Science.gov

Sample records for industrial process heat

  1. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  2. Agricultural and industrial process heat

    NASA Technical Reports Server (NTRS)

    Dollard, J.

    1978-01-01

    The application of solar energy to agricultural and industrial process heat requirements is discussed. This energy end use sector has been the largest and it appears that solar energy can, when fully developed and commercialized, displace from three to eight or more quads of oil and natural gas in U.S. industry. This potential for fossil fuel displacement in the agricultural and industrial process heat area sector represents a possible savings of 1.4 to 3.8 million barrels of oil daily.

  3. Industrial process heat market assessment

    SciTech Connect

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  4. Integration of heat pumps into industrial processes

    SciTech Connect

    Chappell, R.N. ); Priebe, S.J. )

    1989-01-01

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  5. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  6. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Value of solar thermal industrial process heat

    SciTech Connect

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  9. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  10. Use of solar energy to produce process heat for industry

    NASA Astrophysics Data System (ADS)

    Brown, K.

    1980-04-01

    The role of solar energy in supplying heat and hot water to residential and commerical buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particulary to the supplemental supply for process heat. The status of solar thermal technology for industrial process heat applications, including a description of current costs and operating histories is surveyed. The most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar industrial process heat are outlined.

  11. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  12. Solar industrial process heat for Georgia's food processing and textile industries: a market evaluation. Final report

    SciTech Connect

    Studstill, W.T.

    1980-10-08

    Georgia Tech's Engineering Experiment Station conducted a site-specific market evaluation study of solar industrial process heat for Georgia's food processing and textile industries. Twenty plants were surveyed and six case studies were conducted. The summary resualts of that study are presented with interpretation and conclusions by the Southern Solar Energy Center (SSEC).

  13. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    SciTech Connect

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

    2013-03-01

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

  14. Impact of land use on solar industrial process heat for the food processing industry

    SciTech Connect

    Casamajor, A.B.

    1980-10-02

    A solar land use study of 1330 food processing plants located in the far-western United States (Arizona, California, Hawaii, Oregon, and Washington) has been conducted. Based upon estimates of each plant's annual energy consumption of process heat, derived from: annual sales figures, employment, and total energy consumption for that plant's Standard Industrial Classification (SIC) group; and the available surface area at each plant, determined by a site inspection, an assessment of each plant's potential for solar energy was made. Those industries having the highest potential for applying solar energy to their process heat loads include: fruit and vegetable packing, sugar refining, meat packing, wine and brandy, bread, and dairy products. It has been further determined that about 25% of the energy used for food processing in the study area can be supplied by solar if all of the available surface area at and adjacent to these plants is devoted to solar collectors.

  15. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  16. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  17. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  18. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  19. Industrial and agricultural process heat information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  20. Operation and design of selected industrial process heat field tests

    SciTech Connect

    Kearney, D. W.

    1981-02-01

    The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

  1. Alternative economic evaluation measures for solar industrial process heat

    SciTech Connect

    Not Available

    1980-07-30

    The measures most commonly used to assist decision-makers in evaluating the economic merits of solar energy projects are described and compared. An example is given to illustrate the economic evaluation measures and the results are applied to a solar industrial process heat project. Four widely used economic measures are: net present value, benefit-cost ratio, internal rate of return, and payback period. (MHR)

  2. Solar industrial process heat: A study of applications and attitudes

    NASA Astrophysics Data System (ADS)

    Wilson, V.

    1981-04-01

    Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.

  3. Market development directory for solar industrial process heat systems

    SciTech Connect

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  4. Feasibility evaluation for solar industrial process heat applications

    SciTech Connect

    Stadjuhar, S. A.

    1980-01-01

    An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

  5. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  6. Industrial process heat data analysis and evaluation. Volume 2

    SciTech Connect

    Lewandowski, A; Gee, R; May, K

    1984-07-01

    The Solar Energy Research Institute (SERI) has modeled seven of the Department of Energy (DOE) sponsored solar Industrial Process Heat (IPH) field experiments and has generated thermal performance predictions for each project. Additionally, these performance predictions have been compared with actual performance measurements taken at the projects. Predictions were generated using SOLIPH, an hour-by-hour computer code with the capability for modeling many types of solar IPH components and system configurations. Comparisons of reported and predicted performance resulted in good agreement when the field test reliability and availability was high. Volume I contains the main body of the work; objective model description, site configurations, model results, data comparisons, and summary. Volume II contains complete performance prediction results (tabular and graphic output) and computer program listings.

  7. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  8. Reduce Natural Gas Use in Your Industrial Process Heating Systems Trifold

    SciTech Connect

    2010-06-25

    This DOE Industrial Technologies Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  9. Solar Program Assessment: Environmental Factors - Solar Agricultural and Industrial Process Heat.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of solar energy as a source of process heat in the industrial and agricultural sectors. To provide a background for this environmental analysis, the basic concepts and technologies of solar process heating are reviewed.…

  10. Summary of some feasibility studies for site-specific solar industrial process heat

    SciTech Connect

    1982-01-01

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  11. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  12. Heat pumps for industry

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  13. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  14. Potential for Solar Industrial Process Heat in the United States: A Look at California

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig

    2016-05-31

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  15. Compound heat pump gas turbine: an approach to energy conservation for process industries

    SciTech Connect

    Fejer, A.A.

    1980-01-01

    A compound heat pump gas turbine engine is proposed to achieve energy conservation in industrial processes that require cooling or refrigeration as well as electric power and process heat. This novel machine is basically the combination of a reversed cycle Brayton engine driven by a gas tubine, with the two engines having a common compressor. Because of this arrangement, the machine is very compact and should be relatively inexpensive to produce. Also, it can be adapted to a variety of fuels. The thermodynamic cycle and some performance characteristics of the compound engine are presented and the potential of such a machine for a meat packing plant is demonstrated. It was concluded from this study that this engine layout will result in significant reductions in engine cost, compared with systems consisting of separate components for power generation, refrigeration, and process heating. In addition, significant savings in energy consumption may be realized. Furthermore, it appears that engines of this type can be made to meet widely differing specifications as far as the split between process heat refrigeration and shaftpower is concerned. Finally, the engine can be made up of compressors, turbine stages, and heat exchangers of relatively simple design without penalties in economy, because the energy savings are achieved in this type of engine by reduction or complete elimination of waste heat, rather than high efficiencies of engine components. The possible energy savings for the meat packing industry indicate that the compound heat pump gas turbine deserves further study, including its cost, operating expenses, and environmental aspects. (LCL)

  16. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  17. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  18. Industrial heat pump assessment study

    NASA Astrophysics Data System (ADS)

    Chappell, R. N.; Priebe, S. J.; Wilfert, G. L.

    1989-03-01

    This report summarizes preliminary studies that assess the potential of industrial heat pumps for reduction of process heating requirements in industries receiving power from the Bonneville Power Administration (BPA). This project was initiated at the request of BPA to determine the potential of industrial heat pumps in BPA's service area. Working from known heat pump principles and from a list of BPA's industrial customers, the authors estimated the fuel savings potential for six industries. Findings indicate that the pulp and paper industry would yield the greatest fuel savings and increased electrical consumption. Assessments presented in this report represent a cooperative effort between The Idaho National Engineering Laboratory (INEL), and Battelle-Northwest Laboratories.

  19. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  20. End-use matching for solar industrial process heat. Final report

    SciTech Connect

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  1. Detailed design procedure for solar industrial-process-heat systems: overview

    SciTech Connect

    Kutscher, C F

    1982-12-01

    A large number of handbooks have been written on the subject of designing solar heating and cooling systems for buildings. One of these is summarized here. Design Approaches for Solar Industrial Process Heat Systems, published in September 1982, addresses the complete spectrum of problems associated with the design of a solar IPH system. A highly general method, derived from computer simulations, is presented for determining actual energy delivered to the process load. Also covered are siting and selection of subsystem components, cost estimation, safety and environmental considerations, and installation concerns. An overview of the design methodology developed is given and some specific examples of technical issues addressed are provided.

  2. Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ebling, D. G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A. C.; Adam, M.; Labs, R.; Herbertz, R. R.; Stunz, A.

    2016-07-01

    The hot forming process of steel requires temperatures of up to 1300°C. Usually, the invested energy is lost to the environment by the subsequent cooling of the forged parts to room temperature. Thermoelectric systems are able to recover this wasted heat by converting the heat into electrical energy and feeding it into the power grid. The proposed thermoelectric system covers an absorption surface of half a square meter, and it is equipped with 50 Bismuth-Telluride based thermoelectric generators, five cold plates, and five inverters. Measurements were performed under production conditions of the industrial environment of the forging process. The heat distribution and temperature profiles are measured and modeled based on the prevailing production conditions and geometric boundary conditions. Under quasi-stationary conditions, the thermoelectric system absorbs a heat radiation of 14.8 kW and feeds electrical power of 388 W into the power grid. The discussed model predicts the measured values with slight deviations.

  3. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  4. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  5. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  6. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  7. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  8. Design approaches for solar industrial process-heat systems: Nontracking and line-focus collector technologies

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.; Dougherty, D. A.; Gee, R. C.; Masterson, P. M.; May, E. K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer generated graphs are supplied that allow the user to select a collector type. Energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start up details, economics, and safety and environmental issues are explained.

  9. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  10. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  11. Financial barriers to the use of solar-industrial-process heat

    SciTech Connect

    Not Available

    1981-03-01

    Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

  12. Revisiting Parabolic Trough Concentrators for Industrial Process Heat in the United States

    SciTech Connect

    Turchi, Craig S.; Kurup, Parthiv; Zhu, Guangdong

    2016-06-03

    After significant interest in the 1970s, but relatively few deployments, the use of concentrating solar collectors for thermal applications, including enhanced oil recovery, desalination, and industrial process heat (IPH), is again increasing in global interest. In particular, recent advances in collector design and manufacturing have led to reduced cost per square meter of aperture area. In this study, analysis of a modern parabolic trough that is suited for use in small solar IPH (SIPH) applications predicts that the installed solar field cost can be as low as $170/m2. A slightly higher cost of $200/m2 is estimated for facilities typical of a SIPH plant size. Full project costs will include additional costs for contingency, piping and heat exchanger interface, and project indirect costs. The cost for solar-generated heat by SIPH is quantified by defining the levelized cost of heat (LCOH). California offers a favorable environment for SIPH given its good insolation, gas prices typically higher than the national average, and policies promoting solar-thermal deployment. Given historically low gas prices, competing with natural gas remains the primary challenge to deployment. However, this study finds that the solar LCOH for many regions in California is lower than the LCOH from natural gas, using a representative installed solar hardware price and the average price for industrial natural gas in California. Lastly, modification are in progress to the parabolic trough model within NREL's System Advisor Model (SAM) to allow users to more easily predict performance for these steam-generation applications.

  13. Industrial heat exchangers

    SciTech Connect

    Hayes, A.J.; Liang, W.W.; Richlen, S.L.; Tabb, E.S.

    1985-01-01

    This book presents the papers given at a symposium on the use of heat exchangers in the industrial plants. Topics considered include the US DOE and GRI research programs, advanced fixed boundary heat exchanger technology, commercial heat exchanger applications, thermo-hydraulic performance of heat-transfer equipment, field tests, the corrosion of heat exchanger materials, economics, cost benefit analysis, payback, and advanced assembly and materials.

  14. Preliminary operational results of the low-temperature solar industrial process heat field tests

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.

    1980-06-01

    Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

  15. Preliminary operational results of the low temperature solar industrial process heat field tests

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.

    1980-06-01

    Six solar industrial process heat field tests have been in operation for a year or more, three are hot water systems and three are hot air systems. All are low temperature projects (process heat at temperatures below 212 F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat plate, evaluated tube, and line focus collectors are all represented with collector array areas ranging from 2500 to 21,000 sq ft. Collector array efficiencies ranged form 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumptions. Problems included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded, costs of the projects ranged from $25/sq ft to $87/ sq ft and $499/(MBtu/yr) to $1537/(MBtu/yr).

  16. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  17. Preliminary operational results of the low temperature-solar industrial-process-heat field tests

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.

    1981-06-01

    Three hot water systems and four hot air systems are evaluated. All are low-temperature projects (process heat at temperatures below 212O F). Performance results, project costs, and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 sq ft. Collector array efficiencies ranged from 12% to 36% with net system efficiences from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/sq ft to $87/sq ft and $499/MBtu/yr to $1537/MBtu/yr.

  18. Method for evaluating the potential of geothermal energy in industrial process heat applications

    SciTech Connect

    Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

    1980-05-01

    A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

  19. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  20. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  1. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Astrophysics Data System (ADS)

    Polzien, R. E.; Rodriguez, D.

    1981-04-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  2. Strategic Coupling of Advanced Induction Heating with Magnetic Field Processing Technologies Provides Innovative Solutions for Elevated Industries Demands

    SciTech Connect

    Ludtka, Mackiewicz-Ludtka; Pfaffmann, George; Ludtka, Gerard Michael

    2013-01-01

    Industry s relentless pursuit of product performance improvements is now challenging the capability of available/existing Thermal processing technologies, i.e., Heat Treating. In fact, the EPA-mandated requirement for light-weighting vehicles underscores the urgent US need for achieving higher product strength improvements.

  3. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  4. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  5. Solar energy for process heat: Design/cost studies of four industrial retrofit applications

    NASA Technical Reports Server (NTRS)

    French, R. L.; Bartera, R. E.

    1978-01-01

    Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.

  6. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  7. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  8. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  9. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1994-01-30

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy awarded Vortec Corporation this Phase III contract (No. DE-AC22-91PC91161) for the development of {open_quotes}A Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes}. The effective contrast start date was September 3, 1991. The contract period of performance is 36 months. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. Final detailed installation designs for the integrated test system configuration are being completed. The equipment is being fabricated and deliveries have begun. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe recyclable glass product.

  10. Heat pipes for industrial waste heat recovery

    SciTech Connect

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  11. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    SciTech Connect

    Prythero, T.; Meyer, R. T.

    1980-09-01

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  12. Ceramic heat recuperators for industrial heat recovery

    SciTech Connect

    Not Available

    1980-05-01

    Results are presented from a continuing program whose purpose is to demonstrate the technical and economic feasibility of using ceramic heat recuperators for industrial heat recovery. The information presented can be used by engineers in industry to evaluate their specific furnace applications and to estimate the technical requirements and economic benefits from the use of ceramic heat recuperators. Chapter 2 presents methods that can be used to estimate the amount of energy savings by recuperation. Chapter 3 gives a brief background in heat exchanger design theory so that the reader can understand the procedures involved in designing and sizing heat exchangers for a given application. The specific GTE core design and the recuperator fabrication, housing and installation are discussed in Chapter 4. The demonstration project results are presented in Chapter 5. Each demonstration is described and the results, economics and problem areas discussed. The Appendices provide details that will allow the engineer in industry to select a core, size a heat exchanger, calculate the performance, determine energy saved and estimate the economics of using a ceramic recuperator for a specific industrial application. (LCL)

  13. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  14. Economical and environmental analysis of thermal and photovoltaic solar energy as source of heat for industrial processes

    NASA Astrophysics Data System (ADS)

    Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel

    2017-06-01

    Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.

  15. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  16. Application of thermal energy storage to process heat recovery in the aluminum industry

    NASA Technical Reports Server (NTRS)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  17. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  18. Forging; Heat Treating and Testing; Technically Oriented Industrial Materials and Process 1: 5898.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…

  19. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  20. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  1. Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982

    SciTech Connect

    Kunze, J.F.; Marlor, J.K.

    1982-08-01

    A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

  2. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  3. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  4. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  5. Conceptual design of a solar cogeneration facility industrial process heat, category A. Executive summary

    NASA Astrophysics Data System (ADS)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The conceptual design of a central receiver solar cogeneration facility at a California oil field is described. The process of selecting the final cogeneration system configuration is described and the various system level and subsystem level tradeoff studies are presented, including the system configuration study, technology options, and system sizing. The facility is described, and the functional aspects, requirements operational characteristics, and performance are discussed. Capital and operating costs, safety, environmental, regulatory issues and potential limiting considerations for the design are included. Each subsystem is described in detail including a discussion of the functional requirements, design, operating characteristics performance estimates and a top level cost estimate. An economic assessment is performed to determine the near-term economic viability of the project and to examine the impact of variations in major economic parameters such as capital and operating and maintenance costs on economic viability. Two measures of economic viability used are levelized energy cost and net present value.

  6. Process Improvement Study of the Rock Springs Fertilizer Complex for Chevron Chemical Company, Rock Springs, WY [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1989-12-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  7. Process Integration Study of the Decatur HFCS Plant for American Fructose Company, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1989-11-10

    This work has carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  8. Recovering waste industrial heat efficiently

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  9. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility.

    PubMed

    Wada, Yasuaki; Lönnerdal, Bo

    2014-05-07

    Heating processes are applied to milk and dairy products to ensure their microbiological safety and shelf lives. However, how differences in "industrial" thermal treatments affect protein digestibility is still equivocal. In this study, raw milk was subjected to pasteurization, three kinds of ultra-high-temperature (UHT) treatment, and in-can sterilization and was investigated by in vitro and in vivo digestion and proteomic methods. In-can sterilized milk, followed by UHT milk samples, showed a rapid decrease in protein bands during the course of digestion. However, protein digestibility determined by a Kjeldahl procedure showed insignificant differences. Proteomic analysis revealed that lactulosyllysine, which reflects a decrease in protein digestibility, in α-lactalbumin, β-lactoglobulin, and caseins was higher in in-can sterilized milk, followed by UHT milk samples. Thus, industrial heating may improve the digestibility of milk proteins by denaturation, but the improvement is likely to be offset by heat-derived modifications involved in decreased protein digestibility.

  10. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing.

    PubMed

    Nidhina, N; Muthukumar, S P

    2015-04-15

    Proximate composition analysis and antinutritional factor composition of different fractions of industrial guar meal: raw churi (IRC), heated churi (IHC), final churi (IFC) and guar korma (IGK) were studied and compared. Protein content was found to be very high in IGK (52.7%) when compared to the churi fractions (32-33%) and the trypsin inhibitor activities were found to be negligible in all the fractions (0.58-1.8 mg/g). Single fraction (IGK) was selected for further studies, based on the protein content. The antinutritional factors of selected fractions were significantly reduced by different heat treatments. Heat treatments significantly increased the water absorbing capacity of IGK, but reduced the nitrogen solubility, emulsifying and foaming capacity. Highest L(∗) value was observed for boiled IGK, highest a(∗) and b(∗) values for roasted IGK, during colour measurement. FTIR spectral analysis revealed the presence several aromatic groups in IGK and slight modifications in the molecular structure during heat treatments.

  11. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  12. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  13. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  14. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  15. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  16. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  17. Industrial heat pumps; Where and when

    SciTech Connect

    Ranade, S.M. ); Chao, Y.T. )

    1990-10-01

    Components such as compressors, heat exchangers, expansion valves, etc., that constitute typical heat pump systems have been around for a long time. The reverse Rankine cycle, which forms the thermodynamic basis of industrial heat pumps, has been used extensively in commercial and residential refrigeration and air conditioning systems. Today, despite this familiarity and experience with its components, the industrial heat pump itself remains an enigma. This is probably due to either lack of information or misinformation regarding its industrial applications. The primary objectives of this article are to present an overview of types of industrial heat pumps and to provide general guidelines on their appropriate placement.

  18. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  19. Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas

    SciTech Connect

    Branz, M A

    1980-09-30

    The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

  20. An analysis of the technical and economic performance of a parabolic trough concentrator for solar industrial process heat application

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    1982-09-01

    Design parameters and economic projections of importance to the commercial realization of mass-produced parabolic trough solar concentrators as industrial heat suppliers are presented. Numerical formulas are defined for obtaining a figure of merit for the thermal efficiency of a concentrator, taking into account the reflectivity, the mirror-receiver intercept factor, the end loss factor, tracking and misalignment errors, the absorptivity-transmissivity product at normal incidence of the receiver tube and its glass envelope, and durability. An economic analysis which includes all costs, tax write-offs, comparisons with conventional fuels, inflation rate, time of borrowing, maintenance, profits, and conversion efficiencies is developed. It was determined that the trough systems will become competitive in the U.S. when installed costs are $15.79/sq ft over a 10-yr investment period

  1. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  2. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  3. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    SciTech Connect

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  4. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  5. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  6. Industrial furnace with improved heat transfer

    SciTech Connect

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  7. Improving Process Heating System Performance v3

    SciTech Connect

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  8. Phase Change Heat Transfer Device for Process Heat Applications

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2010-10-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  9. Microwave heating: Industrial applications. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning industrial uses and design of microwave heating equipment. Included are heating and drying of paper, industrial process heat, vulcanization, textile processing, metallurgical heat for sintering and ceramic manufacturing, food processing, and curing of polymers.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    West, Robert M.

