiles, and space vehicles. It also includes guidance on standardization of composition, processing, and analytical methods for presentation and inclusion into the handbook. This standardization enabled an expansion of the technologies to provide efficiency and reliability to the consumers. It can be established that many individual programs within the government agencies have been overcome with development costs generated from these nonstandard requirements. Without industry standardization and acceptance, the programs are driven to shoulder the costs of determining design requirements, performance criteria, and then material qualification and certification. A significant investment that the industry could make to both reduce individual program development costs and schedules while expanding commercial space flight capabilities would be to invest in standardizing material performance properties for high temperature, cryogenic, and deep space environments for both metallic and nonmetallic materials.

  14. The application of space program fire retardant technology to housing

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Heising, K. W.

    1973-01-01

    A review of the NASA fire research and developed fire retardant materials is presented with the objective to analyze and evaluate the concepts and materials to determine the practical applicability to the housing industry. The report presents the NASA materials, their performance in a fire environment and areas where further evaluation is required. The review establishes where advancements in the state of the art have been achieved and points out reasons why these advancements can not be directly applied to the housing industry in the near future.

  15. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  16. Enhancing industry-based dissemination of an occupational sun protection program with theory-based strategies employing personal contact.

    PubMed

    Buller, David B; Andersen, Peter A; Walkosz, Barbara J; Scott, Michael D; Cutter, Gary R; Dignan, Mark B; Kane, Ilima L; Zhang, Xiao

    2012-01-01

    Industry-based strategies for dissemination of an evidence-based occupational sun protection program, Go Sun Smart (GSS), were tested. Two dissemination strategies were compared in a randomized trial in 2004-2007. The North American ski industry. Ski areas in the United States and Canada (n  =  69) and their senior managers (n  =  469). Employers received GSS through a basic dissemination strategy (BDS) from the industry's professional association that included conference presentations and free starter kits. Half of the areas also received the enhanced dissemination strategy (EDS), in which project staff met face-to-face with managers and made ongoing contacts to support program use. Observation of program materials in use and managers' reports on communication about sun protection. The effects of two alternative dissemination strategies were compared on program use using PROC MIXED in SAS, adjusted for covariates using one-tailed p values. Ski areas receiving the EDS used more GSS materials (x¯  =  7.36) than those receiving the BDS (x¯  =  5.17; F  =  7.82, p < .01). Managers from more areas receiving the EDS reported communicating about sun protection in employee newsletters/flyers (x¯  =  .97, p  =  .04), in guest e-mail messages (x¯  =  .75, p  =  .02), and on ski area Web sites (x¯  =  .38, p  =  .02) than those receiving the BDS (x¯  =  .84, .50, .15, respectively). Industry professional associations play an important role in disseminating prevention programs; however, active personal communication may be essential to ensure increased implementation fidelity.

  17. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  18. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.« less

  19. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Brown, Scott A.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.« less

  20. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.« less

  1. U. S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2003). From 1976-2002, the commercialized technologies from ITP's R&D programs and other activities have cumulatively saved 3.7 quadrillion Btu, with a net cost savings of $14.6 billion.« less

  2. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2005). From 1976-2004, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 4.72 quadrillion Btu, with a net cost savings of $23.1 billion.« less

  3. Conservation of strategic metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1982-01-01

    A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.

  4. Oceanography Information Sources 70.

    ERIC Educational Resources Information Center

    Vetter, Richard C.

    This booklet lists oceanography information sources in the first section under industries, laboratories and departments of oceanography, and other organizations which can provide free information and materials describing programs and activities. Publications listed in the second section include these educational materials: bibliographies, career…

  5. Industrial Relations (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1981-01-01

    permit- ting him so to do, he shall notify his supervisor promptly expost facto . 2. In case of non-attendance due to injury or illness, the mployees shall...this study possible. Special appreciation is due the following individuals who provided. their time and information in the conduct of this study . Aioi...The material contained herein was-developed from the study of the Industrial Relations programs and systems presently in-operation in the shipyards of

  6. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.

  7. Carbon-Phenolic Cages for High-Speed Bearings. Part 1 - Friction and Wear Response of Phenolic Composite Impregnated with a Multiply-Alkylated Cyclopentane (MAC) Lubricant and MoS2 Solid Lubricant

    DTIC Science & Technology

    2003-01-01

    AFRL/MLBT) was the program manager for the overall effort. The carbon -phenolic samples in the program were prepared by Mr. Wei Shih of Allcomp ... Inc ., City of Industry, CA. Mr. Shih also provided the mechanical and thermal property data for the carbon -phenolic specimens. Hitesh Trivedi and...of the program to characterize the material properties. Allcomp Inc ., City of Industry, California supplied all of the test specimens. The

  8. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  9. ERA-MIN: The European network (ERA-NET) on non-energy raw materials

    NASA Astrophysics Data System (ADS)

    vidal, o.; christmann, p.; Bol, d.; Goffé, b.; Groth, m.; Kohler, e.; Persson Nelson, k.; Schumacher, k.

    2012-04-01

    Non-energy raw materials are vital for the EU's economy, and for the development of environmentally friendly technologies. The EU is the world's largest consumers of non-energy minerals, but it remains dependent on the importation of many metals, as its domestic production is limited to about 3% of world production. We will present the project ERA-MIN, which is an ERA-NET on the Industrial Handling of Raw Materials for European industries, financially supported by the European Commission. The main objectives of ERA-MIN are: 1) Mapping and Networking: interconnecting the members of the currently fragmented European mineral resources research area, to the aim of fostering convergence of public research programs, industry, research institutes, academia and the European Commission, 2) Coordinating: establishing a permanent mechanism for planning and coordination of the European non-energy mineral raw materials research community (ENERC). 3) Roadmapping: defining the most important scientific and technological challenges that should be supported by the EU and its state members, 4) Programming: designing a Joint European Research Programme model and implementating it into a call for proposals open to academic and industrial research. The topics of interest in ERA-MIN are the primary continental and marine resources, the secondary resources and their related technologies, substitution and material efficiency, along with transversal topics such as environmental impact, public policy support, mineral intelligence, and public education and teaching. Public scientific research is very central in the scope of the ERA-MIN activity, whose consortium is indeed lead by a public organisation of fundamental research. Thus, universities and public research organisations are warmly invited to play an active role in defining the scientific questions and challenges that shall determine the European Raw Materials Roadmap and should be addressed by joint programming at the European scale. The various levels of possible involvement in ERA-MIN for the interested stakeholders will be presented.

  10. The Model Industrial Technology Systems Project.

    ERIC Educational Resources Information Center

    Bowling Green State Univ., OH.

    This document contains materials used in a model industrial technology program that introduced technology into the curricula of elementary, middle, and high schools in three sites in Ohio: the Central site (coordinated through Ohio State University); the Northeast site (coordinated through Kent State University); and the Northwest site…

  11. Strengthening the Ties That Bind. Industry-Education Councils Benefit Vocational Programs and Businesses.

    ERIC Educational Resources Information Center

    Clark, Donald M.

    1992-01-01

    Industry-education councils offer a systematic structure for implementing business-education partnerships, enabling vocational schools to link with the power structure of the employment community. Benefits include materials, equipment, inservice training and internships for teachers, job placement, and career information centers. (SK)

  12. West Valley College Vocational and Technical Advisory Committees.

    ERIC Educational Resources Information Center

    West Valley Coll., Saratoga, CA.

    This brochure describes junior college advisory committees as groups of persons who represent industry and assist in organizing curriculum, advise on material procurement, keep the college current on industry practices, coordinate programs with the community, assist in student selection, guide instructors, provide moral support and public…

  13. FY2016 Propulsion Materials Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies thatmore » overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  14. Sustainable Materials Management (SMM) Web Academy Webinar: Food Waste Reduction Alliance, a Unique Industry Collaboration

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  15. Adaptability Through Modular Materials

    ERIC Educational Resources Information Center

    Hull, Daniel M.; And Others

    1974-01-01

    Several short articles describe programs utilizing laser/electro-optics technology curriculum materials developed by Technical Education Research Centers (TERC): at undergraduate and graduate levels in universities; in a city college; in continuing education; and in industry. Modules, independent units based on booklets or films, include…

  16. NASA aeronautics R&T - A resource for aircraft design

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1981-01-01

    This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.

  17. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  18. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  19. Enhancing Industry-based Dissemination of an Occupational Sun Protection Program with Theory-based Strategies Employing Personal Contact

    PubMed Central

    Buller, David B.; Andersen, Peter A.; Walkosz, Barbara J.; Scott, Michael D.; Cutter, Gary R.; Dignan, Mark B.; Kane, Ilima L.; Zhang, Xiao

    2012-01-01

    Purpose Industry-based strategies for dissemination of an evidence-based occupational sun protection program, Go Sun Smart (GSS), were tested. Design Two dissemination strategies were compared in a randomized trial in 2004 – 2007. Setting The North American ski industry. Subjects Ski areas in the United States and Canada (n=69) and their senior managers (n=469). Intervention Employers received GSS through a Basic Dissemination Strategy (BDS) from the industry’s professional association which included conference presentations and free starter kits. Half of the areas also received the Enhanced Dissemination Strategy (EDS), in which project staff met face-to-face with managers and made ongoing contacts to support program use. Measures Observation of program materials in use and managers’ reports on communication about sun protection. Analysis The effects of two alternative dissemination strategies were compared on program use using PROC MIXED in SAS, adjusted for covariates using 1-tailed p-values. Results Ski areas receiving the EDS used more GSS materials (M=7.36) than those receiving the BDS (M=5.17; F=7.82, p<.01). Managers from more areas receiving the EDS reported communicating about sun protection in employee newsletters/flyers (M=0.97, p=.04), in guest email messages (M=0.75, p=.02), and on ski area websites (M=0.38, p=.02) than those receiving the BDS (M=0.84, 0.50, 0.15, respectively). Conclusion Industry professional associations play an important role in disseminating prevention programs; however, active personal communication may be essential to ensure increased implementation fidelity. PMID:22747318

  20. Designing Writing Programs in Business and Industry.

    ERIC Educational Resources Information Center

    Freed, Richard C.

    Current training in writing for business and industry usually takes the form of short courses. However, the short course is an inappropriate way to teach writing because it is inefficient, represents writing behaviors or strategies inappropriate for some writers, rarely allows time for adequate criticism and revision, presents too much material in…

  1. Industrial Arts Curriculum Guide for Power Technology.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    This curriculum guide provides topic outlines and objectives for units in a three-level/-course Power Technology program. Introductory materials are objectives for industrial education and for power technology and list of general safety rules. Units contained in Level I, Power Technology, are History of Power, Basic Machines, Forms of Power, Power…

  2. Industry's Expectations in Relationship to College and Institute Resources.

    ERIC Educational Resources Information Center

    Justesen, Henry E.

    Industry and education must share responsibility for broadening and deepening the talent pool within Canada's population in order to ensure a productive economy. First, the educational enterprise should: (1) review its present program to focus more attention on the career and employment probabilities ahead; (2) revise learning materials with…

  3. Protective Clothing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Beta Glass material, originating from the Apollo program is supplied to Fyrepel by Owens-Corning and incorporated into Fyrepel's Fyretex and Beta-Mex aluminized fabrics. Fabrics are used in fire entry suits, several other types of protective suits for wear in hot industrial environments and such accessory items as heat-reflecting curtains for industrial applications.

  4. Thermophysical and Electronic Properties Information Analysis Center (TEPIAC): A Continuing Systematic Program on Data Tables of Thermophysical and Electronic Properties of Materials.

    DTIC Science & Technology

    1980-03-01

    laboratories and agencies, defense contractors and other industrial organizations, and academic institutions. Furthermore, under multiple sponsorship...agencies, defense contractors and other industrial organizations, and academic institutions. Furthermore, under multiple sponsorship four volumes of...1,091 Inquiries from defense contractors and other industrial organizations ... ........... 357 4,007 Inquiries from academic institutions

  5. Preparing the entry-level materials professional in the 1990s

    NASA Astrophysics Data System (ADS)

    Geiger, Gordon H.

    1989-05-01

    It is time that universities stop using the excuse that industry does not want a five-year-engineering-degree graduate. Industry does not have any choice since it can only select from the available talent pool. At present, materials graduates with four-year degrees often lack the critical tools necessary to perform the non-engineering jobs that are frequently offered. Courses such as statistics, process control and management will help remedy this situation. Today, the individual with a master of science degree, having spent over five years in school, still lacks many essential non-engineering skills. Worse, many students in master's degree programs graduate with a primarily science background and have not taken the full basic engineering curriculum. For this reason, there is no comparison between the current, research-oriented M.S. degree and the proposed master of engineering degree. The outlined curriculum allows for a continuation of many current programs in materials while providing a transition to a five-year, first professional degree. The program allows the student to choose, after four years of education, whether he or she really wants to obtain a professional degree. Further, the four-year degree recipient enters the field with a better education than is available at present, and industry is supplied with a better-educated mix of degree recipients.

  6. Composite materials: Tomorrow for the day after tomorrow

    NASA Technical Reports Server (NTRS)

    Condom, P.

    1982-01-01

    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  7. Overview of demonstrator program of Japanese Smart Materials and Structure System project

    NASA Astrophysics Data System (ADS)

    Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo

    2003-08-01

    The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.

  8. Systematic control of nonmetallic materials for improved fire safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The elements of a systematic fire safety program are summarized and consist of fire safety criteria, design considerations, testing of materials, development of nonmetallic materials, nonmetallic materials information systems, design reviews, and change control. The system described in this report was developed for the Apollo spacecraft. The system can, however, be tailored to many industrial, commercial, and military activities.

  9. Program for the Increased Participation of Minorities in NASA-Related Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications

  10. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  11. Superalloy resources: Supply and availability

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    Over the past several decades there have been shortages of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.

  12. Recovering Radioactive Materials with ORSP Team

    ScienceCinema

    LANL

    2017-12-09

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  13. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  14. 10 CFR 431.443 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...

  15. 10 CFR 431.443 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...

  16. 10 CFR 431.15 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth.... (1) IEC 60034-1 Edition 12.0 2010-02, (“IEC 60034-1”), Rotating Electrical Machines, Part 1: Rating...

  17. 10 CFR 431.443 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway...

  18. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  19. Alternative Energy Curriculum for Trade and Industry Exploratory. Final Report.

    ERIC Educational Resources Information Center

    University of Central Arkansas, Conway.

    This study was a descriptive curriculum research project covering the development of learning packets on alternative energy. The purpose of the project was to improve instruction in trades and industry exploratory programs by providing alternative energy materials. It was anticipated that the use of a prepared learning package would facilitate the…

  20. The Music Industry Council Guide for Music Educators

    ERIC Educational Resources Information Center

    Music Educators Journal, 1976

    1976-01-01

    The Music Industry Council serves as a liaison between the music educators of the United States and the manufacturing and publishing firms that supply the materials and equipment used in music education. Here are specific suggestions for the guidance of music educators in the business contacts essential to their teaching programs. (Editor/RK)

  1. Community Colleges and Working Students: Review of the Literature and Research.

    ERIC Educational Resources Information Center

    Nolte, Walter H.

    In an effort to explore the relationship between employed students and community colleges, this paper provides a extensive review of the literature on business and industry connections to higher education. First, introductory material examines the lack of comprehensive training programs in U.S. business/industry and the dearth of evaluative…

  2. Industrial Arts Instructional Tasks/Competencies for Energy and Power. Competency-Based Education.

    ERIC Educational Resources Information Center

    George Mason Univ., Fairfax, VA.

    This instructional task/competency package is designed to help teachers and administrators in developing competency-based instructional materials for an energy and power course. Part 1 contains a description of the industrial arts program and a course description, instructional task/competency list, and content outline for energy and power. The…

  3. Industrial Prep, Volume Four, Junior Year--Contents: Mathematics and Guidance.

    ERIC Educational Resources Information Center

    Hackensack Public Schools, NJ.

    As part of a 3-year comprehensive interdisciplinary program in industrial preparation for vocational students, this 11th Grade teaching guide consists of units on technical mathematics and guidance. Designed as supportive material for related physics and English curriculums, the first four sections of Volume 4 on algebra, vectors, simple machines,…

  4. Safety in Trade and Industrial and Technical Education.

    ERIC Educational Resources Information Center

    Thomas, John C.

    Intended to serve as a resource guide to assist trade, industrial, and technical teachers in maintaining an effective and efficient safety program, the document does not contain information concerning the many specific operations of the various trades. The materials serve as a background for teachers as they develop their own units of instruction…

  5. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  6. Enabling propulsion materials for high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Herbell, Thomas P.

    1992-01-01

    NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.

  7. Environmental Technological Education in a Developing Country--Libya.

    ERIC Educational Resources Information Center

    Walters, A. H.; And Others

    1981-01-01

    Presents an overview of environmental and developmental issues and concerns of Libya focusing on water resources, agriculture, and industrialization. Identifies the need for an environmental program coordinated by a council and for environmental technological education programs and materials specifically designed for Libyan students. (DC)

  8. Training Innovations for Economic Development

    ERIC Educational Resources Information Center

    Breeden, Kenneth H.

    2002-01-01

    This article talks about Certified Manufacturing Specialist (CMS), a Georgia training program that has successfully addressed the needs of both students and partners in business and industry. The program helped business reduce the learning curve for new employees; improved productivity, quality, and safety; reduced material waste; eased the…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel Riza

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement datamore » using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.« less

  10. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  11. Optimizing location of manufacturing industries in the context of economic globalization: A bi-level model based approach

    NASA Astrophysics Data System (ADS)

    Wu, Shanhua; Yang, Zhongzhen

    2018-07-01

    This paper aims to optimize the locations of manufacturing industries in the context of economic globalization by proposing a bi-level programming model which integrates the location optimization model with the traffic assignment model. In the model, the transport network is divided into the subnetworks of raw materials and products respectively. The upper-level model is used to determine the location of industries and the OD matrices of raw materials and products. The lower-level model is used to calculate the attributes of traffic flow under given OD matrices. To solve the model, the genetic algorithm is designed. The proposed method is tested using the Chinese steel industry as an example. The result indicates that the proposed method could help the decision-makers to implement the location decisions for the manufacturing industries effectively.

  12. FY2014 Propulsion Materials R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  13. FY2015 Propulsion Materials Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machinesmore » [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.« less

  14. Materials and Processes Technology.

    ERIC Educational Resources Information Center

    Ritz, John M.; And Others

    This instructional resource guide is intended to assist the industrial arts (IA) teacher in implementing a comprehensive materials and Processes Technology program at the technical level in Virginia high schools. The course is designed to help students make informed educational and occupational choices and prepare them for advanced technical or…

  15. Recruiting Strategically: Increasing Enrollment in Academic Programs of Agriculture

    ERIC Educational Resources Information Center

    Baker, Lauri M.; Settle, Quisto; Chiarelli, Christy; Irani, Tracy

    2013-01-01

    Agriculture continues to struggle to find enough qualified students to advance the industry. Thus, recruiting practice improvement is imperative. This study assessed the efficacy of message strategies, message channels, recruiting materials, and messages for recruiting students into an academic program with low enrollment. Focus groups were…

  16. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  17. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemrick, James Gordon

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oakmore » Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.« less

  18. Materials Genome Initiative Element

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.

  19. Program Environmental Assurance: Shuttle Environmental Assurance and the Future

    NASA Technical Reports Server (NTRS)

    Glover, Steve E.

    2008-01-01

    Material availability continues to be impacted by domestic and international environmental health and safety (EH&S) regulations, industrial pollution prevention goals and related vendor economics. SEA is an integrated team that works to identify, communicate and address safety and environmentally driven materials obsolescence issues and pollution prevention opportunities.

  20. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  1. 10 CFR 431.443 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024... §§ 431.444; 431.447. (c) IEEE. Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P...

  2. Selecting and Equipping a Home Workshop. Capsules 1-5. Teacher's Guide [and] Student Material.

    ERIC Educational Resources Information Center

    Sack, Richard

    This unit of study provides teaching guidelines and student material intended for use in high school advanced industrial arts programs. The objective is to help students plan and purchase equipment for a home workshop. A necessary prerequisite is a knowledge of the operations and uses of the equipment involved. The material is divided into five…

  3. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

    PubMed

    Hafner, Jürgen

    2008-02-13

    The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials on an atomistic level. As the behavior of atoms and electrons is governed by the laws of quantum mechanics, accurate and efficient techniques for solving the basic quantum-mechanical equations for very complex many-atom, many-electron systems are required. The development of density-functional theory (DFT) represents a decisive step forwards in our efforts to develop tools for ab initio atomistic simulations of complex materials, preparing the way towards computational materials design. The development of these ab initio simulation methods, whose aim is to model processes in materials by solving the coupled Newtonian equations of motion of the atoms and the Schrödinger equation for the electrons from first principles without any other input than the atomic numbers of the constituents, is part of fundamental research. Hence, for a long time the development and application of DFT methods has been a domain of academic research. Only during the past decade, based on the development of increasingly sophisticated codes and better computer performance, has the impact of DFT-based simulation methods has spread from academia to industry. New opportunities are opening for innovative materials research across physics, chemistry, surface science and nanotechnology extending even to earth sciences and molecular biology. In 1998 we organized, at the Vienna University of Technology, a first workshop entitled 'Electronic Structure Calculations for Industry and Basic Sciences' (short title 'Theory meets Industry') to celebrate the start of the European Science Foundation (ESF) research program 'Electronic Structure Calculations for Elucidating the Complex Atomistic Behavior of Solids and Surfaces', known as the Ψ(k)-network. At this workshop, researchers from academia presented recent results in the development of ab initio simulation methods and their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago, all industrial speakers presented results of extensive ab initio studies in key areas of modern technology, concentrating on catalysis and chemical processing, information technologies, automotive engineering and energy. The proceedings assemble full papers summarizing 23 of the invited talks, abstracts of the remaining invited talks and abstracts of all the poster contributions. It is complemented by a conference summary written by Erich Wimmer. Erich is certainly excellently qualified for this task, because for many years he has played the role of mediator between academia and industry. I shall not anticipate his summary here, but I think that it is fair to say that tremendous progress has been made since the first workshop. Ab initio DFT simulations are now a well established tool for industrial research and, due to the availability of cheap high-performance server clusters, their use is no longer the reserve of large corporate laboratories equipped with supercomputers, but are also accessible to medium-sized enterprises. The basic methodology is still developed by the leading academic research groups. These groups urgently need support from funding agencies and/or industry not only for the basic code development, but also to bring their research codes up to industrial standards of programming, stability, user-friendliness and documentation. The fundamental challenge to theory, however, remains the same: more accurate total energies, application to larger and even more complex systems, and access to new materials properties. Responding to these challenges will require substantial effort at various levels. Achieving greatly improved accuracy of calculated total energies demands an improved description of electronic exchange and correlation. Possible routes (hybrid functionals for solids, dynamical mean field theory (DMFT), many-body perturbation theory (GW), quantum Monte-Carlo) have been presented at this meeting. Access to larger systems could be realized either by codes achieving O (N)-scaling or by adopting a strategy of multi-scale simulations. At least two different O (N)-codes have been discussed at the workshop. But even if these approaches allow ab initio calculations to be performed for ten times as many atoms as before, in terms of linear dimensions, the accessible systems size increases only by a factor of two. Therefore, multi-scale simulations strategies remain a very important issue. Access to new materials properties requires adding new routines to the basic codes. Again, this meeting has highlighted important new developments: evolutionary crystal structure predictions, transport properties of semiconductors and insulators, and calculations of free-energy reaction barriers to name only a few. The task of providing a full 'tool-box' of routines for fast and efficient calculation of many different materials properties evidently exceeds the capacity of a single group of developers. Here, collaboration is necessary between the developers of the basic DFT codes and the expert users of these codes pushing the application of the methodology to new frontiers. Again, it will be important to bring the newly developed routines into a stable, well documented form and to make them accessible to a wide range of users, both in academia and industry. Supporting these efforts is also a challenge to industry. The academic research needs industry's support in many ways. Industry has to make governmental and funding agencies aware of the vital role of our research for future technological development-and a very persuasive way to do that is to invest directly into leading academic groups. As the workshop organizer and editor of the proceedings, I would like to thank all contributors (especially those who accepted the burden of writing a full paper), the members of the Advisory Board for helping to organize such a good program, and the Institute of Physics for their help in the preparation of the proceedings.

  5. FOREWORD: Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12 14 June 2007)

    NASA Astrophysics Data System (ADS)

    Hafner, Jürgen

    2008-02-01

    The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials on an atomistic level. As the behavior of atoms and electrons is governed by the laws of quantum mechanics, accurate and efficient techniques for solving the basic quantum-mechanical equations for very complex many-atom, many-electron systems are required. The development of density-functional theory (DFT) represents a decisive step forwards in our efforts to develop tools for ab initio atomistic simulations of complex materials, preparing the way towards computational materials design. The development of these ab initio simulation methods, whose aim is to model processes in materials by solving the coupled Newtonian equations of motion of the atoms and the Schrödinger equation for the electrons from first principles without any other input than the atomic numbers of the constituents, is part of fundamental research. Hence, for a long time the development and application of DFT methods has been a domain of academic research. Only during the past decade, based on the development of increasingly sophisticated codes and better computer performance, has the impact of DFT-based simulation methods has spread from academia to industry. New opportunities are opening for innovative materials research across physics, chemistry, surface science and nanotechnology extending even to earth sciences and molecular biology. In 1998 we organized, at the Vienna University of Technology, a first workshop entitled 'Electronic Structure Calculations for Industry and Basic Sciences' (short title 'Theory meets Industry') to celebrate the start of the European Science Foundation (ESF) research program 'Electronic Structure Calculations for Elucidating the Complex Atomistic Behavior of Solids and Surfaces', known as the Ψk-network. At this workshop, researchers from academia presented recent results in the development of ab initio simulation methods and their application to key areas of condensed matter physics. Researchers from industry mainly focused on challenges arising from applied industrial research; contributions describing successful applications of DFT techniques to industrial problems were more scarce. Progress during the last decade has been very fast. The ESF research program has been renewed under the much bolder title 'Towards Computational Materials Design' and is now approaching the end of this second funding period. Due to the development of accurate, efficient and stable software packages for ab initio simulations, DFT-based techniques are now routinely used in many industrial laboratories worldwide. It was therefore considered timely to organize a second 'Theory meets Industry' workshop. The meeting took place between 12-14 June 2007 at the Erwin-Schrödinger-Institute (ESI) for Mathematical Physics in Vienna (Austria). It was sponsored by the Universität Wien through the VASP (Vienna Ab-initio Simulation Program) project, the Center for Computational Materials Science Vienna, the Erwin-Schrödinger-Institute and the ESF Program 'Towards Computational Materials Design'. The program of the workshop was decided by an international advisory board consisting of Ryoji Asahi (Toyota Central Research and Development Laboratory), Risto Nieminen (Helsinki University of Technology), Herve Toulhoat (Institut Français du Pétrole), Erich Wimmer (Materials Design Inc.), Chris Wolverton (Ford Motor Co. and Northwestern University) and Jürgen Hafner (Universität Wien). The 35 invited talks presented at the meeting were divided equally between researchers from academia and from industry. The contributions from academia concentrated on a wide range of new developments in DFT and post-DFT simulations (with contributions from the developers of leading software packages for ab initio simulations), as well as on applications in front-line materials research. In contrast to the first workshop nine years ago, all industrial speakers presented results of extensive ab initio studies in key areas of modern technology, concentrating on catalysis and chemical processing, information technologies, automotive engineering and energy. The proceedings assemble full papers summarizing 23 of the invited talks, abstracts of the remaining invited talks and abstracts of all the poster contributions. It is complemented by a conference summary written by Erich Wimmer. Erich is certainly excellently qualified for this task, because for many years he has played the role of mediator between academia and industry. I shall not anticipate his summary here, but I think that it is fair to say that tremendous progress has been made since the first workshop. Ab initio DFT simulations are now a well established tool for industrial research and, due to the availability of cheap high-performance server clusters, their use is no longer the reserve of large corporate laboratories equipped with supercomputers, but are also accessible to medium-sized enterprises. The basic methodology is still developed by the leading academic research groups. These groups urgently need support from funding agencies and/or industry not only for the basic code development, but also to bring their research codes up to industrial standards of programming, stability, user-friendliness and documentation. The fundamental challenge to theory, however, remains the same: more accurate total energies, application to larger and even more complex systems, and access to new materials properties. Responding to these challenges will require substantial effort at various levels. Achieving greatly improved accuracy of calculated total energies demands an improved description of electronic exchange and correlation. Possible routes (hybrid functionals for solids, dynamical mean field theory (DMFT), many-body perturbation theory (GW), quantum Monte-Carlo) have been presented at this meeting. Access to larger systems could be realized either by codes achieving O (N)-scaling or by adopting a strategy of multi-scale simulations. At least two different O (N)-codes have been discussed at the workshop. But even if these approaches allow ab initio calculations to be performed for ten times as many atoms as before, in terms of linear dimensions, the accessible systems size increases only by a factor of two. Therefore, multi-scale simulations strategies remain a very important issue. Access to new materials properties requires adding new routines to the basic codes. Again, this meeting has highlighted important new developments: evolutionary crystal structure predictions, transport properties of semiconductors and insulators, and calculations of free-energy reaction barriers to name only a few. The task of providing a full 'tool-box' of routines for fast and efficient calculation of many different materials properties evidently exceeds the capacity of a single group of developers. Here, collaboration is necessary between the developers of the basic DFT codes and the expert users of these codes pushing the application of the methodology to new frontiers. Again, it will be important to bring the newly developed routines into a stable, well documented form and to make them accessible to a wide range of users, both in academia and industry. Supporting these efforts is also a challenge to industry. The academic research needs industry's support in many ways. Industry has to make governmental and funding agencies aware of the vital role of our research for future technological development—and a very persuasive way to do that is to invest directly into leading academic groups. As the workshop organizer and editor of the proceedings, I would like to thank all contributors (especially those who accepted the burden of writing a full paper), the members of the Advisory Board for helping to organize such a good program, and the Institute of Physics for their help in the preparation of the proceedings.

  6. A Curriculum Guide for Industrial Arts Plastic Technology. Intermediate and Secondary Level Students.

    ERIC Educational Resources Information Center

    Landers, Jack M.

    This curriculum guide is an aid to administrators and instructors of industrial arts and vocational-technical school programs for the development of meaningful curriculum in plastics. The materials are intended for use at four levels: level I, exploring plastic technology; Level II, basic plastic technology; and levels III and IV, applied plastic…

  7. MET Senior Projects at an Urban University.

    ERIC Educational Resources Information Center

    Neff, Gregory; And Others

    A report describes the Purdue University Calumet Mechanical Engineering Technology (MET) program, especially the approaches used to enhance industrial involvement and take advantage of the urban setting to find real-life senior project problems. The outreach program, used by faculty to find student senior project material, is described along with…

  8. Image-Processing Program

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Hull, D. R.

    1994-01-01

    IMAGEP manipulates digital image data to effect various processing, analysis, and enhancement functions. It is keyboard-driven program organized into nine subroutines. Within subroutines are sub-subroutines also selected via keyboard. Algorithm has possible scientific, industrial, and biomedical applications in study of flows in materials, analysis of steels and ores, and pathology, respectively.

  9. 10 CFR 431.20 - Department of Energy recognition of nationally recognized certification programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements for the competence of calibration and testing laboratories. (4) Expertise in electric motor test... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials... to assure that basic models of electric motor continue to conform to the efficiency levels for which...

  10. Space commerce - Preparing for the next century

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1991-01-01

    The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.

  11. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  12. Parallel programming of industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, M; Koniges, A; Simon, H

    1998-07-21

    In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less

  13. Youth Advocates' Perceptions of Tobacco Industry Marketing Influences on Adolescent Smoking: Can They See the Signs?

    PubMed

    Douglas, Malinda; Chan, Andie; Sampilo, Marilyn

    2016-01-01

    Point-of-sale (POS) advertising at retail stores is one of the key marketing avenues used by the tobacco industry. The United States Surgeon General urges actions to eliminate POS tobacco advertisements because of their influence on youth smoking. Many youth empowerment programs are implemented to address tobacco industry marketing influences, including POS tobacco advertisements. While youth are asked to take on such collective action, little is known regarding their perceptions and understanding of tobacco industry marketing influences and related advocacy activities. This mixed methods study examined Oklahoma's tobacco control youth empowerment program members' perceptions of tobacco industry marketing influences. Four focus groups were held with active program members from rural and urban areas. Overall, the focus group participants viewed the program as purposeful, as an avenue to help others, and as a way to make a difference. Specifically, the older participants (median age = 18 years) identified tobacco industry marketing influences such as POS, movies, and magazine advertisements and reported participating in activities that counter POS tobacco advertisements at retail stores. Likewise younger participants (median age = 16 years), identified similar tobacco industry marketing influences, but also included tobacco use by friends and family as tobacco industry marketing influences. Moreover, the younger participants did not report engaging in activities that addressed POS tobacco advertisements. The study results suggest that the empowerment program should tailor its programming, training, materials, and activities with input from youth of various ages. Thoughtfully developed messages and specific activities can truly empower youth and maximize their contribution as change agents who address POS or other initiatives at the retail environments to prevent chronic diseases.

  14. Youth Advocates' Perceptions of Tobacco Industry Marketing Influences on Adolescent Smoking: Can They See the Signs?

    PubMed Central

    Douglas, Malinda; Chan, Andie; Sampilo, Marilyn

    2016-01-01

    Point-of-sale (POS) advertising at retail stores is one of the key marketing avenues used by the tobacco industry. The United States Surgeon General urges actions to eliminate POS tobacco advertisements because of their influence on youth smoking. Many youth empowerment programs are implemented to address tobacco industry marketing influences, including POS tobacco advertisements. While youth are asked to take on such collective action, little is known regarding their perceptions and understanding of tobacco industry marketing influences and related advocacy activities. This mixed methods study examined Oklahoma's tobacco control youth empowerment program members' perceptions of tobacco industry marketing influences. Four focus groups were held with active program members from rural and urban areas. Overall, the focus group participants viewed the program as purposeful, as an avenue to help others, and as a way to make a difference. Specifically, the older participants (median age = 18 years) identified tobacco industry marketing influences such as POS, movies, and magazine advertisements and reported participating in activities that counter POS tobacco advertisements at retail stores. Likewise younger participants (median age = 16 years), identified similar tobacco industry marketing influences, but also included tobacco use by friends and family as tobacco industry marketing influences. Moreover, the younger participants did not report engaging in activities that addressed POS tobacco advertisements. The study results suggest that the empowerment program should tailor its programming, training, materials, and activities with input from youth of various ages. Thoughtfully developed messages and specific activities can truly empower youth and maximize their contribution as change agents who address POS or other initiatives at the retail environments to prevent chronic diseases. PMID:29546148

  15. Kennedy Space Center environmental health program

    NASA Technical Reports Server (NTRS)

    Marmaro, G. M.; Cardinale, M. A.; Summerfield, B. R.; Tipton, D. A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials.

  16. Problem Solving with Workstations. Program Description, Teacher Materials, and Student Information. Teacher Developed Technology Education for the Nineties (TD-TEN).

    ERIC Educational Resources Information Center

    Garey, Robert W.

    The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…

  17. Computer model for economic study of unbleached kraft paperboard production

    Treesearch

    Peter J. Ince

    1984-01-01

    Unbleached kraft paperboard is produced from wood fiber in an industrial papermaking process. A highly specific and detailed model of the process is presented. The model is also presented as a working computer program. A user of the computer program will provide data on physical parameters of the process and on prices of material inputs and outputs. The program is then...

  18. BARBERING, A STUDY GUIDE AND PROGRESSION RECORD FOR BARBERING STUDENTS IN A COOPERATIVE TRAINING PROGRAM.

    ERIC Educational Resources Information Center

    Alabama Univ., University.

    QUESTION-TYPE JOB OR ASSIGNMENT SHEETS IN THIS GUIDE DIRECT THE STUDENT'S RELATED STUDY IN COOPERATIVE TRAINING PROGRAMS. THE MATERIAL WAS DEVELOPED BY TRADE AND INDUSTRIAL COORDINATORS, SUBJECT MATTER SPECIALISTS, AND TEACHER EDUCATORS. IT WAS TESTED BY USE IN HIGH SCHOOL PROGRAMS. THE 61 JOB SHEETS ARE KEYED TO THREE RELATED REFERENCE BOOKS, BUT…

  19. Creating comprehensive Mandarin training model for Taiwanese industry: An anticipation of Taiwan ‘Southbound policy

    NASA Astrophysics Data System (ADS)

    Ying, Y.; Mursitama, T. N.; Sofi; Anggreani, L.

    2018-03-01

    The study discusses the effort of preparing human resources in mastering Mandarin for Taiwan industry as the anticipation of Southbound policy created by Taiwan government. In this point, the Southbound policy represents Taiwan’s government strategy in 2016-2020 which encourages multilateral and bilateral cooperation with ASEAN and South Asian countries. One of the most important elements in the program centers as the Internship Scholarship Program in Taiwan. Utilizing qualitative research methods, researchers collected secondary data from various available official resources. The publications, documents, books, and websites contain the policy and mechanism of the internship scholarship program. On the other hand, this study conducted interviews with senior high school and vocational high school stakeholders to create synergy in the program. This study offers a model of cooperation between junior high school/vocational school and the candidates of the employer in the Taiwan industry. The contribution of this research is to create a comprehensive cooperative model that includes preparing human resources before leaving for Taiwan, providing teachers and supplying training materials that are relevant to the needs of industry players in Taiwan eventually.

  20. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  1. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.

  2. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2006-09-29

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCCmore » Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.« less

  3. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2005-08-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCCmore » Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The FY 2004 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2004 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2004 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.« less

  4. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  5. Marine Corps Systems Command (MCSC) Program Executive Officer Land Systems (PEO LS) 2010 Advanced Planning Briefing to Industry (APBI) (BRIEFING CHARTS)

    DTIC Science & Technology

    2010-04-07

    Commercialization Pilot Programs – Portable Fuel Analyzer – Non-woven FR Materials – Automatic Test Equipment – Night Vision Fusion • Significant efforts – Sensing...contract with the government". Advertising material , commercial item offer, or contribution, as defined in FAR 15.601 shall not be considered to...systems through the entire lifecycle. Our portfolio includes; •Individual & crew-served weapons ranging from 9 mm handguns to 87mm mortar systems

  6. Evaluation program for secondary spacecraft cells: Initial evaluation tests of Eagle-Picher Industries, Incorporated 6.0 ampere-hour, nickel-cadmium spacecraft cells for separator material evaluation

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1975-01-01

    Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.

  7. Hazardous Materials Emergency Response Training: The Colorado Training Institute. Innovations.

    ERIC Educational Resources Information Center

    Cole, Leslie

    The Colorado Training Institute (CTI), established in 1980, is a non-profit, instructional program devoted to promoting hazardous materials safety through education. It has trained over 3,000 emergency response personnel and industry officials and is a unique example of the private and public sectors working together to protect the public from…

  8. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program Code... of ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Other facilities include licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  9. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contained in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program... ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Another license includes licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  10. Basic Wiring. Third Edition. Teacher Edition [and] Student Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary; Blasingame, Don; Batson, Larry; Ipock, Dan; Carroll, Charles; Friesen, Wade; Fleming, Glenn

    This publication contains both a teacher edition and a student edition of materials for a foundation course in an electrical wiring program. The course introduces basic concepts and skills that are prerequisites to residential wiring and commercial and industrial wiring courses. The contents of the materials are tied to measurable and observable…

  11. Glazier: Apprenticeship Course Outline. Apprenticeship and Industry Training. 2507.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2007

    2007-01-01

    The graduate of the Glazier apprenticeship program is a certified journeyperson who will be able to: (1) be skilful in cutting, preparing, fabricating or other handling of all glass materials for buildings, fixtures and other uses; (2) do the glazing, setting, attachment, installation, removal of all types of glass material for buildings, fixtures…

  12. Landscape Gardener: Apprenticeship Course Outline. Apprenticeship and Industry Training. 4711.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Landscape Gardener apprenticeship program is a certified journeyperson who will be able: (1) apply the principles and processes of landscape design and construction; (2) construct and install landscape structures and other accessories of various materials; (3) estimate and handle orders of plant and related materials; (4) plan…

  13. Understanding Insurance. A Guide for Industrial Cooperative Training Programs. Learning Activity Package No. 15.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; Tuel, Charles

    This learning activity package (LAP) on the insurance industry and the methods used to give protection to the insured is designed for student self-study. Following a list of learning objectives, the LAP contains a pretest (answer key provided at the back). Six learning activities follow. The learning activities cover the following material: terms…

  14. TRAINING TYPISTS IN THE INDUSTRIAL ENVIRONMENT--PRELIMINARY REPORT OF A PROTOTYPE SYSTEM OF SIMULTANEOUS, MULTILEVEL, MULTIPHASIC AUDIO PROGRAMMING.