    2004-07-01

    Industrial process tomography remains a multidisciplinary field with considerable interest for many varied participants. Indeed this adds greatly to its appeal. It is a pleasure and a privilege to once again act as guest editor for a special feature issue of Measurement Science and Technology on industrial process tomography, the last being in December 2002. Those involved in the subject appreciate the efforts of Measurement Science and Technology in producing another issue and I thank the journal on their behalf. It can be seen that there are considerable differences in the composition of material covered in this issue compared with previous publications. The dominance of electrical impedance and electrical capacitance techniques is reduced and there is increased emphasis on general utility of tomographic methods. This is encompassed in the papers of Hoyle and Jia (visualization) and Dierick et al (Octopus). Electrical capacitance tomography has been a core modality for industrial applications. This issue includes new work in two very interesting aspects of image reconstruction: pattern matching (Takei and Saito) and simulated annealing (Ortiz-Aleman et al). It is important to take advantage of knowledge of the process such as the presence of only two components, and then to have robust reconstruction methods provided by pattern matching and by simulated annealing. Although crude reconstruction methods such as approximation by linear back projection were utilized for initial work on electrical impedance tomography, the techniques published here are much more advanced. The paper by Kim et al includes modelling of a two-component system permitting an adaption-related approach; the paper by Tossavainen et al models free surface boundaries to enable the estimation of shapes of objects within the target. There are clear improvements on the previous crude and blurred reconstructions where boundaries were merely inferred rather than estimated as in these new developments

  11. Heat pump augmentation of nuclear process heat

    SciTech Connect

    Koutz, S.L.

    1986-03-18

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid.

  12. Solar process heat. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-04-01

    Feasibility, design, cost, and economic potential of solar process heat are discussed. Potential applications to industries using hot water or steam and to heat used for dehydration processes in agriculture are covered. Contains 60 abstracts.

  13. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals.

    PubMed

    Yoshioka, Miyako; Matsuura, Yuichi; Okada, Hiroyuki; Shimozaki, Noriko; Yamamura, Tomoaki; Murayama, Yuichi; Yokoyama, Takashi; Mohri, Shirou

    2013-07-09

    Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource.

  14. Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals

    PubMed Central

    2013-01-01

    Background Prions, infectious agents associated with transmissible spongiform encephalopathy, are primarily composed of the misfolded and pathogenic form (PrPSc) of the host-encoded prion protein. Because PrPSc retains infectivity after undergoing routine sterilizing processes, the cause of bovine spongiform encephalopathy (BSE) outbreaks are suspected to be feeding cattle meat and bone meals (MBMs) contaminated with the prion. To assess the validity of prion inactivation by heat treatment in yellow grease, which is produced in the industrial manufacturing process of MBMs, we pooled, homogenized, and heat treated the spinal cords of BSE-infected cows under various experimental conditions. Results Prion inactivation was analyzed quantitatively in terms of the infectivity and PrPSc of the treated samples. Following treatment at 140°C for 1 h, infectivity was reduced to 1/35 of that of the untreated samples. Treatment at 180°C for 3 h was required to reduce infectivity. However, PrPSc was detected in all heat-treated samples by using the protein misfolding cyclic amplification (PMCA) technique, which amplifies PrPScin vitro. Quantitative analysis of the inactivation efficiency of BSE PrPSc was possible with the introduction of the PMCA50, which is the dilution ratio of 10% homogenate needed to yield 50% positivity for PrPSc in amplified samples. Conclusions Log PMCA50 exhibited a strong linear correlation with the transmission rate in the bioassay; infectivity was no longer detected when the log PMCA50 of the inoculated sample was reduced to 1.75. The quantitative PMCA assay may be useful for safety evaluation for recycling and effective utilization of MBMs as an organic resource. PMID:23835086

  15. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  16. Advanced technology options for industrial heating equipment research

    SciTech Connect

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  17. Heat pump concepts for industrial use of waste heat

    SciTech Connect

    Blanco, H.P.

    1981-05-01

    Heat pump systems for recovering waste heat are considered. To compare different cycles on a consistent basis, a definition of performance based on the Second Law of Thermodynamics is presented. A high-grade heat-actuated cycle that uses a steam ejector is analyzed, but no substantial development effort is anticipated for implementing heat pumps of this type. Three residual-heat-actuated-heat pumps are analyzed. A turbine-compressor heat pump is presented that can attain relatively high delivery temperatures (approximately 120 to 130/sup 0/C from a source at 60/sup 0/C. The other two residual-heat-actuated concepts presented are absorption heat pumps. One operates on a closed cycle and the other on an open cycle. Delivery temperatures on the order of 115 10 130/sup 0/C with a 60/sup 0/C source are possible, provided that advanced heat/mass transfer configurations are developed. The open-cycle concept is an interesting possibility for heat recovery. It can, in principle, operate with lower waste heat temperatures than a closed cycle, and during the heating season it may provide both process and space heat.

  18. Heat distribution ceramic processing method

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  19. Industrial Applications of Image Processing

    NASA Astrophysics Data System (ADS)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  20. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  1. Ceramic heat recuperators for industrial heat recovery. Final report

    SciTech Connect

    Cleveland, J.J.; Gonzalez, J.M.; Kohnken, K.H.

    1980-08-01

    Development of a GTE ceramic recuperator, designed for relatively small furnaces with firing rates of 0.3 to 0.6 MM Btu/h and with exhaust gas temperatures of 1500 to 2600 F, is described. The ceramic selected as the material of construction is cordierite, a magnesium aluminum silicate. Details of the ceramic recuperator design are presented in Chapter 2. Also results of tests and measurements, system economics, and cost performance analyses are presented. Five demonstration programs were performed to determine the heat transfer performance of the recuperator, establish the energy savings by recuperation, demonstrate minimum maintenance requirements in typical furnace operation, determine the durability of the ceramic core, determine the operating requirements of the burners and controls with recuperation, and establish the overall system costs and payback period. Demonstration programs and results of the Bliss Mill Furnace, Tungsten Reduction Furnace, Glass Tank, Pilot Plant US Smelting Furnace, and Rotary Calciner Furnace are given in Chapter 3. Chapter 4 develops the methodology and shows how an impact analysis may be performed. Industrial applications are implied and a process flow diagram for smelting and refining primary copper is shown. Concluding chapters present conclusions and recommendations, a bibliography, and additional information in appendices. (MCW)

  2. Electronic waste disassembly with industrial waste heat.

    PubMed

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  3. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  4. Microwave heating: Industrial applications. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning industrial uses and design of microwave heating equipment. Citations discuss applications in food processing, industrial heating, vulcanization, textile finishing, metallurgical sintering, ceramic manufacturing, paper industries, and curing of polymers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. District heating feasibility, Industrial Corridor, Jamestown, New York

    SciTech Connect

    Not Available

    1988-06-01

    The Industrial Corridor of Jamestown, New York, contains more than twenty industrial/manufacturing companies, whose thermal demands, in addition to space heating, include significant process heating loads. This study investigated in depth, the technical and economic feasibility of implementing a district heating system in the Industrial Corridor which can serve both process and space heating loads. Based upon the heat load assessment conducted, the study focused upon nine companies with the largest thermal demand. Alternative system implementation designs were considered including new conventional centralized boiler plants, gas turbine cogeneration, and both high temperature hot water and steam as the heat transport media in an underground distribution system. The study concluded that, in view of the nature of existing prospective customer loads being primarily steam based, the most economical system for near term phased development is a steam based system with a new conventional centrally located steam boiler plant. The economic potential for a cogeneration system was found to be sensitive to electricity buy back rates, which at present, are not attractive. Implementing a modern high temperature hot water system would require significant customer retrofit costs to convert their steam based systems to hot water, resulting in long and unattractive pay back periods. Unless customer hot water retrofit costs can be expended without penalty to the district system economics, hot water district heating is not considered economically feasible. Chapters describe heat load assessment; heat source analysis; system implementation; transmission and distribution systems assessment; institutional assessment; system economic analysis; and customer retrofit, economic analysis, and conclusions 20 figs., 22 tabs.

  6. New industrial heat pump applications to fructose production

    SciTech Connect

    Not Available

    1990-04-01

    An energy cost reduction study of the American Fructose Decatur,Inc. High Fructose Corn Syrup process has been completed. The objective was to find cost effective energy cost reduction projects and to develop a coherent strategy for realizing the savings. There are many possible options for reducing energy cost. To facilitate a fair comparison of the options, Pinch Technology was used to identify appropriate heat recovery, heat pumping and cogeneration options. Of particular interest were the opportunities for utilizing heat pumps, for energy cost reduction or other profit increasing uses. Therefore, where a heat pumping scheme was identified, its merits relative to other potential projects was carefully evaluated to ensure that the heat pump was technically and economically sound. It is felt that the results obtained in this study are applicable to other wet corn milling sites which include a refinery section, due to the similarity of processes throughout the industry. This study and others indicate that reductions in thermal energy consumption of 15--25% can be expected through increased heat recovery. Also, the use of MVR and thermocompression evaporators is appropriate and additional economically viable opportunities exist for using industrial heat pumps to increase even further the level of energy cost reduction achievable. 17 figs., 4 tabs.

  7. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  8. An overview of heat exchanger enhancement techniques for industrial applications

    SciTech Connect

    Somasundaram, S.; Ohadi, M.M.; Richlen, S.

    1992-06-01

    An assessment is make of selected currently available heat exchanger enhancement techniques for single- and two-phase heat transfer mechanisms to determine their practicality and commercialization potential for different industrial applications. The assessment includes a screening review of the major techniques being investigated in the research community, and identification of selected passive techniques and determine their potential limitations with respect to industrial applications. A more detailed study of the research needs and the technology gaps is being conducted to address the issues of concern for each practical application of the chosen techniques. The technical and economic feasibility and the performance benefits of incorporating a particular technique in a heat transfer process is also discussed. The potential design, operational, and manufacturing cost issues that have prevented a technique from being widely commercialized are identified.

  9. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  10. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp.

    PubMed

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa

    2013-04-22

    The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are

  11. New industrial heat pump applications to textile production

    SciTech Connect

    1990-12-01

    Application of pinch technology to the US industries in an early screening study has identified potential for heat pumps in several standard processes such as distillation and drying processes. Due to lack process information, the previous study was not able to draw any definite conclusion concerning the heat pump application potential in textile process. However, the commonly encountered drying process in the finishing section of textile plant has been shown to create opportunities for heat pump placement. The site selected for this study is a textile plant in North Carolina and the participating utility is Duke Power Company. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The key findings of this study are as follows. The previously unrecoverable waste heat from the exhaust air can now be reclaimed through a spray type air washer and heat pump system. The recommended heat pump system recovers heat from the looper exhaust and use it to preheat the air in the gas tenter. A reduction of 50% of the gas consumption in the tenter can be achieved. The removal of lint from the exhaust air reduced the potential of air pollution. The collected lint can be burned in the boiler as a supplemental fuel source to reduce the fuel consumption in the plant. With fuel price predicted to go up and electricity price remain relatively stable in the future, the heat pump system can payback in less than three years. 15 figs., 4 tabs.

  12. RESIDUAL RISK ASSESSMENT: INDUSTRIAL PROCESS ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Industrial Process Cooling Towers source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Industrial Process Cooling Towers source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  13. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  14. Management of heat stress in the livestock industry

    USDA-ARS?s Scientific Manuscript database

    Heat stress costs the animal industry over $1.7 billion annually. Annual losses average $369 million in the beef cattle industry and $299 million in the swine industry. The impacts of a single heat stress event on individual animals are quite varied. Brief events often cause little or no effect. ...

  15. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  16. Monitoring the Surface Heat Island (shi) Effects of Industrial Enterprises

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2016-06-01

    The aim of this study is to present the effects of industrial enterprises on Land Surface Temperature (LST) and to retrieve Surface Heat Island (SHI) maps of these regions. SHI is one of the types of Urban Heat Island (UHI) and as the urban areas grow in a city, UHI effect becomes bigger. The city centre of Zonguldak was chosen as study area and Landsat 5 satellite data were used as materials. Zonguldak has important industrial enterprises like thermal power plants and iron and steel plant. ERDEMIR is the biggest iron and steel plant in Turkey and it is one of the biggest ones in Europe, as well. There are three operating thermal power plants in the region namely CATES, ZETES1 and ZETES2. In order to investigate these industrial regions, Landsat 5 satellite data were processed using mono-window algorithm to retrieve LST and they were acquired on 11.09.1987, 18.09.2007 and 29.09.2011, respectively. The obtained results revealed that from 1987 to 2011, spatial and temporal variability in LST in industrial enterprises became higher than the surroundings. Besides, the sizes of SHIs in 2011 are bigger than the ones in 1987. For the countries and governments, having industrial enterprises is crucial for the development and it is also important to present the community better conditions in life. Thus, decision makers should consider mitigating the effects of these regions on LST.

  17. Reno Industrial Park geothermal district heating system

    SciTech Connect

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  18. Combustion Technology for Incinerating Wastes from Air Force Industrial Processes.

    DTIC Science & Technology

    1984-02-01

    Conservation and Recovery Act and are properly disposed at cost to the Air Force. Onsite incineration with heat recovery is being considered as a...the heat released during thermal processing could reduce the costs of waste incineration. 0 * Normally, relatively small amounts of individual wastes...wastes. Task 3: Combustion Analysis. Determine and quantify the essential combustion parameters of industrial process wastes with respect to heat

  19. Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  20. Emerging technology from the DOE industrial heat pump program

    SciTech Connect

    Plaster, D.S.; Chappell, R.N.

    1984-01-01

    In 1976 a program was established to develop industrial heat pumps that could recover waste energy from and return it to the same process. Three research and development projects support that objective: A waste-heat-powered, steam-compression system was developed. This system, powered by a waste-heat-driven turbine, extracts 34.7 million Btu/h from dirty steam at 25 psia to produce 20.9 million Btu of clean steam per hour at 40 psia. A high-temperature Rankine system was developed with methanol as the working fluid. This system, powered by a 2500-hp electric motor, extracts 24.3 million Btu/h from dirty steam at 25 psia to produce 30 million Btu of clean steam per hour at 78 psia. A Brayton cycle solvent-recovery system was developed. This system recovers solvents from airstreams in drying ovens, restores the heat of vaporization to the airstream, and returns the solvent-free air to the drying ovens. The manufacturers began testing prototypes of all three systems in 1983. Testing of the MTI prototype is complete; the other two prototypes are presently in testing. The systems will be ready for installation at other industrial sites during 1984.

  1. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1993--March 1993

    SciTech Connect

    Not Available

    1993-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent performing the initial industrial proof-of-concept test and installing and integrating the Wet Electrostatic Precipitator (WESP). The other system modifications are well underway with the designs of the modifications to the batch/coal feed system being completed. A Purchase Order has been issued to a material conveying equipment vendor for the purchase of the batch/coal feeding equipment. The delivery and installation of the material conveying equipment is expected to occur in July and early August. The commercialization planning is continuing with the completion of a draft Business Plan. This plan is currently undergoing internal review, and will be submitted to Dawnbreaker, a DOE contracted small business consulting firm, for review.

  2. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  3. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  4. Development of a coal-fired combustion system for industrial processing heating applications: Appendix A. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product. Appendix A contains 89 figures containing the data from the demonstration tests undertaken under Phase 3.

  5. Development of rapid gas heating process for semifinished steel products

    SciTech Connect

    Farmer, L.K. ); Chan, I.S. ); Nelson, J.G. )

    1994-09-01

    The metal heating industry associates quality and high efficiency with electrical induction heating. The ability of induction to rapidly heat product has been a key difference between electrical and combustion heating methods. Conventional gas-fired furnaces rely on radiation from refractory structures to transfer heat to the product. As the metal approaches its target temperature, the rate of heat transfer flows significantly because the temperature difference between the metal and refractory is small. The heating rates of conventional furnaces are typically below those achieved with induction. Despite this, conventional gas-fired furnaces remain the mainstay of the metals industry because of lower capital and operating costs, and greater operating flexibility and reliability than induction systems. Today, there exists a gas-based rapid heating process, Rapidfire, that is capable of achieving considerably higher heating rates than conventional furnaces. Oxygen natural gas fired rapid heating has been developed by Air Products and Chemicals with funding from the Gas Research Institute. This technology is able to provide the end user with heating capabilities similar to induction, but with the flexibility and operating costs typically associated with gas-fired systems. A novel oxygen-natural gas based, rapid heating technology, Rapidfire, has been developed capable of achieving five to six times higher heating rates (200 to 400 F/min for 3 to 4-in. diameter bars) than conventional combustion processes. Anticipated applications include forging, transfer bar edge heating, bar/slab preheating and direct rolling (eg, 2-in. thin cast slabs).

  6. Super-sensing through industrial process tomography

    PubMed Central

    2016-01-01

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185965

  7. Super-sensing through industrial process tomography.

    PubMed

    Soleimani, Manuchehr

    2016-06-28

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  8. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system, controls, and then test the complete system in order to evaluate its potential marketability. The past quarter began with a two-day test performed in January to determine the cause of pulsations in the batch feed system observed during pilot-scale testing of surrogate TSCA incinerator ash performed in December of 1993. Two different batch feedstocks were used during this test: flyash and cullet. The cause of the pulsations was traced to a worn part in the feeder located at the bottom of the batch feed tank. The problem was corrected by replacing the wom part with the corresponding part on the existing coal feed tank. A new feeder for the existing coal tank, which had previously been ordered as part of the new coal handling system, was procured and installed. The data from the pilot-scale tests performed on surrogate TSCA incinerator ash during December of 1993 was collected and analyzed. All of the glass produced during the test passed both the Toxicity characteristics Leach Procedure (TCLP) and the Product Consistency Test (PCT) by approximately two orders of magnitude.

  9. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  10. Department of Energy solar process heat program: FY 1991 solar process heat prefeasibility studies activity

    NASA Astrophysics Data System (ADS)

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc., for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY-91, six projects were selected for funding. As of 31 Aug. 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  11. DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies activity

    SciTech Connect

    Hewett, R.

    1992-11-01

    During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar Collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY 1991, six projects were selected for funding. As of August 31, 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

  12. Operational fact-finding report on heat pump systems for industrial use

    NASA Astrophysics Data System (ADS)

    Kamisawa, Jun

    1988-03-01

    Operational circumstances of heat pump systems for industrial use were widely investigated to open their successful cases in practical applications to the public and to widely spread them throughout the industrial sector. As a summary of questionaire totaled 144 cases, 79 cases were motor-operated heat pumps, 37 cases absorption heat pumps and 28 cases engine-driven heat pumps, and, in application, 65 cases were manufacturing process use, 46 cases for factory air conditioning and 5 cases for others (such as snow melting and pool water heating). Most of them were motor-operated heat pumps in application of heat sources for manufacturing process and air conditioning, however, it was recognized a trend toward spreading uses for primary industries and increasing absorption heat pumps and engine-driven heat pumps. As for successful examples, outlines of a motor-operated heat pump system for distilling alcohol at Osaka Plant of Suntory Ltd. and an absorption heat pump system for refining alcohol at Ishioka Alcohol Factory of NEDO (New Energy and Industrial Technology Development Organization) and others were illustrated. Their operational circumstances and energy conservation results were investigated.

  13. Waste heat recovery systems in the sugar industry: An Indian perspective

    SciTech Connect

    Madnaik, S.D.; Jadhav, M.G.

    1996-04-01

    This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

  14. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  15. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  16. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  17. Heat-exchanger needs for recovering waste heat in the glass-making industry. Final report

    SciTech Connect

    Webb, R.L.; Kulkarni, A.K.

    1983-02-01

    The state of the art of waste heat recovery technology in the glass-making industry is assessed. Fouling and corrosion glass furnace regenerators are reviewed. Heat recovery from the exhaust gases leaving the brick checkers regenerator of a soda lime glass furnace is addressed. Research and development needs that will advance the use of secondary heat recovery in the glass industry are identified. (LEW)

  18. SOLTECH 92 proceedings: Solar Process Heat Program

    SciTech Connect

    Not Available

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  19. Heat Transfer in a Thermoacoustic Process

    ERIC Educational Resources Information Center

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  20. Heat Transfer in a Thermoacoustic Process

    ERIC Educational Resources Information Center

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  1. Applications of sonochemistry in Russian food processing industry.

    PubMed

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry.

  2. Evaporative heat transfer characteristics of industrial safety helmets.

    PubMed

    Liu, X; Holmér, I

    1995-04-01

    Thermal discomfort is one of the major complaints from the wearers of industrial safety helmets. While studies have been reported on dry heat transfer (conduction, convection and radiation) in safety helmets, the investigation of wet heat dissipating (evaporation) properties has not been found in the literature. To evaluate experimentally the evaporative heat transfer characteristics of industrial safety helmets, a method was developed to simulate sweating of a human head on a thermal head manikin, and to use this manikin to assess the wet heat transfer of five industrial safety helmets. A thermal head manikin was covered with a form-fitting cotton stocking to simulate 'skin'. The skin was wetted with distilled water to simulate 'sweating'. A form-fitting perforated polyethylene film was used to cover the wetted stocking to control the skin wettedness at two levels, 0.64 and 1.0. Experiments were conducted in a climatic chamber, under the following conditions: the ambient temperature = head manikin surface temperature = 34 +/- 0.5 degrees C; ambient relative humidity 30% and 60%. Also, the effects of wind and a simulated solar heat load were investigated. The five helmets showed statistically significant difference in evaporative heat transfer under the experimental conditions. Skin wettedness, ambient humidity, wind and solar heat showed significant effects on evaporative heat transfer. These effects were different for the different helmets.

  3. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  4. New industrial heat pump applications to phosphate fertilizer production

    SciTech Connect

    Not Available

    1990-06-01

    In this study Process Integration techniques based on Pinch Technology have been applied to Chevron's fertilizer complex in Rock Springs, Wyoming. The objectives of the study were to: identify heat pump opportunities and to determine the cost effectiveness of heat pumping compared to other process improvements. Significance of this Work Chevron's fertilizer complex is an example of an exothermic process. The sulfuric acid plant produces more heat than is needed for the rest of the site. The complex has, therefore, no need for a heating utility. The heat created in the sulfuric acid plant is used to produce high pressure steam, which is let down through a turbo generator satisfying most of the site's electrical needs. This type of process would normally not be considered for heat pumping because there is no heating utility load to reduce. However, reducing the requirements for extraction steam will liberate more steam for power generation. Heat recovery and heat pumping, therefore, have the unusual effect of an increase in electricity production, resulting in a reduction in electricity import, rather than a reduction in fuel consumption. Heat recovery opportunities show promise at both the sulfuric acid and phosphoric acid plants. No economically attractive opportunities were found for heat pumps in the process units when they were considered individually; however, the study identified that significant energy savings can be achieved by heat integration between the sulfuric acid plant and the phosphoric acid plant. 16 figs.

  5. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  6. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  7. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  8. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  9. Novel Process Revolutionizes Welding Industry

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  10. Role of fuel upgrading for industry and residential heating

    SciTech Connect

    Merriam, N.W.; Gentile, R.H.

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  11. Evaluation of Thermocompression Heat Pump Performance for American Maize, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1993-06-01

    This work was carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2, evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  12. Applications of Biocatalysis to Industrial Processes

    NASA Astrophysics Data System (ADS)

    Sime, John T.

    1999-12-01

    Enzyme-catalyzed chemistry (biocatalysis) is widely used across many industry sectors in large-scale processes. The possibility of environmentally friendly chemical reactions carried out under mild conditions with high degrees of selectivity has proved attractive in developing manufacturing processes. A number of such reactions are discussed in the industrial context with examples of a variety of reaction types. All processes presented have been implemented in the production of commercial products and provide a feel for the versatility of this technology.

  13. An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Nowicki, Cassandre; Gosselin, Louis

    2012-08-01

    Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.

  14. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    PubMed

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  15. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  16. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  17. Industrial applications of electrolytic processes in the metal finishing industries

    SciTech Connect

    Wiaux, J.P.

    1994-12-31

    The applications of electrolytic processes in several sectors of the printed circuit, aeronautical and metal finishing industries have been under a large commercial development phase over the last ten years. Two major factors have favoured this development: the progress made in applied electrochemical engineering and the large increase in solid and liquid wastes management costs.

  18. New industrial heat pump applications to a synthetic rubber plant. Final report, Phase IIA

    SciTech Connect

    1993-12-31

    This report summarizes the results of the Phase IIA of the DOE sponsored study titled, Advanced Industrial Heat Pump Application and Evaluation. The scope of this phase of the study was to finalize the process design of the heat pump scheme, develop a process and instrumentation diagram, and a detailed cost estimate for the project. This information is essential for the site management to evaluate the economic viability and operability of the proposed heat pump design, prior to the next phase of installation and testing.

  19. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  20. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  1. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  2. Adaptive Process Control in Rubber Industry.

    PubMed

    Brause, Rüdiger W; Pietruschka, Ulf

    1998-01-01

    This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good resuits even using only a few training samples.

  3. Technical assessment of the Office of Industrial Programs' Advanced Heat Exchanger Program

    SciTech Connect

    Rinker, F.G.; Bergles, A.E.; Marciniak, T.J.; Batman, J.

    1987-02-01

    The DOE's AHX Program is an integral part of the OIP's Waste Heat Recovery Program whose goals are to increase the end-use energy efficiency of industry and agricultural operations, and to expand the energy options for manufacturing processes by providing technologies which use various fuels including coal, renewables, oil, and natural gas. The OIP and PNL convened a panel of industry experts to conduct a technical assessment of OIP's AHX program. This report documents the results of the panel's assessment.

  4. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  5. Work-related heat stress concerns in automotive industries: a case study from Chennai, India.

    PubMed

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-11-11

    Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal

  6. Work-related heat stress concerns in automotive industries: a case study from Chennai, India

    PubMed Central

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-01-01

    Background Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. Methods We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. Conclusions The study re-emphasises the need for recognising heat stress as an important

  7. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  8. Industrial hygiene walk-through survey report of Industrial Heating and Finishing Co. , Inc. , Pelham, Alabama

    SciTech Connect

    McCammon, C.S.; Krishnan, E.R.; Goodman, R.J.

    1987-05-12

    In an effort to gather information on the potential occupational exposures to acrylates or methacrylates, a walk-through survey was conducted at the Industrial Heating and Finishing Facility in Pelham, Alabama. At this facility, finishing systems were processed for wood, plastic, glass, and metal substrates. Acrylic coatings have been used there since 1982. Coatings were blended at this site with catalysts, solvents and photoinitiators to prepare the needed sprays. At the site, the company used a spray booth and an ultraviolet curing unit connected by a conveyor system to demonstrate spray-coat applications on three dimensional objects to potential clients. During these demonstrations the spraying was done by hand. However, during normal operations, an automated spraying system was incorporated. The spraying was done in a separate room which was equipped with a ventilation system. The facility did not have an industrial-hygiene program, but material safety data sheets were posted in areas where the materials were used. There have been no health problems reported at this location.

  9. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  10. Survey of potential process-heat and reject-heat utilization at a Green River nuclear-energy center

    SciTech Connect

    Jensen, C.M.; Sandquist, G.M.

    1982-03-01

    Potential uses of process heat and reject heat from a nuclear-energy center at Green River, Utah have been investigated. The remoteness of the Green River site would preclude many potential industrial uses for economical reasons such as transportation costs and lack of local markets. Water-consumption requirements would also have serious impact on some applications due to limitations imposed by other contractual agreements upon the water in the region. Several processes were identified which could be considered for the Green River site; including the use of heat to separate bitumens from tar sands, district heating, warming of greenhouses and soil, and the production of fish for game and commercial sales. The size of these industries would be limited and no single process or industry can be identified at this time which could use the full amount of low-temperature reject heat that would be generated at a NEC.

  11. The design of an open Rankine-cycle industrial heat pump

    NASA Astrophysics Data System (ADS)

    Chaudoir, D. W.; Leibowitz, H. M.

    1982-03-01

    An open Rankine cycle heat pump is ideally suited for producing low pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility. No intermediate refrigerant fluid exists for which to construct a process interface or impose a temperature limit. Interface components such as the heat pump condenser are not required. Moreover, the use of water vapor eliminates toxicity and flammability risks inherent with most closed cycle heat pump fluids. The control strategy is simple. Low pressure (subatmospheric) water vapor, generated by flashing steam at a temperature below that of the waste stream, is compressed to the process pressure and temperature by an electric motor driven, multistage compressor train.

  12. Potential industrial applications for direct contact waste heat recuperator systems

    NASA Astrophysics Data System (ADS)

    Semler, T. T.

    1981-02-01

    Four potential applications were chosen for economic analysis. They are: stack gas from diesel electric generation, boiler stack gas, waste heat stream from the hydraulic cement dry process dryer, and stack gas from the fire polishing of glass. The waste heat streams studied ranged from 175 to 7500 F. A physical analogue of the direct contact waste heat recuperator system was devised and used for costing purposes. Payback calculations were performed for these applications. Only the stack gas from the fire polishing of glass failed to show significant economic promise. A waste heat stream regime of greater than 10,000 cfm and between 400 and 7500 F was identified as most economically promising for direct contact waste heat recuperation and hot process water delivery.

  13. On Heat in a Quantum Mechanical Process

    NASA Astrophysics Data System (ADS)

    Deesuwan, Tanapat; Anders, Janet

    2013-05-01

    Heat is the portion of energy exchange between systems in thermodynamic process which, unlike work, is always associated with the change of the entropies of the systems. In the context of quantum thermodynamics, heat process is described by an incoherent generalised quantum evolution, which is a map between two quantum states that does not preserve the entropy. Based on an information-theoretic reasoning, we propose that heat involving in a general quantum thermodynamic process can be separated into two types: one that is due to the unital subclass of the evolutions and another one that is due to the others. According to these categories, we show how the former type of heat can be incorporated into Jarzynski equality, resulting in a generalised version of the equality. We also derive a Jarzynski inequality which incorporates all heat into the picture and show that this situation is just equivalent to the presence of Maxwell's demon.

  14. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  15. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  16. Industrial application of semantic process mining

    NASA Astrophysics Data System (ADS)

    Espen Ingvaldsen, Jon; Atle Gulla, Jon

    2012-05-01

    Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.

  17. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  18. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  19. 3-dimensional numerical modeling of an industrial radio frequency heating system using finite elements.

    PubMed

    Chan, T V Chow Ting; Tang, J; Younce, F

    2004-01-01

    This paper presents a new, yet simple and effective approach to modeling industrial Radio Frequency heating systems, using the wave equation applied in three dimensions instead of the conventional electrostatics method. The central idea is that the tank oscillatory circuit is excited using an external source. This then excites the applicator circuit which is then used to heat or dry the processed load. Good agreement was obtained between the experimental and numerical data, namely the S11-parameter, phase, and heating patterns for different sized loads and positions.

  20. Analysis of the heat setting process

    NASA Astrophysics Data System (ADS)

    Besler, N.; Gloy, Y. S.; Gries, T.

    2016-07-01

    Heat setting is an expensive and energy elaborative textile process. Heat setting is necessary to guarantee size accuracy and dimensional stability for textile materials. Depending on the material different heat setting methods such as saturated steam or hot air are used for the fixation. The research aim is to define the influence of heat setting on mechanical characteristics and to analyse the correlation of heat setting parameters for polyester. With the help of a “one factor at a time” experimental design heat setting parameters are varied. Mechanical characteristics and the material quality of heat set and not heat set material are evaluated to analyse the heat setting influence. In the described experimental design up to a temperature of 195 °C and a dwell time of 30 seconds the material shrinkage of polyester is increasing with increasing temperature and dwell time. Shrinkage in wales direction is higher than in course direction. The tensile strength in course direction stays constant whereas the tensile strength in wales direction can be increased by heat setting.

  1. New industrial heat pump applications to an integrated thermomechanical pulp and paper mill

    SciTech Connect

    1991-01-01

    Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

  2. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  3. Alternative starting materials for industrial processes.

    PubMed

    Mitchell, J W

    1992-02-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology.

  4. Industrial gases offer new processing alternatives

    SciTech Connect

    Jackow, F.

    1996-07-01

    Creative use of industrial gases, such as oxygen, nitrogen, hydrogen and carbon dioxide, can provide new approaches to many chemical and industrial processes. One example is using pure oxygen to replace air for combustion, a technique that makes it possible to increase incineration efficiency and reduce the amount of nitrogen oxides produced, thus lowering a plant`s environmental impact. Recent downsizing trends, cost-reduction efforts and environmental regulations have modified the relationship between major chemical and industrial gas companies. Chemical producers are now often interested in outsourcing not only industrial gas supply but also technology and turnkey solutions. Among the benefits to the end users are enhanced safety, reduced environmental impact and improved profitability.

  5. Fuel quality issues in the oil heat industry

    SciTech Connect

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  6. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  7. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  8. The Structure of the Chemical Processing Industries.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1979-01-01

    Described is a graduate and senior level course utilizing the case study approach in chemical engineering at the University of Delaware that stresses the function and economics of the chemical processing industry. A history of the course development, course outline, and teaching methods used are included. (BT)

  9. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  10. Guidebook for solar process-heat applications

    NASA Astrophysics Data System (ADS)

    Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.

    1981-01-01

    The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.

  11. Downstream processing in the biotechnology industry.

    PubMed

    Kalyanpur, Manohar

    2002-09-01

    The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.

  12. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  13. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  14. Alternative starting materials for industrial processes.

    PubMed Central

    Mitchell, J W

    1992-01-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology. Images PMID:11607260

  15. Coupled simulation of an electromagnetic heating process using the finite difference time domain method.

    PubMed

    Chen, Hao; Tang, Juming; Liu, Fang

    2007-01-01

    Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes.

  16. The characterization and assessment of selected solar thermal energy systems for residential and process heat applications

    NASA Astrophysics Data System (ADS)

    Hyde, J. C.

    1980-09-01

    Results of studies of seven solar thermal energy applications are presented. Five of these are residential applications: space heating--active liquid, space heating--active air, domestic hot water--active, space heating--passive, and space heating and cooling--active liquid. Denver, Colorado, was selected as a representative location for each of the above applications. The remaining two applications produce industrial process heat: a flat plate collector system producing 50 C - 100 C hot water for a commercial laundry in Indianapolis, Indiana; and a concentrating collector system that could produce 100 C - 300 C process heat adequate to the needs of a pulp mill in Madison, Wisconsin.

  17. Evaluation of industrial magnetic heat pump/refrigerator concepts that utilize superconducting magnets

    NASA Astrophysics Data System (ADS)

    Waynert, J. A.; Degregoria, A. J.; Foster, R. W.; Barclay, J. A.

    1989-06-01

    A preliminary assessment is provided of some magnetic heat pump (MHP)/refrigeration concepts for cryogen liquefaction and other industrial applications. Applications of interest range from the liquefaction of gases (20 to 100 K) to cold storage refrigeration for food preservation (250 to 320 K) to heat pumps utilizing industrial waste heat (350 to 400 K). Initial market penetration of magnetic refrigeration devices is anticipated for low temperature industrial applications such as the cryogen liquefaction field, and the major focus of the study is on hydrogen liquefaction (20 K) utilizing a liquid nitrogen heat sink (77 K). A brief market analysis indicated that there is a need for small (approx. 1 ton/day liquid hydrogen) hydrogen liquefiers with dispersed usage at appropriate sites in the country to reduce distribution costs. This provides an ideal market niche for magnetic liquefiers since conventional gas cycle liquefiers cannot be economically scaled to small sizes. A number of design options for hydrogen liquefiers are analyzed, including thermodynamic cycles; magnetic materials; heat exchangers; process of magnetization/demagnetization; magnet configurations; source/sink connections; and regenerative, recuperative, and active magnetic regenerative concepts.

  18. Design, construction, operation, and evaluation of solar systems for industrial process-heat applications in the intermediate-temperature range (212/sup 0/F to 550/sup 0/F). Environmental assessment

    SciTech Connect

    1982-01-01

    The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood and glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)

  19. Bates solar industrial process steam application environmental impact assessment

    SciTech Connect

    Not Available

    1981-06-30

    It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

  20. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  1. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  2. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    NASA Astrophysics Data System (ADS)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  3. A radioactive metal processing industry perspective source.

    PubMed

    Johnson, A

    2006-11-01

    The current U.S. economic environment for the disposition of radioactive waste, including very-low-activity metals, is currently experiencing relatively low radioactive disposal costs and readily available disposal space. Despite the recent market increase in demand for recycled scrap metal commodities, there is still little change in the behavior of the nuclear industry (including radioactive waste processors and radioactive scrap metal recyclers) to pursue the recycling of potentially contaminated scrap metal. The relatively low cost of traditional radioactive waste disposal combined with the perceived risks associated with recycling of previously contaminated metals means that most U.S. radioactive facility managers and stakeholders will elect not to recycle. Current technology exists and precedence has been set for prescreening (by means of bulk radioactive assay techniques) scrap metal that is not contaminated and diverting it to industrial landfills for disposal. Other processes also allow some radiologically contaminated metals to be melted and recast into products with low, but acceptable, activity levels for restricted use in the nuclear industry. A new concept is being considered that would create a centralized licensed facility for the process and disposition of "very-low-activity" metals for "directed first use." The advantages to this type of approach would include a standardized method for licensing the clearance process.

  4. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing.

  5. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal

  6. Solar augmentation for process heat with central receiver technology

    NASA Astrophysics Data System (ADS)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  7. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  8. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  9. Automated full matrix capture for industrial processes

    NASA Astrophysics Data System (ADS)

    Brown, Roy H.; Pierce, S. Gareth; Collison, Ian; Dutton, Ben; Dziewierz, Jerzy; Jackson, Joseph; Lardner, Timothy; MacLeod, Charles; Morozov, Maxim

    2015-03-01

    Full matrix capture (FMC) ultrasound can be used to generate a permanent re-focusable record of data describing the geometry of a part; a valuable asset for an inspection process. FMC is a desirable acquisition mode for automated scanning of complex geometries, as it allows compensation for surface shape in post processing and application of the total focusing method. However, automating the delivery of such FMC inspection remains a significant challenge for real industrial processes due to the high data overhead associated with the ultrasonic acquisition. The benefits of NDE delivery using six-axis industrial robots are well versed when considering complex inspection geometries, but such an approach brings additional challenges to scanning speed and positional accuracy when combined with FMC inspection. This study outlines steps taken to optimize the scanning speed and data management of a process to scan the diffusion bonded membrane of a titanium test plate. A system combining a KUKA robotic arm and a reconfigurable FMC phased array controller is presented. The speed and data implications of different scanning methods are compared, and the impacts on data visualization quality are discussed with reference to this study. For the 0.5 m2 sample considered, typical acquisitions of 18 TB/m2 were measured for a triple back wall FMC acquisition, illustrating the challenge of combining high data throughput with acceptable scanning speeds.

  10. Fruit, vegetable, and grain processing wastes. [Industrial wastes

    SciTech Connect

    Morrell, R.A.; Schmidt, H.E. Jr.

    1982-06-01

    Waste processing methods utilized in the food-processing industry are reviewed. The industrial waste associated with fruits, vegetables, and grain are examined. The utilization of the waste products after processing is discussed.

  11. Laser Processed Condensing Heat Exchanger Technology Development

    NASA Technical Reports Server (NTRS)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  12. Conceptual design of industrial process displays.

    PubMed

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  13. Case studies on heat stress related perceptions in different industrial sectors in southern India

    PubMed Central

    Balakrishnan, Kalpana; Ramalingam, Ayyappan; Dasu, Venkatesan; Stephen, Jeremiah Chinnadurai; Sivaperumal, Mohan Raj; Kumarasamy, Deepan; Mukhopadhyay, Krishnendu; Ghosh, Santu; Sambandam, Sankar

    2010-01-01

    Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management. Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions. Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative controls in the

  14. Greenhouse gases and the metallurgical process industry

    SciTech Connect

    Lupis, C.H.P.

    1999-10-01

    The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

  15. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  16. Management of waste from stone processing industry.

    PubMed

    Prasanna, K; Joseph, Kurian

    2007-10-01

    Characteristics of waste generated in stone processing industries, impact of its current disposal practices and waste recycling potential were assessed by field studies. The physical and chemical characteristics of waste are comparable to construction materials like sand and cement. The environmental issues due to the disposal of waste including that on ambient air quality were identified at respective disposal sites. It was found that the waste can be used to replace about 60% of sand and 10% of cement in concrete. Similarly the waste can replace 40% of clay in clay bricks with affecting its compressive strength.

  17. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  18. An industrial hygiene evaluation of beet sugar processing plants.

    PubMed

    Mann, J H

    1990-06-01

    Industrial hygiene surveys were conducted at seven beet sugar processing plants to evaluate worker exposures to chemical contaminants used or generated in the process. Personal air sampling used to evaluate worker exposures showed overexposures to calcium oxide, carbon monoxide, respirable coal dust, sulfur dioxide, and sugar dust. The beet sugar industry is an old industry, lacking engineering controls found in many other industries.