    ERIC Educational Resources Information Center

    ADAMS, CHARLES F.

    IN 1965 TEN NEGRO AND PUERTO RICAN GIRLS BEGAN CLERICAL TRAINING IN THE NATIONAL ASSOCIATION OF MANUFACTURERS (NAM) TYPING LABORATORY I (TEELAB-I), A PILOT PROJECT TO DEVELOP A SYSTEM OF TRAINING TYPISTS WITHIN THE INDUSTRIAL ENVIRONMENT. THE INITIAL SYSTEM, AN ADAPTATION OF GREGG AUDIO MATERIALS TO A MACHINE TECHNOLOGY, TAUGHT ACCURACY, SPEED…

  15. Curriculum Development for the Tourism Option of the Hospitality, Restaurant Management Program. Final Report.

    ERIC Educational Resources Information Center

    Walk, Mary

    A project was undertaken to develop classroom materials for a tourism program that would integrate work experience and classroom instruction. After reviewing available literature, conferring with other educators, and conducting a series of interviews with persons employed in the hospitality industry, the researcher developed a set of instructional…

  16. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  17. Carroll Technical Institute and Southwire Company's Educational Renewal Program.

    ERIC Educational Resources Information Center

    Agan, Jimmy L.

    As part of an effort to meet the specific educational needs of local business and industry, a cooperative educational renewal program was developed between Carroll Technical Institute (CTI) in Carrollton, Georgia, and the Southwire Company, a local producer of aluminum and copper materials. A thorough training needs assessment was conducted and,…

  18. Biomimetic materials in the utility industry: A program plan for research opportunities, volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, R.H.; McNaughton, W.P.

    1996-09-01

    This report is the second of a two-volume set addressing the state-of-the-art and outlook for the application of biomimetic materials. The first volume examined achievements in mimicking novel aspects of biological systems in five broad categories: (1) Mimicking of Natural Material Designs, (2) Biomimetic Materials Processing, (3) Artificial Photosynthesis, (4) Biomimetic Molecular Electronics, and (5) Biomimetic Catalysis. Each topic was examined as to current activities and approaches, key aspects, unresolved issues, and implications for the power industry. Key researchers, their organizations, the main thrusts of investigation, achievements, and funding agencies were also summarized. This volume highlights opportunities for future researchmore » activities in biomimetics that could be valuable to the U.S. utility industry. Nineteen specific research projects have been identified. These opportunities are outlined in four classes: (1) technology awareness, (2) modeling and experimental studies, (3) state-of-the-art and outlook studies: developing experimental plans, and (4) concept feasibility studies.« less

  19. X-ray techniques for innovation in industry

    PubMed Central

    Lawniczak-Jablonska, Krystyna; Cutler, Jeffrey

    2014-01-01

    The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures. PMID:25485139

  20. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  1. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.« less

  2. Naturally Occurring Radioactive Materials (NORM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards theymore » present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).« less

  3. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  4. Physics and Industrial Development - Proceedings of the 2nd International Conference on Physics and Industrial Development

    NASA Astrophysics Data System (ADS)

    Gazzinelli, R.; Moreira, R. L.; Rodrigues, W. N.

    1997-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Sponsors * Committees * Opening Lecture * Relations between Science and Industry in Brazil * Technological Change and Economic Development * Science and Economic Development * Recent Technological Change and Industrial Dynamics * Technology and Economic Development: Suitability of the Institutional System of Minais Gerais * Bridging the Gap * Transfer of Scientific Results into Industry: A Controversial Problem in Central and Eastern Europe * Bridging the Gap Between Basic Research and Industrial Development at the J. STEFAN Institute * Liquid Crystals: A Case Study of the Interaction Between Science and Application * Role of Physics in the Modern Industrialization Process of Korea * Research in Industry * A Theoretical Physicist's 21-Year Experience in the Argentine Industry * Four Characters in Search of a Profession * Status and Prospects for the Use of Renewable Sources of Energy in Minas Gerais State-Brazil * University-Industry Cooperation I * Development and Industrialization of Fiber Optics Metrology Equipment * Finnish Experiences on University-Industry Collaboration in Materials Science and Physical Metallurgy * A Conceptual Framework for Understanding the Interaction between Academic Research and Industry * Technological Modernization of the Alkaline Cooking Process for the Production of Masa and Tortilla * The Fapergs Program on University Versus Private Enterprise * Integral Development Centers: Tying Mexican Industry With the National Polytechnic Institute * Materials Characterization and Applied Physics * Imaging Manganese Sulfide Inclusions in Grain Oriented Silicon Steels * Electrical Resistivity Changes Associated to Static Strain Aging in High Carbon Steel * PVD Hard Coatings for Wear Applications * Scanning Acoustic Microscopy: Application to Porous Materials * Indentation Testing of Thennal Sprayed WC-Co * Applications of Capillary Electrophoresis with Laserinduced Fluorescence Detector in Biological Sciences and Chemistry * Quality Assessment of Solder Bonds of Printed Circuit Boards by Metallography * Observation of InAs Nanostructures on (100)-GaAs Substrate with Atomic Force Microscopy * In Situ Observations By Atomic Force Microscopy of Corrosion of An Aluminium Film in a Solution of HCl * Atomic Force Microscopy of Metallurgical Interactions in Integrated Circuit Contacts * Atomic Force Microscopy of Microcavity Semiconductor Devices * Characterization of the Emitted Air Particies By Steel Industries * A Comparative Study of the Anodic Behavior of Duplex Stainless Steels - Din 1.4462-In Synthetic Sea-water * Study of the Corrosion Resistance of Duplex Stainless Steels in Solutions Containing Chlorides, Compared with other Stainless Steels * Development of New Materials and Devices * Development of the Electronic Signal in Proportional Detectors * Development of a Portable Ultrasound Equipment for Backfat Evaluation of Live Pigs * Thermal Barrier Coatings by Plasma Spraying * Scaling in Fragmentation Phenomena * A Study of Sn:In2O3 (ITO)/CuInSe2 Heterojunction for Solar Energy Applications * Organising a Ceramic Powder Shape Electronic Database * Feasibility of a Mixer Using the Negative Resistance of a SNS Junction * Characteristics of v-SiO2 Melted in Refractory Metal Furnace * Lasers for Industrial and Medical Applications * Portable Cat Scanner Applied to Collapsible Soil Studies * Experiments with Slip Casting of Fine Ceramics and v-SiO2 * R2Fe17 Halides: The Birth of a Material for Potential Hard Magnetic Applications * Computerized System for Embryos Freezing Protocols Development * Ferroelectric Parent Materials as Possible High-Tc Superconductors: High Temperature Magnetic and Electric Properties of Modified BNN and SBN * CVD Diamond: Emerging Technology for Many Applications * Development of New Techniques and Processes * Application of Mechanical Relaxation Spectroscopy to the Development of Low Carbon Steels * Measurement of Root Length by Digital Image Analysis * A Simple Model of a Glow Discharge Electron Beam for Materials Processing * Decorative Colored Oxide Coatings on Stainless Steel * Strengthening of Steel-Thermal-Sprayed -We-Co Interface * Protein Crystallography Station at LNLS * Fast Neural Systems for Experimental Physics and Industrial Applications: The Sennape Project * Automatic System for Measuring Myopia, Hyperopia and Astigmatism * The Feasibility of Pumping the He/Ne/H2, 585.3 nm Laser with the IPRl Steady State Triga Reactor * Optical and Mechanical Design of an Ophthalmic lnstrument: Slit Lamp * A Simple Model for Laser Ablation * University-Industry Cooperation II * From Basic Research in Plasma Physics to Applications in the Metal Mechanic Industry in Santa FE, Argentina * Role of the State in Bridging the Gap Between the Scientific and the Industrial Sectors. Experience in Province of Santa FE, Argentina * Physics in the BEM Program: Biomass-Energy-Materials * Production of Advanced Hard Materials - An Experience of Physical Research for Industry

  5. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  6. Machine Tool Advanced Skills Technology (MAST). Common Ground: Toward a Standards-Based Training System for the U.S. Machine Tool and Metal Related Industries. Volume 15: Administrative Information, of a 15-Volume Set of Skill Standards and Curriculum Training Materials for the Precision Manufacturing Industry.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Waco.

    This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…

  7. Using misconceptions research in the design of optics instructional materials and teacher professional development programs

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Dokter, Erin F.; Walker, Constance E.; Sparks, Robert T.

    2007-06-01

    To create the Hands-On Optics program and its associated instructional materials, we needed to understand a number of basic optics misconceptions held by children (and adults) and how to address them through a proper educational approach. The activities have been built with an understanding of the naïve concepts many people have about light, color, and optical phenomena in general. Our own experience is that the concepts that children and adults have of light are often not that different from each other. This paper explores the most common misconceptions about light and color, according to educational research, and describes how they can be addressed in optics education programs. This understanding of misconceptions was useful as well in the professional development component of the program where educators were trained on the Hands-On Optics modules. The professional development work for the optics industry volunteers who worked with the educators was also based on research on how an optics professional can work more effectively in multi-cultural settings-an area with great applicability to industry volunteers working in the very different culture of science centers or after-school programs.

  8. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  9. Breathe easy with proper respiratory protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidwell, J.

    1996-05-01

    Evaluating the need for respiratory protection in chemical process industries (CPI) plants and selecting the appropriate respirator involves several steps. The Occupational Safety and Health Administration (OSHA) general industry standard for respiratory protection (29 CFR 1910.134(b)) requires the employer to establish a program to help reduce exposures to occupational contaminants. When feasible, employers must eliminate contaminants by using engineering controls (such as general and local ventilation, enclosure or isolation, or substitution of a less-hazardous process or material). Establishing a respiratory protection program consists of four steps: (1) Identify respiratory hazards and concentrations; (2) Understand the contaminants` effects on workers` health;more » (3) Select appropriate respiratory protection; and (4) Train in proper respirator use and maintenance. Consult applicable state and OSHA requirements to ensure that your program satisfies these steps. Industrial respirator manufacturers can assist with on-site training and fit testing. The paper discusses these four steps, program guidelines, determination of the hazard, and styles of respirators.« less

  10. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  11. Application of vascular aquatic plants for pollution removal, energy, and food production in a biological system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Barlow, R.M.; Mcdonald, R.C.

    1975-05-12

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications. (Author) (GRA)

  12. Proceedings: Nozzle Initiative Industry Advisory Committee on standardization of carbon-phenolic test methods and specifications

    NASA Technical Reports Server (NTRS)

    Hall, William B.

    1992-01-01

    Verbal discussions during the biannual meeting of the Industry Advisory Committee for Carbon-phenolic constituent test methodology, which is constituted under the Solid Propulsion Integrity Program (SPIP), are addressed. The items on the agenda are: (1) NASA video tape library; (2) product code identification; (3) NMR progress; (4) IR and DMTA workshop; (5) aerospace database update; (6) M vision database demonstration; (7) constituent fingerprinting; (8) cured materials test development; (9) engineering needs for computer modeling; and (10) review action items. The materials prepared to support some of the oral presentations are also included in the Appendix.

  13. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozell, J. J.; Landucci, R.

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  14. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993-March 31, 1995

    NASA Astrophysics Data System (ADS)

    Carlson, Paul T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.

  15. MHSS: a material handling system simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less

  16. Building a Bright Future. The Hydro Research Foundation's Fellowship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughn, Brenna; Linke, Deborah M.

    The Hydro Fellowship Program (program) began as an experiment to discover whether the hydropower industry could find mechanisms to attract new entrants through conducting relevant research to benefit the industry. This nationwide, new-to-the-world program was started through funding from the Wind and Water Power Technologies Office of the Energy Efficiency and Renewable Energy (EERE) Office of the Department of Energy (DOE). Between 2010-2015, the Hydro Research Foundation (HRF) designed and implemented a program to conduct valuable research and attract new entrants to the hydro workforce. This historic grant has empowered and engaged industry members from 25 organizations by working withmore » 91 students and advisors at 24 universities in 19 states. The work funded answered pressing research needs in the fields of civil, mechanical, environmental, and electrical engineering, as well as law, energy engineering and materials innovation. In terms of number of individuals touched through funding, 148 individuals were supported by this work through direct research, mentorship, oversight of the work, partnerships and the day-to-day program administration. Based on the program results, it is clear that the funding achieved the hoped-for outcomes and has the capacity to draw universities into the orbit of hydropower and continue the conversation about industry research and development needs. The Foundation has fostered unique partnerships at the host universities and has continued to thrive with the support of the universities, advisors, industry and the DOE. The Foundation has demonstrated industry support through mentorships, partnerships, underwriting the costs and articulating the universities’ support through in-kind cost sharing. The Foundation recommends that future work be continued to nurture these graduate level programs using the initial work and improvements in the successor program, the Research Awards Program, while stimulating engagement of academia at the community college level for operations and maintenance workforce development.« less

  17. Cancer Information in the Workplace: Education Materials for the Public and the Health Professional.

    ERIC Educational Resources Information Center

    National Cancer Inst. (NIH), Bethesda, MD.

    This document is an annotated compilation of citations to materials on occupational carcinogens, as well as on agencies and data bases dealing with the topic, which are available for use in public, worker, and professional education programs. The bibliography is intended to assist health educators, industrial hygienists, and health care providers…

  18. The relationship of NASA occupational medicine and environmental health with the Advisory Center on Toxicology

    NASA Technical Reports Server (NTRS)

    Wands, R. C.

    1969-01-01

    Preventive measures of occupational medicine and industrial hygiene are coordinated to identify toxicities of industrial products and safety standards in manned space flight applications. Emphasized is the off-gassing of construction materials in spacecraft with the resulting contamination of the cabin atmosphere and the establishment of criteria for the quality of drinking water for astronauts during Gemini and Apollo programs.

  19. Microgravity Science and Application Program tasks, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.

  20. Curriculum Guide for General Education Development or High School Equivalency Examination in Spanish.

    ERIC Educational Resources Information Center

    Sharma, Shobha; Escalona, Margaret Boyter

    This curriculum guide was developed as part of the Worker Education Program for workers in the garment industry. The program was jointly developed by the workers, their employer, their union, and Northeastern Illinois University. It contains the materials required to teach a course to help Spanish-speaking individuals pass the General Educational…

  1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL, STATIC CONTROL SERIES. BASIC CONTROL FUNCTIONS, UNIT 9A.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS SELF-INSTRUCTIONAL PROGRAMED TEXT IS FOR INDIVIDUAL STUDENT USE IN STUDYING STATIC CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS AND HAS BEEN TESTED BY STUDENT USE. THE OBJECTIVE OF THE COURSE IS TO HELP THE ELECTRICAL-TECHNICIAN DEVELOP AN UNDERSTANDING OF STATIC CONTROL…

  2. 1995 Federal Research and Development Program in Materials Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly amore » century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.« less

  3. Application of CFCC technology to hot gas filtration applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less

  4. Cost-efficient manufacturing of composite structures

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Davis, John G.; Johnston, Norman J.

    1991-01-01

    The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.

  5. Education Program for Ph.D. Course to Cultivate Literacy and Competency

    NASA Astrophysics Data System (ADS)

    Yokono, Yasuyuki; Mitsuishi, Mamoru

    The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.

  6. Nanotechnology for aerospace: potential transitions from university research

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.

    2008-04-01

    Nanotechnology is expected to provide the fundamental basis of the next two generations of products and processes. Impacts for applications are already being felt in many fields, and there is interest especially in the aerospace industry, where performance is a major driver of decisions for applications. Four areas are receiving special emphasis in a program aimed at the Air Force's strategic focus on materials. The emphasis includes adaptive coatings and surface engineering, nanoenergetics, electromagnetic sensors, and power generation and storage. Seven universities in Texas have initiated the CONTACT program of focused research including nine projects in the first year, with plans for expansion in subsequent years. This paper discusses the focus, progress, and plans for the second year and opportunities for industry input to the scope and content of the research. A new model for the creation and guidance of research programs for industry is presented. The new approach includes interaction with the aerospace industry and the Air Force that provides a focus for the research. Results to date for the new method and for the research are presented. A discussion of nanoengineering technology transition into the aerospace industry highlights the mechanisms for enhancing the process and for dealing with intellectual property.

  7. Path forward: emerging issues and challenges.

    PubMed

    Gillen, Matt; Gittleman, Janie L

    2010-06-01

    The NIOSH Construction Program worked with industry stakeholders to develop a National Occupational Safety and Health Construction Agenda to target future research and activities. The Program and its partners are also cognizant that new developments can emerge over time and that research can play an important role in helping to understand and address these emerging issues. Examples of emerging issues relevant to construction safety and health are described. These include: (a) climate change and energy considerations; (b) green construction developments and opportunities; (c) new materials; (d) changes in industry structure and practice; (e) workforce developments and disparities; (f) injury underreporting and cost and risk shifting; and (g) increased interest in addressing root causes. Responding to emerging issues while maintaining a focus on fundamental longstanding issues represents an ongoing challenge for researchers and industry organizations. Additional research to understand the diffusion and adoption of research by the industry is also needed. Research accomplished to date provides a strong foundation for addressing future industry needs and trends. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Design, Development and Hotfire Testing of Monolithic Copper and Bimetallic Additively Manufactured Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Barnett, Greg; Brandsmeier, Will; Greene, Sandy Elam; Protz, Chris

    2016-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM) otherwise commonly referred to as additive manufacturing. The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for the GRCop-84 copper-alloy commensurate with powder bed additive manufacturing, evaluate bimetallic deposition and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. As a direct spin off of this program, NASA is working with industry partners to further develop the printing process for the GRCop-84 material in addition to the C-18150 (CuCrZr) material. To advance the process further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic additively manufactured chambers. A 1.2k sized thrust-chamber was designed and developed to compare the printing process of the GRCop-84 and C-18150 SLM materials. A series of similar MCC liners also completed development with an Inconel 625 jacket bonded to the GRcop-84 liner evaluating direct metal deposition (DMD) laser and arc-based techniques. This paper describes the design, development, manufacturing and testing of these combustion chambers and associated lessons learned throughout the design and development process.

  9. The Role of Ceramics in a Resurgent Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J

    2006-02-28

    With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less

  10. ARL Collaborative Research Alliance Materials in Extreme Dynamic Environments (MEDE)

    DTIC Science & Technology

    2010-11-19

    Program Internal to the CRA Staff Rotation Lectures, Workshops, and Research Reviews Education Opportunities for Government Personnel Student ... Engagement with ARL Research Environment Industry Partnership + Collaboration Other Collaboration Opportunities High Performance Computing DoD

  11. 75 FR 32836 - Pipeline Safety: Workshop on Public Awareness Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID... American Public Gas Association Association of Oil Pipelines American Petroleum Institute Interstate... the pipeline industry). Hazardous Liquid Gas Transmission/Gathering Natural Gas Distribution (10...

  12. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers all of the research efforts conducted at Langley, my studies with TAG were ab!e to provide me an excellent overview of Langley's contribution to the aeronautics industry.

  13. Potential SSP Perfluorooctanoic Acid Related Fluoropolymer Materials Obsolescence

    NASA Technical Reports Server (NTRS)

    Segars, Matt G.