  19. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  20. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  1. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  2. Neural networks in the process industries

    SciTech Connect

    Ben, L.R.; Heavner, L.

    1996-12-01

    Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.

  3. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  4. A performance data network for solar process heat systems

    SciTech Connect

    Barker, G.; Hale, M.J.

    1996-03-01

    A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

  5. Oils and fats: changes due to culinary and industrial processes.

    PubMed

    Sanchez-Muniz, F J

    2006-07-01

    Diets of developed countries contain substantial quantities of fat subjected to different processing and heat treatments. Heating in the presence of air produces oxidative and thermal degradations in the unsaturated acyl groups of triacylglycerols and in other unsaturated compounds present in the oils and fats. These changes modify the nutritional properties of culinary fat and lead to the formation of many oxidized and polymerized compounds that present higher polarity than that of the original triacylglycerols. Some aspects of lipid peroxidation that occur in heated and used frying oils will be briefly presented and discussed. This paper will focus on appropriate methodology for the assessment of fat alteration (e.g. chromatography) and the point at which any oil used for frying should be discarded. Polar material (PM) and triacylglycerol oligomer content (TOC) determinations constitute the basis of legislation for oil discarding in some European countries; we will try to open some debate on whether PM or TOC is preferred for oil discarding assessment. Correct frying performance helps to lengthen oil frying-life and to decrease the alteration content in the fried food. Because many factors are present in the culinary and industrial frying, the effect of the process itself and that of the food and the type of oil used will be reviewed. The present report analyses and describes a wide variety of topics related to frying performance, and their nutritional implications with a special focus on the behavior during frying of most consumed oils in Mediterranean countries.

  6. Heat transfer and temperature of foods during processing.

    PubMed

    Holmes, Z A; Woodburn, M

    1981-01-01

    Safety and economics concerns have accentuated an interest in energy input and consumption in the foods industry. This review article focuses on reported temperatures and temperature histories in food preparation and processing. To assist in interpreting reported data, a basic understanding of heat transfer parameters used is given. The relationships between temperature and time histories and quality effects of physical and chemical changes in foods, the production of new compounds with possible health effects, and microbiological safety are summarized. Several areas of needed research are identified.

  7. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  8. In situ heat treatment process utilizing a closed loop heating system

    SciTech Connect

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  9. Simplification of simulation processes at gravity heat pipes

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Lenhard, Richard

    2016-03-01

    Water heating by heat pipe is currently the object examined on the use in sphere of recovering heat from technological processes. The heat pipe is the device for water heating that provides us a very effective way of transferring heat from the heat source (combustion) to the place of consumption (water). For the draft proposal of such equipment is produced under the required conditions mathematical model of ANSYS that verifies the actual measurements the experiments. The paper deals with the possibility of simulations of heat pipes in the process of heat transport and apposite simplification of the simulation process by defining apposite the substitutes of the solid materials with its own thermal properties that ensure a similar heat transport as a heat transfer medium in the heat pipe.

  10. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  11. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Astrophysics Data System (ADS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-04-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  12. Industrial applications of process imaging and image processing

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Sunshine, Gregg; Rosen, Lou; Jochen, Ed

    2001-02-01

    Process imaging is the art of visualizing events inside closed industrial processes. Image processing is the art of mathematically manipulating digitized images to extract quantitative information about such processes. Ongoing advances in camera and computer technology have made it feasible to apply these abilities to measurement needs in the chemical industry. To illustrate the point, this paper describes several applications developed at DuPont, where a variety of measurements are based on in-line, at-line, and off-line imaging. Application areas include compounding, melt extrusion, crystallization, granulation, media milling, and particle characterization. Polymer compounded with glass fiber is evaluated by a patented radioscopic (real-time X-ray imaging) technique to measure concentration and dispersion uniformity of the glass. Contamination detection in molten polymer (important for extruder operations) is provided by both proprietary and commercial on-line systems. Crystallization in production reactors is monitored using in-line probes and flow cells. Granulation is controlled by at-line measurements of granule size obtained from image processing. Tomographic imaging provides feedback for improved operation of media mills. Finally, particle characterization is provided by a robotic system that measures individual size and shape for thousands of particles without human supervision. Most of these measurements could not be accomplished with other (non-imaging) techniques.

  13. Processing of nickel aluminides and their industrial applications

    SciTech Connect

    Sikka, V.K. ); Mavity, J.T.; Anderson, K. )

    1991-01-01

    Ductile Ni{sub 3}Al-based alloys offer unique properties. However, their use has been limited because information is lacking regarding their processing into various product forms. This paper describes the recent progress made toward melting, electroslag remelting, and the processing of large-scale ingots of one of the Ni{sub 3}Al-based alloys. Microstructural data are presented after various homogenization treatments. Both as-cast and homogenized samples were subjected to hot-compression testing. The hot-compression data for the commercial-size ingot showed the same behavior as previously reported on the experimental heats. The status of industrial applications of nickel-aluminide alloys is also described. 12 refs., 12 figs., 2 tabs.

  14. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry.

    PubMed

    Kumar, Varun; Shakher, Chandra

    2015-02-20

    This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated.

  15. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  16. 5 MV 30 mA industrial electron processing system

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Mizusawa, K.

    1991-05-01

    Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.

  17. Industrial Applications Of Optical Signal Processing I

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    1988-04-01

    Optical technology has emerged as a viable solution to the growing demand to increase the throughput of high speed processors and computers. Although higher speed and denser integrated circuits are being developed, it appears that faster switching speeds in digital circuits will not provide an adequate solution to the bottleneck problem of computing systems for such tasks as real-time distortion-invariant pattern recognition and associative memory. Even supercomputers using new computing architectures and subnanosecond gate delays do not have sufficient speed for such real-time operations. Optical systems offer the advantages of inherent parallelism and high speed with superior interconnection capability, which allow for the processing of millions of simultaneous operations. The lack of electromagnetic interference in optics is ideally suited for neural network based proces-sors, which require a high degree of interconnectivity and global communications properties. Analog optical computers are particularly attractive for the processing of large stochastic data, while the more precise digital computers break down when confronted with such random problems. The immunity to electromagnetic interference can also be used advantageously in VLSI interconnections technology and board-to-board communications to reduce the pinout problem and to improve flexibility and performance. For these reasons, optical technology has become a major research and development effort at many industrial, government, and university laboratories both nationally and internationally.

  18. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  19. Localized rapid heating process for precision chalcogenide glass molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; He, Peng; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2015-10-01

    Precision glass molding is an important process for high volume optical fabrication. However, conventional glass molding is a bulk heating process that usually requires a long thermal cycle, where molding assembly and other mechanical parts are heated and cooled together. This often causes low efficiency and other heating and cooling related problems, such as large thermal expansion in both the molds and molded optics. To cope with this issue, we developed a localized rapid heating process to effectively heat only very small part of the glass. This localized rapid heating study utilized a fused silica wafer coated with a thin graphene layer to heat only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating heat on and near the coating. The feasibility of this process was validated by both experiments and numerical simulation. To demonstrate the advantages of the localized rapid heating, both localized rapid heating process and bulk heating process were performed and carefully compared. The uniformity and quality of the molded sample by localized rapid heating process was also demonstrated. In summary, localized rapid heating process by using graphene coated fused silica wafer was characterized and can be readily implemented in replication of micro scale chalcogenide glasses. A fused silica wafer coated with a thin graphene layer was utilized for localized rapid heating only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating high temperature on and near the coating. This process is fast and efficient since only interested areas are heated without affecting the entire glass substrate or the mold assembly. The uniformity and quality of the molded sample by localized rapid heating process was demonstrated by comparing both localized rapid heating

  20. Process Design of Aluminum Tailor Heat Treated Blanks.

    PubMed

    Kahrimanidis, Alexander; Lechner, Michael; Degner, Julia; Wortberg, Daniel; Merklein, Marion

    2015-12-09

    In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO₂ and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB) is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation.

  1. Process Design of Aluminum Tailor Heat Treated Blanks

    PubMed Central

    Kahrimanidis, Alexander; Lechner, Michael; Degner, Julia; Wortberg, Daniel; Merklein, Marion

    2015-01-01

    In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO2 and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB) is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation. PMID:28793727

  2. Experiences with industrial solar process steam generation in Jordan

    NASA Astrophysics Data System (ADS)

    Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus

    2017-06-01

    At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.

  3. SOLTECH 92 proceedings: Solar Process Heat Program. Volume 1

    SciTech Connect

    Not Available

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy`s (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  4. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  5. The Grafting of Industrial Chemicals Operations onto the Bayer Process

    NASA Astrophysics Data System (ADS)

    Chin, Lester A. D.

    Concepts are presented for the grafting of industrial chemicals manufacturing processes onto a Bayer Process, and the implications of these chemical processes on the host process are identified. The application of these concepts as guidelines for the downstream manufacture of chemicals at alumina chemicals complexes located away from Bayer refineries, is also considered. A full line of industrial alumina chemicals is covered.

  6. Industrial waste reduction: The process problem

    SciTech Connect

    Valentino, F.W.; Walmet, G.E.

    1986-09-01

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  7. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    PubMed

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p < 0.001). The core body temperature of workers decreased by 2.6 °C after the application of interventions which was also significant (p < 0.05). The results confirmed heat control at source can be considered as a first solution for reducing radiant heat of blast furnaces. However, the simultaneous application of interventions could noticeably reduce worker heat stress. The results provide reliable information in order to implement the effective heat controls in typical hot steel industries.

  8. A Fresnel collector process heat experiment at Capitol Concrete Products

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1981-01-01

    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.

  9. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  10. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  11. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  12. Metal and Glass Manufactures Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    SciTech Connect

    2004-05-01

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  13. Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future

    SciTech Connect

    Thomas D. Briselden

    2007-10-31

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this

  14. M.A.N. heat pumps in industry and communities, and their efficiency

    NASA Astrophysics Data System (ADS)

    Griesbach, G.

    1984-06-01

    Heat pumps for refrigeration and heating are described. A gas motor heat pump is used. Large quantities of heat from the cooling water are available for the fabrication of capacitors. Buildings and industry halls are heated with the heat pump with an asynchronous motor/generator. This tandem system allows several combinations for energy supply. The energy concept consists of five, microprocessor controlled, functional units which can be used independently. Installation costs are recouped in 3 yr. The heating system of a school where a gas motor heat pump is combined with a natural gas fired boiler is also described. Division into a high and a low temperature system guarantees efficient operation. Energy saving of 58% compared to a boiler system is obtained. In the heating system of a hospital where a gas motor heat pump is combined with the existing boiler system, energy saving of 50% compared to the previous system is obtained.

  15. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  16. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  17. Utilization of geothermal heat in tropical fruit-drying process

    SciTech Connect

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  18. Evaluating Effects of Heat Stress on Cognitive Function among Workers in a Hot Industry

    PubMed Central

    Mazloumi, Adel; Golbabaei, Farideh; Mahmood Khani, Somayeh; Kazemi, Zeinab; Hosseini, Mostafa; Abbasinia, Marzieh; Farhang Dehghan, Somayeh

    2014-01-01

    Background:Heat stress, as one of the most common occupational health problems, can impair operators' cognitive processes. The aim of this study was to evaluate the impact of thermal stress on cognitive function among workers in a hot industry. Methods: In this cross-sectional study conducted in Malibel Saipa Company in 2013, workers were assigned into two groups: one group were exposed to heat stress (n=35), working in casting unit and the other group working in machining unit (n=35) with a normal air conditioning. Wet Bulb Globe Temperature was measured at three heights of ankle, abdomen, and head. In order to evaluate the effects of heat stress on attention and reaction time, Stroop tests 1, 2, and 3 were conducted before starting the work and during the work. Results: A significant positive correlation was observed between WBGT and test duration (P=0.01) and reaction time of Stroop test 3 (P=0.047), and between number of errors in Stroop tests 1, 2, and 3, during the work (P= 0.001). Moreover, Stroop test 3 showed a significant higher score for both test duration and reaction time of workers in case group. Conclusion: Results of the present study, conducted in a real work environment, confirmed the impairment of cognitive functions, including selective attention and reaction time, under heat stress conditions. PMID:25649311

  19. Renewable-energy-resource options for the food-processing industry

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.

    1981-09-01

    The food processing industry generates significant quantities of organic process wastes which often require treatment prior to disposal or result in additional expenses for disposal. The food processing industry also requires fuel and electricity to provide the process energy to convert raw materials into finished food products. Depending on the particular process, organic wastes can represent a potential resource for conversion to energy products that can be used for providing process energy or other energy products. This document reports the results of an evaluation of renewable energy resource options for the food processing industry. The options evaluated were direct combustion for providing process heat, fermentation for ethanol production and anaerobic digestion for generation of methane.

  20. Heat and Mass Transfer in the Concrete of Special Industrial Installations (Teplo- i Massoperenos v Betone Spetsial’nykh Promyshlennykh Sooruzheniy)

    DTIC Science & Technology

    1976-07-01

    calculating the effective coefficient of heat tranfer based on the necessity for reducing the intensity of thermal exchange by approximately 100 times...TL 538 ADA03O93 Draft Transl’ation 5384 July 197 HEAT AND MASS TRANSFER IN THE CONCRETE OF SPECIAL INDUSTRIAL INSTALLATIONS I.V. Zasedatelev and V.G...gations of special features of the heat and mass transfer processes in concrete Exunination and analysis of mathematical models of the processes, experi

  1. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  2. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  3. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  4. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  5. Coherent Magneto-Caloric Effect Heat Engine Process Cycle

    NASA Astrophysics Data System (ADS)

    Keefe, Peter D.

    2002-11-01

    Presented is a thermodynamic argument that it is theoretically possible to cyclically process a particle of Type I superconductor in H-T space so that all heat extracted from the high temperature heat reservoir is converted into work, no heat being rejected to a low temperature heat reservoir. Importantly, a heat engine designed to operate according to this cycle would be able to continually convert the ambient heat of its surroundings into work. The author's U.S. Patent 4,638,194 sets forth the structural and methodological considerations for carrying out the cycle in the form of a heat engine.

  6. Measuring Systems for Temperature Monitoring of Thermal Spraying and Combustion Processes in Industry

    NASA Astrophysics Data System (ADS)

    Senchenko, V. N.; Dozhdikov, V. S.

    2003-09-01

    Conventional optical pyrometry methods do not always yield satisfactory results in cases of temperature monitoring in complicated industrial processes. For example, measuring the temperature of heated particles in thermal plasma spraying jets requires recognizing the object being measured by solving a mathematical problem. In addition to diagnosis of the temperature of a heated gas flow based on its self-radiation, it is necessary to utilize an irradiation physical model of IR active molecules. The paper briefly describes two diagnostic systems and methods for the above-mentioned industrial application. The main details of the system design, calibration and performance are presented.

  7. The influence of heat treatment on properties of cold rolled alloyed steel and nickel superalloys sheets used in aircraft industry

    NASA Astrophysics Data System (ADS)

    Zaba, K.; Dul, I.; Puchlerska, S.

    2017-02-01

    Superalloys based on nickel and selected steels are widely used in the aerospace industry, because of their excellent mechanical properties, heat resistance and creep resistance. Metal sheets of these materials are plastically deformed and applied, inter alia, to critical components of aircraft engines. Due to their chemical composition these materials are hardly deformable. There are various methods to improve the formability of these materials, including plastic deformation at an elevated or high temperature, or a suitable heat treatment before forming process. The paper presents results of the metal sheets testing after heat treatment. For the research, sheets of two types of nickel superalloys type Inconel and of three types of steel were chosen. The materials were subjected to multivariate heat treatment at different temperature range and time. After this step, mechanical properties were examined according to the metal sheet rolling direction. The results were compared and the optimal type of pre-trial softening heat treatment for each of the materials was determined.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  10. Low cost process heat recovery. Interim report

    SciTech Connect

    Theisen, P.; McCray, J.

    1980-01-01

    The objectives of this project are to analyze waste heat recovery potential, economic analysis, heat exchanger and system design, and computer analysis programs. The heating demand and heat recovery potential at a Madison neighborhood bakery was conducted. The building has steam heat and natural gas is used in the hot water heater, the cooking stoves, and in the baking oven. Heat recovery potential was analyzed based upon fuel consumption in the baking oven, flue gas temperature, mass flow rate, and hours of oven operation. The feasibility of waste heat recovery systems is analyzed using life cycle cost and life cycle savings. For a first approximation, hand calculations were performed for air-to-air flat plate, fin-plate, and liquid-to-air tube type heat exchangers using the temperature and mass flow data from a pizza restaurant in Madison. Then a heat exchanger analysis program was written in interactive BASIC. The analysis indicates that heat recovery using the flat-plate and fin-plate exchanger designs is technically feasible and yields high effectiveness. (MCW)

  11. Process integration methodology for natural gas-fueled heat pumps and cogeneration systems

    NASA Astrophysics Data System (ADS)

    Rossiter, Alan P.

    1988-11-01

    A process integration methodology was developed for analyzing industrial processes, identifying those that will benefit from natural gas fueled heat pumps and cogeneration system as well as novel, process-specific opportunities for further equipment improvements, including performance targets. The development included the writing of software to assist in implementing the methodology and application of the procedures in studies using both literature data and plant operating data. These highlighted potential applications for gas fueled heat pumps in ethylene processes and liquor distilling plants, and slightly less attractive opportunities in a number of other plants. Many of the processes studied showed excellent potentials for cogeneration applications.

  12. Science Lessons from Industrial Processes--Sunderland.

    ERIC Educational Resources Information Center

    Nellist, J.

    1980-01-01

    Presents aims of an inservice course designed to encourage science teachers to incorporate material of relevance to the local industrial scene into their existing curricula. Projects required by participants in the course are listed with their brief descriptions and possible applications in the classroom. (CS)

  13. Rubber Plastics Processing Industry Training Board

    ERIC Educational Resources Information Center

    Industrial Training International, 1974

    1974-01-01

    The training adviser's role is changing from trainer to problem analyst. Some of the problems being dealt with include: (1) the school to industry transition, (2) new training methods for the 16 to 18 year old entry worker, (3) foreign language training, (4) safety programs, and (5) tire-fitter training. (MW)

  14. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  15. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  16. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  17. [Evaluation of microbial contamination of linens in industrial laundry processes].

    PubMed

    Sanna, Adriana; Coroneo, Valentina; Dessì, Sandro; Brandas, Valeria

    2013-01-01

    Laundering linens and protecting them from microbiological recontamination are critical issues for the hotel and food industries and especially for hospitals. This study was performed to evaluate a sample of industrial laundries in Sardinia (Italy), to assess their compliance with national hygienic and sanitary regulations, along the complete laundering process. Study results indicate that industrial laundering processes are effective and that better awareness of staff who handle laundered textiles is required to reduce the risk of recontamination.

  18. External research and energy efficiency in the process industries

    SciTech Connect

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  19. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  20. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  1. Unit Operation Experiment Linking Classroom with Industrial Processing

    ERIC Educational Resources Information Center

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon

    2013-01-01

    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  2. Unit Operation Experiment Linking Classroom with Industrial Processing

    ERIC Educational Resources Information Center

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon

    2013-01-01

    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  3. Process models: analytical tools for managing industrial energy systems

    SciTech Connect

    Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T

    1980-01-01

    How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.

  4. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  5. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart

    2016-02-01

    In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 < Pr < 800 was derived from the data: {Nu}t = 0.0085 \\cdot Re^{0.2} \\cdot {Pr^{0.65}} The correlation has been compared to literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

  6. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  7. Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui

    2016-12-01

    In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.

  8. Process improvement of knives production in a small scale industry

    NASA Astrophysics Data System (ADS)

    Ananto, Gamawan; Muktasim, Irfan

    2017-06-01

    Small scale industry that produces several kinds of knive should increase its capacity due to the demand from the market. Qualitatively, this case study consisted of formulating the problems, collecting and analyzing the necessary data, and determining the possible recommendations for the improvement. While the current capacity is only 9 (nine), it is expected that 20 units of knife will produced per month. The processes sequence are: profiling (a), truing (b), beveling (c), heat treatment (d), polishing (e), assembly (f), sharpening (g) and finishing (h). The first process (a) is held by out-house vendor company while other steps from (b) to (g) are executed by in-house vendor. However, there is a high dependency upon the high skilled operator who executes the in -house processes that are mostly held manually with several unbalance successive tasks, where the processing time of one or two tasks require longer duration than others since the operation is merely relied on the operator's skill. The idea is the improvement or change of the profiling and beveling process. Due to the poor surface quality and suboptimal hardness resulted from the laser cut machine for profiling, it is considered to subst itute this kind of process with wire cut that is capable to obtain good surface quality with certain range levels of roughness. Through simple cutting experiments on the samples, it is expected that the generated surface quality is adequate to omit the truing process (b). In addition, the cutting experiments on one, two, and four test samples resulted the shortest time that was obtained through four pieces in one cut. The technical parameters were set according to the recommendation of machine standard as referred to samples condition such as thickness and path length that affect ed the rate of wear. Meanwhile, in order to guarantee the uniformity of knife angles that are formed through beveling process (c), a grinding fixture was created. This kind of tool diminishes the

  9. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.; Hersh, D. B.

    1982-10-01

    There is an acute need for a burner that does not use excess air to provide the required thermal turndown and internal recirculation of furnace gases in direct fired batch type furnaces. Such a burner would improve fuel efficiency and product temperature uniformity. A high velocity burner has been developed which is capable of multi-fuel, preheated air, staged combustion. This burner is operated by a microprocessor to fire in a discrete pulse mode using Frequency Modulation (FM) for furnace temperature control by regulating the pulse duration. A flame safety system has been designed to monitor the pulse firing burners using Factory Mutual approved components. The FM combustion system has been applied to an industrial batch hardening furnace (1800 F maximum temperature, 2500 lbs load capacity).

  10. Membrane separation processes in the petrochemical industry

    SciTech Connect

    Li, N.N.; Funk, E.W.; Chang, Y.A.; Kulkarni, S.S.; Swamikannu, A.X.; White, L.S.

    1987-09-30

    This report provides an overview of a project with Allied-Signal which focused on developing new membrane technology with potential for energy conservation in the petrochemical industry. Three applications were investigated: (1) bulk removal of polar (sour) gases from natural gas using spiral-wound, cellulose acetate membranes; (2) recovery of solvent from solvent/heavy oil mixtures using polysulfone ultrafiltration membranes; and (3) separation of polar gases (e.g., H{sub 2}S and NH{sub 3} from H{sub 2}) using mixed-matrix, facilitated-transport membranes. This report summarizes laboratory research results performed in an earlier phase of this project and provides results from pilot-scale, field test studies and economic assessments.

  11. Heat exchange units boiling process numerical modeling at subatmospheric pressure

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-08-01

    The paper deals with the boiling process mechanism, the results of the boiling intensification methods analysis at subatmospheric pressure are presented. The calculation methodology for the boiling process on the surface performed in the form of capillary slotted channels is represented. Heat transfer coefficients variations calculation dependences defined by analytical and numerical methods applying are described. The heat exchange surface geometrical characteristics impact on the heat exchange capacity in vacuum conditions was investigated.

  12. Evolution of the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2013-04-01

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  13. Evolution of the radiation processing industry

    SciTech Connect

    Cleland, Marshall R.

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  14. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    SciTech Connect

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers.

  15. Heat pipe cooling of an aerospace foam mold manufacturing process

    SciTech Connect

    Hahn, D.R.; Feldman, K.T.; Marjon, P.L.

    1980-01-01

    A passive heat pipe cooling system was developed to cool a Bendix foam mold used to manufacture aerospace foam parts. The cooling system consists of ten copper-water heat pipes with cooling fins implanted into the aluminum mold and cooled by a domestic size fan blowing ambient air. The number and location of the heat pipes was determined to provide the most effective cooling and mold isothermalization based on experimental measurements of mold temperatures during the exothermic foaming process and from practical considerations of the mold geometry and use. Performance tests were cnducted on an individual heat pipe and on the ten heat pipes implanted in the mold. Both exothermic foam heating and internal electrical heat input were used in the experiments. The experimental test results indicate that the heat pipe cooling system with a fan is four to six times faster than free convection cooling of the mold with no heat pipes or fan and nearly twice as fast as cooling by the fan only. Similarly fast increases in mold heating time in the cure furnace could be realized if the heat pipes are used during this part of the production process. The heat pipes also cool hot spots in the mold and help isothermalize the mold so that better quality foam parts should be produced.

  16. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    PubMed

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  17. INDUSTRY-WIDE, MULTI-INDUSTRY AND ECONOMY-WIDE PROCESS ANALYSIS,

    DTIC Science & Technology

    Process analysis , as the term is used here, refers to the formal analysis of industrial productive processes. It consists of (a) the construction of...wide process analysis model is compared with other economy-wide models. It also discusses what can and cannot be hoped for from an economy-wide process analysis .

  18. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  19. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  20. Clinker Production from Waste: From Cellulose Industry and Processing Marble and Granite Industry

    NASA Astrophysics Data System (ADS)

    Pedroti, G. L.; Vieira, C. M. F.; Alexandre, J.; Monteiro, S. N.; Justino, L.; Xavier, C. G.

    With the development of industrial processes and the consequent emergence of numerous products that quickly become necessities, industrial activity has acquired an essential character today. Although its importance is unquestionable, industrial activity is responsible for generating quite a large number of residues, with different shapes and characteristics. It has been observed, in particular the grits (Kraft process in the cellulose industry) and the residue from the processing of granite. And, given the importance of Portland cement as a building material, its vast employment and waste properties that resemble components of the clinker, it was decided to produce cementitious compounds from these industrial wastes. The residues were subjected to mineralogical, chemical, physical and morphological. And, the mixing ratio between the residues in the 70% and 30% grits residue granite was sintered at 1250 ° C furnaces to burn threshold of 6 hours forming new compounds observing tri-calcium aluminate and di-calcium silicate that are compounds found in portland cement.

  1. [Occupational deafness in workers of gas-processing industry].

    PubMed

    Raĭtselis, I V

    2009-01-01

    A total of 1121 workers serving processing unit operators, including operators (n = 673), drivers (n = 201), and fitters (n = 247), were examined at a gas-processing plant (GPP). A complex of negative industrial factors in the gas-processing industry workers was ascertained to be formed due to their exposure to high noise along with class 3.2 hard work. The total rate of the working conditions at the GPP in terms of the intensity of negative industrial factors corresponds to Class 3.3-3.4, which determines the increased likelihood of occupational deafness in the workers.

  2. Identification for the control of MIMO industrial processes

    NASA Astrophysics Data System (ADS)

    Backx, A. C. P. M.; Damen, A. A. H.

    1991-12-01

    A procedure for the identification of industrial processes with the intention of control system design is proposed. It is illustrated by an application to a full scale production process. The procedure was developed by directly meeting engineering constraints. The identification steps are motivated, keeping industrial applicability of the procedure in mind. The Multi Input Multi Output (MIMO) model set used is the common denominator form or minimum polynomial form. Parameter estimation is performed in several steps, thus adapting to estimation and control requirements. The proposed general scheme was successfully applied on various industrial applications. As an example of practical results obtained, the identification and control of a quartz tube glass process is described.

  3. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    ERIC Educational Resources Information Center

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  4. Latest Development of Infrared Radiation Heating for Food Processing

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) heating could be an alternative technology for thermal and dehydration processing of food and agricultural products with many advantages, including high process and energy efficiencies, high product quality, improved food safety and reduced environmental pollution. This paper reviews ...

  5. Heat transfer during heat sterilization and cooling processes of canned products

    NASA Astrophysics Data System (ADS)

    Dincer, I.

    In this paper, an analysis of transient heat transfer during heat sterilization and cooling processes of a cylindrical canned product is presented. In the analysis, most practical case including the boundary condition of third kind (i.e., convection boundary condition, leading to 0.1 <= Bi <= 100) was employed. A simple analytical model for determining effective heat transfer coefficients for such products is developed. For the heat sterilization process, heating coefficient is incorporated into heat transfer coefficient model. An experimental study was performed to measure the thermal center temperatures of the short-cylindrical canned products (i.e., Tuna fish) during heat sterilization at the retort medium temperatures of 115∘C and 121∘C, and during cooling process at 16∘C. The effective heat transfer coefficient model used the experimental temperature data. Using these effective heat transfer coefficients the center temperature distributions were calculated and compared with the experimental temperature distributions. Agreement was found considerably high. The results of the present study indicate that the heat-transfer analysis technique and heat-transfer coefficient model are reliable, and can provide accurate results for such problems.

  6. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  7. Process for heating coal-oil slurries

    DOEpatents

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  8. A Process Heat Application Using Parabolic Trough Collector

    NASA Astrophysics Data System (ADS)

    Yılmaz, İbrahim Halil; Söylemez, Mehmet Sait; Hayta, Hakan; Yumrutaş, Recep

    A pilot study has been performed based on a heat process application that is designed, installed and tested at Gaziantep University to establish the technical and economic feasibility of high temperature solar-assisted cooking process. The system has been designed to be satisfying the process conditions integrated with parabolic trough solar collector (PTSC). It is primarily consists of the PTSC array, auxiliary heater, plate type heat exchanger, cooking system and water heating tanks. In the operation of the process heat application, the energy required to cook wheat (used as cooking material) has been supplied from solar energy which is transferred to heat transfer fluid (HTF) by heat exchanging units and finally discharged to water in order to produce bulgur. The performance parameters of the sub-systems and the process compatibility have been accomplished depending on the system operation. In addition that the system performance of the high temperature solar heat process has been presented and the recommendations on its improvement have been evaluated by performing an experimental study. As a result that the use of solar energy in process heat application has been projected and its contribution to economics view with respect to conventional cooking systems has been conducted.

  9. Gas processing in the nuclear industry

    SciTech Connect

    Kovach, J.L.

    1995-02-01

    This article is a brief overview of code requirements in the nuclear air cleaning arena. NRC standards, which employ the various ASME codes, are noted. It is also noted that DOE facilities do not fall under the purview of the NRC and that DOE facilities (especially fuel cycle facilities) typically have broader gas processing activities than for power reactors. The typical differences between DOE facilities` and power reactor facilities` gas processing needs are listed, as are DOE facility components not covered by the ASME AG-1 code.

  10. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect

    Not Available

    1980-01-07

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  11. Energy Conservation Guide for Industrial Processes.

    DTIC Science & Technology

    1981-01-01

    concentration in the surrounding area, so that ventilation may be minimized by careful trial and measurement. Interlocking of cover and exhaust fan is...to interlock tank exhaust with tank covers, to ventilate only when the cover is open. The use of hollow plastic spheres or other plastic configurations...ACTIVITY LOCATION: FL BAY " 5. AUTOMATIC CONTROLS Temperature . .. . . . . Process Timers . . . . . Electric Demand Interlocks

  12. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  13. Upgrading selected Czech coals for home and industrial heating

    SciTech Connect

    Musich, M.A.; Young, B.C.

    1995-12-31

    The Czech Republic has large coal reserves, particularly brown coal and lignite, and to a lesser extent, bituminous coal. Concurrent with the recent political changes, there has been a reassessment of the role of coal for electrical and heating energy in the future economy, owing to the large dependence on brown coal and lignite and the implementation of more stringent environmental regulations. These coals have a relatively high sulfur content, typically 1-3 wt%, and ash content, leading to significant SO{sub 2} and other gaseous and particulate emissions. Some of the bituminous coals also exhibit high ash content. Against this background, the Energy & Environmental Research Center, on behalf of the U.S. Agency for International Development and the U.S. Department of Energy Office of Fossil Energy, undertook a project on upgrading Czech coals to achieve desired fuel properties. The purpose of the project was to assist the city of Usti nad Labem in Northern Bohemia in developing cost-effective alternatives for reducing environmental emissions from district and home heating systems.

  14. Secure VM for Monitoring Industrial Process Controllers

    SciTech Connect

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T; Carvalho, Marco

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicated host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.

  15. Industrial burner and process efficiency program

    NASA Astrophysics Data System (ADS)

    Huebner, S. R.; Prakash, S. N.

    1981-03-01

    A laboratory prototype burner which is compatible with a FM (frequency modulation) combustion control system where temperature control is accomplished by regulating the ratio of burner on-time to burner off-time was developed. This multifuel (natural gas and No. 2 fuel oil) high velocity burner is capable of repeated pulse ignition at maximum rated capability (1 million Btu-hour) with preheated air (from ambient to 1100F). A digital control in the FM mode was developed. Experimental data from tests in a laboratory furnace indicated that when applied to a batch type thermal process where appreciable turndown is presently obtained by excess air operation, the FM combustion system provides improvements in process fuel efficiency and gains in productivity.

  16. Radiographic image processing for industrial applications

    NASA Astrophysics Data System (ADS)

    Dowling, Martin J.; Kinsella, Timothy E.; Bartels, Keith A.; Light, Glenn M.

    1998-03-01

    One advantage of working with digital images is the opportunity for enhancement. While it is important to preserve the original image, variations can be generated that yield greater understanding of object properties. It is often possible to effectively increase dynamic range, improve contrast in regions of interest, emphasize subtle features, reduce background noise, and provide more robust detection of faults. This paper describes and illustrates some of these processes using real world examples.

  17. Software process improvement for the medical industry.

    PubMed

    McCaffery, Fergal; Donnelly, Peter; McFall, Donald; Wilkie, Frederick George

    2005-01-01

    This chapter describes a software process improvement framework, structured to ensure regulatory compliance for the software developed in medical devices. Software is becoming an increasingly important aspect of medical devices and medical device regulation. Medical devices can only be marketed if compliance and approval from the appropriate regulatory bodies of the Food and Drug Administration (US requirement), and the European Commission under its Medical Device Directives (CE marking requirement) is achieved.

  18. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  19. Dust exposures in the wood processing industry.

    PubMed

    Alwis, U; Mandryk, J; Hocking, A D; Lee, J; Mayhew, T; Baker, W

    1999-01-01

    Workers at four different woodworking processes--two logging sites, four sawmills, one major woodchipping operation, and five joineries situated in the state of New South Wales in Australia--were studied for personal inhalable dust exposures (N = 182). The geometric mean exposure at logging sites was 0.6 mg/m3 (N = 7), sawmills 1.6 mg/m3 (N = 93), woodchipping 1.9 mg/m3 (N = 9), and joineries 3.7 mg/m3 (N = 66). Overall, 62% of the exposures exceeded the current standards. Among joineries, 95% of the hardwood exposures and 35% of the softwood exposures were above the relevant standards. A majority of workers (approximately 90%) did not wear appropriate respirators approved for wood dust, while the ones who did wear them, used them on average less than 50% of the time. The significant determinants of personal wood dust exposures (n = 163) were found to be local exhaust ventilation, job title, use of handheld tools, cleaning method used, use of compressed air, and green or dry wood processed. Type of wood processed (softwood or hardwood) was not found to be statistically significant.

  20. Maraging superalloys and heat treatment processes

    DOEpatents

    Korenko, Michael K.; Gelles, David S.; Thomas, Larry E.

    1986-01-01

    Described herein are nickel-chromium-iron maraging, gamma prime strengthened superalloys containing about 18 to 25 weight percent nickel, about 4 to 8 weight percent chromium, gamma prime forming elements such as aluminum and/or titanium, and a solid solution strengthening element, such as molybdenum. After heat treatment, which includes at least one ausaging treatment and at least one maraging treatment, a microstructure containing gamma prime phase and decomposed Fe-Ni-Cr type martensite is produced.

  1. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  2. Process economics of industrial monoclonal antibody manufacture.

    PubMed

    Farid, Suzanne S

    2007-03-15

    Pressures for cost-effective manufacture of antibodies are growing given their high doses and increasing market potential that have resulted in significant increases in total site capacities of up to 200,000 L. This paper focuses on the process economic issues associated with manufacturing antibodies and reviews the cost studies published in the literature; many of the issues highlighted are not only specific to antibodies but also apply to recombinant proteins. Data collated at UCL suggest current benchmark investment costs of $660-$1580/ft2 ($7130-$17,000/m2) and $1765-$4220/L for antibody manufacturing facilities with total site capacities in the range of 20,000-200,000 L; the limitations of the data are highlighted. The complications with deriving benchmark cost of goods per gram (COG/g) values are discussed, stressing the importance of stating the annual production rate and either titre or fermentation capacity with the cost so as to allow comparisons. The uses and limitations of the methods for cost analysis and the available software tools for process economics are presented. Specific examples found in the literature of process economic studies related to antibody manufacture for different expression systems are reviewed. The key economic drivers are identified; factors such as fermentation titre and overall yield are critical determinants of economic success. Future trends in antibody manufacture that are driven by economic pressures are discussed, such as the use of alternative expression systems (e.g. transgenics, E. coli and yeast), disposables, and improvements to downstream technology. The hidden costs and the challenges in each case are highlighted.

  3. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  4. Application of HTGR process heat to oil shale retorting

    NASA Astrophysics Data System (ADS)

    Wadekamper, D. C.; Taylor, I. N.; Gleason, T. E.

    The currently developed oil shale retorting processes depend on some portion of their product to provide heat energy for process operation. In an attempt to increase the fossil fuel reserves of the United States, as well as decrease environmental pollution, it has been suggested that an High Temperature Gas Reactor (HTGR) be used to supply the heat necessary for the retorting oil shale thus freeing additional petroleum products for sale. The TOSCO II process was selected as a typical oil shale retorting process and a detailed evaluation of the energy requirements was made. Various scenarios to replace selected portions of the process energy requirements with HTGR generated heat are described. The improvements in product yields and reductions in environmental pollution levels associated with a HTGR process heat scheme are summarized.

  5. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  6. UV FEL light source for industrial processing

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.; Dylla, H. Frederick; Neil, George R.; Brillson, Leonard J.; Henkel, Daniel P.; Helvajian, Henry

    1996-04-01

    Short-wavelength UV light is strongly absorbed by most materials, creating the opportunity to drive near-surface thermal or chemical processes. The resulting modifications have a wide range of prospective applications, but few have been developed because of the low capacity and high unit cost of light from present sources. We analyze the light source requirements for large-scale applications to polymers and metals. We describe meeting them with free electron laser whose design is described in a companion paper in this session. This machine will deliver 1.0 to 2.5 kW between 190 nm and 350 nm with options in the visible and IR, and serve to further develop FEL technology for much higher powered machines. We gratefully acknowledge support for this work from the Commonwealth of Virginia Center for Innovative Technologies and The U.S. Department of Energy.

  7. Interference Analysis Process in Military Aircraft Industry

    NASA Astrophysics Data System (ADS)

    Rothenhaeusler, M.; Poisel, W.

    2012-05-01

    As flying platforms do have limited space for integration and increasing demands for antennas, interference and EMC analysis becomes ever more relevant for optimised antenna concepts. Of course aerodynamic and operational aspects are still important and can not be neglected, but interference can also be a performance killer if it is not analysed in a proper way. This paper describes an interference analysis process which is based on the electrical data of all transmitters and receivers, in- and out-of-band numerical simulation of the decoupling values of all involved antennas and includes EMC relevant data of conducted and radiated emissions, based on EMC standards like MIL-STD-461. Additionally hardware based interference cancellation is also taken into account as the last opportunity for the antenna engineer to reach the required decoupling for undisturbed communication.

  8. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  9. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M. S.

    1979-01-01

    A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. The design details are presented along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  10. Preliminary overview of innovative industrial-materials processes

    SciTech Connect

    Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

    1983-09-01

    In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

  11. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  12. Current performance and potential improvements in solar thermal industrial heat

    NASA Astrophysics Data System (ADS)

    Hale, M. J.; Williams, T.; Barker, G.

    1992-12-01

    A representative current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more than 50 percent improvement in the annual energy delivered by a 2677 sq m system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  13. High Magnetic Field Processing (HMFP): A Heat-Free, Heat-Treating Method

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose main goal is to research and develop high magnetic field processing (HMFP) technology for selected high-energy consumption heat treatment operations by reducing or eliminating the need for cryogenic cooling or double temper heat treatments.