    2006-01-01

    The Shuttle Environmental Assurance Initiative (SEA) has identified a potential for the Space Shuttle Program (SSP) to incur materials obsolescence issues due to agreements between the fluoro-chemical industry and the United States Environmental Protection Agency (USEPA) to participate in a Global Stewardship Program for perfluorooctanoic acid (PFOA). This presentation will include discussions of the chemistry, regulatory drivers, affected types of fluoropolymer and fluoroelastomer products, timeline for reformulations, and methodology for addressing the issue. It will cover the coordination of assessment efforts with the International Space Station and Head Quarters Air Force Space Command, along with some examples of impacted materials. The presentation is directed at all members of the international aerospace community concerned with identifying potential environmentally driven materials obsolescence issues.

  14. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  15. Educational outreach at the NSF Engineering Research Center for Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Williams, James E., Jr.

    1996-07-01

    An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.

  16. Design of a professional development and support program for future photonics industry team leaders

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, Michelle; Regens, Nancy L.; Pompea, Stephen M.

    2002-05-01

    The University of Arizona's Collaboration to Advance Teaching Technology and Science (CATTS) program sponsored by the National Science Foundation has found a successful way to unite public and charter school students and teachers, university science outreach programs, graduate and undergraduate students, and university faculty for the betterment of science education. A key aspect of this success has been the ability of the project to assist stakeholders in understanding the different cultural perspectives of all of the participants. The success of this program has led us to create a template for a professional development and support program emphasizing the degree of cross-cultural understanding appropriate for today's multinational photonics industry. This template is designed to give future photonics technical, managerial, and manufacturing leaders training in a variety of areas that can enhance their productivity and ability to lead teams. The design would be appropriate for photonics research and development teams, sales and marketing teams, teams with diverse members new college hires, and newly emplaced managers. This education template would also be appropriate for students in photonics industry technician and graduate- level programs. This type of program is not a substitute for other forms of professional managerial training, but rather augments such programs with material that can aid in a more global perspective.

  17. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  18. Research and technology 1995 annual report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.

  19. A Tool for Rating the Resilience of Critical Infrastructures in Extreme Fires

    DTIC Science & Technology

    2014-05-01

    provide a tool for NRC to help the Canadian industry to develop extreme fire protection materials and technologies for critical infrastructures. Future...supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in...in oil refinery and chemical industry facilities. The only available standard in North America that addresses the transportation infrastructure is

  20. World Support Base: Spain

    DTIC Science & Technology

    1987-09-01

    Comments Recommendations Company Reports Def ex AFARMADE (Spanish Association of Arms and Defense Material Makers) CASA ( Construcciones Aeronauticas...of tine avionics and structurai parts for the aircraft. Also, the construction of a factory to bui Id jet engines and a I icense for the... construction of GE’s F404 engine for the F-18 has further enhanced Spain’s defense Industry. The goal of the Spanish defense industrial program Is to reduce

  1. America Recycles Day

    NASA Image and Video Library

    2017-11-17

    In the parking lot of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a member of Goodwill Industries loads used household material for recycling. During the two-day event, employees dropped off items as part of America Recycles Day. The center partnered with Goodwill Industries and several other local organizations to collect items for reprocessing. The annual event is a program of Keep America Beautiful, dedicated to promoting and celebrating recycling.

  2. U. S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ¬mental performance, product quality, and productivity. To help ITP determine the impacts of its pro¬grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro¬gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer¬cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2007). From 1976-2006, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 5.65 quadrillion Btu, with a net cost savings of $37.8 billion.« less

  3. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.; Roop, Joseph M.

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ¬mental performance, product quality, and productivity. To help ITP determine the impacts of its pro¬grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro¬gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer¬cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the newmore » technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of the most recent PNNL review (conducted in 2006). From 1976-2005, the commercialized technologies from ITP’s research and development (R&D) programs and other activities have cumulatively saved 5.13 quadrillion Btu, with a net cost savings of $29.3 billion.« less

  4. PREFACE: 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Rizwan Hussain, Raja; Pandiangan, Tumpal; Desai, Amit

    2013-06-01

    Banner The 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013), was held at the Grand Royal Panghegar Hotel, Bandung, Indonesia, from 9-10 March 2013. The MOIME 2013 conference brought together researchers, engineers and scientists in the field from around the world. MOIME 2013 aimed to promote interaction between the theoretical, experimental, and applied communities, so that a high level exchange was achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that related to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 103 papers and after rigorous review, 45 papers were accepted. The participants came from 16 countries. There were six Plenary and Invited Speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the conference sponsors for the financial support that contributed to the success of MOIME 2013. The Editors of the MOIME 2013 Dr Ford Lumban Gaol Dr Raja Rizwan Hussain Tumpal Pandiangan Dr Amit Desai The PDF contains the abstracts from the plenary and invited articles and the workshop.

  5. 2014 International Conference on Manufacturing, Optimization, Industrial and Material Engineering

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2014-06-01

    The 2nd International Conference on Manufacturing, Optimization, Industrial and Material Engineering 2014 (MOIME 2014), was held at the Grand Mercure Harmoni, Opal Room 3rd Floor, Jakarta, Indonesia, during 29-30 March 2014. The MOIME 2014 conference is designed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 97 papers and after rigorous review, 24 papers were accepted. The participants come from 7 countries. There are 4 (four) parallel session and 2 Invited Speakers and one workshop. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2014. The Editors of the MOIME 2014 Proceedings Editors Dr Ford Lumban Gaol Jeff Webb, PhD Professor Jun Ding, PhD

  6. PREFACE: 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2015-05-01

    The 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015) was held at the Sheraton Kuta, Bali, Indonesia, from 28 - 29 March 2015. The MOIME 2015 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program, as well as the invited and plenary speakers. This year, we received 99 papers and after rigorous review, 24 papers were accepted. The participants come from eight countries. There were four parallel sessions and two invited speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2015. The Editors of the MOIME 2015 Proceedings Dr. Ford Lumban Gaol Jeff Webb, Ph.D Prof. Jun DING, Ph.D

  7. Mechanics of Textile Composites Conference

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C. (Editor); Harris, Charles E. (Editor)

    1995-01-01

    This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advance Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.

  8. Thick ceramic coating development for industrial gas turbines - A program plan

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1979-01-01

    A program plan on a NASA-Lewis funded program is presented, in which effectiveness of thick ceramic coatings in preventing hot corrosion and in providing thermal insulation to gas turbine engine components are to be investigated. Preliminary analysis of the benefit of the thermal insulating effect of this coating on decreasing cooling air and simplifying component design appears very encouraging. The program is in the preliminary stages of obtaining starting materials and establishing procedures. Numerous graphs, tables and photographs are included.

  9. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  10. Development of the COMmerical Experiment Transporter (COMET)

    NASA Technical Reports Server (NTRS)

    Pawlick, Joseph F., Jr.

    1990-01-01

    In order to commercialize space, this nation must develop a well defined path through which the Centers for the Commercial Development of Space (CCDS's) and their industrial partners and counterparts can exploit the advantages of space manufacturing and processing. Such a capability requires systems, a supporting infrastructure, and funding to become a viable component of this nation's economic strength. This paper follows the development of the COMmercial Experiment Program (COMET) from inception to its current position as the country's first space program dedicated to satisfying the needs of industry: an industry which must investigate the feasibility of space based processes, materials, and prototypes. With proposals now being evaluated, much of the COMET story is yet to be written, however concepts and events which led to it's current status and the plans for implementation may be presented.

  11. Potential environmental effects of energy conservation measures in northwest industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to differentmore » energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.« less

  12. U.S. Army’s Ground Vehicle Energy Storage R&D Programs & Goals

    DTIC Science & Technology

    2010-11-10

    STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Briefing to ARPA-E BEEST Meeting 14. ABSTRACT NA 15...Program Collaboration & DOD Customers DOE Material Developers Battery Developers ANL USABC National Labs Universities Industrial Developers...qualification for military lead acid batteries; 6 water baths, 31 circuits, 1 thermal chamber • Electrochemical Research & Analysis Lab (EARL

  13. Application of space benefits to education

    NASA Technical Reports Server (NTRS)

    Dannenberg, K. K.; Ordway, F. I., III

    1972-01-01

    Information on the conducting of a teacher workshop is presented. This educational pilot project updated instruction material, used improved teaching techniques, and increased student motivation. The NASA/MSFC industrial facilities, and the displays at the Alabama Space and Rocket Center (ASRC) were key elements of the program, including a permanent exhibit, at the latter, on selected benefits accruing from the space program.

  14. Third NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler)

    1995-01-01

    This publication constitutes the proceedings of NASA Langley Research Center's third workshop on the application of formal methods to the design and verification of life-critical systems. This workshop brought together formal methods researchers, industry engineers, and academicians to discuss the potential of NASA-sponsored formal methods and to investigate new opportunities for applying these methods to industry problems. contained herein are copies of the material presented at the workshop, summaries of many of the presentations, a complete list of attendees, and a detailed summary of the Langley formal methods program. Much of this material is available electronically through the World-Wide Web via the following URL.

  15. An assessment of the impact of the Department of Defense very high speed integrated circuit program

    NASA Astrophysics Data System (ADS)

    1982-01-01

    The technical and economic effects of the Department of Defense's (DoD) development program for very-high-speed integrated circuits (VHSIC) are examined. The probable effects of this program on the domestic aspects and international position of the integrated-circuit (IC) industry as they relate to the interests of the general public and the DoD are considered. The report presents a review of the unique DoD needs that motivate VHSIC research and development; an estimate of the degree of which these needs are likely to be met by the VHSIC program; a discussion of the effects of the program's demands for manpower, materials, and design and processing technologies; the problems connected with the program's technology export controls; and an assessment of the impact of the program on the structure of the U.S. integrated-circuit industry, its continued development and production of civilian consumer products, and its international competitive position.

  16. EPA Sustainable Materials Management Program Strategic Plan for Fiscal Years 2017 – 2022

    EPA Pesticide Factsheets

    Covers fiscal years 2017 through 2022, and represents the collective thinking of EPA staff and management across the country, as well as input from many stakeholders, including states, industry, and non-governmental organizations.

  17. 48 CFR 204.470-3 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF DEFENSE GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 204... Protocol, in solicitations and contracts for research and development or major defense acquisition programs...) Other radiological source materials; or (c) Technologies directly related to nuclear power production...

  18. 48 CFR 204.470-3 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF DEFENSE GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 204... Protocol, in solicitations and contracts for research and development or major defense acquisition programs...) Other radiological source materials; or (c) Technologies directly related to nuclear power production...

  19. 48 CFR 204.470-3 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF DEFENSE GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 204... Protocol, in solicitations and contracts for research and development or major defense acquisition programs...) Other radiological source materials; or (c) Technologies directly related to nuclear power production...

  20. 48 CFR 204.470-3 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF DEFENSE GENERAL ADMINISTRATIVE MATTERS Safeguarding Classified Information Within Industry 204... Protocol, in solicitations and contracts for research and development or major defense acquisition programs...) Other radiological source materials; or (c) Technologies directly related to nuclear power production...

  1. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  2. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less

  3. Mirror Material Properties Compiled for Preliminary Design of the Next Generation Space Telescope (30 to 294 Kelvin)

    NASA Technical Reports Server (NTRS)

    Luz, P. L.; Rice, T.

    1998-01-01

    This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) Study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the pre-phase A program for it. After finishing some initial studies and concepts development work on the NGST, MFSC's Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC's Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in Support of NASA GSFC. It contains material properties for 9 mirror Substrate materials, using information from at least 6 industrial Suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

  4. TECHNICAL AND REGULATORY CONSIDERATIONS IN USING FREIGHT CONTAINERS AS INDUSTRIAL PACKAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opperman, E; Mark Hawk, M; Ron Natali, R

    2007-10-16

    The United States (US) Department of Energy (DOE), Office of Environmental Management (EM), is actively pursuing activities to reduce the radiological risk and clean up the environmental legacy of the nation's nuclear weapons programs. EM has made significant progress in recent years in the clean-up and closure of sites and is also focusing on longer-term activities necessary for the completion of the clean-up program. The packaging and transportation of contaminated demolition debris and low-level waste (LLW) materials in a safe and cost-effective manner are essential in completing this mission. Toward this end, the US Department of Transportation's (DOT) Final Rulemore » on Hazardous Materials Regulation Final Rule issued January 26, 2004, included a new provision authorizing the use of Freight Containers (e.g., 20 and 40-foot ISO Containers) as Industrial Packages Type 1, 2, or 3 (IP-1, IP-2, and IP-3). This paper will discuss the technical and regulatory considerations in using these newly authorized and large packages for the packaging and transportation of LLW materials.« less

  5. Femtosecond pulses for medicine and production technology: overview of a German national project

    NASA Astrophysics Data System (ADS)

    Dausinger, Friedrich

    2002-02-01

    With the beginning of the new century the German federal government started the funding of a program intended to exploit the potential of femtosecond technology. In a foregoing competition, five research consortia had been successful and have started their investigations in the following fields. - micro-machining of technical materials for microstructure and drilling - medical therapy in : ophthalmology, dentistry, neurology and ear surgery - metrology - laser safety. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.

  6. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  7. Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr. (Compiler); Gardner, J. E. (Compiler)

    1992-01-01

    The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less

  9. NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

  10. recycle, replenish, reSTORE

    ERIC Educational Resources Information Center

    Lansburgh, Therese

    1976-01-01

    Describes projects of the Maryland Committee for the Day Care of Children aimed at cutting day care costs: a recycling center for discarded industrial materials that can be put to educational uses, and workshops for teachers and volunteers in preschool and day care programs. (ED)

  11. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  12. AFOSR Mission Critical STEAM Program

    DTIC Science & Technology

    2014-02-10

    recently established several new academic and research facilities in the sciences, and most impressively in the area of Ecology and Biotechnology. Alcorn...the Taiwanese culture • To participate in language and cultural immersion programs • To use Mandarin to function optimally in Taiwan • To forge new...science and mathematics would significantly improve STEAM matriculation in college. In any industry, productivity is a function of the raw material

  13. Research and Technology at the John F. Kennedy Space Center 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  14. Attempts to Undermine Tobacco Control

    PubMed Central

    Sebrié, Ernesto M.; Glantz, Stanton A.

    2007-01-01

    We sought to understand how the tobacco industry uses “youth smoking prevention” programs in Latin America. We analyzed tobacco industry documents, so-called “social reports,” media reports, and material provided by Latin American public health advocates. Since the early 1990s, multinational tobacco companies have promoted “youth smoking prevention” programs as part of their “Corporate Social Responsibility” campaigns. The companies also partnered with third-party allies in Latin America, most notably nonprofit educational organizations and education and health ministries. Even though there is no evidence that these programs reduce smoking among youths, they have met the industry’s goal of portraying the companies as concerned corporate citizens and undermining effective tobacco control interventions that are required by the World Health Organization Framework Convention on Tobacco Control. PMID:17600260

  15. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    NASA Astrophysics Data System (ADS)

    Gosman, Nathaniel

    For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity of alternative performance incentive program models to manage DSM risk in BC. Three performance incentive program models were assessed and compared to BC Hydro's current large industrial DSM incentive program, Power Smart Partners -- Transmission Project Incentives, itself a performance incentive-based program. Together, the selected program models represent a continuum of program design and implementation in terms of the schedule and level of incentives provided, the duration and rigour of measurement and verification (M&V), energy efficiency measures targeted and involvement of the private sector. A multi criteria assessment framework was developed to rank the capacity of each program model to manage BC large industrial DSM risk factors. DSM risk management rankings were then compared to program costeffectiveness, targeted energy savings potential in BC and survey results from BC industrial firms on the program models. The findings indicate that the reliability of DSM energy savings in the BC large industrial sector can be maximized through performance incentive program models that: (1) offer incentives jointly for capital and low-cost operations and maintenance (O&M) measures, (2) allow flexible lead times for project development, (3) utilize rigorous M&V methods capable of measuring variable load, process-based energy savings, (4) use moderate contract lengths that align with effective measure life, and (5) integrate energy management software tools capable of providing energy performance feedback to customers to maximize the persistence of energy savings. While this study focuses exclusively on the BC large industrial sector, the findings of this research have applicability to all energy utilities serving large, energy intensive industrial sectors.

  16. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  17. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  18. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  19. HEALTH AND SAFETY ORGANIZING: OCAW’S WORKER-TO-WORKER HEALTH AND SAFETY TRAINING PROGRAM*

    PubMed Central

    SLATIN, CRAIG

    2018-01-01

    In 1987, the Oil, Chemical, and Atomic Workers International Union (OCAW) was funded as one of the original eleven awardees of the Superfund Worker Training Program of the National Institute of Environmental Health Sciences. The OCAW, with the Labor Institute, developed a hazardous waste worker and hazardous materials emergency responder health and safety training program that was specific to its members in the represented industries. A social history is developed to explore a union-led, worker health education intervention. The program sought to develop worker-trainers who would conduct the training, using the Small-Group Activity Method, participate in curriculum development, and ultimately use health and safety training as a vehicle for identifying, developing, and mobilizing health and safety activists among the membership. Although the direction for this effort came from progressive leadership, it arose from the political economy of labor/management relations within specific industrial sectors. PMID:17208754

  20. Microgravity Science and Applications Program tasks, 1987 revision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation is presented of the active research tasks as of the end of the FY87 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. An overview is provided of the program scope for managers and scientists in industry, university, and government communities. An introductory description is provided of the program along with the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: Electronic Materials; Solidification of Metals, Alloys, and Composites; Fluid Dynamics and Transport Phenomena; Biotechnology; Glasses and Ceramics; and Combustion. Other categories include Experimental Technology, General Studies and Surveys; Foreign Government Affiliations; Industrial Affiliations; and Physics and Chemistry Experiments (PACE). The tasks are divided into ground based and flight experiments.

  1. Microgravity Science and Applications Program tasks, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The active research tasks as of the end of the fiscal year 1988 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Also included are an introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task. A list of recent publications is provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; and combustion. Other categories include experimental technology, general studies and surveys; foreign government affiliations; industrial affiliations; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.

  2. Foreign Language Instruction in a Global Community.

    ERIC Educational Resources Information Center

    Nugent, Stephanie A.

    2000-01-01

    As we move from the Industrial Age to the Information Age, foreign language programs are hampered by inadequate curricular emphasis and negligible funding for materials or teachers. Five goals for foreign language learning include communicative competence, cultural awareness, interdisciplinary connections, cross-cultural comparisons, and…

  3. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  4. Mechanics of Textile Composites Conference. Part 1

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr. (Editor); Harris, Charles E. (Editor)

    1995-01-01

    This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advanced Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.

  5. Power factor of power educators. [Undergraduate and graduate programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthold, L.O.

    1979-01-01

    Undergraduate engineering schools are doing an excellent job in offering technical material and preparing students for careers in industry or graduate schools. At the undergraduate level, the burden of adequately covering a widening range of engineering fundamentals precludes offering industry-oriented undergraduate courses. The lack of communication skills is a serious handicap to many graduates. Furthermore, the ability to identify problems and structure approaches to their solutions needs more attention in undergraduate education. The quality of graduate programs in power is closely linked to the accuracy and realism with which graduate faculty perceive the industry and its problems as well asmore » their skill in teaching. It is important for graduate faculty to maintain close working ties with industry. Part-time assignments with utilities, manufacturers, or consultants are the best way to do so. Doing so through research grants can also help but can likewise be counterproductive if faculty are not discriminating in the subject matter pursued.« less

  6. Local Gov`t assistance in commercial waste reduction & recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannah, C.W.

    This paper outlines programs and strategies for reducing the waste stream by targeting the commercial, industrial and institutional sectors. The programs described are implemented by the Wake County Solid Waste Management Division, North Carolina. Findings and recommendations of a task force focusing on the role of the private sector in meeting state waste reduction mandates are summarized. Commercial initiatives, educational initiatives, and a grant program are described. Several case studies are provided which overview the variety of businesses and waste materials addressed.

  7. Materials processing in space program tasks-supplement

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.