  14. A detailed evaluation of heating processes in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin; Solomon, Susan

    1994-01-01

    A fundamental problem in the study of the terrestrial middle atmosphere is to calculate accurately the local heating due to the absorption of solar radiation. Knowledge of the heat budget is essential to understanding the atmospheric thermal structure, atmospheric motions, atmospheric chemistry, and their coupling. The evaluation of heating rates is complicated (especially above the stratopause) by the fact that the heating is not a simple one-step process. That is, the absorbed solar energy does not all immediately appear as heat. Rather, substantial portions of the incident energy may appear as internal energy of excited photolysis products (e.g., O(1D) or O2(1 delta)) or as chemical potential energy of product species such as atomic oxygen. The ultimate disposition of the internal and chemical energy possessed by the photolysis products determines the efficiency and thus the rate at which the middle atmosphere is heated. In studies of the heat budget, it is also vitally important to consider transport of long lived chemical species such as atomic oxygen above approximately 80 km. In such cases, the chemical potential energy may be transported great distances (horizontally or vertically) before undergoing a reaction to release the heat. Atomic oxygen influences the heating not only by reactions with itself and with O2 but also by reactions with odd-hydrogen species, especially those involving OH (Mlynczak and Solomon, 1991a). Consequently, absorbed solar energy may finally by converted to heat a long time after and at a location far from the original deposition. The purpose of this paper is to examine the solar and chemical heating processes and to present parameterizations for the heating efficiencies readily applicable for use in numerical models and heat budget studies. In the next two sections the processes relevant to the heating efficiencies for ozone and molecular oxygen will be reviewed. In section 4 the processes for the exothermic reactions will be

  15. Recent trends and developments in infrared heating in food processing.

    PubMed

    Rastogi, Navin K

    2012-01-01

    Fruit processing and preservation technologies must keep fresh-like characteristics while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Processing technologies include a wide range of methodologies to inactivate microorganisms, improve quality and stability, and preserve and minimize changes of fruit fresh-like characteristics. Infrared (IR) heating offers many advantages over conventional heating under similar conditions, which include reduced heating time, uniform heating, reduced quality losses, versatile, simple and compact equipment, and significant energy saving. The integration of IR with other matured processing operations such as blanching, dehydration, freeze-dehydration, thawing, roasting, baking, cooking has been shown to open up new processing options. Combinations of IR heating with microwave heating and other common conductive and convective modes of heating have been gaining momentum because of increased energy throughput. A number of publications and patents have demonstrated novel and diverse uses of this technology. This review aims at identifying the opportunities and challenges associated with this technology. The effect of IR on food quality attributes is also discussed. The types of equipment commonly used for IR processing have also been summarized.

  16. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  17. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1989-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  18. Hybrid membrane operations in water desalination and industrial process rationalisation.

    PubMed

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  19. Techniques to reduce adjacent bed heating in electric reservoir heating processes

    SciTech Connect

    Harvey, A.H.

    1980-12-01

    The feasibility of several enhanced recovery techniques that employ an alternating electric current to heat an oil reservoir, which would act as a resistance heating element, was examined. In these processes, the flow of electric current in formations adjacent to the reservoir could be reduced either by displacing most of the connate water with a more saline water prior to heating, or by establishing a horizontal, electrically conductive fracture within the reservoir. Radial models are proposed for approximating the distribution of resistance heating which would occur.

  20. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  1. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  2. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  3. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  4. Heat transfer monitor for measurements of fouling of industrial heat exchangers

    SciTech Connect

    Panchal, C.B.

    1985-01-01

    A Heat Transfer Monitor (HTM) is a sensitive device that quantifies development of fouling on heat exchanger surfaces in terms of degradation in the heat transfer coefficient as fouling progresses. The Argonne HTM was originally developed by Carnegie-Mellon University for Ocean Thermal Energy Conversion (OTEC) applications and later modified by Argonne National Laboratory. The HTM has been used for the OTEC biofouling and corrosion studies at the Natural Energy Laboratory of Hawaii for the last four years. The monitor has produced consistent results with an accuracy of about 0.0035 K m/sup 2//kW (0.00002/sup 0/F.h.ft/sup 2//Btu). The major findings from the experimental investigation are: (a) periodic low level of 50 to 70 ppB of chlorination can remove and prevent biofouling, (b) biofouling for deep cold water is negligible, and (c) biofouling control methods for moderately enhanced surfaces are comparable to those for smooth surfaces.

  5. Heat transfer monitor for measurements of fouling of industrial heat exchangers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.

    1985-01-01

    A Heat Transfer Monitor (HTM) is a sensitive device that quantifies development of fouling on heat exchanger surfaces in terms of degradation in the heat transfer coefficient as fouling progresses. The Argonne HTM was originally developed by Carnegie-Mellon University for Ocean Thermal Energy Conversion (OTEC) applications and later modified by Argonne National Laboratory. The HTM has been used for the OTEC biofouling and corrosion studies at the Natural Energy Laboratory of Hawaii for the last four years. The major findings from the experimental investigation are: (1) periodic low level of 50 to 70 ppB of chlorination can remove and prevent biofouling; (2) biofouling for deep cold water is negligible; and (3) biofouling control methods for moderately enhanced surfaces are comparable to those for smooth surfaces.

  6. National need for utilizing nuclear energy for process heat generation

    SciTech Connect

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280/sup 0/C, LMRs up to 540/sup 0/C, and GCRs up to 950/sup 0/C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized.

  7. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  8. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    SciTech Connect

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kenik, Edward A; Parish, Chad M; Rios, Orlando; Rogers, Hiram; Manuel, Michele; Kisner, Roger A; Watkins, Thomas R; Murphy, Bart L

    2012-08-01

    -free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in

  9. Hydrothermal circulation at slow spreading ridges: Analysis of heat sources and heat transfer processes

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.

    Hydrothermal processes on slow spreading ridges exhibit several features that distinguish them from their counterparts at fast and intermediate rate spreading centers. These differences may reflect differences in magma supply rates, type of host rock, and the interplay between magmatism and tectonic extension. As a result, the heat sources and driving mechanisms for hydrothermal circulation at slow spreading ridges may differ from those on fast and intermediate spreading ridges. This paper reviews various heat sources and heat transfer processes at slow spreading ridges, including mantle heat flux, mining of crustal heat, the role of exothermic chemical reactions, and magmatic heat sources. The analyses suggest that for high-temperature, high-output systems such as TAG, Rainbow, and Lucky Strike on the Mid-Atlantic Ridge and Kairei on the Central Indian Ridge, heat transfer from convecting, an actively replenished subaxial magma chamber is required to maintain these systems on decadal time scales. Low-temperature off-axis systems such as Lost City are likely driven by heat extraction from the crust, perhaps in conjunction with downward fluid migration in reactivated faults. Serpentinization reactions appear to play a smaller role. Broken Spur is a relatively low heat output system that is likely driven by magma, but it may be in a waning phase.

  10. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  11. Accounting for Heat Transfer Problems in the Semiconductor Industry

    NASA Astrophysics Data System (ADS)

    Brylinski, Christian

    Electronics has become omnipresent in our everyday lives. Occurring in all modern machines in the form of systems, functions, and components, it is gradually supplementing or replacing those functions previously carried out exclusively by mechanics, electromechanics, hydraulics, and pneumatics, by making the processes faster, more flexible, and safer in a quite spectacular way, and enriching the interaction between human and machine, until it has become a key feature of innovation and competitivity in all sectors of the economy.

  12. Unique Computer Modeling Approaches for Simulation of Induction Heating and Heat-Treating Processes

    NASA Astrophysics Data System (ADS)

    Rudnev, Valery

    2013-07-01

    In the last decade, when discussing subjects related to a computer modeling of induction heating and heat treating, the word "usefulness" has been replaced by the word "necessity." Modern computer simulation is capable of effectively simulating electromagnetic and thermal phenomena for many processes, including those that involve electromagnetic induction. This article discusses the state-of-the-art computer simulation of induction heating and heat treating providing answers to following questions: Why finite element analysis is not always the best tool for computer modeling of some induction heating applications? What are the limitations of generalized all-purpose commercial programs? What are the crucial tips that executives must know regarding computer modeling of induction heating? Several case studies will be reviewed in this article as well.

  13. Process for the recovery of coke oven waste heat

    SciTech Connect

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1981-01-20

    This invention is directed to a process for making coke and recovering the heat therefrom for preheating the firing gas to the coke oven. The process involves the use of the coke oven firing gas to extract the sensible heat from the hot coke from the coking oven to both preheat the firing gas for the coke oven and cool the hot coke. Significant economies are achieved in the two-fold function of coke production and heat recovery in accordance with the method disclosed.

  14. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry.

    PubMed

    Sáiz-Abajo, María-José; González-Ferrero, Carolina; Moreno-Ruiz, Ana; Romo-Hualde, Ana; González-Navarro, Carlos J

    2013-06-01

    β-Carotene is a carotenoid usually applied in the food industry as a precursor of vitamin A or as a colourant. β-Carotene is a labile compound easily degraded by light, heat and oxygen. Casein micelles were used as nanostructures to encapsulate, stabilise and protect β-carotene from degradation during processing in the food industry. Self-assembly method was applied to re-assemble nanomicelles containing β-carotene. The protective effect of the nanostructures against degradation during the most common industrial treatments (sterilisation, pasteurisation, high hydrostatic pressure and baking) was proven. Casein micelles protected β-carotene from degradation during heat stabilisation, high pressure processing and the processes most commonly used in the food industry including baking. This opens new possibilities for introducing thermolabile ingredients in bakery products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Acetylated pectins in raw and heat processed carrots.

    PubMed

    Broxterman, Suzanne E; Picouet, Pierre; Schols, Henk A

    2017-12-01

    Heat processing results in softening of carrots, changing the pectin structure. The effect of heat processing on pectin was studied, showing that the amount of pectin in water soluble solids (WSS) and chelating agent soluble solids (ChSS) increased substantially upon heat processing of the carrots. Pectin in WSS from both unprocessed and heat processed carrot had a degree of methyl-esterification (DM) of ≈60% and a degree of acetylation (DA) of ≈20%. Enzymatic degradation released methyl-esterified galacturonic acid oligomers of degree of polymerisation ≥6 carrying acetyl groups. Mass spectrometry confirmed acetylation in highly methyl-esterified homogalacturonan (HG) regions, next to known rhamnogalacturonan (RG-I) acetylation. ChSS HGs were un-acetylated. RG-I levels of both heat processed carrot WSS and ChSS increased. Digestion of WSS with RG-I degrading enzymes showed that WSS arabinan became more linear upon heat processing resulting in the release of oligosaccharides, while in ChSS galactan became more linear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of heat equation in lap joint for welding process

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Rohit, Sooraj

    2017-07-01

    Welding is predominantly used in industrial purposes and growth in their industry, which gives exact welding and more efficient. The major advantage of using this welding technique at initial stage it takes very low heat to weld the portion and gives a good result of low distortion in modules. In this context, two dissimilar metals copper and nickel are chosen for analysis in tungsten inert gas welding (TIG) in which length is 300 mm and breadth is 100 mm thickness 15 mm welded at room temperature a welded portion zone is formed simulation analysis has done on CATIA® and ANSYS®and MATLAB® code is generated for calculating temperatures at each node to calculate temperature at each node a new technique is used tri-diagonal matrix algorithm is used (TDMA) Steady state one dimension heat is calculated results compared between simulation analysis and analytical analysis temperature at each node is calculated both the temperatures are equal with error.

  17. Dissimilarity between Markovian processes applied to industrial processes

    NASA Astrophysics Data System (ADS)

    García, Jesús E.; González-López, V. A.; de Andrade, F. H. Kubo

    2017-07-01

    In this paper we introduce a result which solves the problem of how to measure the similarity or discrepancy between two Markovian stochastic processes. The result is based on a consistent measure derived from a generalization of the Bayesian Information Criterion. We apply this concept to a practical problem with the aim of analyzing the similarity or discrepancy between two processes related to fuel alcohol production, which should be considered indistinguishable, according to their technical specifications.

  18. The direct application of geothermal energy to provide process heat in Guatemala

    SciTech Connect

    Altseimer, J.H.; Edeskuty, F.J.

    1987-09-01

    One part of an energy and resource development program in Central America is a geothermal process heat project in Guatemala. The feasibility of the direct heat application depends upon the production characteristics and reliability of the geothermal source. Other factors are the distance from the heat source, quantity of use, and capacity factor of the use facilities. Favorable conditions would be distances of under 5 km, heat requirements approximately equal to the well capacity, and high capacity factors (say 60% or higher) in the industrial plants. Depending upon the values of these factors, energy costs of less than $1.00/million Btus to greater than $5.00/million Btus have been estimated. This can be compared to about $5.00/million Btus for petroleum-based fuels in Guatemala in mid 1987. A survey was made of existing industries in the Amatitlan and Zunil geothermal areas. In both Amatitlan and Zunil the existing industries are spread out over an area too large to be called an optimum. The most promising situation for an industrial park development is at Amatitlan, except that proven production wells are not yet available. At Zunil, production wells exist, but a diverse nearby industrial base does not. However, both of these two areas are sufficiently promising to merit further development. Consequently, a demonstration project is underway aimed at the ultimate establishment of an agricultural processing center at Zunil. This center would have the capability to process agricultural products by dehydration, freezing, and cold storage. 2 refs., 4 figs., 2 tabs.

  19. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  20. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  1. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  2. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    PubMed

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  3. Industrial application and validation of forming simulation in the flexforming process

    NASA Astrophysics Data System (ADS)

    Leacock, Alan; Ling, Dave; Bergkvist, Mikael

    2016-08-01

    The flex-forming process is used extensively in aerospace industry for net shape forming of sheet metal structural components. Common metals used in the manufacture of these components include 7075 and 2024 aluminium alloys; usually in an as quenched condition following solution heat treatment. While the process is commonplace, the level of manual rework remains high, driven by inherent process and material variability and the lack of upfront analysis before the manufacture of tooling. A suitable process modelling method using AutoForm is presented along with an industrial validation study for the manufacture of an aerospace frame component in 7075-W aluminium alloy. The results illustrate the importance of material model accuracy and the inclusion of through thickness compressive stresses in predicting the flange springback of the component.

  4. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    SciTech Connect

    Wu, Bingjing; Zhao, Jianlin Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

  5. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  6. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Allendorf; D. K. Ottesen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1998-11-02

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom of line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  7. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  8. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  9. Constraints on rift thermal processes from heat flow and uplift

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1983-01-01

    The implications of heat flow data available from five major Cenozoic continental rift systems for the processes of continental rifting are discussed, and simple thermal models of lithospheric thinning which predict uplift are used to further constrain the thermal processes in the lithosphere during rifting. Compilations of the heat flow data are summarized and the salient results of these compilations are briefly discussed. The uplift predictions of the slow and rapid thinning models, in which thinning is assumed to occur at a respectively slower and faster rate than heat can be conducted into the lithosphere, are presented. Comparison of uplift rates with model results indicates that the lithosphere is in a state between the two models. While uplift is predicted to continue after thinning has ceased due to thermal relaxation of the lithosphere, the rapid thinning model is always predicted to apply to surface heat flow, and an anomaly in this flow is not predicted to develop until after thinning has stopped.

  10. Spatial distributions of heating, cooling, and industrial degree-days in Turkey

    NASA Astrophysics Data System (ADS)

    Yildiz, I.; Sosaoglu, B.

    2007-11-01

    The degree-day method is commonly used to estimate energy consumption for heating and cooling in residential, commercial and industrial buildings, as well as in greenhouses, livestock facilities, storage facilities and warehouses. This article presents monthly and yearly averages and spatial distributions of heating, cooling, and industrial degree-days at the base temperatures of 18 °C and 20 °C, 18 °C and 24 °C, and 7 °C and 13 °C, respectively; as well as the corresponding number of days in Turkey. The findings presented here will facilitate the estimation of heating and cooling energy consumption for any residential, commercial and industrial buildings in Turkey, for any period of time (monthly, seasonal, etc.). From this analysis it will also be possible to compare and design alternative building systems in terms of energy efficiencies. If one prefers to use set point temperatures to indicate the resumption of the heating season would also be possible using the provided information in this article. In addition, utility companies and manufacturing/marketing companies of HVAC systems would be able to easily determine the demand, marketing strategies and policies based on the findings in this study.

  11. Compositions produced using an in situ heat treatment process

    DOEpatents

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  12. Compositions produced using an in situ heat treatment process

    DOEpatents

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Henh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2009-10-20

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  13. Plasma heating for containerless and microgravity materials processing

    NASA Technical Reports Server (NTRS)

    Leung, Emily W. (Inventor); Man, Kin F. (Inventor)

    1994-01-01

    A method for plasma heating of levitated samples to be used in containerless microgravity processing is disclosed. A sample is levitated by electrostatic, electromagnetic, aerodynamic, or acoustic systems, as is appropriate for the physical properties of the particular sample. The sample is heated by a plasma torch at atmospheric pressure. A ground plate is provided to help direct the plasma towards the sample. In addition, Helmholtz coils are provided to produce a magnetic field that can be used to spiral the plasma around the sample. The plasma heating system is oriented such that it does not interfere with the levitation system.

  14. Energy and Process Assessment Protocol for Industrial Buildings

    DTIC Science & Technology

    2007-05-01

    group of “ap- propriation grade ” process improvement projects for funding and imple- mentation. Lastly, the Level III audit is a detailed engineering...end product will be a group of “appropriation grade ” energy and process im- provement projects for funding and implementation. Finally, the Level...Conditioned Area, 1 cooled only ________ sq ft Conditioned Area, 1 heated and cooled _______ sq ft Number of conditioned floors: Above grade

  15. Five years of industrial experience with the plasma dross treatment process

    SciTech Connect

    Lavoie, S.; Lachance, J.

    1995-12-31

    Alcan`s Guillaume-Tremblay plant, located in Jonquiere, Quebec, has been in operation since 1990. This was the first plasma dross processing plant ever built. In addition to the use of the plasma heating technology, Guillaume-Tremblay has other unique features making it a modern and efficient dross processing facility. This paper presents a general over-view of the practical experience at the Guillaume-Tremblay plant. In particular, the utilization of plasma heating in industrial conditions, the metallurgical performance, the unique dross handling system, the control and information management system and the reclaiming of the by-products will be discussed. Finally, the use of the plasma process for salty dross will be addressed briefly.

  16. Numerical study on heat and mass transfer in hygroscopic rotor during sorption process

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Geun; Park, Il Seouk

    2017-02-01

    Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor's rotating speed, air flow rate, and adsorption-desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.

  17. Numerical study on heat and mass transfer in hygroscopic rotor during sorption process

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Geun; Park, Il Seouk

    2016-06-01

    Recently, interest in hygroscopic dehumidifiers has rapidly increased in the indoor environment industry because of their potential contribution to the development of hybrid (refrigerating + hygroscopic) dehumidifiers. Heat and mass transport phenomena such as adsorption and desorption, and their complex interactions occur in a desiccant rotor, which comprises many small hygroscopic channels. This study numerically investigated the conjugated heat and mass transfers in a channel modeled with the flow and porous desiccant regions, where only ordinary and surface diffusions (excluding Knudsen diffusion) during the sorption processes were considered. The change in the dehumidification performance depending on operating conditions such as the rotor's rotating speed, air flow rate, and adsorption-desorption ratio, was examined under various working environments. The temporal and spatial variations in the temperature, vapor mass fraction, and liquid water mass fraction in the channel were considered in detail. The closely linked heat and mass transports were clarified for a better understanding of the sorption processes in the desiccant rotor.

  18. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  19. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  20. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  1. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  2. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  3. Advantages of Laser Polarimetry Applied to Tequila Industrial Process Control

    NASA Astrophysics Data System (ADS)

    Fajer, V.; Rodriguez, C.; Flores, R.; Naranjo, S.; Cossio, G.; Lopez, J.

    2002-03-01

    The development of a polarimetric method for crude and cooked agave juice quality control not only by direct polarimetric measurement also by means of laser polarimeter LASERPOL 101M used as a liquid chromatographic detector is presented. The viability and advantage of this method for raw material quality control and during Tequila industrial process is shown.

  4. 2006 AFS. Separations processes for the power generation industry

    SciTech Connect

    2006-07-01

    The presentations (viewgraph/overheads) or papers discussed separations processes for the power industry under the following subject headings: nuclear, advanced energy and pollution, control systems, FGD, hot gas filtration, air pollution, electrostatic precipitators for particulate removal, filter media, CO{sub 2} capture, advances in filter design and operation, water utilization and treatment and arsenic, and advances in filtration and separation.

  5. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  6. Solutions for Arsenic Control in Mining Processes and Extractive Industry

    NASA Astrophysics Data System (ADS)

    Neitola, Raisa; Korhonen, Tero; Backnäs, Soile; Turunen, Kaisa; Kaartinen, Tommi; Laine-Ylijoki, Jutta; Wahlström, Margareta; Venho, Antti; Ahoranta, Sarita; Nissilä, Marika; Puhakka, Jaakko

    2015-04-01

    In mining, quarrying and industrial minerals production arsenic is a common element, thus creating a challenge in mining processes. This project aimed to develop solutions to control and remove As-compounds in materials and effluents of beneficiation processes and other mining operations. Focus was on various technologies e.g. traditional mineral processing, bioprocessing, water treatment, as well as various materials such as gold ores and concentrates, industrial by-products, and mine waters. The results of suggest that by novel mineral processing and proper water treatment methods the amount of As-compounds in tailings and effluents can be reduced to levels that satisfy the regulations concerning mining waste management. According to the environmental research, mining activities tend to increase the proportion of potentially mobile and available elements in soil. The effect of mining activity on geogenic contamination needs to be considered in risk assessment.