  8. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard

    2011-07-01

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is tomore » provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.« less

  9. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  10. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  11. Electrical Energy Storage for Renewable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, C. R.; Cho, K. J.; Ferraris, John

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing thismore » work with other sources of funding from both industry and government.« less

  12. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positionsmore » in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.« less

  13. Applications of Molecular and Materials Modeling

    DTIC Science & Technology

    2002-01-01

    MSI, GdR 12090). In principle, the NSF GOALI program facilitates exchanges of people, although the paperwork and difficulty of moving people with...industrial, and national-laboratory collaborations. The NSF GOALI program was seen as a step in the right direction, limited mostly by the difficulty...cyclododecane); methyl aluminoxane models (Simeral GOALI project at LSU with Randall Hall and NIST ATP project) Drs. Gary Zhao and Larry S. Simeral http

  14. 76 FR 24372 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Update to Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Emissions From Industrial Process Operations New Castle County.'' 12. Regulation 1112 ``Control of Nitrogen... the State Implementation Plans.'' 25. Regulation 1139 ``Nitrogen Oxides (NO X ) Budget Trading Program... by reference, Intergovernmental relations, Lead, Nitrogen dioxide, Ozone, Particulate matter...

  15. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  16. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  17. Knowledge Boosting Curriculum for New Wind Industry Professionals Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Ruth H; Rogers, Anthony L

    DNV Renewables (USA) Inc. (DNV KEMA) received a grant from the U.S. Department of Energy (DOE) to develop the curriculum for a series of short courses intended to address Topic Area 5 Workforce Development, one of the focus areas to achieve the goals outlined in 20% Wind by 2030: Increasing Wind Energy's Contribution to Electricity Supply. The aim of the curriculum development project was to provide material for instructors to use in a training program to help professionals transition into careers in wind energy. Under this grant DNV KEMA established a knowledge boosting program for the wind energy industry withmore » the following objectives: 1. Develop technical training curricula and teaching materials for six key topic areas that can be implemented in a flexible format by a knowledgeable instructor. The topic areas form a foundation that can be leveraged for subsequent, more detailed learning modules (not developed in this program). 2. Develop an implementation guidance document to accompany the curricula outlining key learning objectives, implementation methods, and guidance for utilizing the curricula. This curriculum is intended to provide experienced trainers course material that can be used to provide course participants with a basic background in wind energy and wind project development. The curriculum addresses all aspects of developing a wind project, that when implemented can be put to use immediately, making the participant an asset to U.S. wind industry employers. The curriculum is comprised of six short modules, together equivalent in level of content to a one-semester college-level course. The student who completes all six modules should be able to understand on a basic level what is required to develop a wind project, speak with a reasonable level of confidence about such topics as wind resource assessment, energy assessment, turbine technology and project economics, and contribute to the analysis and review of project information. The content of the curriculum is based on DNV KEMA's extensive experience in consulting and falls under six general topics: 1. Introduction to wind energy 2. Wind resource and energy assessment 3. Wind turbine systems and components 4. Wind turbine installation, integration, and operation 5. Feasibility studies 6. Project economics Each general topic (module) covers 10-15 sub-topics. Representatives from industry provided input on the design and content of the modules as they were developed. DNV KEMA developed guidance documents to accompany the training curricula and materials in order to facilitate usage of the curricula in a manner consistent with industries requirements. Internal and external pilot trainings using selections of the curriculum provided valuable feedback that was then used to modify and improve the material and make it more relevant to participants. The pilot trainings varied in their content and intensity, and each served as an opportunity for the trainers to better understand which techniques proved to be the most successful for accelerated learning. In addition, the varied length and content of the trainings, which were adjusted to suit the focus and budget for each particular situation, highlight the flexibility of the format. The material developed under this program focused primarily on onshore wind project development. The course material could be extended in the future to address the unique aspects of offshore project development.« less

  18. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  19. The NIST radioactivity measurement assurance program for the radiopharmaceutical industry.

    PubMed

    Cessna, Jeffrey T; Golas, Daniel B

    2012-09-01

    The National Institute of Standards and Technology (NIST) maintains a program for the establishment and dissemination of activity measurement standards in nuclear medicine. These standards are disseminated through Standard Reference Materials (SRMs), Calibration Services, radionuclide calibrator settings, and the NIST Radioactivity Measurement Assurance Program (NRMAP, formerly the NEI/NIST MAP). The MAP for the radiopharmaceutical industry is described here. Consolidated results show that, for over 3600 comparisons, 96% of the participants' results differed from that of NIST by less than 10%, with 98% being less than 20%. Individual radionuclide results are presented from 214 to 439 comparisons, per radionuclide, for (67)Ga, (90)Y, (99m)Tc, (99)Mo, (111)In, (125)I, (131)I, and (201)Tl. The percentage of participants results within 10% of NIST ranges from 88% to 98%. Published by Elsevier Ltd.

  20. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  1. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  2. Parts, materials, and processes experience summary, volume 2. [design, engineering, and quality control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This summary provides the general engineering community with the accumulated experience from ALERT reports issued by NASA and the Government-Industry. Data Exchange Program, and related experience gained by Government and industry. It provides expanded information on selected topics by relating the problem area (failure) to the cause, the investigation and findings, the suggestions for avoidance (inspections, screening tests, proper part applications, requirements for manufacturer's plant facilities, etc.), and failure analysis procedures. Diodes, integrated circuits, and transistors are covered in this volume.

  3. Foreign Object Debris: FOD Prevention QS210LSK-REV

    NASA Technical Reports Server (NTRS)

    Randolph, Sherry; Seaman, John

    2004-01-01

    Housekeeping in the space industry? You may think the idea isn't technical enough for the shuttle program. Yet, eliminating Foreign Object Debris or FOD is an important goal for USA and NASA. The justification for this effort is based on data from the aeronautics industry. Experience has shown that if debris is not controlled, it may later cause a variety of in-flight issues. FOD can result in material damage, or make systems and equipment inoperable unsafe, or less efficient

  4. Data acquisition and experiment control system of the project Maus (materials science experiments under weightlessness)

    NASA Astrophysics Data System (ADS)

    Lensch, D.

    In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.

  5. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    NASA Astrophysics Data System (ADS)

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and US conservation and renewable energymore » industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies. 3 refs.« less

  7. 10 CFR 431.21 - Procedures for recognition and withdrawal of recognition of accreditation bodies and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining Efficiency § 431.21 Procedures... Assistant Secretary for Energy Efficiency and Renewable Energy, U.S. Department of Energy, Forrestal...

  8. Food Distribution. The Supermarket Entry Occupations.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This guide is designed to assist the coordinator of the Marketing and Distributive Education Cooperative Education Program in improving and expanding the instructional activities needed to prepare individuals to function in the food industry's entry-level jobs. The instructional material provides information about what is expected of a student…

  9. Stretch That Budget!

    ERIC Educational Resources Information Center

    Walker, John R.

    1976-01-01

    Discusses ways in which industrial education teachers can stretch their budgets, which include reducing waste to a minimum, keeping an accurate and up-to-date inventory, trading surplus or excess materials with neighboring schools, and planning programs more carefully. Money-saving tips concerned with metals, plastics, woods, and printing are also…

  10. Incipient I Fire Brigade Training & Certification.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This document contains course materials for the minimum general and Koch-specific requirements for the fire suppression training and education portion of the integrated industrial emergency response team training program. The various levels of performance were developed with the National Fire standard 600, Private Fire Brigades. The training is…

  11. Manufacturing Curriculum Grant. Final Report.

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    A manufacturing curriculum for secondary vocational programs was designed to bridge the gap between grades 9-10 level courses and the community college-level curriculum of the Illinois Plan for Industrial Education. During the project, a literature review of manufacturing curriculum materials was conducted, a manufacturing conceptual framework was…

  12. 3 CFR 8601 - Proclamation 8601 of November 15, 2010. America Recycles Day, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... planet, participating in curbside recycling and community composting programs, and expanding their use of recyclable and recycled materials. Recycling not only preserves our environment by conserving precious... development. This billion-dollar industry employs thousands of workers nationwide, and evolving our recycling...

  13. Electronics Worksite Training Project. Final Report.

    ERIC Educational Resources Information Center

    Hata, David M.; Morris, Richard D.

    The Oregon Electronics Worksite Training Program created a system for delivering vocational education and training to individuals employed within the electronics and manufacturing industry in the Portland metropolitan area. The approach selected by Portland Community College was to use interactive video instructional materials in a self-study,…

  14. Worldwide Environmental Compliance Assessment and Management System Program (ECAMP)

    DTIC Science & Technology

    1993-09-01

    where spices are produced using animal and vegetable acids 7.22 Coffee roasting facilities with capacities of 75 kg/h 7.23 Plants for roasting coffee ...22. Industrial plants Verify that dusty gases released during the processing of dusty materials hawe required to have are collected and passed through...standards for the release of dusty gases during the production, crushing, classification and loading of dusty materials or other process involving such

  15. Styrene-terminated polysulfone oligomers as matrix material for graphite reinforced composites: An initial study

    NASA Technical Reports Server (NTRS)

    Garcia, Dana; Bowles, Kenneth J.; Vannucci, Raymond D.

    1987-01-01

    Styrene terminated polysulfone oligomers are part of an oligomeric class of compounds with end groups capable of thermal polymerization. These materials can be used as matrices for graphite reinforced composites. The initial evaluation of styrene terminated polysulfone oligomer based composites are summarized in terms of fabrication methods, and mechanical and environmental properties. In addition, a description and evaluation is provided of the NASA/Industry Fellowship Program for Technology Transfer.

  16. Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2006-01-01

    Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing the advanced electrolytes and components have been estimated. Limitations for the achievement of practical performance levels are also discussed, as well as needs for future research and development.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less

  18. A Guide to the Design of Occupational Safety and Health Training for Immigrant, Latino/a Dairy Workers.

    PubMed

    Menger, Lauren M; Rosecrance, John; Stallones, Lorann; Roman-Muniz, Ivette Noami

    2016-01-01

    Industrialized dairy production in the U.S. relies on an immigrant, primarily Latino/a, workforce to meet greater production demands. Given the high rates of injuries and illnesses on U.S. dairies, there is pressing need to develop culturally appropriate training to promote safe practices among immigrant, Latino/a dairy workers. To date, there have been few published research articles or guidelines specific to developing effective occupational safety and health (OSH) training for immigrant, Latino/a workers in the dairy industry. Literature relevant to safety training for immigrant workers in agriculture and other high-risk industries (e.g., construction) was examined to identify promising approaches. The aim of this paper is to provide a practical guide for researchers and practitioners involved in the design and implementation of effective OSH training programs for immigrant, Latino/a workers in the dairy industry. The search was restricted to peer-reviewed academic journals and guidelines published between 1980 and 2015 by universities or extension programs, written in English, and related to health and safety training among immigrant, Latino/a workers within agriculture and other high-risk industries. Relevant recommendations regarding effective training transfer were also included from literature in the field of industrial-organizational psychology. A total of 97 articles were identified, of which 65 met the inclusion criteria and made a unique and significant contribution. The review revealed a number of promising strategies for how to effectively tailor health and safety training for immigrant, Latino/a workers in the dairy industry grouped under five main themes: (1) understanding and involving workers; (2) training content and materials; (3) training methods; (4) maximizing worker engagement; and (5) program evaluation. The identification of best practices in the design and implementation of training programs for immigrant, Latino/a workers within agriculture and other high-risk industries can inform the development of more effective and sustainable health and safety training for immigrant, Latino/a dairy workers in the U.S. and other countries.

  19. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  20. Manufacturing Methods and Technology Program Plan, CY 1980.

    DTIC Science & Technology

    1980-09-01

    AD-A092 2Ii3 &RMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL FIG 1346 ..ANIJPACTRItd METH4OS AND TECNOLOGY PROGRAM PLAN. CY 1960. (U) %EP 60... innovative solutions. For example, material handling, process tools and inspection systems must be computerized to achieve the desired operating economics and...to decrease expensive direct labor; however, the new systems must also be capable of economic layaway for periods of ten years or more, a situation

  1. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  2. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  3. Measurements of Thermophysical Properties of Molten Silicon and Geranium

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    2001-01-01

    The objective of this ground base program is to measure thermophysical properties of molten/ undercooled silicon, germanium, and Si-Ge alloys using a high temperature electrostatic levitator and in clearly assessing the need of the microgravity environment to achieve the objective with higher degrees of accuracy. Silicon and germanium are two of the most important semiconductors for industrial applications: silicon is unsurpassed as a microelectronics material, occupying more than 95% of the electronics market. Si-Ge alloy is attracting keen interest for advanced electronic and optoelectronic applications in view of its variable band gap and lattice parameter depending upon its composition. Accurate thermophysical properties of these materials are very much needed in the semiconductor industry for the growth of large high quality crystals.

  4. 2014 Global Conference on Polymer and Composite Materials (PCM 2014)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    The 2014 Global Conference on Polymer and Composite Materials (PCM 2014) sponsored by Ningbo Adhesives and Products Industry Association, Shanghai Bonding Technology Association, Zhejiang Bonding Technology Association, Wuhan Bonding Technology Association, Hebei Bonding and Coatings Association and Polyurethane Industry Association was held from May 27 to May 29 2014 in Ningbo, China. The technical program consisted of 8 international keynote speakers, oral presentations, and a poster session. The conference also included an industrial exhibition where more than 50 companies displayed in their booths their most recent advanced products and services. The present issue of IOP Conference Series: Materials Science and Engineering (MSE) records the proceedings of PCM 2014 and contains 37 specially selected manuscripts submitted to PCM2014 conference. The electronic submission and handling of manuscripts via the conference website, including the selection of reviewers and evaluation of manuscripts, were identical to the procedures applied to manuscripts submitted as regular contributions for publication. The organization of this conference and the preparation of proceedings volumes would have been impossible without the tremendous efforts and dedication of many individuals, especially from Ms. Yin Pan, who oversaw the organization of the conference and the program; and a large team of reviewers with their timely submission of quality reports. We express our sincere thanks to all authors and presenters for their contributions. We also thank very much our sponsors for their generous support. The 2015 Global Conference on Polymer and Composite Materials (PCM2015) will be held in Beijing, China on May 16-18, 2015. Beijing, the capital of the People's Republic of China and one of the most populous cities in the world, will welcome to all participants for a renewed and vibrant conference. Prof. Dr. Esteban Broitman Linköping University, Sweden Editor in Chief — PCM2014

  5. Talking with members of the globalization of materials R&D study

    NASA Astrophysics Data System (ADS)

    Byko, Maureen

    2006-03-01

    The Committee on Globalization of Materials Research and Development was appointed by the U.S. National Research Council in December 2003. Its charge: to assess the status and impacts of the globalization of materials R&D. The 12-member committee, which included representatives from both U.S. and international academia and industry, published its findings in August 2005 in the form of a report Globalization of Materials R&D —Time for a National Strategy. To gain some perspective on the report's findings, JOM spoke with representatives of the committee, retired from Alcoa; Gordon Geiger, director of the engineering management program and professor of industrial engineering at the University of Arizona; Jennie Hwang, president of H-Technologies Group in Cleveland. Ohio: and Michael Jaffe, director, Medical Device Concept Laboratory of New Jersey Institute of Technology and associate research professor at Rutgers University in Newark, New Jersey. See the sidebar for a listing of the committee's recommendations. The interviews were conducted by e-mail and telephone; respondents chose which questions to answer.

  6. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  7. East Europe Report, Economic and Industrial Affairs, Long-Term Program for Production Quality

    DTIC Science & Technology

    1984-05-29

    increase the production of confectionery goods and snacks with a lower sugar content but enriched with natural juice and vegetable fillers, vegetable and...variety of con- struction materials and items by organizing the production of gasconcrete, extruded asbestos cement walls, gypsum board, heat, water

  8. A GUIDE FOR USE IN DEVELOPING TRAINING PROGRAMS IN DRAFTING AND DESIGN TECHNOLOGY.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson.

    INITIAL COURSE OUTLINES WERE PREPARED BY INSTRUCTORS. INDIVIDUAL COURSES WERE THEN EXPANDED AND COORDINATED WITH OTHER COURSES. THE CURRICULUM LABORATORY STAFF REORGANIZED AND EDITED THE MATERIAL. A COMMITTEE OF INDUSTRIAL REPRESENTATIVES REVIEWED AND PERSONALLY ENDORSED IT AS BEING APPROPRIATE AND ADEQUATE FOR TRAINING DRAFTING AND DESIGN…

  9. Insulator: Apprenticeship Course Outline. Apprenticeship and Industry Training. 3307.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2007

    2007-01-01

    The graduate of the Insulator apprenticeship program is a certified journeyperson who will be able: (1) responsibly do all work tasks expected of a journeyperson; (2) supervise, train and coach apprentices; (3) demonstrate the installation, fitting, fabrication and attachment of insulation, finishing and weatherproofing materials to a high…

  10. Construction Productivity Advancement Research (CPAR) Program. Investigation of Modified Sulfur Concrete as a Structural Material

    DTIC Science & Technology

    1993-07-01

    Industrial applications of modified sulfur concrete (MSC) have been extremely successful in areas of high corrosive activity such as load-bearing...The ductility of MSC in the postyield regime, however, has not been determined in these tests. Bond strength, Modified sulfur concrete, Strength

  11. Issues in Work-Related Education. EAE605 Human Resource Development.

    ERIC Educational Resources Information Center

    Deakin Univ., Victoria (Australia).

    This publication is part of the study materials for the one-semester distance education unit, Human Resource Development, in the Open Campus Program at Deakin University (Australia). It contains three essays that explore the approaches to learning currently modeled within industry. "Training for Women" (Kathy MacDermott) presents the…

  12. Portraying Careers Awareness in Aviation.

    ERIC Educational Resources Information Center

    Buckingham, Roy A.; Amato, Vincent

    1980-01-01

    Discusses the purpose of the half-day program at Indiana State University which provides some notion of careers available in the aviation industry focusing on the professional pilot career. It utilizes the simulators and aviation teaching materials within the Aerospace Department's inventory to help orient college-bound high school students to…

  13. 75 FR 79418 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... 4279-2) for the following: Applicant/Location: Mt. Vernon Seafoods, LLC, Burlington, Washington... ship; purchase equipment, materials and machinery; perform upgrades to factory processor and company owned ship; and to create working capital. The office is to be located in Burlington, Washington. The...

  14. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Information is presented in viewgraph form on a number of related topics. Information is given on orbit transfer vehicles, spacecraft instruments, spaceborne experiments, university/industry programs, spacecraft propulsion, life support systems, cryogenics, spacecraft power supplies, human factors engineering, spacecraft construction materials, aeroassist, aerobraking and aerothermodynamics.

  15. An Architecture for Online Laboratory E-Learning System

    ERIC Educational Resources Information Center

    Duan, Bing; Hosseini, Habib Mir M.; Ling, Keck Voon; Gay, Robert Kheng Leng

    2006-01-01

    Internet-based learning systems, or e-learning, are widely available in institutes, universities, and industrial companies, hosting regular or continuous education programs. The dream of teaching and learning from anywhere and at anytime becomes a reality due to the construction of e-learning infrastructure. Traditional teaching materials and…

  16. Passenger Transportation and Travel Curriculum Guide. Final Report.

    ERIC Educational Resources Information Center

    Lininger, Carol

    This curriculum guide provides materials for a course in passenger transportation and travel. The four-credit, competency-based program provides students with skills necessary to obtain employment in the aviation industry, travel agencies, hotel/motel management, and car rental agencies. An overview of vocational-technical education at the school…

  17. Internship. A Cooperative Effort. Vocational Education and Arkansas Industry.

    ERIC Educational Resources Information Center

    Parks, Beverly; Summers, Gerry

    Intended to assist staff members at vocational-technical schools in developing an internship program, this guide includes explanations of the Internship Project at Petit Jean Vocational Technical School (Arkansas) and sample forms. Prefaced materials include a time line for implementation of internship, and diagrams of an integrated…

  18. A Model for the Redesign of Training Materials for the Nuclear Power Industry.

    ERIC Educational Resources Information Center

    Gredler, Margaret Bell

    1986-01-01

    Presents consultant/staff model for training program redesign and discusses activities involved: interpretation of Instructional System Design (ISD) model concepts into plans in trainer's content area and sequenced sets of content-appropriate verbs for objectives; presenting training sessions on design issues; and holding individual conference…

  19. 48 CFR 904.404 - Solicitation provision and contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provision and contract clause. (d) The security clauses to be used in DOE contracts are found at 952.204. They are: (1) Security, 952.204-2. This clause is required in contracts and subcontracts, the... materials or the provision of protective services. DOE utilizes the National Industrial Security Program but...