  7. Instantaneous Soundness Checking of Industrial Business Process Models

    NASA Astrophysics Data System (ADS)

    Fahland, Dirk; Favre, Cédric; Jobstmann, Barbara; Koehler, Jana; Lohmann, Niels; Völzer, Hagen; Wolf, Karsten

    We report on a case study on control-flow analysis of business process models. We checked 735 industrial business process models from financial services, telecommunications and other domains. We investigated these models for soundness (absence of deadlock and lack of synchronization) using three different approaches: the business process verification tool Woflan, the Petri net model checker LoLA, and a recently developed technique based on SESE decomposition. We evaluate the various techniques used by these approaches in terms of their ability of accelerating the check. Our results show that industrial business process models can be checked in a few milliseconds, which enables tight integration of modeling with control-flow analysis. We also briefly compare the diagnostic information delivered by the different approaches.

  8. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  9. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  10. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  11. New product development processes within the UK medical device industry.

    PubMed

    Glen, J M; Lord, M

    1996-12-01

    This paper reports on the findings of an extensive survey investigating practising design engineers' perceptions of new product development within the UK medical device industry. The design activity recorded was predominantly the small-scale development of low volume products. Explicit formal procedures were rarely used in these small-scale developments of low volume products. Specific organizational and design process issues are identified by the respondents as key requirements for the success of the new product development process.

  12. Induction Heating Process: 3D Modeling and Optimisation

    NASA Astrophysics Data System (ADS)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  13. Electromagnetic Processing of Materials:. from the Concepts to Industrial Applications

    NASA Astrophysics Data System (ADS)

    Delannoy, Y.

    2005-07-01

    Electromagnetic fields are used for material processing in various industrial devices, such as induction furnaces, electromagnetic brakes and stirrers in metallurgy, inductive plasma torches to elaborate silica for optical fibres or electromagnetic flow control systems in crystal growth. New developments are needed whenever the coupling of physical phenomena is the key point of the process. Three examples are presented among the research activities of the EPM laboratory in Electromagnetic Processing of Materials: Electromagnetic continuous casting of steel slabs, plasma purification of silicon, electromagnetic stirring of solidifying alloys. Some scientific open questions important for such processes are presented.

  14. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  15. Imulation of polymer forming processes - addressing industrial needs

    SciTech Connect

    Thibault, F.; DiRaddo, R.

    2011-05-04

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  16. Weaknesses in Applying a Process Approach in Industry Enterprises

    NASA Astrophysics Data System (ADS)

    Kučerová, Marta; Mĺkva, Miroslava; Fidlerová, Helena

    2012-12-01

    The paper deals with a process approach as one of the main principles of the quality management. Quality management systems based on process approach currently represents one of a proofed ways how to manage an organization. The volume of sales, costs and profit levels are influenced by quality of processes and efficient process flow. As results of the research project showed, there are some weaknesses in applying of the process approach in the industrial routine and it has been often only a formal change of the functional management to process management in many organizations in Slovakia. For efficient process management it is essential that companies take attention to the way how to organize their processes and seek for their continuous improvement.

  17. Energy characterisation of ultrasonic systems for industrial processes.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Bowtell, Leslie; Aravinthan, Vasantha

    2015-03-01

    Obtaining accurate power characteristics of ultrasonic treatment systems is an important step towards their industrial scalability. Calorimetric measurements are most commonly used for quantifying the dissipated ultrasonic power. However, accuracy of these measurements is affected by various heat losses, especially when working at high power densities. In this work, electrical power measurements were conducted at all locations in the piezoelectric ultrasonic system equipped with ½″ and ¾″ probes. A set of heat transfer calculations were developed to estimate the convection heat losses from the reaction solution. Chemical dosimeters represented by the oxidation of potassium iodide, Fricke solution and 4-nitrophenol were used to chemically correlate the effect of various electrical amplitudes and treatment regimes. This allowed estimation of sonochemical-efficiency (SE) and energy conversion (XUS) of the ultrasonic system. Results of this study showed overall conversion efficiencies of 60-70%. This correlated well with the chemical dosimeter yield curves of both organic and inorganic aqueous solutions. All dosimeters showed bubble shielding and coalescence effects at higher ultrasonic power levels, less pronounced for the ½″ probe case. SE and XUS values in the range of 10(-10) mol/J and 10(-3) J/J respectively confirmed that conversion of ultrasonic power to chemical yield declined with amplitude.

  18. EDITORIAL: Sixth World Congress on Industrial Process Tomography (WCIPT6) Sixth World Congress on Industrial Process Tomography (WCIPT6)

    NASA Astrophysics Data System (ADS)

    Takei, Masahiro; Xu, Lijun

    2011-10-01

    We are pleased to publish this special feature on the Sixth World Congress on Industrial Process Tomography (WCIPT6) in Measurement Science and Technology. The international congress was successfully held in the campus of Beihang University, Beijing, China, from 6-9 September 2010. It was jointly organized by International Society for Industrial Process Tomography (ISIPT), North China Electric Power University (NCEPU) and Beihang University (BUAA). Process tomography is a tangible tool to visualize and determine the material distribution inside a process non-intrusively in real time. The internal features that can be monitored by process tomography are frequently encountered and required in the design of processes and industrial plants in the fields of chemical, oil, power and metallurgical engineering as well as many other activities such as food, material handling and combustion systems. One of the key characteristics of process tomography is to provide a direct impression and instant and clear understanding of a complex phenomenon. From the viewpoint of practical applications, industries all over the world are currently facing a number of daunting challenges including many wide-range and complex technical problems. The innovative technology of process tomography consistently contributes to providing better and better solutions to the problems as 'seeing is believing'. As a regular event, WCIPT is playing a more and more important role in addressing the challenges to overcome these problems. We are glad to see that this special feature provides a great opportunity for world-wide top-level researchers to discuss and make further developments in process tomography and its applications. The 20 articles included in this issue cover a wide range of relevant topics including sensors and sensing mechanisms, data acquisition systems and instrumentation, electrical, optical, acoustic and hybrid systems, image reconstruction and system evaluation, data and sensor fusion

  19. From research to industry — The establishment of a radiation processing industry in South Africa

    NASA Astrophysics Data System (ADS)

    Plessis, T. A. Du; Stevens, RCB

    In the late sixties the South African Atomic Energy Board in pursuing its objectives to promote the peaceful application of nuclear energy in general, established a research group with the specific purpose of investigating and developing radiation processing as a new technique. During the early years it was realised that the economic and technological facets of establishing a new industry were equally important and, in addition to fundamental research, strong emphasis was placed on the necessity of marketing this new technology. Although the initial emphasis was put on gamma sterilization, and today still forms the backbone of the radiation processing industry, the promising fields of polymer modification and food irradiation hold a lot of promise in the radiation processing industry. Following ten years of successfully introducing and providing a radiation service, the South African Atomic Energy Board in 1980 decided to transfer its service to the private sector. These developments in South Africa are a good sample of how a small country, through initial government envolvement, can acquire a sophisticated new private industry.

  20. Study of Variable Frequency Induction Heating in Steel Making Process

    NASA Astrophysics Data System (ADS)

    Fukutani, Kazuhiko; Umetsu, Kenji; Itou, Takeo; Isobe, Takanori; Kitahara, Tadayuki; Shimada, Ryuichi

    Induction heating technologies have been the standard technologies employed in steel making processes because they are clean, they have a high energy density, they are highly the controllable, etc. However, there is a problem in using them; in general, frequencies of the electric circuits have to be kept fixed to improve their power factors, and this constraint makes the processes inflexible. In order to overcome this problem, we have developed a new heating technique-variable frequency power supply with magnetic energy recovery switching. This technique helps us in improving the quality of steel products as well as the productivity. We have also performed numerical calculations and experiments to evaluate its effect on temperature distributions on heated steel plates. The obtained results indicate that the application of the technique in steel making processes would be advantageous.

  1. Antioxidants in heat-processed koji and the production mechanisms.

    PubMed

    Okutsu, Kayu; Yoshizaki, Yumiko; Ikeda, Natsumi; Kusano, Tatsuro; Hashimoto, Fumio; Takamine, Kazunori

    2015-11-15

    We previously developed antioxidative heat-processed (HP)-koji via two-step heating (55 °C/2days → 75 °C/3 days) of white-koji. In this study, we isolated antioxidants in HP-koji and investigated their formation mechanisms. The antioxidants were identified to be 5-hydroxymethyl furfural (HMF) and 5-(α-D-glucopyranosyloxymethyl)-2-furfural (GMF) based on nuclear magnetic resonance spectral analysis. HMF and GMF were not present in intact koji, but were formed by heating at 75 °C. As production of these antioxidants was more effective by two-step heating than by constant heating at 55 °C or 75 °C, we presumed that the antioxidant precursors are derived enzymatically at 55°C and that the antioxidants are formed subsequently by thermal reaction at 75 °C. The heating assay of saccharide solutions revealed glucose and isomaltose as HMF and GMF precursors, respectively, and thus the novel finding of GMF formation from isomaltose. Finally, HMF and GMF were effectively formed by two-step heating from glucose and isomaltose present in koji. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Monitoring of industrial welding processes using high-speed uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, Germán.; Gutiérrez, Raul; Fernández, Carlos; Montojo, M. Teresa; Villamayor, Victor; Gómez, Luis; González, Maria; Baldasano, Arturo

    2014-05-01

    The paper is focused on the application of uncooled MWIR imaging sensors for the monitoring of industrial welding processes: resistance spot welding, resistance seam welding and laser welding. During the last 40 years, there has been little advancement in sensor systems for inline quality control monitoring of the welding process. Most of the existing systems are oriented for current, voltage and welding force monitoring. However, the temperatures reached during the majority of the welding processes lead to infrared sensing as a powerful tool, and to the MWIR band in particular as the most useful spectral band for monitoring this type of industrial processes. Infrared image information is a powerful tool to study the energy distribution in the HAZ (Heat Affected Zone). The work presents some experimental results obtained with uncooled MWIR imaging sensors, by monitoring several welding processes. These results may be applied for real-time quality assurance of the process leading to better throughputs in industrial manufacturing. The high-speed capability of the sensors used helped also to characterize the dynamics of the welding process.

  3. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.

  4. Characterization and assessment of selected solar thermal energy systems for residential and process heat applications

    SciTech Connect

    D'Alessio, Gregory J.; Blaustein, Robert P.

    1980-09-01

    The results of studies of seven solar thermal energy applications are presented. Five of these are residential applications: space heating-active liquid, space heating-active air, domestic hot water-active, space heating-passive, and space heating and cooling- active liquid. Denver, Colorado, was selected as a representative location for each of the above applications. The remaining two applications produce industrial process heat: a flat-plate collector system producing 50/sup 0/C to 100/sup 0/C hot water for a commercial laundry in Indianapolis, Indiana; and a concentrating collector system that could produce 100/sup 0/C to 300/sup 0/C process heat adequate to the needs of a pulp mill in Madison, Wisconsin. For each application, a representative system model and preliminary designs of major system elements were established. Then the following data were generated: annual useful energy produced, type and weight of the basic component materials, environmental residuals generated during system operation, and land and water requirements. These data were generalized for other TASE study purposes by expressing them as quantities per 10/sup 15/ Btu of useful energy. The system characteristics are discussed and the environmental impacts are evaluated. To allow the reader to estimate system performance at other geographic locations than those studied, insolation and other pertinent data are provided.

  5. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.

  6. Ergonomics and simulation tools for service & industrial process improvement

    NASA Astrophysics Data System (ADS)

    Sánchez, A.; García, M.

    2012-04-01

    Human interaction within designed processes is a really important factor in how efficiently any process will operate. How a human will function in relation to a process is not easy to predict. All the ergonomic considerations traditionally have been evaluated outside of the 3D product design. Nowadays technologies of 3D process design and simulation tools give us this opportunity from the earliest stages of the design process. Also they can be used to improve current process in order to increase human comfort, productivity and safety. This work shows a methodology using 3D design and simulation tools to improve industrial and service process. This methodology has as an objective the detection, evaluation, control of work-related musculoskeletal disorders (WMSDs).

  7. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  8. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    SciTech Connect

    Beribeche, Abdellatif Boumerzoug, Zakaria; Ji, Vincent

    2013-12-16

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  9. Numerical analysis of heat exchange processes for the ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  10. Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications

    NASA Astrophysics Data System (ADS)

    Rahmati Aidinlou, H.; Nikbakht, A. M.

    2017-03-01

    A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm-2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm-2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm-2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

  11. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  12. Industrial scale microwave processing of tomato juice using a novel continuous microwave system.

    PubMed

    Stratakos, Alexandros Ch; Delgado-Pando, Gonzalo; Linton, Mark; Patterson, Margaret F; Koidis, Anastasios

    2016-01-01

    This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS[Symbol: see text](+) values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.

  13. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  14. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  15. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes.

    PubMed

    Liu, Guorui; Zheng, Minghui; Cai, Mingwei; Nie, Zhiqiang; Zhang, Bing; Liu, Wenbin; Du, Bing; Dong, Shujun; Hu, Jicheng; Xiao, Ke

    2013-03-01

    In this study, field measurements were conducted to estimate and characterize the atmospheric emission levels and profiles of polychlorinated biphenyls (PCBs) from multiple industrial thermal processes. The emission levels and profiles of PCBs from five types of thermal processes at twenty-three plants were studied and compared with eight processes reported in our previous studies. Correlation analysis was preformed to identify a marker congener for emission of ΣPCB. A significant correlation was observed between congener CB-118 and ΣPCB (R(2)=0.65 and p<0.01), which suggests that CB-118 is a good marker congener for emission of ΣPCB. The profiles of PCBs emitted from the thirteen thermal processes were compared, and this information could be used for studying source-receptor relationships and identifying the specific sources of PCBs. To prioritize the sources for control, the concentrations of PCBs from thirteen industrial thermal sources were compared. The PCB concentrations from secondary zinc smelting and thermal wire reclamation were about one to three order magnitude higher than those of other sources, which suggests that these two sources be given priority in PCB source control. Finally, the atmospheric emission factors of PCBs from the thirteen industrial sources were summarized, and these data will be useful for developing an integrated emission inventory of PCBs.

  16. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  17. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  18. Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report

    SciTech Connect

    Not Available

    1984-06-01

    This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

  19. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  20. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  1. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.

    1983-01-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  2. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Astrophysics Data System (ADS)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  3. Pollution assessment software as chemical industry process simulator enhancements

    SciTech Connect

    Shonnard, D.R.; Herlevich, J. Jr.; Parikh, P.

    1996-12-31

    Commercial process flowsheet simulators (PFS) have evolved to an advanced state and provide sophisticated unit process simulation and vital material and energy balance parameters. The PFS can estimate process stream conditions and equipment capacities and costs and it essentially defines the chemical process itself. A deficiency of PFS is their inability to incorporate environmental considerations into process optimization calculations. As a result, information as to environmental impacts and pollution control costs are not available to the design engineer, and often the optimum process design, from both economic and environmental standpoints, may not be obtained. Commercial process simulator enhancement software, whose goals are to provide environmental, safety, regulatory, and economic indices to the process design engineer as well as pollution prevention heuristic guidance, can overcome many of these obstacles to clean chemical process design. The purpose of this paper is to present an overview of a new set of pollution assessment software tools being developed to provide indices to the process design engineer during flowsheet synthesis. The capabilities of each of these tools will be highlighted by applying them in a coupled fashion with process flowsheet simulator information to a case study involving power and process heat co-generation design options. 19 refs., 1 fig., 3 tabs.

  4. Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Freitag, Christian; Feuer, Anne; Kononenko, Taras; Konov, Vitaly I

    2017-02-20

    In any pulsed and repetitive laser process a part of the absorbed laser energy is thermalized and stays in the material as residual heat. This residual heat is accumulating from pulse to pulse, continuously increasing the temperature, if the time between two pulses does not allow the material to sufficiently cool down. Controlling this so-called heat accumulation is one of the major challenges for materials processing with high average power pulsed lasers and repetitive processing. Heat accumulation caused by subsequent pulses (HAP) on the same spot and heat accumulation caused by subsequent scans (HAS) over the same spot can significantly reduce process quality, e.g., when the temperature increase caused by heat accumulation exceeds the melting temperature. In both cases, HAS and HAP, it is of particular interest to know the limiting number of pulses or scans after which the heat accumulation temperature exceeds a critical temperature and a pause has to be introduced. Approximation formulas for the case, where the duration of the heat input is short compared to the time between two subsequent heat inputs are derived in this paper, providing analytical scaling laws for the heat accumulation as a function of the processing parameters. The validity of these approximations is confirmed for HAP with an example of surface ablation of CrNi-steel and for HAS with multi-scan cutting of carbon fiber reinforced plastics (CFRP), both with a picosecond laser at an average power of up to 1.1 kW. It is shown that for the important case of 1-dimensional heat flow the limiting number of heat inputs decreases with the inverse of the square of the average laser power.

  5. Refinery chooses ORC to convert process waste heat to electric power

    SciTech Connect

    Makansi, J.

    1985-03-01

    The organic Rankine-cycle (ORC) waste-heat-recovery system is one of several concepts that DOE, energy-systems suppliers, and others have been developing to make use of low-level waste-heat streams at process and manufacturing plants. Now, several years after the oil crisis of the 1970s accelerated this development, one ORC system has found a home in the energy-intensive refining industry. Mobil Oil Corp has been generating electric power with an ORC system supplied by Turbonetics Energy Inc, a subsidiary of Mechanical Technology Inc (MTI), Latham, NY - at its Torrence (Calif) refinery complex for about nine months. Two modules, each rated at 1070 kW, recover heat from a 300F vapor product stream leaving a fluidcatalytic-cracking (FCC) unit. As a result, cooling duty on the existing overhead coolers has been reduced by about 70-million Btu/hr.

  6. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  7. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  8. Evaluation of guava during different phases of the industrial processing.

    PubMed

    Leite, Kátia Maria Da Silva Cerqueira; Assis, Sandra Aparecida De; Tadiotti, Antônio Carlos; Oliveira, Olga Maria Mascarenhas Faria

    2009-01-01

    In this work we studied the contents of pectin and protein, pectinmethylesterase (PME) activity, and PME stability in various stages of industrial processing, due to the implication of these values on the quality of the final product. The results of the PME stability at different values of pH showed residual PME activity at alkaline pH (7.0, 8.0, 8.5 and 9.5) and high stability at pH 4.0. These results show that pH treatment is not an efficient method to inactivate the PME enzyme. The presence of residual PME activity in all steps of industrial processing was also verified, showing that PME can change the quality of the pulp during storage.

  9. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  10. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  11. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  12. COEX - process: cross-breeding between innovation and industrial experience

    SciTech Connect

    Drain, F.; Emin, J.L.; Vinoche, R.; Baron, P.

    2008-07-01

    Recycling used nuclear fuel at an industrial scale has been a reality for over 40 years. Since it was founded in 1976, AREVA has designed and built two used fuel treatment plants in La Hague, France. These plants, named UP2-800 and UP3, use the PUREX process. UP3 began operations at the end of the 80's and UP2-800 in the mid 90's. The plutonium extracted in UP2-800 and UP3 is then processed in MELOX plant which started operation in 1995, to be recycled under the form of MOX fuel in LWR. This technology has been selected by JNFL for its reprocessing and recycling plants. Rokkasho-Mura reprocessing plant incorporates also some Japanese technologies and is being commissioned soon. Over 23,000 tons of LWR used fuels have been treated in La Hague plants and over 1200 tons of MOX fuels have been produced by MELOX plant. Innovations have been constantly incorporated to these plants to improve process efficiency and to reduce the activity and volume of waste. During these years, AREVA has acquired an invaluable experience in industrializing processes and technologies developed in the laboratory. In the frame of its continuous improvement policy, AREVA has developed jointly with CEA (French Atomic Energy Agency) a new process, COEX{sup TM} process, offering significant improvement in term of proliferation resistance, process performance and investment and operating cost. The present paper recalls the process principles applied in French and Japanese recycling plants. Then it describes the main steps of COEX{sup TM} process, the status of its development and the improvements compared to PUREX process. The possible evolution of COEX{sup TM} process to cope with needs of future nuclear fuel cycles using fast reactors and possible recycling of minor actinides is presented. (authors)

  13. General Definitions of Work and Heat in Thermodynamic Processes.

    ERIC Educational Resources Information Center

    Gislason, Eric A.; Craig, Norman C.

    1987-01-01

    Argues that previous definitions of work and heat are inappropriate. Presents new definitions that are formulated using experimental quantities, claiming that they apply equally well to reversible and irreversible processes. Indicates some of the problems with earlier definitions and applies the new definitions to the First Law of thermodynamics.…

  14. General Definitions of Work and Heat in Thermodynamic Processes.

    ERIC Educational Resources Information Center

    Gislason, Eric A.; Craig, Norman C.

    1987-01-01

    Argues that previous definitions of work and heat are inappropriate. Presents new definitions that are formulated using experimental quantities, claiming that they apply equally well to reversible and irreversible processes. Indicates some of the problems with earlier definitions and applies the new definitions to the First Law of thermodynamics.…

  15. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…

  16. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…

  17. Heat-resistant fungi of importance to the food and beverage industry.

    PubMed

    Tournas, V

    1994-01-01

    Spoilage of pasteurized and canned fruit and fruit products caused by heat-resistant molds have been reported repeatedly in recent years. Species most commonly implicated in fruit and fruit product disintegration are Byssochlamys fulva, Byssochlamys nivea, Neosartorya fischeri, Talaromyces flavus, and Eupenicillium brefeldianum. These organisms are saprophytic rather than parasitic and usually contaminate fruits on or near the ground. They can survive heat treatments used for fruit processing and can grow and spoil the products during storage at room temperature, which results in great economic losses. Mold heat resistance is attributed to the formation of sexual spores, ascospores. Ascospores have a wide range of heat resistance, depending on species, strain, age of organism, heating medium, pH, presence of sugars, fats, and acids in heating medium, growth conditions, etc. The mechanism(s) of thermoresistance are not clear; probably some very stable compound(s) critical to germination and outgrowth are present in the heat-resistant ascospores. Besides spoilage, the heat-resistant molds produce a number of toxic secondary metabolites, such as byssotoxin A; byssochlamic acid; the carcinogen, patulin, the tremorgenic substances, fumitremorgin A and C, and verruculogen; fischerin, which caused fatal peritonitis in mice; and eupenifeldin, a compound possessing cytotoxicity as well as in vivo antitumor activity. Growth of heat-resistant fungi can be controlled by lowering the water activity, adding sulfur dioxide, sorbate, or benzoate; washing of fruits in hypochlorite solution before heat treatment reduces the number of ascospores and makes the heat destruction more successful. More research is needed to elucidate the mechanism(s) of thermoresistance and develop new methods for the complete inactivation of resistant ascospores.

  18. Combined heat and mass transfer in absorption processes

    SciTech Connect

    Grossman, G.

    1982-01-01

    The approach to theoretical analysis of the combined heat and mass transfer process taking place in absorption systems is described. The two tranfer phenomena are strongly coupled here. The purpose of the analysis is to relate, quantitatively, the heat and mass transfer coefficients to the physical properties of the working fluids and to the geometry of the system. The preferred configuration is that of a falling film of liquid on a metallic surface which serves to transfer heat from the absorbent in contact with the vapor of the absorbate. The model developed may be solved for laminar, turbulent, or transition flow regimes. The results of the solution describe the development of the thermal and concentration boundary layers and the variation of the temperatures, concentrations, and heat and mass fluxes. These quantities in their normalized, dimensionless form depend on two characteristic parameters of the system: the Lewis number Le and the dimensionless heat of absorption lambda. The length in the direction of flow is normalized with respect to the Peclet number and the film thickness. Heat and mass transfer coefficients for the system were calculated. The Sherwood number for mass transfer from the vapor-liquid interface to the bulk of the film reaches a constant value of 3.63 with fully developed boundary layers for both the adiabatic and constant temperature wall. The Nusselt number for heat transfer from the interface to the bulk reaches under the same conditions values of 3.63 and 2.67 for the adiabatic and constant temperature wall, respectively. The Nusselt number for heat tranfer from the bulk to the wall reaches 1.60.

  19. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    SciTech Connect

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  20. r-process Lanthanide Production and Heating Rates in Kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka & Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Ye ≳ 0.22-0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Ye, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Ye, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  1. Exploiting budding yeast natural variation for industrial processes.

    PubMed

    Cubillos, Francisco A

    2016-11-01

    For the last two decades, the natural variation of the yeast Saccharomyces cerevisiae has been massively exploited with the aim of understanding ecological and evolutionary processes. As a result, many new genetic variants have been uncovered, providing a large catalogue of alleles underlying complex traits. These alleles represent a rich genetic resource with the potential to provide new strains that can cope with the growing demands of industrial fermentation processes. When surveyed in detail, several of these variants have proven useful in wine and beer industries by improving nitrogen utilisation, fermentation kinetics, ethanol production, sulphite resistance and aroma production. Here, I illustrate how allele-specific expression and polymorphisms within the coding region of GDB1 underlie fermentation kinetic differences in synthetic wine must. Nevertheless, the genetic basis of how GDB1 variants and other natural alleles interact in foreign genetic backgrounds remains unclear. Further studies in large sets of strains, recombinant hybrids and multiple parental pairs will broaden our knowledge of the molecular and genetic basis of trait adaptation for utilisation in applied and industrial processes.

  2. Waste disposal and treatment in the food-processing industry. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. Specific areas include waste heat recovery, and food industry wastes from meat and seafood processing, dairy and beverage production, and processing of fruits and vegetables. The citations explore conversion of the treated waste to fertilizer, and uses in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste is also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  3. Implementation of Haccp in the Mexican Poultry Processing Industry

    NASA Astrophysics Data System (ADS)

    Maldonado-Siman, Ema; Martínez-Hernández, Pedro Arturo; Ruíz-Flores, Agustín; García-Muñiz, José G.; Cadena-Meneses, José A.

    Hazard Analysis and Critical Control Point (HACCP) is a safety and quality management tool used as major issue in international and domestic trade in food industry. However, detailed information on costs and benefits of HACCP implementation is needed to provide appropriate advice to food processing plants. This paper reports on the perceptions of costs and benefits by the Mexican poultry processing plants and sale destinations. The results suggest that the major costs of implementing and operating HACCP within poultry processing plants are record keeping and external technical advice. The main benefit indicated by the majority of processing plants is a reduction in microbial counts. Over 39% of poultry production is sent to nation-wide chains of supermarkets, and less than 13% is sent to international markets. It was concluded that the adoption of HACCP by the Mexican poultry processing sector is based on the concern to increase and keep the domestic market, rather than to compete in the international market.

  4. Heating of industrial sewing machine needles: FEA model and verification using IR radiometry

    NASA Astrophysics Data System (ADS)

    Li, Qinwen; Liasi, Evangelos; Simon, Daniel L.; Du, Ruxu; Bujas-Dimitrijevic, Jasmina; Chen, Anshi

    1999-03-01

    With the use of synthetic fabrics and threads in high speed sewing, needle heating due to friction between the needle and the fabric becomes a serious problem which limits further increase of the sewing speed. The high temperature in the needle can accelerate thread wear, cause wear at the needle eye, and damage the thread. It can also scorch the fabric, as well as temper and weaken the needle itself. Experimental methods, such as: infrared radiometry, infrared pyrometry, etc., have been applied to analyze this problem in previous studies. They revealed some important factors that affect the needle peak steady state temperature. In this study the numerical (FEA) model developed to simulate the needle heating is fine tuned and verified via infrared radiometry. The FEA model incorporates detailed needle geometry and the effects of thread on needle heating. It deals with a transient heat transfer process with time and position dependent boundary conditions. It correlates various important factors that affect the needle heating, such as needle characteristics, fabric properties, and sewing conditions to the needle temperature distribution. Given various needle geometries, sewing conditions, and fabric properties, the model can simulate the needle heating process, including the initial heating phase and the steady state. It can also predict the temperature distribution in the needle as well as the time to reach steady state. The trends of the simulation results correlate well with experiments.

  5. The effect of welding line heat-affected-zone on the formability of tube hydroforming process

    NASA Astrophysics Data System (ADS)

    ChiuHuang, Cheng-Kai; Hsu, Cheng-En; Lee, Ping-Kun

    2016-08-01

    Tube hydroforming has been used as a lightweight design approach to reduce CO2 emission for the automotive industry. For the high strength steel tube, the strength and quality of the welding line is very important for a successful tube hydroforming process. This paper aims to investigate the effect of the welding line's strength and the width of the heat-affected zone on the tube thinning during the hydroforming process. The simulation results show that both factors play an important role on the thickness distribution during the tube expansion.

  6. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  7. Physiological and perceptual effects of a cooling garment during simulated industrial work in the heat.

    PubMed

    Butts, Cory L; Smith, Cody R; Ganio, Matthew S; McDermott, Brendon P

    2017-03-01

    Evaluate physiological and perceptual responses using a phase change cooling (PCC) garment during simulated work in the heat. Twenty males wearing compression undergarments, coverall suit, gloves, and hard-hat, completed two randomly assigned trials (with PCC inserts or control, CON) of simulated industrial tasks in the heat (34.2 ± 0.05 °C, 54.7 ± 0.3%RH). Trials consisted of two 20 min work bouts, a maximum performance bout, and 10 min of recovery. Physiological strain index (PSI) was lower during PCC after the second work bout and during recovery (all P < 0.05). PCC reduced heat storage (27.0 ± 7.6 W m(-2)) compared to CON (42.7 ± 9.9 W m(-2), P < 0.001). Perceptual strain index (PeSI) was reduced with PCC compared to CON (P < 0.001), however performance outcomes were not different between trials (P = 0.10). PCC during work in the heat attenuated thermal, physiological, and perceptual strain. This PCC garment could increase safety and reduce occupational heat illness risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  9. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  10. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  11. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  12. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    PubMed

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course.

  13. GRP vessels and pipework for the chemical and process industries

    SciTech Connect

    Not Available

    1984-01-01

    Plastic can be reinforced by an appreciable number of materials, the most commonly used is glass-fibre. Glass reinforced plastic (GRP) has been used in the chemical and process industries for 25 years. In the course of its use and development, much data has been gathered on the material, its chemistry, mechanical properties, methods of fabrication and moulding, its behaviour in service and the methods and mathematics of the analysis of plant constructed from it. The importance of the material in industry was reflected by the large response to a symposium organised by UMIST, the Institution of Chemical Engineers and the Institution of Mechanical Engineers. Topics considered include GRP piping - a multi-sponsored research project; inspection authority views; failure of attachments to GRP cylinders due to local loads; aspects of GRP service failure in the chemical and process industries; stress corrosion of GRP in relation to design stress and service performance; design of GRP pipe bends in relation to internal pressure tests to destruction; and acoustic emission monitoring: a complementary inspection method for fibre-reinforced plastic components.

  14. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  15. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  16. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  17. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  18. Heat and work distributions for mixed Gauss-Cauchy process

    NASA Astrophysics Data System (ADS)

    Kuśmierz, Łukasz; Rubi, J. Miguel; Gudowska-Nowak, Ewa

    2014-09-01

    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two independent Levy white noises with stability indices $\\alpha=2$ and $\\alpha=1$. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations to either bath or external force acting on the system.

  19. Considerations concerning the physical heat-recovery of raw coke-oven gas in an industrial pilot-station

    SciTech Connect

    Paunescu, L.; Gaba, A.

    1998-12-31

    The paper presents the conception and realization obtained by the research team at the Metallurgical Researches Institute in an industrial pilot-station on the field of the physical heat-recovery of raw coke-oven gas.

  20. Competent statistical programmer: Need of business process outsourcing industry

    PubMed Central

    Khan, Imran

    2014-01-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes. PMID:24987578

  1. Competent statistical programmer: Need of business process outsourcing industry.

    PubMed

    Khan, Imran

    2014-07-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes.

  2. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    NASA Astrophysics Data System (ADS)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  3. Vermicomposting of milk processing industry sludge spiked with plant wastes.

    PubMed

    Suthar, Surindra; Mutiyar, Pravin K; Singh, Sushma

    2012-07-01

    This work illustrates the vermistabilization of wastewater sludge from a milk processing industry (MPIS) unit spiked with cow dung (CD), sugarcane trash (ST) and wheat straw (WS) employing earthworms Eisenia fetida. A total of nine experimental vermibeds were established and changes in chemical parameters of waste material have been observed for 90 days. Vermistabilization caused significant reduction in pH, organic carbon and C:N ratio and substantial increase in total N, available P and exchangeable K. The waste mixture containing MPIS (60%)+CD (10%)+ST (30%) and MPIS (60%)+CD (10%)+WS (30%) had better waste mineralization rate among waste mixtures studied. The earthworm showed better biomass and cocoon numbers in all vermibeds during vermicomposting operation. Results, thus suggest the suitability of E. fetida for conversion of noxious industrial waste into value-added product for land restoration programme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  5. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  6. Effect of heat processing on selected grain amaranth physicochemical properties

    PubMed Central

    Muyonga, John H; Andabati, Brian; Ssepuuya, Geoffrey

    2014-01-01

    Grain amaranth is a pseudocereal with unique agricultural, nutritional, and functional properties. This study was undertaken to determine the effect of different heat-processing methods on physicochemical and nutraceutical properties in two main grain amaranth species, of Amaranthus hypochondriacus L. and Amaranthus cruentus L. Grains were prepared by roasting and popping, milled and analyzed for changes in in vitro protein digestibility, gruel viscosity, pasting characteristics, antioxidant activity, flavonoids, and total phenolics. In vitro protein digestibility was determined using the pepsin-pancreatin enzyme system. Viscosity and pasting characteristics of samples were determined using a Brookfield Viscometer and a Rapid Visco Analyzer, respectively. The grain methanol extracts were analysed for phenolics using spectrophotometry while antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Heat treatment led to a reduction in protein digestibility, the effect being higher in popped than in roasted samples. Viscosities for roasted grain amaranth gruels were significantly higher than those obtained from raw and popped grain amaranth gruels. The results for pasting properties were consistent with the results for viscosity. In both A. hypochondriacus L. and A. cruentus L., the order of the viscosity values was roasted>raw>popped. The viscosities were also generally lower for A. cruentus L. compared to A. hypochondriacus L. Raw samples for both A. hypochondriacus L. and A. cruentus L. did not significantly differ in total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity values. Thermal processing led to an increase in TFC and antioxidant activity. However, TPC of heat-processed samples remained unchanged. From the results, it can be concluded that heat treatment enhances antioxidant activity of grain amaranth and causes rheological changes dependent on the nature of heat treatment. PMID

  7. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    PubMed

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  9. Solar thermal energy for supplemental heat to process tea in Sri Lanka

    SciTech Connect

    Ariyaratne, A.R.

    1987-01-01

    In tea processing, the subprocesses of withering and drying require thermal energy for dehydration of tea leaves. At present, the Sri Lankan tea industry depends mostly on imported fossil fuels for its thermal energy needs. The economic pressure has forced the industry to investigate energy alternatives. In this study solar thermal energy, heat recovery from fluidized-bed dryers, and a combination of solar system with heat recovery were analyzed. The /phi/, f-chart general design method was used to design solar systems to match thermal energy needs in tea processing. The analysis was extended to the f-chart economic analysis to select economically optimum systems. On the basis of highest life-cycle savings, flat-plate solar-collector area and storage tank were sized. Results showed that solar thermal systems require a high investment,but can provide 42, 52, and 63% of the energy needs for high, mid and low tea growing regions, respectively. Combination of solar thermal systems with heat recovery from a fluidized-bed dryer decreases the amount of energy required by another 7 to 12% yet requires only a small increase in investment.

  10. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  11. Testing the Corrosion Behaviour of Plated Aluminum Strips for Heat Exchangers Operating in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Nowak, Marek; Opyrchał, Mieczysław; Kłyszewski, Andrzej; Żelechowski, Janusz

    The automotive industry uses heat exchangers made of aluminum alloys. The radiators for an engine cooling system comprise elements (tubes) in which the coolant flows. These elements are made of AlMn alloys (e.g. AlMn or AlMnCu), while ribs are made from the sheet metal plated with AlSi alloys. While in service, the heat exchangers are exposed to harsh weather conditions, hence the need to ensure that the individual elements of the design are adequately protected from corrosion. One of the ways to obtain this protection is by modification of the chemical composition of aluminum alloys used in the manufacture of radiators. In this study, corrosion tests were carried out to characterise the investigated materials in terms of their corrosive behavior. The experiments included measurements of corrosion potential, testing of corrosion resistance in neutral salt spray, and electrochemical studies of selected plated AlMn alloy strips with different chemical composition.

  12. Kinetics of the zinc slag-Fuming process: Part i. industrial measurements

    NASA Astrophysics Data System (ADS)

    Richards, G. G.; Brimacombe, J. K.; Toop, G. W.

    1985-09-01

    A study involving industrial measurements and mathematical modeling has been conducted to eluci-date kinetic phenomena in the zinc slag fuming process. In the first part of this three-part paper, the results of industrial measurements and observations are presented. In Part II a mathematical model of the process is developed, and finally in Part III the implications of a kinetic conception of the process for process improvement are explored. The industrial work consisted primarily of slag sampling through the fuming cycles of five different fuming operations. In addition, tuyere back-pressure mea-surements, tuyere photography using a tuyerescope, and sampling of the fume product were under-taken at one operation. Analysis of the slag samples has shown that, in general, the zinc elimination curve is linear with time and that a portion of the injected coal entrains in the slag. Analysis of tuyere back-pressure fluctuations and movie photographs of the tuyere tip indicate that the coal-air mixture enters the slag in the form of discrete bubbles. From these results it can be deduced that the fuming furnace consists of two reaction zones which are created by the division of coal between the slag and the tuyere gas stream. The coal entrained in the slag reduces ZnO and Fe3O4 in a “reduction zone” which is responsible for fuming. The coal remaining in the tuyere gas stream combusts in an “oxidation zone” although a fraction passes through the bath unconsumed and reports to the solid products. The oxidation zone supplies heat to the endothermic reduction reactions and heat losses.

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  14. Process model economics of xanthan production from confectionery industry wastewaters.

    PubMed

    Bajić, Bojana Ž; Vučurović, Damjan G; Dodić, Siniša N; Grahovac, Jovana A; Dodić, Jelena M

    2017-09-04

    In this research a process and cost model for a xanthan production facility was developed using process simulation software (SuperPro Designer(®)). This work represents a novelty in the field for two reasons. One is that xanthan gum has been produced from several wastes but never from wastewaters from confectionery industries. The other more important is that the aforementioned software, which in intended exclusively for bioprocesses, is used for generating a base case, i.e. starting point for transferring the technology to industrial scales. Previously acquired experimental knowledge about using confectionery wastewaters from five different factories as substitutes for commercially used cultivation medium have been incorporated into the process model in order to obtain an economic viability of implementing such substrates. A lower initial sugar content in the medium based on wastewater (28.41 g/L) compared to the synthetic medium (30.00 g/L) gave a lower xanthan content at the end of cultivation (23.98 and 26.27 g/L, respectively). Although this resulted in somewhat poorer economic parameters, they were still in the range of being an investment of interest. Also the possibility of utilizing a cheap resource (waste) and reducing pollution that would result from its disposal has a positive effect on the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Technology for industrial waste heat recovery by organic Rankine cycle systems

    NASA Astrophysics Data System (ADS)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  17. Atmospheric heat transfer to the Arctic under main synoptic processes

    NASA Astrophysics Data System (ADS)

    Yurova, Alla; Gnatiuk, Natalia; Bobylev, Leonid; Zhu, Yali

    2016-04-01

    Arctic - mid-latitude teleconnections are operating in both ways and behind them are potentially some causes of the enhanced Arctic warming (e.g., through heat transfer from lower to higher latitudes) and the feedbacks from the Arctic climate to the mid-latitude weather patterns. In order to explain the variability of the surface air temperature in the Arctic, we aim to analyse the typical synoptic situations that, we hypothesize, are characterized by a specific patterns of heat exchange between the Arctic and mid-latitudes. According to classification of synoptic processes in the Arctic developed at the Arctic and Antarctic Research Institute (AARI) in St. Petersburg major typical groups of synoptic situations in the Arctic are few (six). They correspond to position and intensity of low- and high-pressure centres. Therefore, the whole data sample for the winter period for the entire period of instrumental observations (archive exists back to 1939) can be split into six groups that sub-sample each of six groups/types of synoptic situations. Then heat transfer to the Arctic can be estimated as the divergence of the horizontal (advective) heat flux (the product of wind speed and temperature gradient) within each vertical atmospheric layer, which is calculated based on the ERA Interim Reanalysis data for the winter season (1979-now). Mapping heat divergence fields will reveal the main mid-latitude sources of heat transported to the Arctic, average for the whole data sample and for each of the six main groups of synoptic situations. This work was supported by RFBR grants 16-55-53031

  18. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  19. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  20. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...