  20. 48 CFR 904.404 - Solicitation provision and contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provision and contract clause. (d) The security clauses to be used in DOE contracts are found at 952.204. They are: (1) Security, 952.204-2. This clause is required in contracts and subcontracts, the... materials or the provision of protective services. DOE utilizes the National Industrial Security Program but...

  1. 48 CFR 904.404 - Solicitation provision and contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provision and contract clause. (d) The security clauses to be used in DOE contracts are found at 952.204. They are: (1) Security, 952.204-2. This clause is required in contracts and subcontracts, the... materials or the provision of protective services. DOE utilizes the National Industrial Security Program but...

  2. 48 CFR 904.404 - Solicitation provision and contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provision and contract clause. (d) The security clauses to be used in DOE contracts are found at 952.204. They are: (1) Security, 952.204-2. This clause is required in contracts and subcontracts, the... materials or the provision of protective services. DOE utilizes the National Industrial Security Program but...

  3. 77 FR 31742 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    .... Test Procedure for Commercial Prerinse Spray Valves 4. Design Requirements for Showerheads 5... procedures prescribed or amended under this section shall be reasonably designed to produce test results...] American Society for Testing and Materials [ASTM] Standard F2324, entitled `Standard Test Method for Pre...

  4. SHEET METAL WORKER, A SUGGESTED TRAINING COURSE.

    ERIC Educational Resources Information Center

    RONEY, MAURICE

    THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST ADMINISTRATORS AND INSTRUCTORS IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE WORKERS FOR ENTRY-LEVEL POSITIONS IN THE SHEET METAL INDUSTRY. THE MATERIAL WAS PREPARED UNDER CONTRACTUAL AGREEMENT BY OKLAHOMA STATE UNIVERSITY AND REVIEWED BY ADVISORY GROUPS. IT IS…

  5. 75 FR 10949 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedure for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... definitions for key terms. DATES: These test procedures are effective on April 8, 2010. The incorporation by... as of April 8, 2010. ADDRESSES: You may review copies of all materials related to this rulemaking at... supply characteristics, operational test temperatures, instrumentation requirements, setup connections...

  6. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  7. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Artemi

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore-former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  8. New ceramics incorporated with industrial by-products as pore formers for sorption of toxic chromium from aqueous media

    NASA Astrophysics Data System (ADS)

    Domopoulou, Asimina; Spiliotis, Xenofon; Baklavaridis, Apostolos; Papapolymerou, George; Karayannis, Vayos

    2015-04-01

    The incorporation of secondary resources including various industrial wastes as pore-forming agents into clayey raw material mixtures for the development of tailored porous ceramic microstructures is currently of increasing interest. In the present research, sintered ceramic compacts were developed incorporated with industrial solid by-products as pore formers, and then used as new sorbents for chromium removal from aqueous media. The microstructures obtained were characterized through X-ray diffraction (XRD) analysis as well as scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDX). Sorption potential of chromium from synthetic solutions on the porous ceramics was studied by static adsorption experiments as a function of the pore-former percentage in the ceramic matrix as well as the initial heavy metal (chromium) concentration, solution pH and temperature. Kinetic studies were conducted and adsorption isotherms of chromium were determined using the Langmuir equation. Preliminary experimental results concerning the adsorption characteristics of chromium on the ceramic materials produced appear encouraging for their possible beneficial use as new sorbents for the removal of toxic chromium from aqueous media. Keywords: sorbents, ceramics, industrial solid by-products, pore former, chromium. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program ARCHIMEDES III: Investing in knowledge society through the European Social Fund.

  9. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  10. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  11. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Sanders

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP,more » as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.« less

  12. Developing effective health and safety training materials for workers in beryllium-using industries.

    PubMed

    Mayer, A S; Brazile, W J; Erb, S A; Barker, E A; Miller, C M; Mroz, M M; Maier, L A; Van Dyke, M V

    2013-07-01

    Despite reduced workplace exposures, beryllium sensitization and chronic beryllium disease still occur. Effective health and safety training is needed. Through an Occupational Safety and Health Administration (OSHA) Targeted Topic Training grant and company partners, we developed a training program. Evaluation and validation included knowledge and training reaction assessments and training impact survey. We describe herein the iterative, five-pronged approach: (1) needs assessment; (2) materials development; (3) pilot-testing, evaluation, and material revisions; (4) worker training; and (5) evaluation and validation. Mean posttraining test score increased 14% (82% to 96%; P < 0.005) and were unchanged at 90-day follow-up (94%; P = 0.744). In addition, 49% reported making changes in work practices. The use of a five-pronged training program was effective and well received and resulted in improved work practices. These materials are available on the OSHA Web site.

  13. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  14. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge whichmore » contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.« less

  15. Sustainable Materials Management Challenge Data

    EPA Pesticide Factsheets

    Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program. As part of EPA's Food Recovery Challenge, organizations pledge to improve their sustainable food management practices and report their results. The SMM Electronics Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Federal Green Challenge, a national effort under the EPA??s Sustainable Materials Management Program, challenges EPA and other federal agencies throughout the country to lead by example in reducing the federal government's environmental impact. EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustaina

  16. Proceedings of the sixth annual conference on fossil energy materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) asmore » the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  17. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  18. ChemTechLinks: Alliances for Chemical Technician Education

    NASA Astrophysics Data System (ADS)

    Nameroff, Tamara

    2003-09-01

    ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.

  19. Common Low-cost IM Explosive Program. Development of Next Generation Insensitive Munitions: A Success Story

    DTIC Science & Technology

    2011-11-30

    fuze separating from the shell body preventing high order detonations thus saving the lives of the Soldiers. Unit’s SPC Alan Ng  with his father Peter...Sensitive If not fully compliant, must show improvement over Baseline explosive Affordable Artillery Cost Drivers = Steel Body Material & Explosive Fill...Mortar Cost Drivers = Steel Body Material, Fuze & Propelling Charges Producible within the National Technology and Industrial Base Infrastructure

  20. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra; Jill Jonkowski

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less

  1. Composites Materials and Manufacturing Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  2. The Space Shuttle focused-technology program - Lessons learned

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Gabris, E. A.

    1983-01-01

    The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.

  3. Renewable energy for an environmentally sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.N.

    1993-12-31

    One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less

  4. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  5. Bioprocessing in Space

    NASA Technical Reports Server (NTRS)

    Morrison, D. R. (Compiler)

    1977-01-01

    Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.

  6. Space station needs, attributes and architectural options study. Briefing material, mid-term review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    User mission requirements and their relationship to the current space transportation system are examined as a means of assuring the infusion of corporate ideas and knowledge in the space station program. Specific tasks include developing strategies to develop user consistency; determine DOD implication and requirements; and foster industry involvement in the space station. Mission alternatives; accrued benefits; program options; system attributes and characteristics; and a recommended plan for space station evolution are covered.

  7. The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Dozier, J. B.; Kent, M. I.; Barfield, B. F.

    1982-01-01

    Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed.

  8. Study of noise reduction characteristics of composite fiber-reinforced panels, interior panel configurations, and the application of the tuned damper concept

    NASA Technical Reports Server (NTRS)

    Lameris, J.; Stevenson, S.; Streeter, B.

    1982-01-01

    The application of fiber reinforced composite materials, such as graphite epoxy and Kevlar, for secondary or primary structures developing in the commercial airplane industry was investigated. A composite panel program was initiated to study the effects of some of the parameters that affect noise reduction of these panels. The fiber materials and the ply orientation were chosen to be variables in the test program. It was found that increasing the damping characteristics of a structural panel will reduce the vibration amplitudes at resonant frequencies with attendant reductions in sound reduction. Test results for a dynamic absorber, a tuned damper, are presented and evaluated.

  9. Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing

    NASA Technical Reports Server (NTRS)

    Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.

    1982-01-01

    The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.

  10. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  11. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.

  12. Conducting polymers: Synthesis and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in themore » US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.« less

  13. Industrial Technology Modernization Program. Project 80. Increase Efficiency of Card Test/Device Test Areas by the Usage of Improved Material Handling Systems. Revision 1. Phase 2

    DTIC Science & Technology

    1988-03-01

    INDUSTRY ANALYSIS/FINDINGS 132 12 EQUIPMENT/MACHINERY ALTERNATIVES 134 13 MIS REQUIREMENTS/IMPROVEMENTS 135 14 COST BENEFIT ANALYSIS AND PROCEDURE 137 15...SOFTWARE DIAGRAM 14.0-1 COST BENEFIT ANALYSIS METHODOLOGY 138 14.3-1 PROJECT 80 EXPENDITURE SCHEDULE 141 14.4-1 PROJECT 80 CASH FLOWS 142 15.1-1 PROJECT 80...testing, streamlining work flow, and installation of ergonomically designed work cell/work centers. The benefits associated with the implementation of ITM

  14. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  15. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  16. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  17. Trade and Technical Volumes I: Access Skills. Vocational Readiness Skills. Missouri LINC. Assessing Vocational Education.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Dept. of Practical Arts and Vocational-Technical Education.

    This document contains trade and industrial occupations-related materials to help teachers and parents teach access skills to Missouri junior high and high school special needs students who want to pursue a vocational program in carpentry; commercial art; drafting; electronics; heating, air conditioning, and refrigeration; or offset lithography…

  18. Lather-Interior Systems Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1709

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The graduate of the Lather-Interior Systems Mechanic apprenticeship program is a certified journeyperson who will be able to: (1) know the characteristics and understand the actions and interactions of Lathing and Interior Systems Mechanic materials; (2) interpret plans and specifications and layout and develop projects accordingly; (3) calculate…

  19. Roofer: Apprenticeship Course Outline. Apprenticeship and Industry Training. 2812

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2012

    2012-01-01

    The graduate of the Roofer apprenticeship program is a certified journeyperson who will be able to: (1) understand the principles and practices of roofing; (2) know the characteristics and to understand the actions and interactions of roofing materials; (3) interpret plans and specifications and to layout and develop projects accordingly; (4)…

  20. Boilermaker: Apprenticeship Course Outline. Apprenticeship and Industry Training. 3809.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The graduate of the Boilermaker apprenticeship program is a certified journeyperson who will be able to: (1) understand the principles of drafting; how drawings originate, their purpose and how to correctly interpret the information therein; (2) understand the use of each type of drawing, part work order sketches, materials lists and specification…

  1. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 3, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  2. Price Estimation Guidelines

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Aster, R. W.; Firnett, P. J.; Miller, M. A.

    1985-01-01

    Improved Price Estimation Guidelines, IPEG4, program provides comparatively simple, yet relatively accurate estimate of price of manufactured product. IPEG4 processes user supplied input data to determine estimate of price per unit of production. Input data include equipment cost, space required, labor cost, materials and supplies cost, utility expenses, and production volume on industry wide or process wide basis.

  3. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. D-C MAGNETIC MOTOR CONTROL, UNIT 7, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING DIRECT CURRENT MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, AND PROBLEMS. SOME OF THE LESSONS…

  4. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. A-C CONVENTIONAL MAGNETIC MOTOR CONTROL, PART I, UNIT 5, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING ALTERNATING CURRENT CONVENTIONAL MAGNETIC MOTOR CONTROL IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. EACH OF THE 10 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE, INTRODUCTORY INFORMATION, STUDY REFERENCES, SUPPLEMENTARY…

  5. The Prospect of Motorcycle Safety Education in Secondary Schools.

    ERIC Educational Resources Information Center

    King, Alfred S.

    Motorcycle safety education will become a necessity in the near future due to the growing demands of secondary students for education in this area. The Motorcycle Safety Foundation is sponsored by major motorcycle industries and is involved with developing programs and materials to promote motorcycle safety education. The high rate of motorcycle…

  6. A Curriculum Package for Implementing Instruction in Electricity Fundamentals/House Wiring.

    ERIC Educational Resources Information Center

    Murphy, Brian P.

    This curriculum guide is designed for instructors of secondary industrial arts, vocational, and apprenticeship programs. The material is presented in two sections. Section I provides step-by-step instructions on how to present basic electrical circuit concepts with the use of a simply-made breadboard. Included in this section is the following…

  7. ELECTRICAL AND ELECTRONIC INDUSTRIAL CONTROL. BASIC ELECTRICITY, UNIT 2, ASSIGNMENTS.

    ERIC Educational Resources Information Center

    SUTTON, MACK C.

    THIS GUIDE IS FOR INDIVIDUAL STUDENT USE IN STUDYING BASIC ELECTRICAL FUNDAMENTALS IN ELECTRICAL-ELECTRONIC PROGRAMS. IT WAS DEVELOPED BY AN INSTRUCTIONAL MATERIALS SPECIALIST AND ADVISERS. THE COURSE OBJECTIVE IS TO DEVELOP AN UNDERSTANDING OF DIRECT CURRENT FUNDAMENTALS. EACH OF THE 15 ASSIGNMENT SHEETS PROVIDES THE LESSON SUBJECT, PURPOSE,…

  8. Industrial Arts--Metals Technology: A Curriculum Guide for Intermediate and Secondary Level Programs.

    ERIC Educational Resources Information Center

    Missouri Council for Industrial Arts Education.

    The curriculum outline is designed to aid the instructor in developing a more complete course of study, for intermediate and secondary school students, to give the student an understanding of some of the tools, materials, processes, products, occupational opportunities, requirements, and working conditions associated with the metal and metal…

  9. Floorcovering Installer: Apprenticeship Course Outline. Apprenticeship and Industry Training. 2909

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2009

    2009-01-01

    The graduate of the Floorcovering Installer apprenticeship program is a certified journeyperson who will be able: (1) Use efficiently and safely all hand and power operated equipment used by the Journeyperson Floorcovering Installer; (2) Read and interpret drawings in relation to the trade requirement. Estimate quantities of materials required and…

  10. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  11. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    NASA Technical Reports Server (NTRS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  12. NASA's Space Environments and Effects (SEE) program: contamination engineering technology development

    NASA Astrophysics Data System (ADS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-10-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  13. The Education Review Board: A Mechanism for Managing Potential Conflicts of Interest in Medical Education.

    PubMed

    Borus, Jonathan F; Alexander, Erik K; Bierer, Barbara E; Bringhurst, F Richard; Clark, Christopher; Klanica, Kaley E; Stewart, Erin C; Friedman, Lawrence S

    2015-12-01

    Concerns about the influence of industry support on medical education, research, and patient care have increased in both medical and political circles. Some academic medical centers, questioning whether industry support of medical education could be appropriate and not a conflict of interest, banned such support. In 2009, a Partners HealthCare System commission concluded that interactions with industry remained important to Partners' charitable academic mission and made recommendations to transparently manage such relationships. An Education Review Board (ERB) was created to oversee and manage all industry support of Partners educational activities.Using a case review method, the ERB developed guidelines to implement the commission's recommendations. A multi-funder rule was established that prohibits industry support from only one company for any Partners educational activity. Within that framework, the ERB established guidelines on industry support of educational conferences, clinical fellowships, and trainees' expenses for attending external educational programs; gifts of textbooks and other educational materials; promotional opportunities associated with Partners educational activities; Partners educational activities under contract with an industry entity; and industry-run programs using Partners resources.Although many changes have resulted from the implementation of the ERB guidelines, the number of industry grants for Partners educational activities has remained relatively stable, and funding for these activities declined only moderately during the first three full calendar years (2011-2013) of ERB oversight. The ERB continually educates both the Partners community and industry about the rationale for its guidelines and its openness to their refinement in response to changes in the external environment.

  14. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  15. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  16. Hybrid rocket propellants from lunar material

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas R.

    This paper examines the use of lunar material for hybrid rocket propellants. Liquid oxygen is identified as the primary oxidizer and metals such as aluminum, magnesium, calcium, titanium and silicon are compared as possible fuels. Due to the reduced transportation costs, the use of lunar materials for both oxidizer and fuel will dramatically reduce the cost of a sustained space program. The advantage of hybrid rocket systems over liquid and solid rockets is discussed. It is pointed out that this type of hybrid rocket propellant could also be obtained from asteroidal and planetary soils, thereby facilitating the exploration and industrialization of the inner solar system.

  17. Rhenium ion beam for implantation into semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less

  18. Automation of Space Processing Applications Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Crosmer, W. E.; Neau, O. T.; Poe, J.

    1975-01-01

    The Space Processing Applications Program is examining the effect of weightlessness on key industrial materials processes, such as crystal growth, fine-grain casting of metals, and production of unique and ultra-pure glasses. Because of safety and in order to obtain optimum performance, some of these processes lend themselves to automation. Automation can increase the number of potential Space Shuttle flight opportunities and increase the overall productivity of the program. Five automated facility design concepts and overall payload combinations incorporating these facilities are presented.

  19. Structure-biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopman, G.; Tu, M.

    1997-09-01

    It is shown that a combination of two programs, MultiCASE and META, can help assess the biodegradability of industrial organic materials in the ecosystem. MultiCASE is an artificial intelligence computer program that had been trained to identify molecular substructures believed to cause or inhibit biodegradation and META is an expert system trained to predict the aerobic biodegradation products of organic molecules. These two programs can be used to help evaluate the fate of disposed chemicals by estimating their biodegradability and the nature of their biodegradation products under conditions that may model the environment.

  20. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less

  1. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  2. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. Themore » second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference management cost ceiling in the Conference Management Tool.« less

  3. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  4. Ceramic technology for advanced heat engines project. Semiannual progress report, October 1985-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less

  5. Overview of NATO Background on Scramjet Technology. Chapter 1

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Bouchez, Marc; McClinton, Charles R.

    2006-01-01

    The purpose of the present overview is to summarize the current knowledge of the NATO contributors. All the topics will be addressed in this chapter, with references and some examples. This background enhances the level of knowledge of the NATO scramjet community, which will be used for writing the specific chapters of the Report. Some previous overviews have been published on scramjet technology worldwide. NASA, DOD, the U.S. industry and global community have studied scramjet-powered hypersonic vehicles for over 40 years. Within the U.S. alone, NASA, DOD (DARPA, U.S. Navy and USAF), and industry have participated in hypersonic technology development. Over this time NASA Langley Research Center continuously studied hypersonic system design, aerothermodynamics, scramjet propulsion, propulsion-airframe integration, high temperature materials and structural architectures, and associated facilities, instrumentation and test methods. These modestly funded programs were substantially augmented during the National Aero-Space Plane (X-30) Program, which spent more than $3B between 1984 and 1995, and brought the DOD and other NASA Centers, universities and industry back into hypersonics. In addition, significant progress was achieved in all technologies required for hypersonic flight, and much of that technology was transferred into other programs, such as X-33, DC-X, X-37, X-43, etc. In addition, technology transfer impacted numerous other industries, including automotive, medical, sports and aerospace.

  6. Multiyear Program Plan for the High Temperature Materials Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less

  7. Implementation Guide of Suggested School-to-Work Career Guidance Strategies for School Personnel and Students.

    ERIC Educational Resources Information Center

    Vocational Curriculum Resource Center of Maine, Fairfield.

    This guide, which is intended to help practitioners replicate two model career guidance programs developed at Portland Arts and Technology High School in Portland, Maine, contains materials for conducting a course titled "Exploring Industry" and a career fair. The first half of the guide begins with coordinator instructions and logistics…

  8. Trade and Technical. Volume II. Access Skills. Vocational Readiness Skills. Missouri LINC. Assessing Vocational Education.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Dept. of Practical Arts and Vocational-Technical Education.

    This document contains trade and industrial occupations-related materials to help teachers and parents teach access skills to Missouri junior high and high school special needs students who want to pursue a vocational program in auto body repair, auto mechanics, building maintenance and custodial work, diesel mechanics, machinist, small engine…

  9. Graduate School Programs Today: Relations between the University and Industry

    ERIC Educational Resources Information Center

    Griban'kova, A. A.

    2012-01-01

    Like their counterparts in other countries, Russian students increasingly are entering graduate schools with a view to being involved in the application of research beyond the academy. Under the conditions of the raw materials economy that has become dominant in Russia over the past two decades, however, the demand for innovation is limited and of…

  10. Training for Leisure. Flexible Training Packages for Operatives in Leisure-Related Industries. Part 2.

    ERIC Educational Resources Information Center

    Hunt, Merle; Specht, Carolynne

    This curriculum guide for training for leisure occupations in the United Kingdom includes eight modules that have been tested and evaluated. Each module includes objectives and teaching strategies. Programs are encouraged to adapt the materials to particular local needs. The modules included are as follows: (1) personal development; (2) center…

  11. Manufacturing Technology and Industrial Modernization Incentive Programs

    DTIC Science & Technology

    1991-07-01

    report are those of the contractors and should not be Interpreted as representing the official policies, either expressed or Impli.d, of tte Naval Ocean...Countaermeaue * Undersea countermeasures. special warfare, amphibious warfare. tamc mine countermeasures, and diving Dkected energy . Naval Surface Warfare...Insensitie highly energetic materials -Command control, commiunications, ocean surveillance, surface- and air-launched undersea weapons, and submarine arctic

  12. Machine Shop Suggested Job and Task Sheets. Part I. 25 Elementary Jobs.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of elementary job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-five simple machine shop job sheets are included. Some or all of this material is provided for each job sheet: an introductory sheet with aim, checking…

  13. Machine Shop Suggested Job and Task Sheets. Part II. 21 Advanced Jobs.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This volume consists of advanced job and task sheets adaptable for use in the regular vocational industrial education programs for the training of machinists and machine shop operators. Twenty-one advanced machine shop job sheets are included. Some or all of this material is provided for each job: an introductory sheet with aim, checking…

  14. Survey of industrial dryers for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, A.S.; Jensen, W.P.

    1976-07-01

    A study was directed toward obtaining data for an estimate of the current and anticipated energy demand for industrial drying operations for solid materials. Twenty-seven dryer types, including those utilizing both direct and indirect heat sources, were identified and are described. Results of an analysis made on 17 dryer types and based on data obtained from several of the largest solids dryer manufacturers indicate that industrial dryers for solids currently consume about 1.3 x 10/sup 18/ J (1.2 quads) of energy. This represents nearly 4 percent of the total United States industrial energy use. Several examples of steps being takenmore » by industry to reduce energy requirements for solids drying are included. Still further action to reduce energy consumption of dryers is possible; implementation will depend upon the extent to which incentives are provided by fuel scarcity, fuel costs, and the perfection of new technology by industry alone and in programs with the Federal Government.« less

  15. Tobacco industry success in Costa Rica: The importance of FCTC Article 5.3

    PubMed Central

    Crosbie, Eric; Sebrié, Ernesto M; Glantz, Stanton A

    2012-01-01

    Objective To analyze how the tobacco industry influenced tobacco control policymaking in Costa Rica. Materials and Methods Review of tobacco industry documents, tobacco control legislation, newspaper articles, and interviewing of key informants. Results During the mid-to-late 1980s, Health Ministry issued several advanced (for their time) smoking restriction decrees causing British American Tobacco (BAT) and Philip Morris International (PMI) to strengthen their political presence there, resulting in passage of a weak 1995 law, which, as of August 2011, remained in effect. Since 1995 the industry has used Costa Rica as a pilot site for Latin American programs and has dominated policymaking by influencing the Health Ministry, including direct private negotiations with the tobacco industry which violate Article 5.3’s implementing guidelines of the World Health Organization Framework Convention on Tobacco Control (WHO FCTC). Conclusions The Costa Rica experience demonstrates the importance of vigorous implementation of FCTC Article 5.3 which insulates public health policymaking from industry interference. PMID:22286826

  16. Space station needs attributes and architectural options study costing working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Individuals in the United States who understand the promise of materials processing in space and who also are senior technical personnel associated with commercial firms that process materials: (1) endorsed the concept of a space station as a desirable national asset; (2) stated that a commercial MPS research program is mandatory to extend commericalization of space for materials processing; and (3) described in general terms a national research laboratory and free flying facilities that are needed. Participants agreed that industry R&D is motivated largely by market pull rather than by technology push, that initial interest is low-g materials research; and that to farther, commercial market assurance (a salable product) is a must.

  17. Tobacco Industry Youth Smoking Prevention Programs: Protecting the Industry and Hurting Tobacco Control

    PubMed Central

    Landman, Anne; Ling, Pamela M.; Glantz, Stanton A.

    2002-01-01

    Objectives. This report describes the history, true goals, and effects of tobacco industry–sponsored youth smoking prevention programs. Methods. We analyzed previously-secret tobacco industry documents. Results. The industry started these programs in the 1980s to forestall legislation that would restrict industry activities. Industry programs portray smoking as an adult choice and fail to discuss how tobacco advertising promotes smoking or the health dangers of smoking. The industry has used these programs to fight taxes, clean-indoor-air laws, and marketing restrictions worldwide. There is no evidence that these programs decrease smoking among youths. Conclusions. Tobacco industry youth programs do more harm than good for tobacco control. The tobacco industry should not be allowed to run or directly fund youth smoking prevention programs. PMID:12036777

  18. Implementation of a solvent management program to control paint shop volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Wastemore » Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.« less

  19. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  20. Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage

    NASA Astrophysics Data System (ADS)

    Perera, Gayathri; Ratnayake, Vijitha

    2018-05-01

    This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is validated based on data collected from three different factories in apparel industry, manufacturing fast fashion products. A program code is developed using Lingo 16.0 software package to generate optimal cells for developed model and to determine the possible cost-saving percentage when the existing layouts used in three factories are replaced by generated optimal cells. The optimal cells generated by developed mathematical model result in significant cost saving when compared with existing product layouts used in production/assembly department of selected factories in apparel industry. The developed model can be considered as effective in minimizing the considered cost terms in dynamic production environment of fast fashion apparel manufacturing industry. Findings of this paper can be used for further researches on minimizing the changeover-related costs in fast fashion apparel production stage.

  1. Opportunity for academic research in a low-gravity environment - Crystal growth

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Wargo, M. J.; Witt, A. F.

    1986-01-01

    The history of basic and applied research on crystal growth (CG), especially of semiconductor materials, is reviewed, stressing the dominance (at least in the U.S.) of industrial R&D projects over academic programs and the need for more extensive fundamental investigations. The NASA microgravity research program and the recommendations of the University Space Research Association are examined as they affect the availability of space facilities for academic CG research. Also included is a report on ground experiments on the effectiveness of magnetic fields in controlling vertical Bridgman CG and melt stability, using the apparatus employed in the Apollo-Soyuz experiments (Witt et al., 1978); the results are presented in graphs and briefly characterized. The role of NASA's microgravity CG program in stimulating academic work on CG, the importance of convection effects, CG work on materials other than semiconductors, and NSF support of CG research are discussed in a comment by R. F. Sekerka.

  2. Business in orbit - The commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1985-01-01

    Current and proposed business opportunities in space are discussed. The advantages offered by the zero gravity environment of space are examined. The roles of the Space Shuttle and the Space Station in space commercialization are described. International development and use of the Space Station is proposed. It is observed that the communications satellite industry is a successful space venture, and opportunities for materials processing and pharmaceuticals production in space are considered. The relationship between NASA's Office of Commercial Programs, which assists businesses in space commercialization, and industry is studied. The impact of space commercialization on the national economy and international trade is analyzed.

  3. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    NASA Astrophysics Data System (ADS)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  4. Successful implementation of property cleanup under the Ohio and the Texas voluntary programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffman, A.

    1999-07-01

    Cleanups of two properties, one located in Ohio and the other in Texas were successfully implemented. The facilities were printing plants that manufactured printed material and forms for commercial and industrial use. Primary products and chemicals involved in the manufacturing of the forms included ink, petroleum products and cleaning solvents. The Ohio property underwent a successful cleanup under the Ohio EPA Voluntary Action Program (VAP). It met the Ohio EPA residential land use cleanup standards for soil and shallow groundwater. A No Further Action letter has been submitted to the state and it resulted in the issuance of a Covenantmore » Not to Sue. The Texas facility underwent a successful cleanup under the Texas Natural Resource Conservation Commission (TNRCC) Voluntary Cleanup Program (VCP). It resulted in the issuance of a Certificate of Completion (COC) for residential land use for soil, and a conditional COC for industrial land use for the shallow groundwater.« less

  5. Microgravity Materials Research and Code U ISRU

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Sibille, Laurent

    2004-01-01

    The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.

  6. Material electronic quality specifications for polycrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-06-01

    As the use of polycrystalline silicon wafers has expanded in the photovoltaic industry, the need grows for monitoring and qualification techniques for as-grown material that can be used to optimize crystal growth and help predict solar cell performance. Particular needs are for obtaining quantitative measures over full wafer areas of the effects of lifetime limiting defects and of the lifetime upgrading taking place during solar cell processing. We review here the approaches being pursued in programs under way to develop material quality specifications for thin Edge-defined Film-fed Growth (EFG) polycrystalline silicon as-grown wafers. These studies involve collaborations between Mobil Solar, and NREL and university-based laboratories.

  7. Space Resource Roundtable Rationale

    NASA Astrophysics Data System (ADS)

    Duke, Michael

    1999-01-01

    Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That is why there is an emphasis in NASA programs on propellant production on Mars - NASA plans missions to Mars, so could make use of those propellants. For other types of applications, however, it will be up to market forces to define the materials and products needed and develop the technologies for extracting them from space resources. Some leading candidates among the potential products from space resources are propellants for other space activities, water from the Moon for use in space, silicon for photovoltaic energy collection in space, and, eventually, He-3 from the Moon for fusion energy production. As the capabilities for manufacturing materials in space are opened up by research aboard the International Space Station, new opportunities for utilization of space resources may emerge. Whereas current research emphasizes increasing knowledge, one program objective should be the development of industrial production techniques for space. These will be based on the development of value-added processing in space, where materials are brought to the space facility, processed there, and returned to Earth. If enough such space processing is developed that the materials transportation requirements are measured in the hundreds of tons a year level, opportunities for substituting lunar materials may develop. The fundamental message is that it is not possible to develop space resources in a vacuum. One must have three things: a recoverable resource, technology to recover it, and a customer. Of these, the customer probably is the most important. All three must be integrated in a space resource program. That is what the Space Resource Roundtable, initiated with this meeting, will bring together.

  8. USGS Mineral Resources Program: A National Perspective

    USGS Publications Warehouse

    Kropschot, S.J.

    1998-01-01

    Minerals are chemical compounds abundant in the rocks, soil, and water around us and they have a profound impact on the lives of all beings. Naturally occurring minerals define the landscape in which we live. They affect our ecosystems, influence the availability of nutrients that support biota, impact the distribution of vegetation, and may also contribute to contamination of the environment. Minerals are used in fertilizers for farming, in concrete and building materials for construction, in aggregate for roads, in steel for cars and all manner of transportation, and in materials crucial to the communications industry.

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.

  10. NASA's Space Environments and Effects (SEE) Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody

    2001-01-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.

  11. A Trip to the Statler Hilton Hotel. The Special Education Curriculum Series.

    ERIC Educational Resources Information Center

    Kendall, Muriel

    A program designed for high school level work-study classes for students of limited mental ability presents specific curriculum methods and materials to teach information regarding positions available in the hotel industry. A field trip tour of the Boston Statler Hilton Hotel if the focal activity of the unit, and is accompanied by a history of…

  12. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2017-12-09

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  13. Basic Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook 1 [and] Student Workbook 2.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary; Blasingame, Don

    Basic Wiring, first in a series of three wiring publications, serves as the foundation for students enrolled in a wiring program. It is a prerequisite to Commercial and Industrial Wiring or Residential Wiring. Instructional materials include a teacher edition, student guide, and two student workbooks. The teacher edition begins with introductory…

  14. Idaho Science, Technology, Engineering and Mathematics Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P

    2011-02-11

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  16. A Guide to the Design of Occupational Safety and Health Training for Immigrant, Latino/a Dairy Workers

    PubMed Central

    Menger, Lauren M.; Rosecrance, John; Stallones, Lorann; Roman-Muniz, Ivette Noami

    2016-01-01

    Industrialized dairy production in the U.S. relies on an immigrant, primarily Latino/a, workforce to meet greater production demands. Given the high rates of injuries and illnesses on U.S. dairies, there is pressing need to develop culturally appropriate training to promote safe practices among immigrant, Latino/a dairy workers. To date, there have been few published research articles or guidelines specific to developing effective occupational safety and health (OSH) training for immigrant, Latino/a workers in the dairy industry. Literature relevant to safety training for immigrant workers in agriculture and other high-risk industries (e.g., construction) was examined to identify promising approaches. The aim of this paper is to provide a practical guide for researchers and practitioners involved in the design and implementation of effective OSH training programs for immigrant, Latino/a workers in the dairy industry. The search was restricted to peer-reviewed academic journals and guidelines published between 1980 and 2015 by universities or extension programs, written in English, and related to health and safety training among immigrant, Latino/a workers within agriculture and other high-risk industries. Relevant recommendations regarding effective training transfer were also included from literature in the field of industrial–organizational psychology. A total of 97 articles were identified, of which 65 met the inclusion criteria and made a unique and significant contribution. The review revealed a number of promising strategies for how to effectively tailor health and safety training for immigrant, Latino/a workers in the dairy industry grouped under five main themes: (1) understanding and involving workers; (2) training content and materials; (3) training methods; (4) maximizing worker engagement; and (5) program evaluation. The identification of best practices in the design and implementation of training programs for immigrant, Latino/a workers within agriculture and other high-risk industries can inform the development of more effective and sustainable health and safety training for immigrant, Latino/a dairy workers in the U.S. and other countries. PMID:28066760

  17. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  18. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  19. The solid waste dilemma

    USGS Publications Warehouse

    Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.

    1996-01-01

    In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.

  20. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  1. Crystal Growth and Other Materials Physical Researches in Space Environment

    NASA Astrophysics Data System (ADS)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  2. NPDES permit compliance and enforcement: A resource guide for oil and gas operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatmentmore » technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.« less

  3. NDE research efforts at the FAA Center for Aviation Systems Reliability

    NASA Technical Reports Server (NTRS)

    Thompson, Donald O.; Brasche, Lisa J. H.

    1992-01-01

    The Federal Aviation Administration-Center for Aviation Systems Reliability (FAA-CASR), a part of the Institute for Physical Research and Technology at Iowa State University, began operation in the Fall of 1990 with funding from the FAA. The mission of the FAA-CASR is to develop quantitative nondestructive evaluation (NDE) methods for aircraft structures and materials including prototype instrumentation, software, techniques, and procedures and to develop and maintain comprehensive education and training programs in aviation specific inspection procedures and practices. To accomplish this mission, FAA-CASR brings together resources from universities, government, and industry to develop a comprehensive approach to problems specific to the aviation industry. The problem areas are targeted by the FAA, aviation manufacturers, the airline industry and other members of the aviation business community. This consortium approach ensures that the focus of the efforts is on relevant problems and also facilitates effective transfer of the results to industry.

  4. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  5. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  6. Materials for stem cell factories of the future

    NASA Astrophysics Data System (ADS)

    Celiz, Adam D.; Smith, James G. W.; Langer, Robert; Anderson, Daniel G.; Winkler, David A.; Barrett, David A.; Davies, Martyn C.; Young, Lorraine E.; Denning, Chris; Alexander, Morgan R.

    2014-06-01

    Polymeric substrates are being identified that could permit translation of human pluripotent stem cells from laboratory-based research to industrial-scale biomedicine. Well-defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large-scale drug-screening programs and clinical use. Yet more than 1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells is challenging, and a rethink of the current predominant cell-derived substrates is needed to provide technology that can be scaled to meet the needs of millions of patients a year. In this Review, we consider the role of materials discovery, an emerging area of materials chemistry that is in large part driven by the challenges posed by biologists to materials scientists.

  7. High Tc superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1990-01-01

    The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.

  8. Space Station Workshop: Commercial Missions and User Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.

  9. Evaluation of potential emission spectra for the reliable classification of fluorescently coded materials

    NASA Astrophysics Data System (ADS)

    Brunner, Siegfried; Kargel, Christian

    2011-06-01

    The conservation and efficient use of natural and especially strategic resources like oil and water have become global issues, which increasingly initiate environmental and political activities for comprehensive recycling programs. To effectively reutilize oil-based materials necessary in many industrial fields (e.g. chemical and pharmaceutical industry, automotive, packaging), appropriate methods for a fast and highly reliable automated material identification are required. One non-contacting, color- and shape-independent new technique that eliminates the shortcomings of existing methods is to label materials like plastics with certain combinations of fluorescent markers ("optical codes", "optical fingerprints") incorporated during manufacture. Since time-resolved measurements are complex (and expensive), fluorescent markers must be designed that possess unique spectral signatures. The number of identifiable materials increases with the number of fluorescent markers that can be reliably distinguished within the limited wavelength band available. In this article we shall investigate the reliable detection and classification of fluorescent markers with specific fluorescence emission spectra. These simulated spectra are modeled based on realistic fluorescence spectra acquired from material samples using a modern VNIR spectral imaging system. In order to maximize the number of materials that can be reliably identified, we evaluate the performance of 8 classification algorithms based on different spectral similarity measures. The results help guide the design of appropriate fluorescent markers, optical sensors and the overall measurement system.

  10. Industry/University Cooperative Programs. Proceedings of a Workshop Held in Conjunction with the Annual Meeting of the Council of Graduate Schools in the United States (20th, Las Vegas, Nevada, December 2, 1980).

    ERIC Educational Resources Information Center

    Council of Graduate Schools in the U.S., Washington, DC.

    Proceedings of a 1980 workshop on industry/university cooperative programs are presented. Program presentations and authors include: "On Industry/Academia Relations" (T. Baron); "The MIT Liaison Program" (J. D. Bruce); "An Industrial Perspective of Academic Programs" (R. Fuller); "University/Industry Interactions…

  11. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  12. Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd.

    2008-05-01

    The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphical illustrations. These results are compared with previous research work within the same field to validate and verify.

  13. Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd.

    2008-05-20

    The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphicalmore » illustrations. These results are compared with previous research work within the same field to validate and verify.« less

  14. IRM National Reference Series: Japan: An evaluation of government-sponsored energy conservation research and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, C.D.

    1987-07-01

    Despite the recent drop in world oil prices, the Japanese government is continuing to stress energy conservation, because Japan relies on imports for 85% of its total energy requirements and virtually 100% of its petroleum. Japan stresses long-term developments and sees conservation as an integral part of its 50- to 100-year transition from fossil fuels to nuclear and renewable sources of energy. The Japanese government is targeting new materials, biotechnology, and electronics technologies as the foundation of Japan's economy in the 21st century. Most government research programs in Japan are governed by aggressive timetables and fixed technical goals and aremore » usually guaranteed funding over a 5- to 10-year period. Of the major energy conservation research programs, the best known is the Moonlight Project, administered by the Ministry of International Trade and Industry (MITI), and oriented towards end-use technologies such as Stirling engines and advanced heat pumps. Parts of MITI's Basic Technologies for Future Industries Program involve research in new materials and bioreactors. The Science and Technology Agency's Exploratory Research in Advanced Technologies (ERATO) Program is also investigating these technologies while emphasizing basic research. Other ministries supporting research related to energy conservation are the Ministry of Education, Science, and Culture and the Ministry of Construction. For 1985, government spending for energy conservation research was at least $50 million. Private sector funding of energy conservation research was $500 million in 1984. A brief outline of major programs and key participants is included for several of the most relevant technologies. An overview of Japan's experience in international scientific collaboration is also included.« less

  15. Preliminary Design of Industrial Symbiosis of Smes Using Material Flow Cost Accounting (MFCA) Method

    NASA Astrophysics Data System (ADS)

    Astuti, Rahayu Siwi Dwi; Astuti, Arieyanti Dwi; Hadiyanto

    2018-02-01

    Industrial symbiosis is a collaboration of several industries to share their necessities such material, energy, technology as well as waste management. As a part of industrial ecology, in principle, this system attempts to emulate ecosystem where waste of an organism is being used by another organism, therefore there is no waste in the nature. This system becomes an effort to optimize resources (material and energy) as well as minimize waste. Considerable, in a symbiosis incure material and energy flows among industries. Material and energy in an industry are known as cost carriers, thus flow analysis in this system can be conducted in perspective of material, energy and cost, or called as material flow cost accounting (MFCA) that is an economic and ecological appraisal approach. Previous researches shown that MFCA implementation could be used to evaluate an industry's environmental-related efficiency as well as in planning, business control and decision making. Moreover, the MFCA has been extended to assess environmental performance of SMEs Cluster or industrial symbiosis in SMEs Cluster, even to make preliminary design of an industrial symbiosis base on a major industry. This paper describes the use of MFCA to asses performance of SMEs industrial symbiosis and to improve the performance.

  16. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  17. Occupational injuries in workers from different ethnicities

    PubMed Central

    Mekkodathil, Ahammed; El-Menyar, Ayman; Al-Thani, Hassan

    2016-01-01

    Objectives: Occupational injuries remain an important unresolved issue in many of the developing and developed countries. We aimed to outline the causes, characteristics, measures and impact of occupational injuries among different ethnicities. Materials and Methods: We reviewed the literatures using PUBMED, MEDLINE, Google Scholar and EMBASE search engine using words: “Occupational injuries” and “workplace” between 1984 and 2014. Results: Incidence of fatal occupational injuries decreased over time in many countries. However, it increased in the migrant, foreign born and ethnic minority workers in certain high risk industries. Disproportionate representations of those groups in different industries resulted in wide range of fatality rates. Conclusions: Overrepresentation of migrant workers, foreign born and ethnic minorities in high risk and unskilled occupations warrants effective safety training programs and enforcement of laws to assure safe workplaces. The burden of occupational injuries at the individual and community levels urges the development and implementation of effective preventive programs. PMID:27051619

  18. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  19. Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, George; Back, Christina

    2015-10-30

    As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less

  20. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  1. Industry-Based Bilingual Vocational Training. A Directory of Industry-Based Training Programs for LEP Adults.

    ERIC Educational Resources Information Center

    Thomas, Robert J.; Rhodes, Paula

    The purposes of this directory of existing industry-based training programs--for limited English-proficient (LEP) adults employed in those industries--are as follows: (1) to provide a sense of the types of existing industry-based programs available to LEP employees; (2) to identify programs with the potential of implementing bilingual vocational…

  2. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    Williams, James C.

    2004-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.

  3. German national femtosecond technology project (FST)

    NASA Astrophysics Data System (ADS)

    Dausinger, Friedrich

    2002-06-01

    The German federal government started the funding of a national project intended to exploit the potential of femtosecond technology. In a forgoing competition five research consortia had been successful and have started now together with an adjoin research consortium their investigations in the following fields: (i) micro-machining of technical materials for microstructuring and drilling, (ii) medical therapy in: ophthalmology, dentistry, neurology and ear surgery, (iii) metrology, (iv) laser safety, (v) x- ray generation. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.

  4. Engineering and programming manual: Two-dimensional kinetic reference computer program (TDK)

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.; Coats, D. E.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. The development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference is presented. Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program. This new material reflects the new capabilities of the TDK computer program, the most important of which are described.

  5. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  6. A History of Women in the Trades for Integration with the Gender Equity in Education and the Workplace Curriculum.

    ERIC Educational Resources Information Center

    Grey, Morgan, Comp.

    This document, which was originally intended to complement a curriculum titled "Gender Equity in Education and the Workplace," is a compilation of the historical contributions made by women in trade and technical careers that may be used as a source of materials suitable for integration into existing trade and industrial education programs.…

  7. Third NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)

    1995-01-01

    This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.

  8. Crane and Hoisting Equipment Operator Boom Truck Operator: Apprenticeship Course Outline. Apprenticeship and Industry Training. 34-305.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2005

    2005-01-01

    The graduate of the Crane and Hoisting Equipment Operator Boom Truck Operator apprenticeship program is a certified journeyperson who will be able to: (1) responsibly do all work tasks expected of a journeyperson; (2) correctly use and care for tools and materials which are required to carry out the normal service and maintenance of the machines…

  9. Methodology to Improve Aviation Security With Terrorist Using Aircraft as a Weapon

    DTIC Science & Technology

    2013-09-01

    STATEMENT Approval for public release;distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words ) The aviation industry... Electronic Baggage Screening Program EDS Explosive Detection System EMMI Energy, Matter, Material wealth, and Information ETD Explosives Trace...12 All checked baggage in the United States has been subjected to 100% screening since December 2003 under TSA’s Electronic Baggage Screening

  10. Wheelchairmanship Project. A Program to Educate Personnel in the Transportation, Hotel and Restaurant, and Entertainment Industries in Improved Techniques for Serving Disabled People. Final Report.

    ERIC Educational Resources Information Center

    Smith, Anita P.; And Others

    In a project designed to train customer service personnel in improved methods of assisting the physically disabled, audio-visual training materials were developed and presented during 2-week courses involving 1,058 employees at transportation, hotel/restaurant, and entertainment centers in 25 cities. The participants judged the training program…

  11. The Evolution of a Graduate Writing Program: The Master of Arts in Professional Writing at Carnegie Mellon University. CDC Technical Report No. 33.

    ERIC Educational Resources Information Center

    Jones, G. H.; Steinberg, E. R.

    The Master of Arts in Professional Writing (MAPW) offered by Carnegie Mellon University (Pennsylvania) is designed for students who want careers as document designers in industry and government, where they will plan, write, and evaluate computer manuals and on-line documentation, training and instructional materials, technical reports, and a wide…

  12. Opportunities for expanded and higher value utilization of No. 3A Common hardwood lumber

    Treesearch

    Brian P. Shepley; Jan Wiedenbeck; Robert L. Smith

    2004-01-01

    The percentage of low-grade material composing the annual hardwood lumber production in the United States is on the rise. As a result, finding markets for low-grade and low-value lumber has been identified as a top priority by researchers and industry associations. This research used the ROMI-RIP and ROMI-CROSS simulation programs to determine specific conditions that...

  13. The Impact of Accounting Methods on Cost Reduction Rates in Defense Aerospace Weapons System Programs

    DTIC Science & Technology

    1988-12-01

    and adhered to in U.S. industry, allow some flexibility in accounting. Under GAAP , accounting areas such as depreciation , inventory, investment tax... depreciation , inventory and investment tax credit) in predicting cost reduction rates are studied. Of the three accounting variables, only inventory...RATES .. ................. ........... 5 1. Depreciation ........ ............... 6 2. Capitalizing or Expensing of Costs . . .. 6 3. Material Costs

  14. Final Report on an Analysis of the Education and Training Systems at Milan, Michigan and Terre Haute, Indiana to Federal Prison Industries Incorporated, U.S. Department of Justice.

    ERIC Educational Resources Information Center

    Hitt, William D.; And Others

    Existing education and training (E&T) programs at the Terre Haute Penitentiary, Indiana, and the Milan Federal Correctional Institution, Michigan, were described and evaluated. Needs, objectives, inmate classification and placement, staff, and other aspects were covered. Reports, staff and inmate interviews, study of instructional materials, and…

  15. Mass Customization of Education by an Institution of HE: What Can We Learn from Industry?

    ERIC Educational Resources Information Center

    Schuwer, Robert; Kusters, Rob

    2014-01-01

    One of the claims the OER movement makes is that availability of (open) digital learning materials improves the quality of education. The promise is the ability to offer educational programs that take into account specific demands of the learner. The question is how to reach a situation where a customized demand can be met using OER with…

  16. Support for Development of Electronics and Materials Technologies by the Governments of the United States, Japan, West Germany, France, and the United Kingdom.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    The governments of the United States, Japan, West Germany, France, and the United Kingdom each have large research and development efforts involving government agencies, universities and industry. This document provides a comparative overview of policies and programs which contribute to the development of technologies in the general area of…

  17. Systems Design and Nature of Work. (Seminar on Manpower Policy and Program, Washington, D.C., November 17, 1966)

    ERIC Educational Resources Information Center

    DeCarlo, Charles R.

    The application of technology to production has had the effect of continuously removing man to greater distances from the actual material, or work, being transformed in the environment. We are about to enter a new phase of history, sometimes called the second industrial revolution, in which work occupies a different role in life. This revolution…

  18. Postdoctoral pharmacy industry fellowships: a descriptive analysis of programs and postgraduate positions.

    PubMed

    Melillo, Stephanie; Gangadharan, Amy; Johnson, Hiliary; Schleck, Patrick; Steinberg, Michael; Alexander, James G

    2012-01-01

    Postdoctoral pharmacy industry fellowship programs and the employment of fellowship graduates are described. A list of postgraduate industry fellowships was gathered from the 2009 ASHP Midyear Clinical Meeting. Data regarding program characteristics were collected using the Personnel Placement Service database and program-specific brochures. After data compilation, a standardized survey was sent in January 2010 via e-mail to the point of contact for all programs to confirm the accuracy of the program's characteristics. Only academically affiliated industry fellowship programs were analyzed. Retrospective data were collected regarding the first position of employment for all fellows who graduated from the program between 2005 and 2009 and the position of those same individuals at the time of survey completion. Surveys were sent to 64 postgraduate industry fellowship programs affiliated with a school of pharmacy, 56 (87.5%) of whom responded. The departmental breakdown for positions offered (n = 75) across all academically affiliated industry fellowship programs (including nonresponders) was as follows: medical affairs (38.7%, n = 29), clinical research (32.0%, n = 24), regulatory affairs (9.3%, n = 7), commercial (8.0%, n = 6), health economics and outcomes research (8.0%, n = 6), and pharmacovigilance (4.0%, n = 3). Data from fellows during years 1-5 after completion of the industry fellowship indicated that 90.5% of former fellows remained in the industry (n = 238). The postgraduate industry fellowship programs surveyed indicated that the majority of fellowship graduates continued to hold positions in industry after program completion. The majority of industry fellowships and subsequent job placements occurred in the areas of medical affairs, clinical research, and regulatory affairs.

  19. High-rise construction in the Russian economy: modeling of management decisions

    NASA Astrophysics Data System (ADS)

    Miroshnikova, Tatyana; Taskaeva, Natalia

    2018-03-01

    The growth in the building industry, particularly in residential high-rise construction, is having considerable influence on the country's economic development. The scientific hypothesis of the research is that the execution of town-planning programs of high-rise construction depends to a large extent on the management of the provision of material resources for the construction of a millionth city, while the balance model is the most important tool for establishing and determining the ratio between supply and demand for material resources. In order to improve the efficiency of high-rise building management, it is proposed to develop a methodology for managing the provision of construction of large cities with material resources.

  20. An Investigation of the Effectiveness of Four-Year Industrial Technology Programs In Preparing Industrial Electronic Technicians to Meet the Requirements of Industry.

    ERIC Educational Resources Information Center

    Prewitt, Roger W.

    To determine the effectiveness of the 4-year industrial technology programs in preparing industrial electronic technicians for employment in industry, data were obtained through an opinionnaire, which was sent to the higher education institutions offering a 4-year electronic technician program and to selected industrial representatives located in…

  1. Understanding transferable supply chain lessons and practices to a "high-tech" industry using guidelines from a primary sector industry: a case study in the food industry supply chain.

    PubMed

    Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S

    2015-01-01

    Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry.

  2. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  3. DOE-OTM Tribology Program semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The OTM Tribology Program supports applied research and exploratory development which private enterprise will not or cannot pursue, in specifically identified industrial problem areas pertaining to energy conservation in the transportation sector. Under the current Annual Operating Plan (AOP) the tribology project is structured to conform with the ongoing and planned research activities in three program elements: (1) advanced lubrication--experimental investigations of lubrication phenomena and the development of improved or novel lubricants and lubricant-delivery systems for current and advanced engine systems; (2) engineered tribological interfaces--research and development on various coating processes to modify the microstructure and chemical composition of near-surfacemore » regions in order to improve their friction and wear properties for use in advanced engine designs; (3) advanced tribomaterials and components--tribomaterials evaluation of the friction and wear behavior of newly emerging materials, particularly those promising low friction and wealth at elevated temperatures in advanced engine designs: and tribocomponents evaluation which focuses on development of models, analysis/design tools to enable US transportation industry to employ a tribology-by-design approach and dissemination of program developments to the US transportation industry. Project Management encompasses the administrative and managerial duties of planning, including assessments of application areas with significant tribological energy losses and opportunities for tribological advances in the transportation sector; program implementation, including the review of proposals, organization and conduct of RFP and/or ROA solicitations, selection of R and D projects; and the issues of contracts grants and purchase orders; monitoring of project activities: reporting, information exchange and technology transfer. The current organization of the tribology project, the lead responsibilities for each program element and the present contractors are shown in Table 1. Brief summaries of progress made in this are included.« less

  4. Satellite Contamination and Materials Outgassing Knowledge base

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  5. Summary of findings of the R&D committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenley, C.R.; Kokenge, B.R.

    1996-05-01

    In March 1995, the Department of Energy`s (DOE) Nuclear Materials Stabilization Task Group (NMST) chartered a committee to formulate a research and development (R&D) plan in response to Sub-recommendation (2) of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The NMSTG was established as an organizational unit operating under the auspices of the DOE Office of the Environmental Management. As a result of its efforts, the Research Committee concluded that, in general, the technology needs for stabilizing 94-1 nuclear materials are being adequately met by existing or planned DOE programs. At the same time, the committee, in the form ofmore » recommendations, noted specific R&D program areas that should be addressed by the NMSTG. These recommendations are documented in the R&D plan and formulated based on: (1) existing {open_quotes}gaps{close_quotes} in DOE`s R&D stabilization program, (2) the relative maturity of various technologies, and (3) other important R&D program issues that, in the judgement of the committee, should be addressed by the NMSTG. A systems engineering approach, derived form the aerospace industry, was applied to the various stabilization technologies to assess their relative maturity and availability for use in treating 94-1 nuclear materials.« less

  6. A simple approach to industrial laser safety.

    PubMed

    Lewandowski, Michael A; Hinz, Michael W

    2005-02-01

    Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.

  7. NASA's Additive Manufacturing Development Materials Science to Technology Infusion - Connecting the Digital Dots

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2017-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  8. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  9. Calibration and Finite Element Implementation of an Energy-Based Material Model for Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2016-09-01

    Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.

  10. Effective algorithm for solving complex problems of production control and of material flows control of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Mezentsev, Yu A.; Baranova, N. V.

    2018-05-01

    A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.

  11. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  12. Excess Weapons Plutonium Immobilization in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&Dmore » on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent Russian plutonium immobilization contract work. This proceedings document presents the wide extent of Russian immobilization activities, provides a reference for their work, and makes it available to others.« less

  13. Can Earth Materials BE Adequately Covered in a - or Two-Semester Course?

    NASA Astrophysics Data System (ADS)

    Hefferan, K. P.; O'Brien, J.

    2007-12-01

    Traditional geology programs offer courses in mineralogy, optical mineralogy, igneous petrology, metamorphic petrology, sedimentology and economic geology. At many universities this suite of mineralogy/petrology courses has been supplanted by a one-semester or two-semester Earth Materials course. This interactive poster poses five questions to faculty and students related to the means by which Earth Materials can be delivered: 1) Available online syllabi demonstrate a wide variation in the topics addressed in Earth Materials courses; is there a standard core of key topics that must be covered and in what level of detail? 2) Can a one-semester or two- semester Earth Materials course adequately cover these topics? 3) Excellent textbooks exist in both mineralogy and in petrology; what textbooks, if any, adequately encompass Earth Materials? 4) How has the online environment changed the way in which we use textbooks in the classroom? 5) Given the evolution of geology programs, higher education and the global economy in the past twenty years, what additional changes can be anticipated with respect to delivery and demand of Earth Materials topics? Answers-- or at least related discussions-- to these questions are encouraged via verbal dialogue among participants and/or by comments written on the poster. Our goal is to solicit faculty, student and industry feedback to create a textbook, curricula and online materials that support an Earth Materials course.

  14. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  15. Multiprog virtual laboratory applied to PLC programming learning

    NASA Astrophysics Data System (ADS)

    Shyr, Wen-Jye

    2010-10-01

    This study develops a Multiprog virtual laboratory for a mechatronics education designed to teach how to programme a programmable logic controller (PLC). The study was carried out with 34 students in the Department of Industry Education and Technology at National Changhua University of Education in Taiwan. In total, 17 students were assigned to each group, experimental and control. Two laboratory exercises were designed to provide students with experience in PLC programming. The results show that the experiments supported by Multiprog virtual laboratory user-friendly control interfaces generate positive meaningful results in regard to students' knowledge and understanding of the material.

  16. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment... Certain Industrial Equipment,'' a program covering certain commercial and industrial equipment (hereafter... (AEMTCA), Public Law 112-210 (Dec. 18, 2012). EPCA covers many types of commercial and industrial...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Jeffrey

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed tomore » achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.« less

  18. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Aster, R. W.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  19. IPEG- IMPROVED PRICE ESTIMATION GUIDELINES (IBM 370 VERSION)

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1994-01-01

    The Improved Price Estimation Guidelines, IPEG, program provides a simple yet accurate estimate of the price of a manufactured product. IPEG facilitates sensitivity studies of price estimates at considerably less expense than would be incurred by using the Standard Assembly-line Manufacturing Industry Simulation, SAMIS, program (COSMIC program NPO-16032). A difference of less than one percent between the IPEG and SAMIS price estimates has been observed with realistic test cases. However, the IPEG simplification of SAMIS allows the analyst with limited time and computing resources to perform a greater number of sensitivity studies than with SAMIS. Although IPEG was developed for the photovoltaics industry, it is readily adaptable to any standard assembly line type of manufacturing industry. IPEG estimates the annual production price per unit. The input data includes cost of equipment, space, labor, materials, supplies, and utilities. Production on an industry wide basis or a process wide basis can be simulated. Once the IPEG input file is prepared, the original price is estimated and sensitivity studies may be performed. The IPEG user selects a sensitivity variable and a set of values. IPEG will compute a price estimate and a variety of other cost parameters for every specified value of the sensitivity variable. IPEG is designed as an interactive system and prompts the user for all required information and offers a variety of output options. The IPEG/PC program is written in TURBO PASCAL for interactive execution on an IBM PC computer under DOS 2.0 or above with at least 64K of memory. The IBM PC color display and color graphics adapter are needed to use the plotting capabilities in IPEG/PC. IPEG/PC was developed in 1984. The original IPEG program is written in SIMSCRIPT II.5 for interactive execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The original IPEG was developed in 1980.

  20. Ontario Waste Exchange: Helping companies recycle their nonhazardous waste and reap the profits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, M.J.

    1997-12-31

    The Ontario Waste Exchange (OWE), operated by ORTECH Corporation, is a technical assistance program committed to helping industries find practical alternatives to disposal. OWE is an active exchange, a Technical Matchmaker, matching waste generators with potential end users or recyclers. The OWE utilizes its extensive Reuse and Recycling Markets database that lists current markets in Ontario and neighboring provinces and states. The OWE maintains the database and electronically disseminates the information to industries in an effective and efficient manner. The OWE encourages industries to recycle their nonhazardous waste if a market is available and the economics are viable. The OWE`smore » true value is in helping to create new markets for currently unwanted wastes. The OWE helps to identify potential business opportunities where problem wastes could be recycled into useful products. The OWE also helps existing recyclers expand their operations by sourcing enough consistent supply of a required material. The OWE is recognized internationally as one of the most successful waste exchanges in the world and a significant contributor to achieving the goal of 50% diversion of nonhazardous waste from disposal by year 2,000. CNN and CBC networks showcased OWE`s unique services, highlighting the recycling businesses that have been helped. The OWE has assisted over a 100,000 companies, exchanged over 3,000 materials and diverted over one million cumulative tons of material from disposal since 1984.« less

Top